1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/desc.h>
35 #include <asm/mtrr.h>
36 #include <asm/msr-index.h>
37 #include <asm/asm.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kvm_page_track.h>
40 #include <asm/kvm_vcpu_regs.h>
41 #include <asm/reboot.h>
42 #include <hyperv/hvhdk.h>
43
44 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
45
46 /*
47 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
48 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
49 */
50 #ifdef CONFIG_KVM_MAX_NR_VCPUS
51 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
52 #else
53 #define KVM_MAX_VCPUS 1024
54 #endif
55
56 /*
57 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
58 * might be larger than the actual number of VCPUs because the
59 * APIC ID encodes CPU topology information.
60 *
61 * In the worst case, we'll need less than one extra bit for the
62 * Core ID, and less than one extra bit for the Package (Die) ID,
63 * so ratio of 4 should be enough.
64 */
65 #define KVM_VCPU_ID_RATIO 4
66 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
67
68 /* memory slots that are not exposed to userspace */
69 #define KVM_INTERNAL_MEM_SLOTS 3
70
71 #define KVM_HALT_POLL_NS_DEFAULT 200000
72
73 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
74
75 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
76 KVM_DIRTY_LOG_INITIALLY_SET)
77
78 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
79 KVM_BUS_LOCK_DETECTION_EXIT)
80
81 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
82 KVM_X86_NOTIFY_VMEXIT_USER)
83
84 /* x86-specific vcpu->requests bit members */
85 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
86 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
87 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
88 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
89 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
90 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
91 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
92 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
93 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
94 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
95 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
96 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
97 #ifdef CONFIG_KVM_SMM
98 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
99 #endif
100 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
101 #define KVM_REQ_MCLOCK_INPROGRESS \
102 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
103 #define KVM_REQ_SCAN_IOAPIC \
104 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
106 #define KVM_REQ_APIC_PAGE_RELOAD \
107 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
108 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
109 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
110 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
111 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
112 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
113 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
114 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
115 #define KVM_REQ_APICV_UPDATE \
116 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
117 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
118 #define KVM_REQ_TLB_FLUSH_GUEST \
119 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
120 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
121 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
122 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
123 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
124 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
125 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_HV_TLB_FLUSH \
127 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34)
129
130 #define CR0_RESERVED_BITS \
131 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
132 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
133 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
134
135 #define CR4_RESERVED_BITS \
136 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
137 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
138 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
139 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
140 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
141 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
142 | X86_CR4_LAM_SUP))
143
144 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
145
146
147
148 #define INVALID_PAGE (~(hpa_t)0)
149 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
150
151 /* KVM Hugepage definitions for x86 */
152 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
153 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
154 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
155 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
156 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
157 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
158 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
159
160 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
161 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
162 #define KVM_MMU_HASH_SHIFT 12
163 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
164 #define KVM_MIN_FREE_MMU_PAGES 5
165 #define KVM_REFILL_PAGES 25
166 #define KVM_MAX_CPUID_ENTRIES 256
167 #define KVM_NR_VAR_MTRR 8
168
169 #define ASYNC_PF_PER_VCPU 64
170
171 enum kvm_reg {
172 VCPU_REGS_RAX = __VCPU_REGS_RAX,
173 VCPU_REGS_RCX = __VCPU_REGS_RCX,
174 VCPU_REGS_RDX = __VCPU_REGS_RDX,
175 VCPU_REGS_RBX = __VCPU_REGS_RBX,
176 VCPU_REGS_RSP = __VCPU_REGS_RSP,
177 VCPU_REGS_RBP = __VCPU_REGS_RBP,
178 VCPU_REGS_RSI = __VCPU_REGS_RSI,
179 VCPU_REGS_RDI = __VCPU_REGS_RDI,
180 #ifdef CONFIG_X86_64
181 VCPU_REGS_R8 = __VCPU_REGS_R8,
182 VCPU_REGS_R9 = __VCPU_REGS_R9,
183 VCPU_REGS_R10 = __VCPU_REGS_R10,
184 VCPU_REGS_R11 = __VCPU_REGS_R11,
185 VCPU_REGS_R12 = __VCPU_REGS_R12,
186 VCPU_REGS_R13 = __VCPU_REGS_R13,
187 VCPU_REGS_R14 = __VCPU_REGS_R14,
188 VCPU_REGS_R15 = __VCPU_REGS_R15,
189 #endif
190 VCPU_REGS_RIP,
191 NR_VCPU_REGS,
192
193 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
194 VCPU_EXREG_CR0,
195 VCPU_EXREG_CR3,
196 VCPU_EXREG_CR4,
197 VCPU_EXREG_RFLAGS,
198 VCPU_EXREG_SEGMENTS,
199 VCPU_EXREG_EXIT_INFO_1,
200 VCPU_EXREG_EXIT_INFO_2,
201 };
202
203 enum {
204 VCPU_SREG_ES,
205 VCPU_SREG_CS,
206 VCPU_SREG_SS,
207 VCPU_SREG_DS,
208 VCPU_SREG_FS,
209 VCPU_SREG_GS,
210 VCPU_SREG_TR,
211 VCPU_SREG_LDTR,
212 };
213
214 enum exit_fastpath_completion {
215 EXIT_FASTPATH_NONE,
216 EXIT_FASTPATH_REENTER_GUEST,
217 EXIT_FASTPATH_EXIT_HANDLED,
218 EXIT_FASTPATH_EXIT_USERSPACE,
219 };
220 typedef enum exit_fastpath_completion fastpath_t;
221
222 struct x86_emulate_ctxt;
223 struct x86_exception;
224 union kvm_smram;
225 enum x86_intercept;
226 enum x86_intercept_stage;
227
228 #define KVM_NR_DB_REGS 4
229
230 #define DR6_BUS_LOCK (1 << 11)
231 #define DR6_BD (1 << 13)
232 #define DR6_BS (1 << 14)
233 #define DR6_BT (1 << 15)
234 #define DR6_RTM (1 << 16)
235 /*
236 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
237 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
238 * they will never be 0 for now, but when they are defined
239 * in the future it will require no code change.
240 *
241 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
242 */
243 #define DR6_ACTIVE_LOW 0xffff0ff0
244 #define DR6_VOLATILE 0x0001e80f
245 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
246
247 #define DR7_BP_EN_MASK 0x000000ff
248 #define DR7_GE (1 << 9)
249 #define DR7_GD (1 << 13)
250 #define DR7_FIXED_1 0x00000400
251 #define DR7_VOLATILE 0xffff2bff
252
253 #define KVM_GUESTDBG_VALID_MASK \
254 (KVM_GUESTDBG_ENABLE | \
255 KVM_GUESTDBG_SINGLESTEP | \
256 KVM_GUESTDBG_USE_HW_BP | \
257 KVM_GUESTDBG_USE_SW_BP | \
258 KVM_GUESTDBG_INJECT_BP | \
259 KVM_GUESTDBG_INJECT_DB | \
260 KVM_GUESTDBG_BLOCKIRQ)
261
262 #define PFERR_PRESENT_MASK BIT(0)
263 #define PFERR_WRITE_MASK BIT(1)
264 #define PFERR_USER_MASK BIT(2)
265 #define PFERR_RSVD_MASK BIT(3)
266 #define PFERR_FETCH_MASK BIT(4)
267 #define PFERR_PK_MASK BIT(5)
268 #define PFERR_SGX_MASK BIT(15)
269 #define PFERR_GUEST_RMP_MASK BIT_ULL(31)
270 #define PFERR_GUEST_FINAL_MASK BIT_ULL(32)
271 #define PFERR_GUEST_PAGE_MASK BIT_ULL(33)
272 #define PFERR_GUEST_ENC_MASK BIT_ULL(34)
273 #define PFERR_GUEST_SIZEM_MASK BIT_ULL(35)
274 #define PFERR_GUEST_VMPL_MASK BIT_ULL(36)
275
276 /*
277 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
278 * when emulating instructions that triggers implicit access.
279 */
280 #define PFERR_IMPLICIT_ACCESS BIT_ULL(48)
281 /*
282 * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
283 * when the guest was accessing private memory.
284 */
285 #define PFERR_PRIVATE_ACCESS BIT_ULL(49)
286 #define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
287
288 /* apic attention bits */
289 #define KVM_APIC_CHECK_VAPIC 0
290 /*
291 * The following bit is set with PV-EOI, unset on EOI.
292 * We detect PV-EOI changes by guest by comparing
293 * this bit with PV-EOI in guest memory.
294 * See the implementation in apic_update_pv_eoi.
295 */
296 #define KVM_APIC_PV_EOI_PENDING 1
297
298 struct kvm_kernel_irq_routing_entry;
299
300 /*
301 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
302 * also includes TDP pages) to determine whether or not a page can be used in
303 * the given MMU context. This is a subset of the overall kvm_cpu_role to
304 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
305 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
306 *
307 * Upper-level shadow pages having gptes are tracked for write-protection via
308 * gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must
309 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
310 * otherwise gfn_write_track will overflow and explosions will ensue.
311 *
312 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
313 * cannot be reused. The ability to reuse a SP is tracked by its role, which
314 * incorporates various mode bits and properties of the SP. Roughly speaking,
315 * the number of unique SPs that can theoretically be created is 2^n, where n
316 * is the number of bits that are used to compute the role.
317 *
318 * But, even though there are 20 bits in the mask below, not all combinations
319 * of modes and flags are possible:
320 *
321 * - invalid shadow pages are not accounted, mirror pages are not shadowed,
322 * so the bits are effectively 18.
323 *
324 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
325 * execonly and ad_disabled are only used for nested EPT which has
326 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
327 *
328 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
329 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
330 * paging has exactly one upper level, making level completely redundant
331 * when has_4_byte_gpte=1.
332 *
333 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
334 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
335 *
336 * Therefore, the maximum number of possible upper-level shadow pages for a
337 * single gfn is a bit less than 2^13.
338 */
339 union kvm_mmu_page_role {
340 u32 word;
341 struct {
342 unsigned level:4;
343 unsigned has_4_byte_gpte:1;
344 unsigned quadrant:2;
345 unsigned direct:1;
346 unsigned access:3;
347 unsigned invalid:1;
348 unsigned efer_nx:1;
349 unsigned cr0_wp:1;
350 unsigned smep_andnot_wp:1;
351 unsigned smap_andnot_wp:1;
352 unsigned ad_disabled:1;
353 unsigned guest_mode:1;
354 unsigned passthrough:1;
355 unsigned is_mirror:1;
356 unsigned :4;
357
358 /*
359 * This is left at the top of the word so that
360 * kvm_memslots_for_spte_role can extract it with a
361 * simple shift. While there is room, give it a whole
362 * byte so it is also faster to load it from memory.
363 */
364 unsigned smm:8;
365 };
366 };
367
368 /*
369 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
370 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
371 * including on nested transitions, if nothing in the full role changes then
372 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
373 * don't treat all-zero structure as valid data.
374 *
375 * The properties that are tracked in the extended role but not the page role
376 * are for things that either (a) do not affect the validity of the shadow page
377 * or (b) are indirectly reflected in the shadow page's role. For example,
378 * CR4.PKE only affects permission checks for software walks of the guest page
379 * tables (because KVM doesn't support Protection Keys with shadow paging), and
380 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
381 *
382 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
383 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
384 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
385 * SMAP aware regardless of CR0.WP.
386 */
387 union kvm_mmu_extended_role {
388 u32 word;
389 struct {
390 unsigned int valid:1;
391 unsigned int execonly:1;
392 unsigned int cr4_pse:1;
393 unsigned int cr4_pke:1;
394 unsigned int cr4_smap:1;
395 unsigned int cr4_smep:1;
396 unsigned int cr4_la57:1;
397 unsigned int efer_lma:1;
398 };
399 };
400
401 union kvm_cpu_role {
402 u64 as_u64;
403 struct {
404 union kvm_mmu_page_role base;
405 union kvm_mmu_extended_role ext;
406 };
407 };
408
409 struct kvm_rmap_head {
410 atomic_long_t val;
411 };
412
413 struct kvm_pio_request {
414 unsigned long linear_rip;
415 unsigned long count;
416 int in;
417 int port;
418 int size;
419 };
420
421 #define PT64_ROOT_MAX_LEVEL 5
422
423 struct rsvd_bits_validate {
424 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
425 u64 bad_mt_xwr;
426 };
427
428 struct kvm_mmu_root_info {
429 gpa_t pgd;
430 hpa_t hpa;
431 };
432
433 #define KVM_MMU_ROOT_INFO_INVALID \
434 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
435
436 #define KVM_MMU_NUM_PREV_ROOTS 3
437
438 #define KVM_MMU_ROOT_CURRENT BIT(0)
439 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
440 #define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
441
442 #define KVM_HAVE_MMU_RWLOCK
443
444 struct kvm_mmu_page;
445 struct kvm_page_fault;
446
447 /*
448 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
449 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
450 * current mmu mode.
451 */
452 struct kvm_mmu {
453 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
454 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
455 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
456 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
457 struct x86_exception *fault);
458 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
459 gpa_t gva_or_gpa, u64 access,
460 struct x86_exception *exception);
461 int (*sync_spte)(struct kvm_vcpu *vcpu,
462 struct kvm_mmu_page *sp, int i);
463 struct kvm_mmu_root_info root;
464 hpa_t mirror_root_hpa;
465 union kvm_cpu_role cpu_role;
466 union kvm_mmu_page_role root_role;
467
468 /*
469 * The pkru_mask indicates if protection key checks are needed. It
470 * consists of 16 domains indexed by page fault error code bits [4:1],
471 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
472 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
473 */
474 u32 pkru_mask;
475
476 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
477
478 /*
479 * Bitmap; bit set = permission fault
480 * Byte index: page fault error code [4:1]
481 * Bit index: pte permissions in ACC_* format
482 */
483 u8 permissions[16];
484
485 u64 *pae_root;
486 u64 *pml4_root;
487 u64 *pml5_root;
488
489 /*
490 * check zero bits on shadow page table entries, these
491 * bits include not only hardware reserved bits but also
492 * the bits spte never used.
493 */
494 struct rsvd_bits_validate shadow_zero_check;
495
496 struct rsvd_bits_validate guest_rsvd_check;
497
498 u64 pdptrs[4]; /* pae */
499 };
500
501 enum pmc_type {
502 KVM_PMC_GP = 0,
503 KVM_PMC_FIXED,
504 };
505
506 struct kvm_pmc {
507 enum pmc_type type;
508 u8 idx;
509 bool is_paused;
510 bool intr;
511 /*
512 * Base value of the PMC counter, relative to the *consumed* count in
513 * the associated perf_event. This value includes counter updates from
514 * the perf_event and emulated_count since the last time the counter
515 * was reprogrammed, but it is *not* the current value as seen by the
516 * guest or userspace.
517 *
518 * The count is relative to the associated perf_event so that KVM
519 * doesn't need to reprogram the perf_event every time the guest writes
520 * to the counter.
521 */
522 u64 counter;
523 /*
524 * PMC events triggered by KVM emulation that haven't been fully
525 * processed, i.e. haven't undergone overflow detection.
526 */
527 u64 emulated_counter;
528 u64 eventsel;
529 struct perf_event *perf_event;
530 struct kvm_vcpu *vcpu;
531 /*
532 * only for creating or reusing perf_event,
533 * eventsel value for general purpose counters,
534 * ctrl value for fixed counters.
535 */
536 u64 current_config;
537 };
538
539 /* More counters may conflict with other existing Architectural MSRs */
540 #define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b))
541 #define KVM_MAX_NR_INTEL_GP_COUNTERS 8
542 #define KVM_MAX_NR_AMD_GP_COUNTERS 6
543 #define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
544 KVM_MAX_NR_AMD_GP_COUNTERS)
545
546 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3
547 #define KVM_MAX_NR_AMD_FIXED_COUTNERS 0
548 #define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
549 KVM_MAX_NR_AMD_FIXED_COUTNERS)
550
551 struct kvm_pmu {
552 u8 version;
553 unsigned nr_arch_gp_counters;
554 unsigned nr_arch_fixed_counters;
555 unsigned available_event_types;
556 u64 fixed_ctr_ctrl;
557 u64 fixed_ctr_ctrl_rsvd;
558 u64 global_ctrl;
559 u64 global_status;
560 u64 counter_bitmask[2];
561 u64 global_ctrl_rsvd;
562 u64 global_status_rsvd;
563 u64 reserved_bits;
564 u64 raw_event_mask;
565 struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
566 struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
567
568 /*
569 * Overlay the bitmap with a 64-bit atomic so that all bits can be
570 * set in a single access, e.g. to reprogram all counters when the PMU
571 * filter changes.
572 */
573 union {
574 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
575 atomic64_t __reprogram_pmi;
576 };
577 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
578 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
579
580 u64 ds_area;
581 u64 pebs_enable;
582 u64 pebs_enable_rsvd;
583 u64 pebs_data_cfg;
584 u64 pebs_data_cfg_rsvd;
585
586 /*
587 * If a guest counter is cross-mapped to host counter with different
588 * index, its PEBS capability will be temporarily disabled.
589 *
590 * The user should make sure that this mask is updated
591 * after disabling interrupts and before perf_guest_get_msrs();
592 */
593 u64 host_cross_mapped_mask;
594
595 /*
596 * The gate to release perf_events not marked in
597 * pmc_in_use only once in a vcpu time slice.
598 */
599 bool need_cleanup;
600
601 /*
602 * The total number of programmed perf_events and it helps to avoid
603 * redundant check before cleanup if guest don't use vPMU at all.
604 */
605 u8 event_count;
606 };
607
608 struct kvm_pmu_ops;
609
610 enum {
611 KVM_DEBUGREG_BP_ENABLED = 1,
612 KVM_DEBUGREG_WONT_EXIT = 2,
613 };
614
615 struct kvm_mtrr {
616 u64 var[KVM_NR_VAR_MTRR * 2];
617 u64 fixed_64k;
618 u64 fixed_16k[2];
619 u64 fixed_4k[8];
620 u64 deftype;
621 };
622
623 /* Hyper-V SynIC timer */
624 struct kvm_vcpu_hv_stimer {
625 struct hrtimer timer;
626 int index;
627 union hv_stimer_config config;
628 u64 count;
629 u64 exp_time;
630 struct hv_message msg;
631 bool msg_pending;
632 };
633
634 /* Hyper-V synthetic interrupt controller (SynIC)*/
635 struct kvm_vcpu_hv_synic {
636 u64 version;
637 u64 control;
638 u64 msg_page;
639 u64 evt_page;
640 atomic64_t sint[HV_SYNIC_SINT_COUNT];
641 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
642 DECLARE_BITMAP(auto_eoi_bitmap, 256);
643 DECLARE_BITMAP(vec_bitmap, 256);
644 bool active;
645 bool dont_zero_synic_pages;
646 };
647
648 /* The maximum number of entries on the TLB flush fifo. */
649 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
650 /*
651 * Note: the following 'magic' entry is made up by KVM to avoid putting
652 * anything besides GVA on the TLB flush fifo. It is theoretically possible
653 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
654 * which will look identical. KVM's action to 'flush everything' instead of
655 * flushing these particular addresses is, however, fully legitimate as
656 * flushing more than requested is always OK.
657 */
658 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
659
660 enum hv_tlb_flush_fifos {
661 HV_L1_TLB_FLUSH_FIFO,
662 HV_L2_TLB_FLUSH_FIFO,
663 HV_NR_TLB_FLUSH_FIFOS,
664 };
665
666 struct kvm_vcpu_hv_tlb_flush_fifo {
667 spinlock_t write_lock;
668 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
669 };
670
671 /* Hyper-V per vcpu emulation context */
672 struct kvm_vcpu_hv {
673 struct kvm_vcpu *vcpu;
674 u32 vp_index;
675 u64 hv_vapic;
676 s64 runtime_offset;
677 struct kvm_vcpu_hv_synic synic;
678 struct kvm_hyperv_exit exit;
679 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
680 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
681 bool enforce_cpuid;
682 struct {
683 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
684 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
685 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
686 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
687 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
688 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
689 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
690 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
691 } cpuid_cache;
692
693 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
694
695 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */
696 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
697
698 struct hv_vp_assist_page vp_assist_page;
699
700 struct {
701 u64 pa_page_gpa;
702 u64 vm_id;
703 u32 vp_id;
704 } nested;
705 };
706
707 struct kvm_hypervisor_cpuid {
708 u32 base;
709 u32 limit;
710 };
711
712 #ifdef CONFIG_KVM_XEN
713 /* Xen HVM per vcpu emulation context */
714 struct kvm_vcpu_xen {
715 u64 hypercall_rip;
716 u32 current_runstate;
717 u8 upcall_vector;
718 struct gfn_to_pfn_cache vcpu_info_cache;
719 struct gfn_to_pfn_cache vcpu_time_info_cache;
720 struct gfn_to_pfn_cache runstate_cache;
721 struct gfn_to_pfn_cache runstate2_cache;
722 u64 last_steal;
723 u64 runstate_entry_time;
724 u64 runstate_times[4];
725 unsigned long evtchn_pending_sel;
726 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
727 u32 timer_virq;
728 u64 timer_expires; /* In guest epoch */
729 atomic_t timer_pending;
730 struct hrtimer timer;
731 int poll_evtchn;
732 struct timer_list poll_timer;
733 struct kvm_hypervisor_cpuid cpuid;
734 };
735 #endif
736
737 struct kvm_queued_exception {
738 bool pending;
739 bool injected;
740 bool has_error_code;
741 u8 vector;
742 u32 error_code;
743 unsigned long payload;
744 bool has_payload;
745 };
746
747 /*
748 * Hardware-defined CPUID leafs that are either scattered by the kernel or are
749 * unknown to the kernel, but need to be directly used by KVM. Note, these
750 * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
751 */
752 enum kvm_only_cpuid_leafs {
753 CPUID_12_EAX = NCAPINTS,
754 CPUID_7_1_EDX,
755 CPUID_8000_0007_EDX,
756 CPUID_8000_0022_EAX,
757 CPUID_7_2_EDX,
758 CPUID_24_0_EBX,
759 NR_KVM_CPU_CAPS,
760
761 NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
762 };
763
764 struct kvm_vcpu_arch {
765 /*
766 * rip and regs accesses must go through
767 * kvm_{register,rip}_{read,write} functions.
768 */
769 unsigned long regs[NR_VCPU_REGS];
770 u32 regs_avail;
771 u32 regs_dirty;
772
773 unsigned long cr0;
774 unsigned long cr0_guest_owned_bits;
775 unsigned long cr2;
776 unsigned long cr3;
777 unsigned long cr4;
778 unsigned long cr4_guest_owned_bits;
779 unsigned long cr4_guest_rsvd_bits;
780 unsigned long cr8;
781 u32 host_pkru;
782 u32 pkru;
783 u32 hflags;
784 u64 efer;
785 u64 host_debugctl;
786 u64 apic_base;
787 struct kvm_lapic *apic; /* kernel irqchip context */
788 bool load_eoi_exitmap_pending;
789 DECLARE_BITMAP(ioapic_handled_vectors, 256);
790 unsigned long apic_attention;
791 int32_t apic_arb_prio;
792 int mp_state;
793 u64 ia32_misc_enable_msr;
794 u64 smbase;
795 u64 smi_count;
796 bool at_instruction_boundary;
797 bool tpr_access_reporting;
798 bool xfd_no_write_intercept;
799 u64 ia32_xss;
800 u64 microcode_version;
801 u64 arch_capabilities;
802 u64 perf_capabilities;
803
804 /*
805 * Paging state of the vcpu
806 *
807 * If the vcpu runs in guest mode with two level paging this still saves
808 * the paging mode of the l1 guest. This context is always used to
809 * handle faults.
810 */
811 struct kvm_mmu *mmu;
812
813 /* Non-nested MMU for L1 */
814 struct kvm_mmu root_mmu;
815
816 /* L1 MMU when running nested */
817 struct kvm_mmu guest_mmu;
818
819 /*
820 * Paging state of an L2 guest (used for nested npt)
821 *
822 * This context will save all necessary information to walk page tables
823 * of an L2 guest. This context is only initialized for page table
824 * walking and not for faulting since we never handle l2 page faults on
825 * the host.
826 */
827 struct kvm_mmu nested_mmu;
828
829 /*
830 * Pointer to the mmu context currently used for
831 * gva_to_gpa translations.
832 */
833 struct kvm_mmu *walk_mmu;
834
835 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
836 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
837 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
838 struct kvm_mmu_memory_cache mmu_page_header_cache;
839 /*
840 * This cache is to allocate external page table. E.g. private EPT used
841 * by the TDX module.
842 */
843 struct kvm_mmu_memory_cache mmu_external_spt_cache;
844
845 /*
846 * QEMU userspace and the guest each have their own FPU state.
847 * In vcpu_run, we switch between the user and guest FPU contexts.
848 * While running a VCPU, the VCPU thread will have the guest FPU
849 * context.
850 *
851 * Note that while the PKRU state lives inside the fpu registers,
852 * it is switched out separately at VMENTER and VMEXIT time. The
853 * "guest_fpstate" state here contains the guest FPU context, with the
854 * host PRKU bits.
855 */
856 struct fpu_guest guest_fpu;
857
858 u64 xcr0;
859 u64 guest_supported_xcr0;
860
861 struct kvm_pio_request pio;
862 void *pio_data;
863 void *sev_pio_data;
864 unsigned sev_pio_count;
865
866 u8 event_exit_inst_len;
867
868 bool exception_from_userspace;
869
870 /* Exceptions to be injected to the guest. */
871 struct kvm_queued_exception exception;
872 /* Exception VM-Exits to be synthesized to L1. */
873 struct kvm_queued_exception exception_vmexit;
874
875 struct kvm_queued_interrupt {
876 bool injected;
877 bool soft;
878 u8 nr;
879 } interrupt;
880
881 int halt_request; /* real mode on Intel only */
882
883 int cpuid_nent;
884 struct kvm_cpuid_entry2 *cpuid_entries;
885 bool cpuid_dynamic_bits_dirty;
886 bool is_amd_compatible;
887
888 /*
889 * cpu_caps holds the effective guest capabilities, i.e. the features
890 * the vCPU is allowed to use. Typically, but not always, features can
891 * be used by the guest if and only if both KVM and userspace want to
892 * expose the feature to the guest.
893 *
894 * A common exception is for virtualization holes, i.e. when KVM can't
895 * prevent the guest from using a feature, in which case the vCPU "has"
896 * the feature regardless of what KVM or userspace desires.
897 *
898 * Note, features that don't require KVM involvement in any way are
899 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
900 * guest CPUID provided by userspace.
901 */
902 u32 cpu_caps[NR_KVM_CPU_CAPS];
903
904 u64 reserved_gpa_bits;
905 int maxphyaddr;
906
907 /* emulate context */
908
909 struct x86_emulate_ctxt *emulate_ctxt;
910 bool emulate_regs_need_sync_to_vcpu;
911 bool emulate_regs_need_sync_from_vcpu;
912 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
913
914 gpa_t time;
915 s8 pvclock_tsc_shift;
916 u32 pvclock_tsc_mul;
917 unsigned int hw_tsc_khz;
918 struct gfn_to_pfn_cache pv_time;
919 /* set guest stopped flag in pvclock flags field */
920 bool pvclock_set_guest_stopped_request;
921
922 struct {
923 u8 preempted;
924 u64 msr_val;
925 u64 last_steal;
926 struct gfn_to_hva_cache cache;
927 } st;
928
929 u64 l1_tsc_offset;
930 u64 tsc_offset; /* current tsc offset */
931 u64 last_guest_tsc;
932 u64 last_host_tsc;
933 u64 tsc_offset_adjustment;
934 u64 this_tsc_nsec;
935 u64 this_tsc_write;
936 u64 this_tsc_generation;
937 bool tsc_catchup;
938 bool tsc_always_catchup;
939 s8 virtual_tsc_shift;
940 u32 virtual_tsc_mult;
941 u32 virtual_tsc_khz;
942 s64 ia32_tsc_adjust_msr;
943 u64 msr_ia32_power_ctl;
944 u64 l1_tsc_scaling_ratio;
945 u64 tsc_scaling_ratio; /* current scaling ratio */
946
947 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
948 /* Number of NMIs pending injection, not including hardware vNMIs. */
949 unsigned int nmi_pending;
950 bool nmi_injected; /* Trying to inject an NMI this entry */
951 bool smi_pending; /* SMI queued after currently running handler */
952 u8 handling_intr_from_guest;
953
954 struct kvm_mtrr mtrr_state;
955 u64 pat;
956
957 unsigned switch_db_regs;
958 unsigned long db[KVM_NR_DB_REGS];
959 unsigned long dr6;
960 unsigned long dr7;
961 unsigned long eff_db[KVM_NR_DB_REGS];
962 unsigned long guest_debug_dr7;
963 u64 msr_platform_info;
964 u64 msr_misc_features_enables;
965
966 u64 mcg_cap;
967 u64 mcg_status;
968 u64 mcg_ctl;
969 u64 mcg_ext_ctl;
970 u64 *mce_banks;
971 u64 *mci_ctl2_banks;
972
973 /* Cache MMIO info */
974 u64 mmio_gva;
975 unsigned mmio_access;
976 gfn_t mmio_gfn;
977 u64 mmio_gen;
978
979 struct kvm_pmu pmu;
980
981 /* used for guest single stepping over the given code position */
982 unsigned long singlestep_rip;
983
984 #ifdef CONFIG_KVM_HYPERV
985 bool hyperv_enabled;
986 struct kvm_vcpu_hv *hyperv;
987 #endif
988 #ifdef CONFIG_KVM_XEN
989 struct kvm_vcpu_xen xen;
990 #endif
991 cpumask_var_t wbinvd_dirty_mask;
992
993 unsigned long last_retry_eip;
994 unsigned long last_retry_addr;
995
996 struct {
997 bool halted;
998 gfn_t gfns[ASYNC_PF_PER_VCPU];
999 struct gfn_to_hva_cache data;
1000 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1001 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1002 u16 vec;
1003 u32 id;
1004 u32 host_apf_flags;
1005 bool send_always;
1006 bool delivery_as_pf_vmexit;
1007 bool pageready_pending;
1008 } apf;
1009
1010 /* OSVW MSRs (AMD only) */
1011 struct {
1012 u64 length;
1013 u64 status;
1014 } osvw;
1015
1016 struct {
1017 u64 msr_val;
1018 struct gfn_to_hva_cache data;
1019 } pv_eoi;
1020
1021 u64 msr_kvm_poll_control;
1022
1023 /* pv related host specific info */
1024 struct {
1025 bool pv_unhalted;
1026 } pv;
1027
1028 int pending_ioapic_eoi;
1029 int pending_external_vector;
1030
1031 /* be preempted when it's in kernel-mode(cpl=0) */
1032 bool preempted_in_kernel;
1033
1034 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1035 bool l1tf_flush_l1d;
1036
1037 /* Host CPU on which VM-entry was most recently attempted */
1038 int last_vmentry_cpu;
1039
1040 /* AMD MSRC001_0015 Hardware Configuration */
1041 u64 msr_hwcr;
1042
1043 /* pv related cpuid info */
1044 struct {
1045 /*
1046 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1047 * leaf.
1048 */
1049 u32 features;
1050
1051 /*
1052 * indicates whether pv emulation should be disabled if features
1053 * are not present in the guest's cpuid
1054 */
1055 bool enforce;
1056 } pv_cpuid;
1057
1058 /* Protected Guests */
1059 bool guest_state_protected;
1060 bool guest_tsc_protected;
1061
1062 /*
1063 * Set when PDPTS were loaded directly by the userspace without
1064 * reading the guest memory
1065 */
1066 bool pdptrs_from_userspace;
1067
1068 #if IS_ENABLED(CONFIG_HYPERV)
1069 hpa_t hv_root_tdp;
1070 #endif
1071 };
1072
1073 struct kvm_lpage_info {
1074 int disallow_lpage;
1075 };
1076
1077 struct kvm_arch_memory_slot {
1078 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1079 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1080 unsigned short *gfn_write_track;
1081 };
1082
1083 /*
1084 * Track the mode of the optimized logical map, as the rules for decoding the
1085 * destination vary per mode. Enabling the optimized logical map requires all
1086 * software-enabled local APIs to be in the same mode, each addressable APIC to
1087 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1088 */
1089 enum kvm_apic_logical_mode {
1090 /* All local APICs are software disabled. */
1091 KVM_APIC_MODE_SW_DISABLED,
1092 /* All software enabled local APICs in xAPIC cluster addressing mode. */
1093 KVM_APIC_MODE_XAPIC_CLUSTER,
1094 /* All software enabled local APICs in xAPIC flat addressing mode. */
1095 KVM_APIC_MODE_XAPIC_FLAT,
1096 /* All software enabled local APICs in x2APIC mode. */
1097 KVM_APIC_MODE_X2APIC,
1098 /*
1099 * Optimized map disabled, e.g. not all local APICs in the same logical
1100 * mode, same logical ID assigned to multiple APICs, etc.
1101 */
1102 KVM_APIC_MODE_MAP_DISABLED,
1103 };
1104
1105 struct kvm_apic_map {
1106 struct rcu_head rcu;
1107 enum kvm_apic_logical_mode logical_mode;
1108 u32 max_apic_id;
1109 union {
1110 struct kvm_lapic *xapic_flat_map[8];
1111 struct kvm_lapic *xapic_cluster_map[16][4];
1112 };
1113 struct kvm_lapic *phys_map[];
1114 };
1115
1116 /* Hyper-V synthetic debugger (SynDbg)*/
1117 struct kvm_hv_syndbg {
1118 struct {
1119 u64 control;
1120 u64 status;
1121 u64 send_page;
1122 u64 recv_page;
1123 u64 pending_page;
1124 } control;
1125 u64 options;
1126 };
1127
1128 /* Current state of Hyper-V TSC page clocksource */
1129 enum hv_tsc_page_status {
1130 /* TSC page was not set up or disabled */
1131 HV_TSC_PAGE_UNSET = 0,
1132 /* TSC page MSR was written by the guest, update pending */
1133 HV_TSC_PAGE_GUEST_CHANGED,
1134 /* TSC page update was triggered from the host side */
1135 HV_TSC_PAGE_HOST_CHANGED,
1136 /* TSC page was properly set up and is currently active */
1137 HV_TSC_PAGE_SET,
1138 /* TSC page was set up with an inaccessible GPA */
1139 HV_TSC_PAGE_BROKEN,
1140 };
1141
1142 #ifdef CONFIG_KVM_HYPERV
1143 /* Hyper-V emulation context */
1144 struct kvm_hv {
1145 struct mutex hv_lock;
1146 u64 hv_guest_os_id;
1147 u64 hv_hypercall;
1148 u64 hv_tsc_page;
1149 enum hv_tsc_page_status hv_tsc_page_status;
1150
1151 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1152 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1153 u64 hv_crash_ctl;
1154
1155 struct ms_hyperv_tsc_page tsc_ref;
1156
1157 struct idr conn_to_evt;
1158
1159 u64 hv_reenlightenment_control;
1160 u64 hv_tsc_emulation_control;
1161 u64 hv_tsc_emulation_status;
1162 u64 hv_invtsc_control;
1163
1164 /* How many vCPUs have VP index != vCPU index */
1165 atomic_t num_mismatched_vp_indexes;
1166
1167 /*
1168 * How many SynICs use 'AutoEOI' feature
1169 * (protected by arch.apicv_update_lock)
1170 */
1171 unsigned int synic_auto_eoi_used;
1172
1173 struct kvm_hv_syndbg hv_syndbg;
1174
1175 bool xsaves_xsavec_checked;
1176 };
1177 #endif
1178
1179 struct msr_bitmap_range {
1180 u32 flags;
1181 u32 nmsrs;
1182 u32 base;
1183 unsigned long *bitmap;
1184 };
1185
1186 #ifdef CONFIG_KVM_XEN
1187 /* Xen emulation context */
1188 struct kvm_xen {
1189 struct mutex xen_lock;
1190 u32 xen_version;
1191 bool long_mode;
1192 bool runstate_update_flag;
1193 u8 upcall_vector;
1194 struct gfn_to_pfn_cache shinfo_cache;
1195 struct idr evtchn_ports;
1196 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1197
1198 struct kvm_xen_hvm_config hvm_config;
1199 };
1200 #endif
1201
1202 enum kvm_irqchip_mode {
1203 KVM_IRQCHIP_NONE,
1204 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1205 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1206 };
1207
1208 struct kvm_x86_msr_filter {
1209 u8 count;
1210 bool default_allow:1;
1211 struct msr_bitmap_range ranges[16];
1212 };
1213
1214 struct kvm_x86_pmu_event_filter {
1215 __u32 action;
1216 __u32 nevents;
1217 __u32 fixed_counter_bitmap;
1218 __u32 flags;
1219 __u32 nr_includes;
1220 __u32 nr_excludes;
1221 __u64 *includes;
1222 __u64 *excludes;
1223 __u64 events[];
1224 };
1225
1226 enum kvm_apicv_inhibit {
1227
1228 /********************************************************************/
1229 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1230 /********************************************************************/
1231
1232 /*
1233 * APIC acceleration is disabled by a module parameter
1234 * and/or not supported in hardware.
1235 */
1236 APICV_INHIBIT_REASON_DISABLED,
1237
1238 /*
1239 * APIC acceleration is inhibited because AutoEOI feature is
1240 * being used by a HyperV guest.
1241 */
1242 APICV_INHIBIT_REASON_HYPERV,
1243
1244 /*
1245 * APIC acceleration is inhibited because the userspace didn't yet
1246 * enable the kernel/split irqchip.
1247 */
1248 APICV_INHIBIT_REASON_ABSENT,
1249
1250 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1251 * (out of band, debug measure of blocking all interrupts on this vCPU)
1252 * was enabled, to avoid AVIC/APICv bypassing it.
1253 */
1254 APICV_INHIBIT_REASON_BLOCKIRQ,
1255
1256 /*
1257 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1258 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1259 */
1260 APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1261
1262 /*
1263 * For simplicity, the APIC acceleration is inhibited
1264 * first time either APIC ID or APIC base are changed by the guest
1265 * from their reset values.
1266 */
1267 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1268 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1269
1270 /******************************************************/
1271 /* INHIBITs that are relevant only to the AMD's AVIC. */
1272 /******************************************************/
1273
1274 /*
1275 * AVIC is inhibited on a vCPU because it runs a nested guest.
1276 *
1277 * This is needed because unlike APICv, the peers of this vCPU
1278 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1279 * a vCPU runs nested.
1280 */
1281 APICV_INHIBIT_REASON_NESTED,
1282
1283 /*
1284 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1285 * which cannot be injected when the AVIC is enabled, thus AVIC
1286 * is inhibited while KVM waits for IRQ window.
1287 */
1288 APICV_INHIBIT_REASON_IRQWIN,
1289
1290 /*
1291 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1292 * which AVIC doesn't support for edge triggered interrupts.
1293 */
1294 APICV_INHIBIT_REASON_PIT_REINJ,
1295
1296 /*
1297 * AVIC is disabled because SEV doesn't support it.
1298 */
1299 APICV_INHIBIT_REASON_SEV,
1300
1301 /*
1302 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1303 * mapping between logical ID and vCPU.
1304 */
1305 APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1306
1307 NR_APICV_INHIBIT_REASONS,
1308 };
1309
1310 #define __APICV_INHIBIT_REASON(reason) \
1311 { BIT(APICV_INHIBIT_REASON_##reason), #reason }
1312
1313 #define APICV_INHIBIT_REASONS \
1314 __APICV_INHIBIT_REASON(DISABLED), \
1315 __APICV_INHIBIT_REASON(HYPERV), \
1316 __APICV_INHIBIT_REASON(ABSENT), \
1317 __APICV_INHIBIT_REASON(BLOCKIRQ), \
1318 __APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \
1319 __APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \
1320 __APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \
1321 __APICV_INHIBIT_REASON(NESTED), \
1322 __APICV_INHIBIT_REASON(IRQWIN), \
1323 __APICV_INHIBIT_REASON(PIT_REINJ), \
1324 __APICV_INHIBIT_REASON(SEV), \
1325 __APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1326
1327 struct kvm_arch {
1328 unsigned long n_used_mmu_pages;
1329 unsigned long n_requested_mmu_pages;
1330 unsigned long n_max_mmu_pages;
1331 unsigned int indirect_shadow_pages;
1332 u8 mmu_valid_gen;
1333 u8 vm_type;
1334 bool has_private_mem;
1335 bool has_protected_state;
1336 bool pre_fault_allowed;
1337 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1338 struct list_head active_mmu_pages;
1339 /*
1340 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1341 * replaced by an NX huge page. A shadow page is on this list if its
1342 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1343 * and there are no other conditions that prevent a huge page, e.g.
1344 * the backing host page is huge, dirtly logging is not enabled for its
1345 * memslot, etc... Note, zapping shadow pages on this list doesn't
1346 * guarantee an NX huge page will be created in its stead, e.g. if the
1347 * guest attempts to execute from the region then KVM obviously can't
1348 * create an NX huge page (without hanging the guest).
1349 */
1350 struct list_head possible_nx_huge_pages;
1351 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1352 struct kvm_page_track_notifier_head track_notifier_head;
1353 #endif
1354 /*
1355 * Protects marking pages unsync during page faults, as TDP MMU page
1356 * faults only take mmu_lock for read. For simplicity, the unsync
1357 * pages lock is always taken when marking pages unsync regardless of
1358 * whether mmu_lock is held for read or write.
1359 */
1360 spinlock_t mmu_unsync_pages_lock;
1361
1362 u64 shadow_mmio_value;
1363
1364 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1365 atomic_t noncoherent_dma_count;
1366 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1367 atomic_t assigned_device_count;
1368 struct kvm_pic *vpic;
1369 struct kvm_ioapic *vioapic;
1370 struct kvm_pit *vpit;
1371 atomic_t vapics_in_nmi_mode;
1372 struct mutex apic_map_lock;
1373 struct kvm_apic_map __rcu *apic_map;
1374 atomic_t apic_map_dirty;
1375
1376 bool apic_access_memslot_enabled;
1377 bool apic_access_memslot_inhibited;
1378
1379 /* Protects apicv_inhibit_reasons */
1380 struct rw_semaphore apicv_update_lock;
1381 unsigned long apicv_inhibit_reasons;
1382
1383 gpa_t wall_clock;
1384
1385 bool mwait_in_guest;
1386 bool hlt_in_guest;
1387 bool pause_in_guest;
1388 bool cstate_in_guest;
1389
1390 unsigned long irq_sources_bitmap;
1391 s64 kvmclock_offset;
1392
1393 /*
1394 * This also protects nr_vcpus_matched_tsc which is read from a
1395 * preemption-disabled region, so it must be a raw spinlock.
1396 */
1397 raw_spinlock_t tsc_write_lock;
1398 u64 last_tsc_nsec;
1399 u64 last_tsc_write;
1400 u32 last_tsc_khz;
1401 u64 last_tsc_offset;
1402 u64 cur_tsc_nsec;
1403 u64 cur_tsc_write;
1404 u64 cur_tsc_offset;
1405 u64 cur_tsc_generation;
1406 int nr_vcpus_matched_tsc;
1407
1408 u32 default_tsc_khz;
1409 bool user_set_tsc;
1410 u64 apic_bus_cycle_ns;
1411
1412 seqcount_raw_spinlock_t pvclock_sc;
1413 bool use_master_clock;
1414 u64 master_kernel_ns;
1415 u64 master_cycle_now;
1416 struct delayed_work kvmclock_update_work;
1417 struct delayed_work kvmclock_sync_work;
1418
1419 /* reads protected by irq_srcu, writes by irq_lock */
1420 struct hlist_head mask_notifier_list;
1421
1422 #ifdef CONFIG_KVM_HYPERV
1423 struct kvm_hv hyperv;
1424 #endif
1425
1426 #ifdef CONFIG_KVM_XEN
1427 struct kvm_xen xen;
1428 #endif
1429
1430 bool backwards_tsc_observed;
1431 bool boot_vcpu_runs_old_kvmclock;
1432 u32 bsp_vcpu_id;
1433
1434 u64 disabled_quirks;
1435
1436 enum kvm_irqchip_mode irqchip_mode;
1437 u8 nr_reserved_ioapic_pins;
1438
1439 bool disabled_lapic_found;
1440
1441 bool x2apic_format;
1442 bool x2apic_broadcast_quirk_disabled;
1443
1444 bool guest_can_read_msr_platform_info;
1445 bool exception_payload_enabled;
1446
1447 bool triple_fault_event;
1448
1449 bool bus_lock_detection_enabled;
1450 bool enable_pmu;
1451
1452 u32 notify_window;
1453 u32 notify_vmexit_flags;
1454 /*
1455 * If exit_on_emulation_error is set, and the in-kernel instruction
1456 * emulator fails to emulate an instruction, allow userspace
1457 * the opportunity to look at it.
1458 */
1459 bool exit_on_emulation_error;
1460
1461 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1462 u32 user_space_msr_mask;
1463 struct kvm_x86_msr_filter __rcu *msr_filter;
1464
1465 u32 hypercall_exit_enabled;
1466
1467 /* Guest can access the SGX PROVISIONKEY. */
1468 bool sgx_provisioning_allowed;
1469
1470 struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1471 struct vhost_task *nx_huge_page_recovery_thread;
1472 u64 nx_huge_page_last;
1473 struct once nx_once;
1474
1475 #ifdef CONFIG_X86_64
1476 #ifdef CONFIG_KVM_PROVE_MMU
1477 /*
1478 * The number of TDP MMU pages across all roots. Used only to sanity
1479 * check that KVM isn't leaking TDP MMU pages.
1480 */
1481 atomic64_t tdp_mmu_pages;
1482 #endif
1483
1484 /*
1485 * List of struct kvm_mmu_pages being used as roots.
1486 * All struct kvm_mmu_pages in the list should have
1487 * tdp_mmu_page set.
1488 *
1489 * For reads, this list is protected by:
1490 * RCU alone or
1491 * the MMU lock in read mode + RCU or
1492 * the MMU lock in write mode
1493 *
1494 * For writes, this list is protected by tdp_mmu_pages_lock; see
1495 * below for the details.
1496 *
1497 * Roots will remain in the list until their tdp_mmu_root_count
1498 * drops to zero, at which point the thread that decremented the
1499 * count to zero should removed the root from the list and clean
1500 * it up, freeing the root after an RCU grace period.
1501 */
1502 struct list_head tdp_mmu_roots;
1503
1504 /*
1505 * Protects accesses to the following fields when the MMU lock
1506 * is held in read mode:
1507 * - tdp_mmu_roots (above)
1508 * - the link field of kvm_mmu_page structs used by the TDP MMU
1509 * - possible_nx_huge_pages;
1510 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1511 * by the TDP MMU
1512 * Because the lock is only taken within the MMU lock, strictly
1513 * speaking it is redundant to acquire this lock when the thread
1514 * holds the MMU lock in write mode. However it often simplifies
1515 * the code to do so.
1516 */
1517 spinlock_t tdp_mmu_pages_lock;
1518 #endif /* CONFIG_X86_64 */
1519
1520 /*
1521 * If set, at least one shadow root has been allocated. This flag
1522 * is used as one input when determining whether certain memslot
1523 * related allocations are necessary.
1524 */
1525 bool shadow_root_allocated;
1526
1527 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1528 /*
1529 * If set, the VM has (or had) an external write tracking user, and
1530 * thus all write tracking metadata has been allocated, even if KVM
1531 * itself isn't using write tracking.
1532 */
1533 bool external_write_tracking_enabled;
1534 #endif
1535
1536 #if IS_ENABLED(CONFIG_HYPERV)
1537 hpa_t hv_root_tdp;
1538 spinlock_t hv_root_tdp_lock;
1539 struct hv_partition_assist_pg *hv_pa_pg;
1540 #endif
1541 /*
1542 * VM-scope maximum vCPU ID. Used to determine the size of structures
1543 * that increase along with the maximum vCPU ID, in which case, using
1544 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1545 */
1546 u32 max_vcpu_ids;
1547
1548 bool disable_nx_huge_pages;
1549
1550 /*
1551 * Memory caches used to allocate shadow pages when performing eager
1552 * page splitting. No need for a shadowed_info_cache since eager page
1553 * splitting only allocates direct shadow pages.
1554 *
1555 * Protected by kvm->slots_lock.
1556 */
1557 struct kvm_mmu_memory_cache split_shadow_page_cache;
1558 struct kvm_mmu_memory_cache split_page_header_cache;
1559
1560 /*
1561 * Memory cache used to allocate pte_list_desc structs while splitting
1562 * huge pages. In the worst case, to split one huge page, 512
1563 * pte_list_desc structs are needed to add each lower level leaf sptep
1564 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1565 * page table.
1566 *
1567 * Protected by kvm->slots_lock.
1568 */
1569 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1570 struct kvm_mmu_memory_cache split_desc_cache;
1571
1572 gfn_t gfn_direct_bits;
1573 };
1574
1575 struct kvm_vm_stat {
1576 struct kvm_vm_stat_generic generic;
1577 u64 mmu_shadow_zapped;
1578 u64 mmu_pte_write;
1579 u64 mmu_pde_zapped;
1580 u64 mmu_flooded;
1581 u64 mmu_recycled;
1582 u64 mmu_cache_miss;
1583 u64 mmu_unsync;
1584 union {
1585 struct {
1586 atomic64_t pages_4k;
1587 atomic64_t pages_2m;
1588 atomic64_t pages_1g;
1589 };
1590 atomic64_t pages[KVM_NR_PAGE_SIZES];
1591 };
1592 u64 nx_lpage_splits;
1593 u64 max_mmu_page_hash_collisions;
1594 u64 max_mmu_rmap_size;
1595 };
1596
1597 struct kvm_vcpu_stat {
1598 struct kvm_vcpu_stat_generic generic;
1599 u64 pf_taken;
1600 u64 pf_fixed;
1601 u64 pf_emulate;
1602 u64 pf_spurious;
1603 u64 pf_fast;
1604 u64 pf_mmio_spte_created;
1605 u64 pf_guest;
1606 u64 tlb_flush;
1607 u64 invlpg;
1608
1609 u64 exits;
1610 u64 io_exits;
1611 u64 mmio_exits;
1612 u64 signal_exits;
1613 u64 irq_window_exits;
1614 u64 nmi_window_exits;
1615 u64 l1d_flush;
1616 u64 halt_exits;
1617 u64 request_irq_exits;
1618 u64 irq_exits;
1619 u64 host_state_reload;
1620 u64 fpu_reload;
1621 u64 insn_emulation;
1622 u64 insn_emulation_fail;
1623 u64 hypercalls;
1624 u64 irq_injections;
1625 u64 nmi_injections;
1626 u64 req_event;
1627 u64 nested_run;
1628 u64 directed_yield_attempted;
1629 u64 directed_yield_successful;
1630 u64 preemption_reported;
1631 u64 preemption_other;
1632 u64 guest_mode;
1633 u64 notify_window_exits;
1634 };
1635
1636 struct x86_instruction_info;
1637
1638 struct msr_data {
1639 bool host_initiated;
1640 u32 index;
1641 u64 data;
1642 };
1643
1644 struct kvm_lapic_irq {
1645 u32 vector;
1646 u16 delivery_mode;
1647 u16 dest_mode;
1648 bool level;
1649 u16 trig_mode;
1650 u32 shorthand;
1651 u32 dest_id;
1652 bool msi_redir_hint;
1653 };
1654
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1655 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1656 {
1657 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1658 }
1659
1660 struct kvm_x86_ops {
1661 const char *name;
1662
1663 int (*check_processor_compatibility)(void);
1664
1665 int (*enable_virtualization_cpu)(void);
1666 void (*disable_virtualization_cpu)(void);
1667 cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1668
1669 void (*hardware_unsetup)(void);
1670 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1671 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1672
1673 unsigned int vm_size;
1674 int (*vm_init)(struct kvm *kvm);
1675 void (*vm_destroy)(struct kvm *kvm);
1676
1677 /* Create, but do not attach this VCPU */
1678 int (*vcpu_precreate)(struct kvm *kvm);
1679 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1680 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1681 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1682
1683 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1684 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1685 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1686
1687 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1688 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1689 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1690 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1691 void (*get_segment)(struct kvm_vcpu *vcpu,
1692 struct kvm_segment *var, int seg);
1693 int (*get_cpl)(struct kvm_vcpu *vcpu);
1694 int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1695 void (*set_segment)(struct kvm_vcpu *vcpu,
1696 struct kvm_segment *var, int seg);
1697 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1698 bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1699 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1700 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1701 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1702 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1703 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1704 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1705 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1706 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1707 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1708 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1709 void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1710 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1711 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1712 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1713 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1714 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1715
1716 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1717 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1718 #if IS_ENABLED(CONFIG_HYPERV)
1719 int (*flush_remote_tlbs)(struct kvm *kvm);
1720 int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1721 gfn_t nr_pages);
1722 #endif
1723
1724 /*
1725 * Flush any TLB entries associated with the given GVA.
1726 * Does not need to flush GPA->HPA mappings.
1727 * Can potentially get non-canonical addresses through INVLPGs, which
1728 * the implementation may choose to ignore if appropriate.
1729 */
1730 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1731
1732 /*
1733 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1734 * does not need to flush GPA->HPA mappings.
1735 */
1736 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1737
1738 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1739 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1740 bool force_immediate_exit);
1741 int (*handle_exit)(struct kvm_vcpu *vcpu,
1742 enum exit_fastpath_completion exit_fastpath);
1743 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1744 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1745 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1746 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1747 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1748 unsigned char *hypercall_addr);
1749 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1750 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1751 void (*inject_exception)(struct kvm_vcpu *vcpu);
1752 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1753 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1754 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1755 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1756 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1757 /* Whether or not a virtual NMI is pending in hardware. */
1758 bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1759 /*
1760 * Attempt to pend a virtual NMI in hardware. Returns %true on success
1761 * to allow using static_call_ret0 as the fallback.
1762 */
1763 bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1764 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1765 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1766 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1767
1768 const bool x2apic_icr_is_split;
1769 const unsigned long required_apicv_inhibits;
1770 bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1771 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1772 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1773 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1774 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1775 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1776 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1777 int trig_mode, int vector);
1778 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1779 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1780 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1781 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1782
1783 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1784 int root_level);
1785
1786 /* Update external mapping with page table link. */
1787 int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1788 void *external_spt);
1789 /* Update the external page table from spte getting set. */
1790 int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1791 kvm_pfn_t pfn_for_gfn);
1792
1793 /* Update external page tables for page table about to be freed. */
1794 int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1795 void *external_spt);
1796
1797 /* Update external page table from spte getting removed, and flush TLB. */
1798 int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1799 kvm_pfn_t pfn_for_gfn);
1800
1801 bool (*has_wbinvd_exit)(void);
1802
1803 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1804 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1805 void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1806 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1807
1808 /*
1809 * Retrieve somewhat arbitrary exit/entry information. Intended to
1810 * be used only from within tracepoints or error paths.
1811 */
1812 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1813 u64 *info1, u64 *info2,
1814 u32 *intr_info, u32 *error_code);
1815
1816 void (*get_entry_info)(struct kvm_vcpu *vcpu,
1817 u32 *intr_info, u32 *error_code);
1818
1819 int (*check_intercept)(struct kvm_vcpu *vcpu,
1820 struct x86_instruction_info *info,
1821 enum x86_intercept_stage stage,
1822 struct x86_exception *exception);
1823 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1824
1825 /*
1826 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1827 * value indicates CPU dirty logging is unsupported or disabled.
1828 */
1829 int cpu_dirty_log_size;
1830 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1831
1832 const struct kvm_x86_nested_ops *nested_ops;
1833
1834 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1835 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1836
1837 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1838 uint32_t guest_irq, bool set);
1839 void (*pi_start_assignment)(struct kvm *kvm);
1840 void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1841 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1842 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1843
1844 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1845 bool *expired);
1846 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1847
1848 void (*setup_mce)(struct kvm_vcpu *vcpu);
1849
1850 #ifdef CONFIG_KVM_SMM
1851 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1852 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1853 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1854 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1855 #endif
1856
1857 int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1858 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1859 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1860 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1861 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1862 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1863 void (*guest_memory_reclaimed)(struct kvm *kvm);
1864
1865 int (*get_feature_msr)(u32 msr, u64 *data);
1866
1867 int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1868 void *insn, int insn_len);
1869
1870 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1871 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1872
1873 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1874 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1875 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1876
1877 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1878
1879 /*
1880 * Returns vCPU specific APICv inhibit reasons
1881 */
1882 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1883
1884 gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1885 void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1886 int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1887 void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1888 int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1889 };
1890
1891 struct kvm_x86_nested_ops {
1892 void (*leave_nested)(struct kvm_vcpu *vcpu);
1893 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1894 u32 error_code);
1895 int (*check_events)(struct kvm_vcpu *vcpu);
1896 bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1897 void (*triple_fault)(struct kvm_vcpu *vcpu);
1898 int (*get_state)(struct kvm_vcpu *vcpu,
1899 struct kvm_nested_state __user *user_kvm_nested_state,
1900 unsigned user_data_size);
1901 int (*set_state)(struct kvm_vcpu *vcpu,
1902 struct kvm_nested_state __user *user_kvm_nested_state,
1903 struct kvm_nested_state *kvm_state);
1904 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1905 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1906
1907 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1908 uint16_t *vmcs_version);
1909 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1910 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1911 };
1912
1913 struct kvm_x86_init_ops {
1914 int (*hardware_setup)(void);
1915 unsigned int (*handle_intel_pt_intr)(void);
1916
1917 struct kvm_x86_ops *runtime_ops;
1918 struct kvm_pmu_ops *pmu_ops;
1919 };
1920
1921 struct kvm_arch_async_pf {
1922 u32 token;
1923 gfn_t gfn;
1924 unsigned long cr3;
1925 bool direct_map;
1926 u64 error_code;
1927 };
1928
1929 extern u32 __read_mostly kvm_nr_uret_msrs;
1930 extern bool __read_mostly allow_smaller_maxphyaddr;
1931 extern bool __read_mostly enable_apicv;
1932 extern struct kvm_x86_ops kvm_x86_ops;
1933
1934 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1935 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1936
1937 #define KVM_X86_OP(func) \
1938 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1939 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1940 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1941 #include <asm/kvm-x86-ops.h>
1942
1943 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1944 void kvm_x86_vendor_exit(void);
1945
1946 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1947 static inline struct kvm *kvm_arch_alloc_vm(void)
1948 {
1949 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1950 }
1951
1952 #define __KVM_HAVE_ARCH_VM_FREE
1953 void kvm_arch_free_vm(struct kvm *kvm);
1954
1955 #if IS_ENABLED(CONFIG_HYPERV)
1956 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1957 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1958 {
1959 if (kvm_x86_ops.flush_remote_tlbs &&
1960 !kvm_x86_call(flush_remote_tlbs)(kvm))
1961 return 0;
1962 else
1963 return -ENOTSUPP;
1964 }
1965
1966 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1967 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1968 u64 nr_pages)
1969 {
1970 if (!kvm_x86_ops.flush_remote_tlbs_range)
1971 return -EOPNOTSUPP;
1972
1973 return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1974 }
1975 #endif /* CONFIG_HYPERV */
1976
1977 enum kvm_intr_type {
1978 /* Values are arbitrary, but must be non-zero. */
1979 KVM_HANDLING_IRQ = 1,
1980 KVM_HANDLING_NMI,
1981 };
1982
1983 /* Enable perf NMI and timer modes to work, and minimise false positives. */
1984 #define kvm_arch_pmi_in_guest(vcpu) \
1985 ((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
1986 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
1987
1988 void __init kvm_mmu_x86_module_init(void);
1989 int kvm_mmu_vendor_module_init(void);
1990 void kvm_mmu_vendor_module_exit(void);
1991
1992 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1993 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1994 void kvm_mmu_init_vm(struct kvm *kvm);
1995 void kvm_mmu_uninit_vm(struct kvm *kvm);
1996
1997 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1998 struct kvm_memory_slot *slot);
1999
2000 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2001 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2002 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2003 const struct kvm_memory_slot *memslot,
2004 int start_level);
2005 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2006 const struct kvm_memory_slot *memslot,
2007 int target_level);
2008 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2009 const struct kvm_memory_slot *memslot,
2010 u64 start, u64 end,
2011 int target_level);
2012 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2013 const struct kvm_memory_slot *memslot);
2014 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2015 const struct kvm_memory_slot *memslot);
2016 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2017 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2018 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2019
2020 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2021
2022 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2023 const void *val, int bytes);
2024
2025 struct kvm_irq_mask_notifier {
2026 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2027 int irq;
2028 struct hlist_node link;
2029 };
2030
2031 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2032 struct kvm_irq_mask_notifier *kimn);
2033 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2034 struct kvm_irq_mask_notifier *kimn);
2035 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2036 bool mask);
2037
2038 extern bool tdp_enabled;
2039
2040 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2041
2042 /*
2043 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2044 * userspace I/O) to indicate that the emulation context
2045 * should be reused as is, i.e. skip initialization of
2046 * emulation context, instruction fetch and decode.
2047 *
2048 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2049 * Indicates that only select instructions (tagged with
2050 * EmulateOnUD) should be emulated (to minimize the emulator
2051 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
2052 *
2053 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2054 * decode the instruction length. For use *only* by
2055 * kvm_x86_ops.skip_emulated_instruction() implementations if
2056 * EMULTYPE_COMPLETE_USER_EXIT is not set.
2057 *
2058 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2059 * retry native execution under certain conditions,
2060 * Can only be set in conjunction with EMULTYPE_PF.
2061 *
2062 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2063 * triggered by KVM's magic "force emulation" prefix,
2064 * which is opt in via module param (off by default).
2065 * Bypasses EmulateOnUD restriction despite emulating
2066 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2067 * Used to test the full emulator from userspace.
2068 *
2069 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2070 * backdoor emulation, which is opt in via module param.
2071 * VMware backdoor emulation handles select instructions
2072 * and reinjects the #GP for all other cases.
2073 *
2074 * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2075 * the CR2/GPA value pass on the stack is valid.
2076 *
2077 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2078 * state and inject single-step #DBs after skipping
2079 * an instruction (after completing userspace I/O).
2080 *
2081 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2082 * is attempting to write a gfn that contains one or
2083 * more of the PTEs used to translate the write itself,
2084 * and the owning page table is being shadowed by KVM.
2085 * If emulation of the faulting instruction fails and
2086 * this flag is set, KVM will exit to userspace instead
2087 * of retrying emulation as KVM cannot make forward
2088 * progress.
2089 *
2090 * If emulation fails for a write to guest page tables,
2091 * KVM unprotects (zaps) the shadow page for the target
2092 * gfn and resumes the guest to retry the non-emulatable
2093 * instruction (on hardware). Unprotecting the gfn
2094 * doesn't allow forward progress for a self-changing
2095 * access because doing so also zaps the translation for
2096 * the gfn, i.e. retrying the instruction will hit a
2097 * !PRESENT fault, which results in a new shadow page
2098 * and sends KVM back to square one.
2099 */
2100 #define EMULTYPE_NO_DECODE (1 << 0)
2101 #define EMULTYPE_TRAP_UD (1 << 1)
2102 #define EMULTYPE_SKIP (1 << 2)
2103 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
2104 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
2105 #define EMULTYPE_VMWARE_GP (1 << 5)
2106 #define EMULTYPE_PF (1 << 6)
2107 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2108 #define EMULTYPE_WRITE_PF_TO_SP (1 << 8)
2109
kvm_can_emulate_event_vectoring(int emul_type)2110 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2111 {
2112 return !(emul_type & EMULTYPE_PF);
2113 }
2114
2115 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2116 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2117 void *insn, int insn_len);
2118 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2119 u64 *data, u8 ndata);
2120 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2121
2122 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2123
2124 void kvm_enable_efer_bits(u64);
2125 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2126 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2127 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2128 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2129 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2130 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2131 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2132 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2133 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2134 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2135 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2136 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2137 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2138
2139 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2140 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2141 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2142 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2143 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2144 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2145
2146 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2147 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2148 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2149 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2150
2151 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2152 int reason, bool has_error_code, u32 error_code);
2153
2154 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2155 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2156 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2157 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2158 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2159 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2160 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2161 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2162 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2163 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2164 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2165
2166 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2167 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2168
2169 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2170 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2171 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2172
2173 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2174 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2175 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2176 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2177 bool has_error_code, u32 error_code);
2178 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2179 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2180 struct x86_exception *fault);
2181 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2182 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2183
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2184 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2185 int irq_source_id, int level)
2186 {
2187 /* Logical OR for level trig interrupt */
2188 if (level)
2189 __set_bit(irq_source_id, irq_state);
2190 else
2191 __clear_bit(irq_source_id, irq_state);
2192
2193 return !!(*irq_state);
2194 }
2195
2196 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2197 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2198
2199 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2200 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2201
2202 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2203
2204 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2205 bool always_retry);
2206
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2207 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2208 gpa_t cr2_or_gpa)
2209 {
2210 return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2211 }
2212
2213 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2214 ulong roots_to_free);
2215 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2216 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2217 struct x86_exception *exception);
2218 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2219 struct x86_exception *exception);
2220 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2221 struct x86_exception *exception);
2222
2223 bool kvm_apicv_activated(struct kvm *kvm);
2224 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2225 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2226 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2227 enum kvm_apicv_inhibit reason, bool set);
2228 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2229 enum kvm_apicv_inhibit reason, bool set);
2230
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2231 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2232 enum kvm_apicv_inhibit reason)
2233 {
2234 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2235 }
2236
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2237 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2238 enum kvm_apicv_inhibit reason)
2239 {
2240 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2241 }
2242
2243 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2244 void *insn, int insn_len);
2245 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2246 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2247 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2248 u64 addr, unsigned long roots);
2249 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2250 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2251
2252 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2253 int tdp_max_root_level, int tdp_huge_page_level);
2254
2255
2256 #ifdef CONFIG_KVM_PRIVATE_MEM
2257 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2258 #else
2259 #define kvm_arch_has_private_mem(kvm) false
2260 #endif
2261
2262 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2263
kvm_read_ldt(void)2264 static inline u16 kvm_read_ldt(void)
2265 {
2266 u16 ldt;
2267 asm("sldt %0" : "=g"(ldt));
2268 return ldt;
2269 }
2270
kvm_load_ldt(u16 sel)2271 static inline void kvm_load_ldt(u16 sel)
2272 {
2273 asm("lldt %0" : : "rm"(sel));
2274 }
2275
2276 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2277 static inline unsigned long read_msr(unsigned long msr)
2278 {
2279 u64 value;
2280
2281 rdmsrl(msr, value);
2282 return value;
2283 }
2284 #endif
2285
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2286 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2287 {
2288 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2289 }
2290
2291 #define TSS_IOPB_BASE_OFFSET 0x66
2292 #define TSS_BASE_SIZE 0x68
2293 #define TSS_IOPB_SIZE (65536 / 8)
2294 #define TSS_REDIRECTION_SIZE (256 / 8)
2295 #define RMODE_TSS_SIZE \
2296 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2297
2298 enum {
2299 TASK_SWITCH_CALL = 0,
2300 TASK_SWITCH_IRET = 1,
2301 TASK_SWITCH_JMP = 2,
2302 TASK_SWITCH_GATE = 3,
2303 };
2304
2305 #define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
2306
2307 #ifdef CONFIG_KVM_SMM
2308 #define HF_SMM_MASK (1 << 1)
2309 #define HF_SMM_INSIDE_NMI_MASK (1 << 2)
2310
2311 # define KVM_MAX_NR_ADDRESS_SPACES 2
2312 /* SMM is currently unsupported for guests with private memory. */
2313 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2314 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2315 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2316 #else
2317 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2318 #endif
2319
2320 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2321 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2322 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2323 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2324 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2325 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2326 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2327
2328 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2329 unsigned long ipi_bitmap_high, u32 min,
2330 unsigned long icr, int op_64_bit);
2331
2332 int kvm_add_user_return_msr(u32 msr);
2333 int kvm_find_user_return_msr(u32 msr);
2334 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2335
kvm_is_supported_user_return_msr(u32 msr)2336 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2337 {
2338 return kvm_find_user_return_msr(msr) >= 0;
2339 }
2340
2341 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2342 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2343 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2344 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2345
2346 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2347 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2348
2349 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2350 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2351 unsigned long *vcpu_bitmap);
2352
2353 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2354 struct kvm_async_pf *work);
2355 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2356 struct kvm_async_pf *work);
2357 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2358 struct kvm_async_pf *work);
2359 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2360 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2361 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2362
2363 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2364 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2365
2366 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2367 u32 size);
2368 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2369 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2370
2371 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2372 struct kvm_vcpu **dest_vcpu);
2373
2374 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2375 struct kvm_lapic_irq *irq);
2376
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2377 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2378 {
2379 /* We can only post Fixed and LowPrio IRQs */
2380 return (irq->delivery_mode == APIC_DM_FIXED ||
2381 irq->delivery_mode == APIC_DM_LOWEST);
2382 }
2383
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2384 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2385 {
2386 kvm_x86_call(vcpu_blocking)(vcpu);
2387 }
2388
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2389 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2390 {
2391 kvm_x86_call(vcpu_unblocking)(vcpu);
2392 }
2393
kvm_cpu_get_apicid(int mps_cpu)2394 static inline int kvm_cpu_get_apicid(int mps_cpu)
2395 {
2396 #ifdef CONFIG_X86_LOCAL_APIC
2397 return default_cpu_present_to_apicid(mps_cpu);
2398 #else
2399 WARN_ON_ONCE(1);
2400 return BAD_APICID;
2401 #endif
2402 }
2403
2404 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2405
2406 #define KVM_CLOCK_VALID_FLAGS \
2407 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2408
2409 #define KVM_X86_VALID_QUIRKS \
2410 (KVM_X86_QUIRK_LINT0_REENABLED | \
2411 KVM_X86_QUIRK_CD_NW_CLEARED | \
2412 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2413 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2414 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2415 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2416 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS | \
2417 KVM_X86_QUIRK_SLOT_ZAP_ALL | \
2418 KVM_X86_QUIRK_STUFF_FEATURE_MSRS)
2419
2420 /*
2421 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2422 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2423 * remaining 31 lower bits must be 0 to preserve ABI.
2424 */
2425 #define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1)
2426
kvm_arch_has_irq_bypass(void)2427 static inline bool kvm_arch_has_irq_bypass(void)
2428 {
2429 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
2430 }
2431
2432 #endif /* _ASM_X86_KVM_HOST_H */
2433