1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50
51 #include <trace/events/ext4.h>
52
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54 struct inode *inode,
55 struct folio *folio,
56 unsigned from, unsigned to);
57
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59 struct ext4_inode_info *ei)
60 {
61 __u32 csum;
62 __u16 dummy_csum = 0;
63 int offset = offsetof(struct ext4_inode, i_checksum_lo);
64 unsigned int csum_size = sizeof(dummy_csum);
65
66 csum = ext4_chksum(ei->i_csum_seed, (__u8 *)raw, offset);
67 csum = ext4_chksum(csum, (__u8 *)&dummy_csum, csum_size);
68 offset += csum_size;
69 csum = ext4_chksum(csum, (__u8 *)raw + offset,
70 EXT4_GOOD_OLD_INODE_SIZE - offset);
71
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
73 offset = offsetof(struct ext4_inode, i_checksum_hi);
74 csum = ext4_chksum(csum, (__u8 *)raw + EXT4_GOOD_OLD_INODE_SIZE,
75 offset - EXT4_GOOD_OLD_INODE_SIZE);
76 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
77 csum = ext4_chksum(csum, (__u8 *)&dummy_csum,
78 csum_size);
79 offset += csum_size;
80 }
81 csum = ext4_chksum(csum, (__u8 *)raw + offset,
82 EXT4_INODE_SIZE(inode->i_sb) - offset);
83 }
84
85 return csum;
86 }
87
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)88 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
89 struct ext4_inode_info *ei)
90 {
91 __u32 provided, calculated;
92
93 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
94 cpu_to_le32(EXT4_OS_LINUX) ||
95 !ext4_has_feature_metadata_csum(inode->i_sb))
96 return 1;
97
98 provided = le16_to_cpu(raw->i_checksum_lo);
99 calculated = ext4_inode_csum(inode, raw, ei);
100 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
101 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
102 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
103 else
104 calculated &= 0xFFFF;
105
106 return provided == calculated;
107 }
108
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)109 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
110 struct ext4_inode_info *ei)
111 {
112 __u32 csum;
113
114 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
115 cpu_to_le32(EXT4_OS_LINUX) ||
116 !ext4_has_feature_metadata_csum(inode->i_sb))
117 return;
118
119 csum = ext4_inode_csum(inode, raw, ei);
120 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
121 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
122 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
123 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
124 }
125
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)126 static inline int ext4_begin_ordered_truncate(struct inode *inode,
127 loff_t new_size)
128 {
129 trace_ext4_begin_ordered_truncate(inode, new_size);
130 /*
131 * If jinode is zero, then we never opened the file for
132 * writing, so there's no need to call
133 * jbd2_journal_begin_ordered_truncate() since there's no
134 * outstanding writes we need to flush.
135 */
136 if (!EXT4_I(inode)->jinode)
137 return 0;
138 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
139 EXT4_I(inode)->jinode,
140 new_size);
141 }
142
143 /*
144 * Test whether an inode is a fast symlink.
145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146 */
ext4_inode_is_fast_symlink(struct inode * inode)147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163 * Called at the last iput() if i_nlink is zero.
164 */
ext4_evict_inode(struct inode * inode)165 void ext4_evict_inode(struct inode *inode)
166 {
167 handle_t *handle;
168 int err;
169 /*
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 */
174 int extra_credits = 6;
175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 bool freeze_protected = false;
177
178 trace_ext4_evict_inode(inode);
179
180 dax_break_layout_final(inode);
181
182 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
183 ext4_evict_ea_inode(inode);
184 if (inode->i_nlink) {
185 truncate_inode_pages_final(&inode->i_data);
186
187 goto no_delete;
188 }
189
190 if (is_bad_inode(inode))
191 goto no_delete;
192 dquot_initialize(inode);
193
194 if (ext4_should_order_data(inode))
195 ext4_begin_ordered_truncate(inode, 0);
196 truncate_inode_pages_final(&inode->i_data);
197
198 /*
199 * For inodes with journalled data, transaction commit could have
200 * dirtied the inode. And for inodes with dioread_nolock, unwritten
201 * extents converting worker could merge extents and also have dirtied
202 * the inode. Flush worker is ignoring it because of I_FREEING flag but
203 * we still need to remove the inode from the writeback lists.
204 */
205 if (!list_empty_careful(&inode->i_io_list))
206 inode_io_list_del(inode);
207
208 /*
209 * Protect us against freezing - iput() caller didn't have to have any
210 * protection against it. When we are in a running transaction though,
211 * we are already protected against freezing and we cannot grab further
212 * protection due to lock ordering constraints.
213 */
214 if (!ext4_journal_current_handle()) {
215 sb_start_intwrite(inode->i_sb);
216 freeze_protected = true;
217 }
218
219 if (!IS_NOQUOTA(inode))
220 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
221
222 /*
223 * Block bitmap, group descriptor, and inode are accounted in both
224 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
225 */
226 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
227 ext4_blocks_for_truncate(inode) + extra_credits - 3);
228 if (IS_ERR(handle)) {
229 ext4_std_error(inode->i_sb, PTR_ERR(handle));
230 /*
231 * If we're going to skip the normal cleanup, we still need to
232 * make sure that the in-core orphan linked list is properly
233 * cleaned up.
234 */
235 ext4_orphan_del(NULL, inode);
236 if (freeze_protected)
237 sb_end_intwrite(inode->i_sb);
238 goto no_delete;
239 }
240
241 if (IS_SYNC(inode))
242 ext4_handle_sync(handle);
243
244 /*
245 * Set inode->i_size to 0 before calling ext4_truncate(). We need
246 * special handling of symlinks here because i_size is used to
247 * determine whether ext4_inode_info->i_data contains symlink data or
248 * block mappings. Setting i_size to 0 will remove its fast symlink
249 * status. Erase i_data so that it becomes a valid empty block map.
250 */
251 if (ext4_inode_is_fast_symlink(inode))
252 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
253 inode->i_size = 0;
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
256 ext4_warning(inode->i_sb,
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
260 if (inode->i_blocks) {
261 err = ext4_truncate(inode);
262 if (err) {
263 ext4_error_err(inode->i_sb, -err,
264 "couldn't truncate inode %lu (err %d)",
265 inode->i_ino, err);
266 goto stop_handle;
267 }
268 }
269
270 /* Remove xattr references. */
271 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
272 extra_credits);
273 if (err) {
274 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
275 stop_handle:
276 ext4_journal_stop(handle);
277 ext4_orphan_del(NULL, inode);
278 if (freeze_protected)
279 sb_end_intwrite(inode->i_sb);
280 ext4_xattr_inode_array_free(ea_inode_array);
281 goto no_delete;
282 }
283
284 /*
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
291 */
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
302 if (ext4_mark_inode_dirty(handle, inode))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode);
305 else
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
308 if (freeze_protected)
309 sb_end_intwrite(inode->i_sb);
310 ext4_xattr_inode_array_free(ea_inode_array);
311 return;
312 no_delete:
313 /*
314 * Check out some where else accidentally dirty the evicting inode,
315 * which may probably cause inode use-after-free issues later.
316 */
317 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
318
319 if (!list_empty(&EXT4_I(inode)->i_fc_list))
320 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
321 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
322 }
323
324 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)325 qsize_t *ext4_get_reserved_space(struct inode *inode)
326 {
327 return &EXT4_I(inode)->i_reserved_quota;
328 }
329 #endif
330
331 /*
332 * Called with i_data_sem down, which is important since we can call
333 * ext4_discard_preallocations() from here.
334 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)335 void ext4_da_update_reserve_space(struct inode *inode,
336 int used, int quota_claim)
337 {
338 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
339 struct ext4_inode_info *ei = EXT4_I(inode);
340
341 spin_lock(&ei->i_block_reservation_lock);
342 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
343 if (unlikely(used > ei->i_reserved_data_blocks)) {
344 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
345 "with only %d reserved data blocks",
346 __func__, inode->i_ino, used,
347 ei->i_reserved_data_blocks);
348 WARN_ON(1);
349 used = ei->i_reserved_data_blocks;
350 }
351
352 /* Update per-inode reservations */
353 ei->i_reserved_data_blocks -= used;
354 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
355
356 spin_unlock(&ei->i_block_reservation_lock);
357
358 /* Update quota subsystem for data blocks */
359 if (quota_claim)
360 dquot_claim_block(inode, EXT4_C2B(sbi, used));
361 else {
362 /*
363 * We did fallocate with an offset that is already delayed
364 * allocated. So on delayed allocated writeback we should
365 * not re-claim the quota for fallocated blocks.
366 */
367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
368 }
369
370 /*
371 * If we have done all the pending block allocations and if
372 * there aren't any writers on the inode, we can discard the
373 * inode's preallocations.
374 */
375 if ((ei->i_reserved_data_blocks == 0) &&
376 !inode_is_open_for_write(inode))
377 ext4_discard_preallocations(inode);
378 }
379
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)380 static int __check_block_validity(struct inode *inode, const char *func,
381 unsigned int line,
382 struct ext4_map_blocks *map)
383 {
384 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
385
386 if (journal && inode == journal->j_inode)
387 return 0;
388
389 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
390 ext4_error_inode(inode, func, line, map->m_pblk,
391 "lblock %lu mapped to illegal pblock %llu "
392 "(length %d)", (unsigned long) map->m_lblk,
393 map->m_pblk, map->m_len);
394 return -EFSCORRUPTED;
395 }
396 return 0;
397 }
398
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)399 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
400 ext4_lblk_t len)
401 {
402 int ret;
403
404 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
405 return fscrypt_zeroout_range(inode, lblk, pblk, len);
406
407 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
408 if (ret > 0)
409 ret = 0;
410
411 return ret;
412 }
413
414 /*
415 * For generic regular files, when updating the extent tree, Ext4 should
416 * hold the i_rwsem and invalidate_lock exclusively. This ensures
417 * exclusion against concurrent page faults, as well as reads and writes.
418 */
419 #ifdef CONFIG_EXT4_DEBUG
ext4_check_map_extents_env(struct inode * inode)420 void ext4_check_map_extents_env(struct inode *inode)
421 {
422 if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
423 return;
424
425 if (!S_ISREG(inode->i_mode) ||
426 IS_NOQUOTA(inode) || IS_VERITY(inode) ||
427 is_special_ino(inode->i_sb, inode->i_ino) ||
428 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) ||
429 ext4_test_inode_flag(inode, EXT4_INODE_EA_INODE) ||
430 ext4_verity_in_progress(inode))
431 return;
432
433 WARN_ON_ONCE(!inode_is_locked(inode) &&
434 !rwsem_is_locked(&inode->i_mapping->invalidate_lock));
435 }
436 #else
ext4_check_map_extents_env(struct inode * inode)437 void ext4_check_map_extents_env(struct inode *inode) {}
438 #endif
439
440 #define check_block_validity(inode, map) \
441 __check_block_validity((inode), __func__, __LINE__, (map))
442
443 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)444 static void ext4_map_blocks_es_recheck(handle_t *handle,
445 struct inode *inode,
446 struct ext4_map_blocks *es_map,
447 struct ext4_map_blocks *map,
448 int flags)
449 {
450 int retval;
451
452 map->m_flags = 0;
453 /*
454 * There is a race window that the result is not the same.
455 * e.g. xfstests #223 when dioread_nolock enables. The reason
456 * is that we lookup a block mapping in extent status tree with
457 * out taking i_data_sem. So at the time the unwritten extent
458 * could be converted.
459 */
460 down_read(&EXT4_I(inode)->i_data_sem);
461 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
462 retval = ext4_ext_map_blocks(handle, inode, map, 0);
463 } else {
464 retval = ext4_ind_map_blocks(handle, inode, map, 0);
465 }
466 up_read((&EXT4_I(inode)->i_data_sem));
467
468 /*
469 * We don't check m_len because extent will be collpased in status
470 * tree. So the m_len might not equal.
471 */
472 if (es_map->m_lblk != map->m_lblk ||
473 es_map->m_flags != map->m_flags ||
474 es_map->m_pblk != map->m_pblk) {
475 printk("ES cache assertion failed for inode: %lu "
476 "es_cached ex [%d/%d/%llu/%x] != "
477 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
478 inode->i_ino, es_map->m_lblk, es_map->m_len,
479 es_map->m_pblk, es_map->m_flags, map->m_lblk,
480 map->m_len, map->m_pblk, map->m_flags,
481 retval, flags);
482 }
483 }
484 #endif /* ES_AGGRESSIVE_TEST */
485
ext4_map_query_blocks_next_in_leaf(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,unsigned int orig_mlen)486 static int ext4_map_query_blocks_next_in_leaf(handle_t *handle,
487 struct inode *inode, struct ext4_map_blocks *map,
488 unsigned int orig_mlen)
489 {
490 struct ext4_map_blocks map2;
491 unsigned int status, status2;
492 int retval;
493
494 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
495 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
496
497 WARN_ON_ONCE(!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF));
498 WARN_ON_ONCE(orig_mlen <= map->m_len);
499
500 /* Prepare map2 for lookup in next leaf block */
501 map2.m_lblk = map->m_lblk + map->m_len;
502 map2.m_len = orig_mlen - map->m_len;
503 map2.m_flags = 0;
504 retval = ext4_ext_map_blocks(handle, inode, &map2, 0);
505
506 if (retval <= 0) {
507 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
508 map->m_pblk, status, false);
509 return map->m_len;
510 }
511
512 if (unlikely(retval != map2.m_len)) {
513 ext4_warning(inode->i_sb,
514 "ES len assertion failed for inode "
515 "%lu: retval %d != map->m_len %d",
516 inode->i_ino, retval, map2.m_len);
517 WARN_ON(1);
518 }
519
520 status2 = map2.m_flags & EXT4_MAP_UNWRITTEN ?
521 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
522
523 /*
524 * If map2 is contiguous with map, then let's insert it as a single
525 * extent in es cache and return the combined length of both the maps.
526 */
527 if (map->m_pblk + map->m_len == map2.m_pblk &&
528 status == status2) {
529 ext4_es_insert_extent(inode, map->m_lblk,
530 map->m_len + map2.m_len, map->m_pblk,
531 status, false);
532 map->m_len += map2.m_len;
533 } else {
534 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
535 map->m_pblk, status, false);
536 }
537
538 return map->m_len;
539 }
540
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)541 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
542 struct ext4_map_blocks *map, int flags)
543 {
544 unsigned int status;
545 int retval;
546 unsigned int orig_mlen = map->m_len;
547
548 flags &= EXT4_EX_QUERY_FILTER;
549 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
550 retval = ext4_ext_map_blocks(handle, inode, map, flags);
551 else
552 retval = ext4_ind_map_blocks(handle, inode, map, flags);
553
554 if (retval <= 0)
555 return retval;
556
557 if (unlikely(retval != map->m_len)) {
558 ext4_warning(inode->i_sb,
559 "ES len assertion failed for inode "
560 "%lu: retval %d != map->m_len %d",
561 inode->i_ino, retval, map->m_len);
562 WARN_ON(1);
563 }
564
565 /*
566 * No need to query next in leaf:
567 * - if returned extent is not last in leaf or
568 * - if the last in leaf is the full requested range
569 */
570 if (!(map->m_flags & EXT4_MAP_QUERY_LAST_IN_LEAF) ||
571 map->m_len == orig_mlen) {
572 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
573 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
574 ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
575 map->m_pblk, status, false);
576 return retval;
577 }
578
579 return ext4_map_query_blocks_next_in_leaf(handle, inode, map,
580 orig_mlen);
581 }
582
ext4_map_create_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)583 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
584 struct ext4_map_blocks *map, int flags)
585 {
586 struct extent_status es;
587 unsigned int status;
588 int err, retval = 0;
589
590 /*
591 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
592 * indicates that the blocks and quotas has already been
593 * checked when the data was copied into the page cache.
594 */
595 if (map->m_flags & EXT4_MAP_DELAYED)
596 flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
597
598 /*
599 * Here we clear m_flags because after allocating an new extent,
600 * it will be set again.
601 */
602 map->m_flags &= ~EXT4_MAP_FLAGS;
603
604 /*
605 * We need to check for EXT4 here because migrate could have
606 * changed the inode type in between.
607 */
608 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
609 retval = ext4_ext_map_blocks(handle, inode, map, flags);
610 } else {
611 retval = ext4_ind_map_blocks(handle, inode, map, flags);
612
613 /*
614 * We allocated new blocks which will result in i_data's
615 * format changing. Force the migrate to fail by clearing
616 * migrate flags.
617 */
618 if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
619 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
620 }
621 if (retval <= 0)
622 return retval;
623
624 if (unlikely(retval != map->m_len)) {
625 ext4_warning(inode->i_sb,
626 "ES len assertion failed for inode %lu: "
627 "retval %d != map->m_len %d",
628 inode->i_ino, retval, map->m_len);
629 WARN_ON(1);
630 }
631
632 /*
633 * We have to zeroout blocks before inserting them into extent
634 * status tree. Otherwise someone could look them up there and
635 * use them before they are really zeroed. We also have to
636 * unmap metadata before zeroing as otherwise writeback can
637 * overwrite zeros with stale data from block device.
638 */
639 if (flags & EXT4_GET_BLOCKS_ZERO &&
640 map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
641 err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
642 map->m_len);
643 if (err)
644 return err;
645 }
646
647 /*
648 * If the extent has been zeroed out, we don't need to update
649 * extent status tree.
650 */
651 if (flags & EXT4_GET_BLOCKS_PRE_IO &&
652 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
653 if (ext4_es_is_written(&es))
654 return retval;
655 }
656
657 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659 ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
660 status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
661
662 return retval;
663 }
664
665 /*
666 * The ext4_map_blocks() function tries to look up the requested blocks,
667 * and returns if the blocks are already mapped.
668 *
669 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
670 * and store the allocated blocks in the result buffer head and mark it
671 * mapped.
672 *
673 * If file type is extents based, it will call ext4_ext_map_blocks(),
674 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
675 * based files
676 *
677 * On success, it returns the number of blocks being mapped or allocated.
678 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
679 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
680 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
681 *
682 * It returns 0 if plain look up failed (blocks have not been allocated), in
683 * that case, @map is returned as unmapped but we still do fill map->m_len to
684 * indicate the length of a hole starting at map->m_lblk.
685 *
686 * It returns the error in case of allocation failure.
687 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)688 int ext4_map_blocks(handle_t *handle, struct inode *inode,
689 struct ext4_map_blocks *map, int flags)
690 {
691 struct extent_status es;
692 int retval;
693 int ret = 0;
694 unsigned int orig_mlen = map->m_len;
695 #ifdef ES_AGGRESSIVE_TEST
696 struct ext4_map_blocks orig_map;
697
698 memcpy(&orig_map, map, sizeof(*map));
699 #endif
700
701 map->m_flags = 0;
702 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
703 flags, map->m_len, (unsigned long) map->m_lblk);
704
705 /*
706 * ext4_map_blocks returns an int, and m_len is an unsigned int
707 */
708 if (unlikely(map->m_len > INT_MAX))
709 map->m_len = INT_MAX;
710
711 /* We can handle the block number less than EXT_MAX_BLOCKS */
712 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
713 return -EFSCORRUPTED;
714
715 /*
716 * Callers from the context of data submission are the only exceptions
717 * for regular files that do not hold the i_rwsem or invalidate_lock.
718 * However, caching unrelated ranges is not permitted.
719 */
720 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
721 WARN_ON_ONCE(!(flags & EXT4_EX_NOCACHE));
722 else
723 ext4_check_map_extents_env(inode);
724
725 /* Lookup extent status tree firstly */
726 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
727 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
728 map->m_pblk = ext4_es_pblock(&es) +
729 map->m_lblk - es.es_lblk;
730 map->m_flags |= ext4_es_is_written(&es) ?
731 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
732 retval = es.es_len - (map->m_lblk - es.es_lblk);
733 if (retval > map->m_len)
734 retval = map->m_len;
735 map->m_len = retval;
736 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
737 map->m_pblk = 0;
738 map->m_flags |= ext4_es_is_delayed(&es) ?
739 EXT4_MAP_DELAYED : 0;
740 retval = es.es_len - (map->m_lblk - es.es_lblk);
741 if (retval > map->m_len)
742 retval = map->m_len;
743 map->m_len = retval;
744 retval = 0;
745 } else {
746 BUG();
747 }
748
749 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
750 return retval;
751 #ifdef ES_AGGRESSIVE_TEST
752 ext4_map_blocks_es_recheck(handle, inode, map,
753 &orig_map, flags);
754 #endif
755 if (!(flags & EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF) ||
756 orig_mlen == map->m_len)
757 goto found;
758
759 map->m_len = orig_mlen;
760 }
761 /*
762 * In the query cache no-wait mode, nothing we can do more if we
763 * cannot find extent in the cache.
764 */
765 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
766 return 0;
767
768 /*
769 * Try to see if we can get the block without requesting a new
770 * file system block.
771 */
772 down_read(&EXT4_I(inode)->i_data_sem);
773 retval = ext4_map_query_blocks(handle, inode, map, flags);
774 up_read((&EXT4_I(inode)->i_data_sem));
775
776 found:
777 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
778 ret = check_block_validity(inode, map);
779 if (ret != 0)
780 return ret;
781 }
782
783 /* If it is only a block(s) look up */
784 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
785 return retval;
786
787 /*
788 * Returns if the blocks have already allocated
789 *
790 * Note that if blocks have been preallocated
791 * ext4_ext_map_blocks() returns with buffer head unmapped
792 */
793 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
794 /*
795 * If we need to convert extent to unwritten
796 * we continue and do the actual work in
797 * ext4_ext_map_blocks()
798 */
799 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
800 return retval;
801
802
803 ext4_fc_track_inode(handle, inode);
804 /*
805 * New blocks allocate and/or writing to unwritten extent
806 * will possibly result in updating i_data, so we take
807 * the write lock of i_data_sem, and call get_block()
808 * with create == 1 flag.
809 */
810 down_write(&EXT4_I(inode)->i_data_sem);
811 retval = ext4_map_create_blocks(handle, inode, map, flags);
812 up_write((&EXT4_I(inode)->i_data_sem));
813 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
814 ret = check_block_validity(inode, map);
815 if (ret != 0)
816 return ret;
817
818 /*
819 * Inodes with freshly allocated blocks where contents will be
820 * visible after transaction commit must be on transaction's
821 * ordered data list.
822 */
823 if (map->m_flags & EXT4_MAP_NEW &&
824 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
825 !(flags & EXT4_GET_BLOCKS_ZERO) &&
826 !ext4_is_quota_file(inode) &&
827 ext4_should_order_data(inode)) {
828 loff_t start_byte =
829 (loff_t)map->m_lblk << inode->i_blkbits;
830 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
831
832 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
833 ret = ext4_jbd2_inode_add_wait(handle, inode,
834 start_byte, length);
835 else
836 ret = ext4_jbd2_inode_add_write(handle, inode,
837 start_byte, length);
838 if (ret)
839 return ret;
840 }
841 }
842 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
843 map->m_flags & EXT4_MAP_MAPPED))
844 ext4_fc_track_range(handle, inode, map->m_lblk,
845 map->m_lblk + map->m_len - 1);
846 if (retval < 0)
847 ext_debug(inode, "failed with err %d\n", retval);
848 return retval;
849 }
850
851 /*
852 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
853 * we have to be careful as someone else may be manipulating b_state as well.
854 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)855 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
856 {
857 unsigned long old_state;
858 unsigned long new_state;
859
860 flags &= EXT4_MAP_FLAGS;
861
862 /* Dummy buffer_head? Set non-atomically. */
863 if (!bh->b_folio) {
864 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
865 return;
866 }
867 /*
868 * Someone else may be modifying b_state. Be careful! This is ugly but
869 * once we get rid of using bh as a container for mapping information
870 * to pass to / from get_block functions, this can go away.
871 */
872 old_state = READ_ONCE(bh->b_state);
873 do {
874 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
875 } while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
876 }
877
878 /*
879 * Make sure that the current journal transaction has enough credits to map
880 * one extent. Return -EAGAIN if it cannot extend the current running
881 * transaction.
882 */
ext4_journal_ensure_extent_credits(handle_t * handle,struct inode * inode)883 static inline int ext4_journal_ensure_extent_credits(handle_t *handle,
884 struct inode *inode)
885 {
886 int credits;
887 int ret;
888
889 /* Called from ext4_da_write_begin() which has no handle started? */
890 if (!handle)
891 return 0;
892
893 credits = ext4_chunk_trans_blocks(inode, 1);
894 ret = __ext4_journal_ensure_credits(handle, credits, credits, 0);
895 return ret <= 0 ? ret : -EAGAIN;
896 }
897
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)898 static int _ext4_get_block(struct inode *inode, sector_t iblock,
899 struct buffer_head *bh, int flags)
900 {
901 struct ext4_map_blocks map;
902 int ret = 0;
903
904 if (ext4_has_inline_data(inode))
905 return -ERANGE;
906
907 map.m_lblk = iblock;
908 map.m_len = bh->b_size >> inode->i_blkbits;
909
910 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
911 flags);
912 if (ret > 0) {
913 map_bh(bh, inode->i_sb, map.m_pblk);
914 ext4_update_bh_state(bh, map.m_flags);
915 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
916 ret = 0;
917 } else if (ret == 0) {
918 /* hole case, need to fill in bh->b_size */
919 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
920 }
921 return ret;
922 }
923
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)924 int ext4_get_block(struct inode *inode, sector_t iblock,
925 struct buffer_head *bh, int create)
926 {
927 return _ext4_get_block(inode, iblock, bh,
928 create ? EXT4_GET_BLOCKS_CREATE : 0);
929 }
930
931 /*
932 * Get block function used when preparing for buffered write if we require
933 * creating an unwritten extent if blocks haven't been allocated. The extent
934 * will be converted to written after the IO is complete.
935 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)936 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
937 struct buffer_head *bh_result, int create)
938 {
939 int ret = 0;
940
941 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
942 inode->i_ino, create);
943 ret = _ext4_get_block(inode, iblock, bh_result,
944 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
945
946 /*
947 * If the buffer is marked unwritten, mark it as new to make sure it is
948 * zeroed out correctly in case of partial writes. Otherwise, there is
949 * a chance of stale data getting exposed.
950 */
951 if (ret == 0 && buffer_unwritten(bh_result))
952 set_buffer_new(bh_result);
953
954 return ret;
955 }
956
957 /* Maximum number of blocks we map for direct IO at once. */
958 #define DIO_MAX_BLOCKS 4096
959
960 /*
961 * `handle' can be NULL if create is zero
962 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)963 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
964 ext4_lblk_t block, int map_flags)
965 {
966 struct ext4_map_blocks map;
967 struct buffer_head *bh;
968 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
969 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
970 int err;
971
972 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
973 || handle != NULL || create == 0);
974 ASSERT(create == 0 || !nowait);
975
976 map.m_lblk = block;
977 map.m_len = 1;
978 err = ext4_map_blocks(handle, inode, &map, map_flags);
979
980 if (err == 0)
981 return create ? ERR_PTR(-ENOSPC) : NULL;
982 if (err < 0)
983 return ERR_PTR(err);
984
985 if (nowait)
986 return sb_find_get_block(inode->i_sb, map.m_pblk);
987
988 /*
989 * Since bh could introduce extra ref count such as referred by
990 * journal_head etc. Try to avoid using __GFP_MOVABLE here
991 * as it may fail the migration when journal_head remains.
992 */
993 bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
994 inode->i_sb->s_blocksize);
995
996 if (unlikely(!bh))
997 return ERR_PTR(-ENOMEM);
998 if (map.m_flags & EXT4_MAP_NEW) {
999 ASSERT(create != 0);
1000 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1001 || (handle != NULL));
1002
1003 /*
1004 * Now that we do not always journal data, we should
1005 * keep in mind whether this should always journal the
1006 * new buffer as metadata. For now, regular file
1007 * writes use ext4_get_block instead, so it's not a
1008 * problem.
1009 */
1010 lock_buffer(bh);
1011 BUFFER_TRACE(bh, "call get_create_access");
1012 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
1013 EXT4_JTR_NONE);
1014 if (unlikely(err)) {
1015 unlock_buffer(bh);
1016 goto errout;
1017 }
1018 if (!buffer_uptodate(bh)) {
1019 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1020 set_buffer_uptodate(bh);
1021 }
1022 unlock_buffer(bh);
1023 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1024 err = ext4_handle_dirty_metadata(handle, inode, bh);
1025 if (unlikely(err))
1026 goto errout;
1027 } else
1028 BUFFER_TRACE(bh, "not a new buffer");
1029 return bh;
1030 errout:
1031 brelse(bh);
1032 return ERR_PTR(err);
1033 }
1034
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)1035 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1036 ext4_lblk_t block, int map_flags)
1037 {
1038 struct buffer_head *bh;
1039 int ret;
1040
1041 bh = ext4_getblk(handle, inode, block, map_flags);
1042 if (IS_ERR(bh))
1043 return bh;
1044 if (!bh || ext4_buffer_uptodate(bh))
1045 return bh;
1046
1047 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
1048 if (ret) {
1049 put_bh(bh);
1050 return ERR_PTR(ret);
1051 }
1052 return bh;
1053 }
1054
1055 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)1056 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1057 bool wait, struct buffer_head **bhs)
1058 {
1059 int i, err;
1060
1061 for (i = 0; i < bh_count; i++) {
1062 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1063 if (IS_ERR(bhs[i])) {
1064 err = PTR_ERR(bhs[i]);
1065 bh_count = i;
1066 goto out_brelse;
1067 }
1068 }
1069
1070 for (i = 0; i < bh_count; i++)
1071 /* Note that NULL bhs[i] is valid because of holes. */
1072 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1073 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
1074
1075 if (!wait)
1076 return 0;
1077
1078 for (i = 0; i < bh_count; i++)
1079 if (bhs[i])
1080 wait_on_buffer(bhs[i]);
1081
1082 for (i = 0; i < bh_count; i++) {
1083 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1084 err = -EIO;
1085 goto out_brelse;
1086 }
1087 }
1088 return 0;
1089
1090 out_brelse:
1091 for (i = 0; i < bh_count; i++) {
1092 brelse(bhs[i]);
1093 bhs[i] = NULL;
1094 }
1095 return err;
1096 }
1097
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))1098 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
1099 struct buffer_head *head,
1100 unsigned from,
1101 unsigned to,
1102 int *partial,
1103 int (*fn)(handle_t *handle, struct inode *inode,
1104 struct buffer_head *bh))
1105 {
1106 struct buffer_head *bh;
1107 unsigned block_start, block_end;
1108 unsigned blocksize = head->b_size;
1109 int err, ret = 0;
1110 struct buffer_head *next;
1111
1112 for (bh = head, block_start = 0;
1113 ret == 0 && (bh != head || !block_start);
1114 block_start = block_end, bh = next) {
1115 next = bh->b_this_page;
1116 block_end = block_start + blocksize;
1117 if (block_end <= from || block_start >= to) {
1118 if (partial && !buffer_uptodate(bh))
1119 *partial = 1;
1120 continue;
1121 }
1122 err = (*fn)(handle, inode, bh);
1123 if (!ret)
1124 ret = err;
1125 }
1126 return ret;
1127 }
1128
1129 /*
1130 * Helper for handling dirtying of journalled data. We also mark the folio as
1131 * dirty so that writeback code knows about this page (and inode) contains
1132 * dirty data. ext4_writepages() then commits appropriate transaction to
1133 * make data stable.
1134 */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1135 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1136 {
1137 struct folio *folio = bh->b_folio;
1138 struct inode *inode = folio->mapping->host;
1139
1140 /* only regular files have a_ops */
1141 if (S_ISREG(inode->i_mode))
1142 folio_mark_dirty(folio);
1143 return ext4_handle_dirty_metadata(handle, NULL, bh);
1144 }
1145
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1146 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1147 struct buffer_head *bh)
1148 {
1149 if (!buffer_mapped(bh) || buffer_freed(bh))
1150 return 0;
1151 BUFFER_TRACE(bh, "get write access");
1152 return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1153 EXT4_JTR_NONE);
1154 }
1155
ext4_block_write_begin(handle_t * handle,struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1156 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1157 loff_t pos, unsigned len,
1158 get_block_t *get_block)
1159 {
1160 unsigned int from = offset_in_folio(folio, pos);
1161 unsigned to = from + len;
1162 struct inode *inode = folio->mapping->host;
1163 unsigned block_start, block_end;
1164 sector_t block;
1165 int err = 0;
1166 unsigned blocksize = inode->i_sb->s_blocksize;
1167 unsigned bbits;
1168 struct buffer_head *bh, *head, *wait[2];
1169 int nr_wait = 0;
1170 int i;
1171 bool should_journal_data = ext4_should_journal_data(inode);
1172
1173 BUG_ON(!folio_test_locked(folio));
1174 BUG_ON(to > folio_size(folio));
1175 BUG_ON(from > to);
1176
1177 head = folio_buffers(folio);
1178 if (!head)
1179 head = create_empty_buffers(folio, blocksize, 0);
1180 bbits = ilog2(blocksize);
1181 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1182
1183 for (bh = head, block_start = 0; bh != head || !block_start;
1184 block++, block_start = block_end, bh = bh->b_this_page) {
1185 block_end = block_start + blocksize;
1186 if (block_end <= from || block_start >= to) {
1187 if (folio_test_uptodate(folio)) {
1188 set_buffer_uptodate(bh);
1189 }
1190 continue;
1191 }
1192 if (WARN_ON_ONCE(buffer_new(bh)))
1193 clear_buffer_new(bh);
1194 if (!buffer_mapped(bh)) {
1195 WARN_ON(bh->b_size != blocksize);
1196 err = ext4_journal_ensure_extent_credits(handle, inode);
1197 if (!err)
1198 err = get_block(inode, block, bh, 1);
1199 if (err)
1200 break;
1201 if (buffer_new(bh)) {
1202 /*
1203 * We may be zeroing partial buffers or all new
1204 * buffers in case of failure. Prepare JBD2 for
1205 * that.
1206 */
1207 if (should_journal_data)
1208 do_journal_get_write_access(handle,
1209 inode, bh);
1210 if (folio_test_uptodate(folio)) {
1211 /*
1212 * Unlike __block_write_begin() we leave
1213 * dirtying of new uptodate buffers to
1214 * ->write_end() time or
1215 * folio_zero_new_buffers().
1216 */
1217 set_buffer_uptodate(bh);
1218 continue;
1219 }
1220 if (block_end > to || block_start < from)
1221 folio_zero_segments(folio, to,
1222 block_end,
1223 block_start, from);
1224 continue;
1225 }
1226 }
1227 if (folio_test_uptodate(folio)) {
1228 set_buffer_uptodate(bh);
1229 continue;
1230 }
1231 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1232 !buffer_unwritten(bh) &&
1233 (block_start < from || block_end > to)) {
1234 ext4_read_bh_lock(bh, 0, false);
1235 wait[nr_wait++] = bh;
1236 }
1237 }
1238 /*
1239 * If we issued read requests, let them complete.
1240 */
1241 for (i = 0; i < nr_wait; i++) {
1242 wait_on_buffer(wait[i]);
1243 if (!buffer_uptodate(wait[i]))
1244 err = -EIO;
1245 }
1246 if (unlikely(err)) {
1247 if (should_journal_data)
1248 ext4_journalled_zero_new_buffers(handle, inode, folio,
1249 from, to);
1250 else
1251 folio_zero_new_buffers(folio, from, to);
1252 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1253 for (i = 0; i < nr_wait; i++) {
1254 int err2;
1255
1256 err2 = fscrypt_decrypt_pagecache_blocks(folio,
1257 blocksize, bh_offset(wait[i]));
1258 if (err2) {
1259 clear_buffer_uptodate(wait[i]);
1260 err = err2;
1261 }
1262 }
1263 }
1264
1265 return err;
1266 }
1267
1268 /*
1269 * To preserve ordering, it is essential that the hole instantiation and
1270 * the data write be encapsulated in a single transaction. We cannot
1271 * close off a transaction and start a new one between the ext4_get_block()
1272 * and the ext4_write_end(). So doing the jbd2_journal_start at the start of
1273 * ext4_write_begin() is the right place.
1274 */
ext4_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)1275 static int ext4_write_begin(const struct kiocb *iocb,
1276 struct address_space *mapping,
1277 loff_t pos, unsigned len,
1278 struct folio **foliop, void **fsdata)
1279 {
1280 struct inode *inode = mapping->host;
1281 int ret, needed_blocks;
1282 handle_t *handle;
1283 int retries = 0;
1284 struct folio *folio;
1285 pgoff_t index;
1286 unsigned from, to;
1287
1288 ret = ext4_emergency_state(inode->i_sb);
1289 if (unlikely(ret))
1290 return ret;
1291
1292 trace_ext4_write_begin(inode, pos, len);
1293 /*
1294 * Reserve one block more for addition to orphan list in case
1295 * we allocate blocks but write fails for some reason
1296 */
1297 needed_blocks = ext4_chunk_trans_extent(inode,
1298 ext4_journal_blocks_per_folio(inode)) + 1;
1299 index = pos >> PAGE_SHIFT;
1300
1301 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1302 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1303 foliop);
1304 if (ret < 0)
1305 return ret;
1306 if (ret == 1)
1307 return 0;
1308 }
1309
1310 /*
1311 * write_begin_get_folio() can take a long time if the
1312 * system is thrashing due to memory pressure, or if the folio
1313 * is being written back. So grab it first before we start
1314 * the transaction handle. This also allows us to allocate
1315 * the folio (if needed) without using GFP_NOFS.
1316 */
1317 retry_grab:
1318 folio = write_begin_get_folio(iocb, mapping, index, len);
1319 if (IS_ERR(folio))
1320 return PTR_ERR(folio);
1321
1322 if (pos + len > folio_pos(folio) + folio_size(folio))
1323 len = folio_pos(folio) + folio_size(folio) - pos;
1324
1325 from = offset_in_folio(folio, pos);
1326 to = from + len;
1327
1328 /*
1329 * The same as page allocation, we prealloc buffer heads before
1330 * starting the handle.
1331 */
1332 if (!folio_buffers(folio))
1333 create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1334
1335 folio_unlock(folio);
1336
1337 retry_journal:
1338 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1339 if (IS_ERR(handle)) {
1340 folio_put(folio);
1341 return PTR_ERR(handle);
1342 }
1343
1344 folio_lock(folio);
1345 if (folio->mapping != mapping) {
1346 /* The folio got truncated from under us */
1347 folio_unlock(folio);
1348 folio_put(folio);
1349 ext4_journal_stop(handle);
1350 goto retry_grab;
1351 }
1352 /* In case writeback began while the folio was unlocked */
1353 folio_wait_stable(folio);
1354
1355 if (ext4_should_dioread_nolock(inode))
1356 ret = ext4_block_write_begin(handle, folio, pos, len,
1357 ext4_get_block_unwritten);
1358 else
1359 ret = ext4_block_write_begin(handle, folio, pos, len,
1360 ext4_get_block);
1361 if (!ret && ext4_should_journal_data(inode)) {
1362 ret = ext4_walk_page_buffers(handle, inode,
1363 folio_buffers(folio), from, to,
1364 NULL, do_journal_get_write_access);
1365 }
1366
1367 if (ret) {
1368 bool extended = (pos + len > inode->i_size) &&
1369 !ext4_verity_in_progress(inode);
1370
1371 folio_unlock(folio);
1372 /*
1373 * ext4_block_write_begin may have instantiated a few blocks
1374 * outside i_size. Trim these off again. Don't need
1375 * i_size_read because we hold i_rwsem.
1376 *
1377 * Add inode to orphan list in case we crash before
1378 * truncate finishes
1379 */
1380 if (extended && ext4_can_truncate(inode))
1381 ext4_orphan_add(handle, inode);
1382
1383 ext4_journal_stop(handle);
1384 if (extended) {
1385 ext4_truncate_failed_write(inode);
1386 /*
1387 * If truncate failed early the inode might
1388 * still be on the orphan list; we need to
1389 * make sure the inode is removed from the
1390 * orphan list in that case.
1391 */
1392 if (inode->i_nlink)
1393 ext4_orphan_del(NULL, inode);
1394 }
1395
1396 if (ret == -EAGAIN ||
1397 (ret == -ENOSPC &&
1398 ext4_should_retry_alloc(inode->i_sb, &retries)))
1399 goto retry_journal;
1400 folio_put(folio);
1401 return ret;
1402 }
1403 *foliop = folio;
1404 return ret;
1405 }
1406
1407 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1408 static int write_end_fn(handle_t *handle, struct inode *inode,
1409 struct buffer_head *bh)
1410 {
1411 int ret;
1412 if (!buffer_mapped(bh) || buffer_freed(bh))
1413 return 0;
1414 set_buffer_uptodate(bh);
1415 ret = ext4_dirty_journalled_data(handle, bh);
1416 clear_buffer_meta(bh);
1417 clear_buffer_prio(bh);
1418 clear_buffer_new(bh);
1419 return ret;
1420 }
1421
1422 /*
1423 * We need to pick up the new inode size which generic_commit_write gave us
1424 * `iocb` can be NULL - eg, when called from page_symlink().
1425 *
1426 * ext4 never places buffers on inode->i_mapping->i_private_list. metadata
1427 * buffers are managed internally.
1428 */
ext4_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1429 static int ext4_write_end(const struct kiocb *iocb,
1430 struct address_space *mapping,
1431 loff_t pos, unsigned len, unsigned copied,
1432 struct folio *folio, void *fsdata)
1433 {
1434 handle_t *handle = ext4_journal_current_handle();
1435 struct inode *inode = mapping->host;
1436 loff_t old_size = inode->i_size;
1437 int ret = 0, ret2;
1438 int i_size_changed = 0;
1439 bool verity = ext4_verity_in_progress(inode);
1440
1441 trace_ext4_write_end(inode, pos, len, copied);
1442
1443 if (ext4_has_inline_data(inode) &&
1444 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1445 return ext4_write_inline_data_end(inode, pos, len, copied,
1446 folio);
1447
1448 copied = block_write_end(pos, len, copied, folio);
1449 /*
1450 * it's important to update i_size while still holding folio lock:
1451 * page writeout could otherwise come in and zero beyond i_size.
1452 *
1453 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1454 * blocks are being written past EOF, so skip the i_size update.
1455 */
1456 if (!verity)
1457 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1458 folio_unlock(folio);
1459 folio_put(folio);
1460
1461 if (old_size < pos && !verity) {
1462 pagecache_isize_extended(inode, old_size, pos);
1463 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1464 }
1465 /*
1466 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1467 * makes the holding time of folio lock longer. Second, it forces lock
1468 * ordering of folio lock and transaction start for journaling
1469 * filesystems.
1470 */
1471 if (i_size_changed)
1472 ret = ext4_mark_inode_dirty(handle, inode);
1473
1474 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1475 /* if we have allocated more blocks and copied
1476 * less. We will have blocks allocated outside
1477 * inode->i_size. So truncate them
1478 */
1479 ext4_orphan_add(handle, inode);
1480
1481 ret2 = ext4_journal_stop(handle);
1482 if (!ret)
1483 ret = ret2;
1484
1485 if (pos + len > inode->i_size && !verity) {
1486 ext4_truncate_failed_write(inode);
1487 /*
1488 * If truncate failed early the inode might still be
1489 * on the orphan list; we need to make sure the inode
1490 * is removed from the orphan list in that case.
1491 */
1492 if (inode->i_nlink)
1493 ext4_orphan_del(NULL, inode);
1494 }
1495
1496 return ret ? ret : copied;
1497 }
1498
1499 /*
1500 * This is a private version of folio_zero_new_buffers() which doesn't
1501 * set the buffer to be dirty, since in data=journalled mode we need
1502 * to call ext4_dirty_journalled_data() instead.
1503 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1504 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1505 struct inode *inode,
1506 struct folio *folio,
1507 unsigned from, unsigned to)
1508 {
1509 unsigned int block_start = 0, block_end;
1510 struct buffer_head *head, *bh;
1511
1512 bh = head = folio_buffers(folio);
1513 do {
1514 block_end = block_start + bh->b_size;
1515 if (buffer_new(bh)) {
1516 if (block_end > from && block_start < to) {
1517 if (!folio_test_uptodate(folio)) {
1518 unsigned start, size;
1519
1520 start = max(from, block_start);
1521 size = min(to, block_end) - start;
1522
1523 folio_zero_range(folio, start, size);
1524 }
1525 clear_buffer_new(bh);
1526 write_end_fn(handle, inode, bh);
1527 }
1528 }
1529 block_start = block_end;
1530 bh = bh->b_this_page;
1531 } while (bh != head);
1532 }
1533
ext4_journalled_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1534 static int ext4_journalled_write_end(const struct kiocb *iocb,
1535 struct address_space *mapping,
1536 loff_t pos, unsigned len, unsigned copied,
1537 struct folio *folio, void *fsdata)
1538 {
1539 handle_t *handle = ext4_journal_current_handle();
1540 struct inode *inode = mapping->host;
1541 loff_t old_size = inode->i_size;
1542 int ret = 0, ret2;
1543 int partial = 0;
1544 unsigned from, to;
1545 int size_changed = 0;
1546 bool verity = ext4_verity_in_progress(inode);
1547
1548 trace_ext4_journalled_write_end(inode, pos, len, copied);
1549 from = pos & (PAGE_SIZE - 1);
1550 to = from + len;
1551
1552 BUG_ON(!ext4_handle_valid(handle));
1553
1554 if (ext4_has_inline_data(inode))
1555 return ext4_write_inline_data_end(inode, pos, len, copied,
1556 folio);
1557
1558 if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1559 copied = 0;
1560 ext4_journalled_zero_new_buffers(handle, inode, folio,
1561 from, to);
1562 } else {
1563 if (unlikely(copied < len))
1564 ext4_journalled_zero_new_buffers(handle, inode, folio,
1565 from + copied, to);
1566 ret = ext4_walk_page_buffers(handle, inode,
1567 folio_buffers(folio),
1568 from, from + copied, &partial,
1569 write_end_fn);
1570 if (!partial)
1571 folio_mark_uptodate(folio);
1572 }
1573 if (!verity)
1574 size_changed = ext4_update_inode_size(inode, pos + copied);
1575 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1576 folio_unlock(folio);
1577 folio_put(folio);
1578
1579 if (old_size < pos && !verity) {
1580 pagecache_isize_extended(inode, old_size, pos);
1581 ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1582 }
1583
1584 if (size_changed) {
1585 ret2 = ext4_mark_inode_dirty(handle, inode);
1586 if (!ret)
1587 ret = ret2;
1588 }
1589
1590 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1591 /* if we have allocated more blocks and copied
1592 * less. We will have blocks allocated outside
1593 * inode->i_size. So truncate them
1594 */
1595 ext4_orphan_add(handle, inode);
1596
1597 ret2 = ext4_journal_stop(handle);
1598 if (!ret)
1599 ret = ret2;
1600 if (pos + len > inode->i_size && !verity) {
1601 ext4_truncate_failed_write(inode);
1602 /*
1603 * If truncate failed early the inode might still be
1604 * on the orphan list; we need to make sure the inode
1605 * is removed from the orphan list in that case.
1606 */
1607 if (inode->i_nlink)
1608 ext4_orphan_del(NULL, inode);
1609 }
1610
1611 return ret ? ret : copied;
1612 }
1613
1614 /*
1615 * Reserve space for 'nr_resv' clusters
1616 */
ext4_da_reserve_space(struct inode * inode,int nr_resv)1617 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1618 {
1619 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1620 struct ext4_inode_info *ei = EXT4_I(inode);
1621 int ret;
1622
1623 /*
1624 * We will charge metadata quota at writeout time; this saves
1625 * us from metadata over-estimation, though we may go over by
1626 * a small amount in the end. Here we just reserve for data.
1627 */
1628 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1629 if (ret)
1630 return ret;
1631
1632 spin_lock(&ei->i_block_reservation_lock);
1633 if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1634 spin_unlock(&ei->i_block_reservation_lock);
1635 dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1636 return -ENOSPC;
1637 }
1638 ei->i_reserved_data_blocks += nr_resv;
1639 trace_ext4_da_reserve_space(inode, nr_resv);
1640 spin_unlock(&ei->i_block_reservation_lock);
1641
1642 return 0; /* success */
1643 }
1644
ext4_da_release_space(struct inode * inode,int to_free)1645 void ext4_da_release_space(struct inode *inode, int to_free)
1646 {
1647 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1648 struct ext4_inode_info *ei = EXT4_I(inode);
1649
1650 if (!to_free)
1651 return; /* Nothing to release, exit */
1652
1653 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1654
1655 trace_ext4_da_release_space(inode, to_free);
1656 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1657 /*
1658 * if there aren't enough reserved blocks, then the
1659 * counter is messed up somewhere. Since this
1660 * function is called from invalidate page, it's
1661 * harmless to return without any action.
1662 */
1663 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1664 "ino %lu, to_free %d with only %d reserved "
1665 "data blocks", inode->i_ino, to_free,
1666 ei->i_reserved_data_blocks);
1667 WARN_ON(1);
1668 to_free = ei->i_reserved_data_blocks;
1669 }
1670 ei->i_reserved_data_blocks -= to_free;
1671
1672 /* update fs dirty data blocks counter */
1673 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1674
1675 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1676
1677 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1678 }
1679
1680 /*
1681 * Delayed allocation stuff
1682 */
1683
1684 struct mpage_da_data {
1685 /* These are input fields for ext4_do_writepages() */
1686 struct inode *inode;
1687 struct writeback_control *wbc;
1688 unsigned int can_map:1; /* Can writepages call map blocks? */
1689
1690 /* These are internal state of ext4_do_writepages() */
1691 loff_t start_pos; /* The start pos to write */
1692 loff_t next_pos; /* Current pos to examine */
1693 loff_t end_pos; /* Last pos to examine */
1694
1695 /*
1696 * Extent to map - this can be after start_pos because that can be
1697 * fully mapped. We somewhat abuse m_flags to store whether the extent
1698 * is delalloc or unwritten.
1699 */
1700 struct ext4_map_blocks map;
1701 struct ext4_io_submit io_submit; /* IO submission data */
1702 unsigned int do_map:1;
1703 unsigned int scanned_until_end:1;
1704 unsigned int journalled_more_data:1;
1705 };
1706
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1707 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1708 bool invalidate)
1709 {
1710 unsigned nr, i;
1711 pgoff_t index, end;
1712 struct folio_batch fbatch;
1713 struct inode *inode = mpd->inode;
1714 struct address_space *mapping = inode->i_mapping;
1715
1716 /* This is necessary when next_pos == 0. */
1717 if (mpd->start_pos >= mpd->next_pos)
1718 return;
1719
1720 mpd->scanned_until_end = 0;
1721 if (invalidate) {
1722 ext4_lblk_t start, last;
1723 start = EXT4_B_TO_LBLK(inode, mpd->start_pos);
1724 last = mpd->next_pos >> inode->i_blkbits;
1725
1726 /*
1727 * avoid racing with extent status tree scans made by
1728 * ext4_insert_delayed_block()
1729 */
1730 down_write(&EXT4_I(inode)->i_data_sem);
1731 ext4_es_remove_extent(inode, start, last - start);
1732 up_write(&EXT4_I(inode)->i_data_sem);
1733 }
1734
1735 folio_batch_init(&fbatch);
1736 index = mpd->start_pos >> PAGE_SHIFT;
1737 end = mpd->next_pos >> PAGE_SHIFT;
1738 while (index < end) {
1739 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1740 if (nr == 0)
1741 break;
1742 for (i = 0; i < nr; i++) {
1743 struct folio *folio = fbatch.folios[i];
1744
1745 if (folio_pos(folio) < mpd->start_pos)
1746 continue;
1747 if (folio_next_index(folio) > end)
1748 continue;
1749 BUG_ON(!folio_test_locked(folio));
1750 BUG_ON(folio_test_writeback(folio));
1751 if (invalidate) {
1752 if (folio_mapped(folio))
1753 folio_clear_dirty_for_io(folio);
1754 block_invalidate_folio(folio, 0,
1755 folio_size(folio));
1756 folio_clear_uptodate(folio);
1757 }
1758 folio_unlock(folio);
1759 }
1760 folio_batch_release(&fbatch);
1761 }
1762 }
1763
ext4_print_free_blocks(struct inode * inode)1764 static void ext4_print_free_blocks(struct inode *inode)
1765 {
1766 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1767 struct super_block *sb = inode->i_sb;
1768 struct ext4_inode_info *ei = EXT4_I(inode);
1769
1770 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1771 EXT4_C2B(EXT4_SB(inode->i_sb),
1772 ext4_count_free_clusters(sb)));
1773 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1774 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1775 (long long) EXT4_C2B(EXT4_SB(sb),
1776 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1777 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1778 (long long) EXT4_C2B(EXT4_SB(sb),
1779 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1780 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1781 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1782 ei->i_reserved_data_blocks);
1783 return;
1784 }
1785
1786 /*
1787 * Check whether the cluster containing lblk has been allocated or has
1788 * delalloc reservation.
1789 *
1790 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1791 * reservation, 2 if it's already been allocated, negative error code on
1792 * failure.
1793 */
ext4_clu_alloc_state(struct inode * inode,ext4_lblk_t lblk)1794 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1795 {
1796 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1797 int ret;
1798
1799 /* Has delalloc reservation? */
1800 if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1801 return 1;
1802
1803 /* Already been allocated? */
1804 if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1805 return 2;
1806 ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1807 if (ret < 0)
1808 return ret;
1809 if (ret > 0)
1810 return 2;
1811
1812 return 0;
1813 }
1814
1815 /*
1816 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1817 * status tree, incrementing the reserved
1818 * cluster/block count or making pending
1819 * reservations where needed
1820 *
1821 * @inode - file containing the newly added block
1822 * @lblk - start logical block to be added
1823 * @len - length of blocks to be added
1824 *
1825 * Returns 0 on success, negative error code on failure.
1826 */
ext4_insert_delayed_blocks(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1827 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1828 ext4_lblk_t len)
1829 {
1830 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1831 int ret;
1832 bool lclu_allocated = false;
1833 bool end_allocated = false;
1834 ext4_lblk_t resv_clu;
1835 ext4_lblk_t end = lblk + len - 1;
1836
1837 /*
1838 * If the cluster containing lblk or end is shared with a delayed,
1839 * written, or unwritten extent in a bigalloc file system, it's
1840 * already been accounted for and does not need to be reserved.
1841 * A pending reservation must be made for the cluster if it's
1842 * shared with a written or unwritten extent and doesn't already
1843 * have one. Written and unwritten extents can be purged from the
1844 * extents status tree if the system is under memory pressure, so
1845 * it's necessary to examine the extent tree if a search of the
1846 * extents status tree doesn't get a match.
1847 */
1848 if (sbi->s_cluster_ratio == 1) {
1849 ret = ext4_da_reserve_space(inode, len);
1850 if (ret != 0) /* ENOSPC */
1851 return ret;
1852 } else { /* bigalloc */
1853 resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1854
1855 ret = ext4_clu_alloc_state(inode, lblk);
1856 if (ret < 0)
1857 return ret;
1858 if (ret > 0) {
1859 resv_clu--;
1860 lclu_allocated = (ret == 2);
1861 }
1862
1863 if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1864 ret = ext4_clu_alloc_state(inode, end);
1865 if (ret < 0)
1866 return ret;
1867 if (ret > 0) {
1868 resv_clu--;
1869 end_allocated = (ret == 2);
1870 }
1871 }
1872
1873 if (resv_clu) {
1874 ret = ext4_da_reserve_space(inode, resv_clu);
1875 if (ret != 0) /* ENOSPC */
1876 return ret;
1877 }
1878 }
1879
1880 ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1881 end_allocated);
1882 return 0;
1883 }
1884
1885 /*
1886 * Looks up the requested blocks and sets the delalloc extent map.
1887 * First try to look up for the extent entry that contains the requested
1888 * blocks in the extent status tree without i_data_sem, then try to look
1889 * up for the ondisk extent mapping with i_data_sem in read mode,
1890 * finally hold i_data_sem in write mode, looks up again and add a
1891 * delalloc extent entry if it still couldn't find any extent. Pass out
1892 * the mapped extent through @map and return 0 on success.
1893 */
ext4_da_map_blocks(struct inode * inode,struct ext4_map_blocks * map)1894 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1895 {
1896 struct extent_status es;
1897 int retval;
1898 #ifdef ES_AGGRESSIVE_TEST
1899 struct ext4_map_blocks orig_map;
1900
1901 memcpy(&orig_map, map, sizeof(*map));
1902 #endif
1903
1904 map->m_flags = 0;
1905 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1906 (unsigned long) map->m_lblk);
1907
1908 ext4_check_map_extents_env(inode);
1909
1910 /* Lookup extent status tree firstly */
1911 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1912 map->m_len = min_t(unsigned int, map->m_len,
1913 es.es_len - (map->m_lblk - es.es_lblk));
1914
1915 if (ext4_es_is_hole(&es))
1916 goto add_delayed;
1917
1918 found:
1919 /*
1920 * Delayed extent could be allocated by fallocate.
1921 * So we need to check it.
1922 */
1923 if (ext4_es_is_delayed(&es)) {
1924 map->m_flags |= EXT4_MAP_DELAYED;
1925 return 0;
1926 }
1927
1928 map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1929 if (ext4_es_is_written(&es))
1930 map->m_flags |= EXT4_MAP_MAPPED;
1931 else if (ext4_es_is_unwritten(&es))
1932 map->m_flags |= EXT4_MAP_UNWRITTEN;
1933 else
1934 BUG();
1935
1936 #ifdef ES_AGGRESSIVE_TEST
1937 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1938 #endif
1939 return 0;
1940 }
1941
1942 /*
1943 * Try to see if we can get the block without requesting a new
1944 * file system block.
1945 */
1946 down_read(&EXT4_I(inode)->i_data_sem);
1947 if (ext4_has_inline_data(inode))
1948 retval = 0;
1949 else
1950 retval = ext4_map_query_blocks(NULL, inode, map, 0);
1951 up_read(&EXT4_I(inode)->i_data_sem);
1952 if (retval)
1953 return retval < 0 ? retval : 0;
1954
1955 add_delayed:
1956 down_write(&EXT4_I(inode)->i_data_sem);
1957 /*
1958 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1959 * and fallocate path (no folio lock) can race. Make sure we
1960 * lookup the extent status tree here again while i_data_sem
1961 * is held in write mode, before inserting a new da entry in
1962 * the extent status tree.
1963 */
1964 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1965 map->m_len = min_t(unsigned int, map->m_len,
1966 es.es_len - (map->m_lblk - es.es_lblk));
1967
1968 if (!ext4_es_is_hole(&es)) {
1969 up_write(&EXT4_I(inode)->i_data_sem);
1970 goto found;
1971 }
1972 } else if (!ext4_has_inline_data(inode)) {
1973 retval = ext4_map_query_blocks(NULL, inode, map, 0);
1974 if (retval) {
1975 up_write(&EXT4_I(inode)->i_data_sem);
1976 return retval < 0 ? retval : 0;
1977 }
1978 }
1979
1980 map->m_flags |= EXT4_MAP_DELAYED;
1981 retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1982 up_write(&EXT4_I(inode)->i_data_sem);
1983
1984 return retval;
1985 }
1986
1987 /*
1988 * This is a special get_block_t callback which is used by
1989 * ext4_da_write_begin(). It will either return mapped block or
1990 * reserve space for a single block.
1991 *
1992 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1993 * We also have b_blocknr = -1 and b_bdev initialized properly
1994 *
1995 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1996 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1997 * initialized properly.
1998 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1999 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2000 struct buffer_head *bh, int create)
2001 {
2002 struct ext4_map_blocks map;
2003 sector_t invalid_block = ~((sector_t) 0xffff);
2004 int ret = 0;
2005
2006 BUG_ON(create == 0);
2007 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2008
2009 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2010 invalid_block = ~0;
2011
2012 map.m_lblk = iblock;
2013 map.m_len = 1;
2014
2015 /*
2016 * first, we need to know whether the block is allocated already
2017 * preallocated blocks are unmapped but should treated
2018 * the same as allocated blocks.
2019 */
2020 ret = ext4_da_map_blocks(inode, &map);
2021 if (ret < 0)
2022 return ret;
2023
2024 if (map.m_flags & EXT4_MAP_DELAYED) {
2025 map_bh(bh, inode->i_sb, invalid_block);
2026 set_buffer_new(bh);
2027 set_buffer_delay(bh);
2028 return 0;
2029 }
2030
2031 map_bh(bh, inode->i_sb, map.m_pblk);
2032 ext4_update_bh_state(bh, map.m_flags);
2033
2034 if (buffer_unwritten(bh)) {
2035 /* A delayed write to unwritten bh should be marked
2036 * new and mapped. Mapped ensures that we don't do
2037 * get_block multiple times when we write to the same
2038 * offset and new ensures that we do proper zero out
2039 * for partial write.
2040 */
2041 set_buffer_new(bh);
2042 set_buffer_mapped(bh);
2043 }
2044 return 0;
2045 }
2046
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)2047 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
2048 {
2049 mpd->start_pos += folio_size(folio);
2050 mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2051 folio_unlock(folio);
2052 }
2053
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)2054 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
2055 {
2056 size_t len;
2057 loff_t size;
2058 int err;
2059
2060 WARN_ON_ONCE(folio_pos(folio) != mpd->start_pos);
2061 folio_clear_dirty_for_io(folio);
2062 /*
2063 * We have to be very careful here! Nothing protects writeback path
2064 * against i_size changes and the page can be writeably mapped into
2065 * page tables. So an application can be growing i_size and writing
2066 * data through mmap while writeback runs. folio_clear_dirty_for_io()
2067 * write-protects our page in page tables and the page cannot get
2068 * written to again until we release folio lock. So only after
2069 * folio_clear_dirty_for_io() we are safe to sample i_size for
2070 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
2071 * on the barrier provided by folio_test_clear_dirty() in
2072 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
2073 * after page tables are updated.
2074 */
2075 size = i_size_read(mpd->inode);
2076 len = folio_size(folio);
2077 if (folio_pos(folio) + len > size &&
2078 !ext4_verity_in_progress(mpd->inode))
2079 len = size & (len - 1);
2080 err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
2081
2082 return err;
2083 }
2084
2085 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2086
2087 /*
2088 * mballoc gives us at most this number of blocks...
2089 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2090 * The rest of mballoc seems to handle chunks up to full group size.
2091 */
2092 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2093
2094 /*
2095 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2096 *
2097 * @mpd - extent of blocks
2098 * @lblk - logical number of the block in the file
2099 * @bh - buffer head we want to add to the extent
2100 *
2101 * The function is used to collect contig. blocks in the same state. If the
2102 * buffer doesn't require mapping for writeback and we haven't started the
2103 * extent of buffers to map yet, the function returns 'true' immediately - the
2104 * caller can write the buffer right away. Otherwise the function returns true
2105 * if the block has been added to the extent, false if the block couldn't be
2106 * added.
2107 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2108 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2109 struct buffer_head *bh)
2110 {
2111 struct ext4_map_blocks *map = &mpd->map;
2112
2113 /* Buffer that doesn't need mapping for writeback? */
2114 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2115 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2116 /* So far no extent to map => we write the buffer right away */
2117 if (map->m_len == 0)
2118 return true;
2119 return false;
2120 }
2121
2122 /* First block in the extent? */
2123 if (map->m_len == 0) {
2124 /* We cannot map unless handle is started... */
2125 if (!mpd->do_map)
2126 return false;
2127 map->m_lblk = lblk;
2128 map->m_len = 1;
2129 map->m_flags = bh->b_state & BH_FLAGS;
2130 return true;
2131 }
2132
2133 /* Don't go larger than mballoc is willing to allocate */
2134 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2135 return false;
2136
2137 /* Can we merge the block to our big extent? */
2138 if (lblk == map->m_lblk + map->m_len &&
2139 (bh->b_state & BH_FLAGS) == map->m_flags) {
2140 map->m_len++;
2141 return true;
2142 }
2143 return false;
2144 }
2145
2146 /*
2147 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2148 *
2149 * @mpd - extent of blocks for mapping
2150 * @head - the first buffer in the page
2151 * @bh - buffer we should start processing from
2152 * @lblk - logical number of the block in the file corresponding to @bh
2153 *
2154 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2155 * the page for IO if all buffers in this page were mapped and there's no
2156 * accumulated extent of buffers to map or add buffers in the page to the
2157 * extent of buffers to map. The function returns 1 if the caller can continue
2158 * by processing the next page, 0 if it should stop adding buffers to the
2159 * extent to map because we cannot extend it anymore. It can also return value
2160 * < 0 in case of error during IO submission.
2161 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2162 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2163 struct buffer_head *head,
2164 struct buffer_head *bh,
2165 ext4_lblk_t lblk)
2166 {
2167 struct inode *inode = mpd->inode;
2168 int err;
2169 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2170 >> inode->i_blkbits;
2171
2172 if (ext4_verity_in_progress(inode))
2173 blocks = EXT_MAX_BLOCKS;
2174
2175 do {
2176 BUG_ON(buffer_locked(bh));
2177
2178 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2179 /* Found extent to map? */
2180 if (mpd->map.m_len)
2181 return 0;
2182 /* Buffer needs mapping and handle is not started? */
2183 if (!mpd->do_map)
2184 return 0;
2185 /* Everything mapped so far and we hit EOF */
2186 break;
2187 }
2188 } while (lblk++, (bh = bh->b_this_page) != head);
2189 /* So far everything mapped? Submit the page for IO. */
2190 if (mpd->map.m_len == 0) {
2191 err = mpage_submit_folio(mpd, head->b_folio);
2192 if (err < 0)
2193 return err;
2194 mpage_folio_done(mpd, head->b_folio);
2195 }
2196 if (lblk >= blocks) {
2197 mpd->scanned_until_end = 1;
2198 return 0;
2199 }
2200 return 1;
2201 }
2202
2203 /*
2204 * mpage_process_folio - update folio buffers corresponding to changed extent
2205 * and may submit fully mapped page for IO
2206 * @mpd: description of extent to map, on return next extent to map
2207 * @folio: Contains these buffers.
2208 * @m_lblk: logical block mapping.
2209 * @m_pblk: corresponding physical mapping.
2210 * @map_bh: determines on return whether this page requires any further
2211 * mapping or not.
2212 *
2213 * Scan given folio buffers corresponding to changed extent and update buffer
2214 * state according to new extent state.
2215 * We map delalloc buffers to their physical location, clear unwritten bits.
2216 * If the given folio is not fully mapped, we update @mpd to the next extent in
2217 * the given folio that needs mapping & return @map_bh as true.
2218 */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2219 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2220 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2221 bool *map_bh)
2222 {
2223 struct buffer_head *head, *bh;
2224 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2225 ext4_lblk_t lblk = *m_lblk;
2226 ext4_fsblk_t pblock = *m_pblk;
2227 int err = 0;
2228 int blkbits = mpd->inode->i_blkbits;
2229 ssize_t io_end_size = 0;
2230 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2231
2232 bh = head = folio_buffers(folio);
2233 do {
2234 if (lblk < mpd->map.m_lblk)
2235 continue;
2236 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2237 /*
2238 * Buffer after end of mapped extent.
2239 * Find next buffer in the folio to map.
2240 */
2241 mpd->map.m_len = 0;
2242 mpd->map.m_flags = 0;
2243 io_end_vec->size += io_end_size;
2244
2245 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2246 if (err > 0)
2247 err = 0;
2248 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2249 io_end_vec = ext4_alloc_io_end_vec(io_end);
2250 if (IS_ERR(io_end_vec)) {
2251 err = PTR_ERR(io_end_vec);
2252 goto out;
2253 }
2254 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2255 }
2256 *map_bh = true;
2257 goto out;
2258 }
2259 if (buffer_delay(bh)) {
2260 clear_buffer_delay(bh);
2261 bh->b_blocknr = pblock++;
2262 }
2263 clear_buffer_unwritten(bh);
2264 io_end_size += (1 << blkbits);
2265 } while (lblk++, (bh = bh->b_this_page) != head);
2266
2267 io_end_vec->size += io_end_size;
2268 *map_bh = false;
2269 out:
2270 *m_lblk = lblk;
2271 *m_pblk = pblock;
2272 return err;
2273 }
2274
2275 /*
2276 * mpage_map_buffers - update buffers corresponding to changed extent and
2277 * submit fully mapped pages for IO
2278 *
2279 * @mpd - description of extent to map, on return next extent to map
2280 *
2281 * Scan buffers corresponding to changed extent (we expect corresponding pages
2282 * to be already locked) and update buffer state according to new extent state.
2283 * We map delalloc buffers to their physical location, clear unwritten bits,
2284 * and mark buffers as uninit when we perform writes to unwritten extents
2285 * and do extent conversion after IO is finished. If the last page is not fully
2286 * mapped, we update @map to the next extent in the last page that needs
2287 * mapping. Otherwise we submit the page for IO.
2288 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2289 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2290 {
2291 struct folio_batch fbatch;
2292 unsigned nr, i;
2293 struct inode *inode = mpd->inode;
2294 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2295 pgoff_t start, end;
2296 ext4_lblk_t lblk;
2297 ext4_fsblk_t pblock;
2298 int err;
2299 bool map_bh = false;
2300
2301 start = mpd->map.m_lblk >> bpp_bits;
2302 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2303 pblock = mpd->map.m_pblk;
2304
2305 folio_batch_init(&fbatch);
2306 while (start <= end) {
2307 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2308 if (nr == 0)
2309 break;
2310 for (i = 0; i < nr; i++) {
2311 struct folio *folio = fbatch.folios[i];
2312
2313 lblk = folio->index << bpp_bits;
2314 err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2315 &map_bh);
2316 /*
2317 * If map_bh is true, means page may require further bh
2318 * mapping, or maybe the page was submitted for IO.
2319 * So we return to call further extent mapping.
2320 */
2321 if (err < 0 || map_bh)
2322 goto out;
2323 /* Page fully mapped - let IO run! */
2324 err = mpage_submit_folio(mpd, folio);
2325 if (err < 0)
2326 goto out;
2327 mpage_folio_done(mpd, folio);
2328 }
2329 folio_batch_release(&fbatch);
2330 }
2331 /* Extent fully mapped and matches with page boundary. We are done. */
2332 mpd->map.m_len = 0;
2333 mpd->map.m_flags = 0;
2334 return 0;
2335 out:
2336 folio_batch_release(&fbatch);
2337 return err;
2338 }
2339
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2340 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2341 {
2342 struct inode *inode = mpd->inode;
2343 struct ext4_map_blocks *map = &mpd->map;
2344 int get_blocks_flags;
2345 int err, dioread_nolock;
2346
2347 /* Make sure transaction has enough credits for this extent */
2348 err = ext4_journal_ensure_extent_credits(handle, inode);
2349 if (err < 0)
2350 return err;
2351
2352 trace_ext4_da_write_pages_extent(inode, map);
2353 /*
2354 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2355 * to convert an unwritten extent to be initialized (in the case
2356 * where we have written into one or more preallocated blocks). It is
2357 * possible that we're going to need more metadata blocks than
2358 * previously reserved. However we must not fail because we're in
2359 * writeback and there is nothing we can do about it so it might result
2360 * in data loss. So use reserved blocks to allocate metadata if
2361 * possible. In addition, do not cache any unrelated extents, as it
2362 * only holds the folio lock but does not hold the i_rwsem or
2363 * invalidate_lock, which could corrupt the extent status tree.
2364 */
2365 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2366 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2367 EXT4_GET_BLOCKS_IO_SUBMIT |
2368 EXT4_EX_NOCACHE;
2369
2370 dioread_nolock = ext4_should_dioread_nolock(inode);
2371 if (dioread_nolock)
2372 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2373
2374 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2375 if (err < 0)
2376 return err;
2377 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2378 if (!mpd->io_submit.io_end->handle &&
2379 ext4_handle_valid(handle)) {
2380 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2381 handle->h_rsv_handle = NULL;
2382 }
2383 ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2384 }
2385
2386 BUG_ON(map->m_len == 0);
2387 return 0;
2388 }
2389
2390 /*
2391 * This is used to submit mapped buffers in a single folio that is not fully
2392 * mapped for various reasons, such as insufficient space or journal credits.
2393 */
mpage_submit_partial_folio(struct mpage_da_data * mpd)2394 static int mpage_submit_partial_folio(struct mpage_da_data *mpd)
2395 {
2396 struct inode *inode = mpd->inode;
2397 struct folio *folio;
2398 loff_t pos;
2399 int ret;
2400
2401 folio = filemap_get_folio(inode->i_mapping,
2402 mpd->start_pos >> PAGE_SHIFT);
2403 if (IS_ERR(folio))
2404 return PTR_ERR(folio);
2405 /*
2406 * The mapped position should be within the current processing folio
2407 * but must not be the folio start position.
2408 */
2409 pos = ((loff_t)mpd->map.m_lblk) << inode->i_blkbits;
2410 if (WARN_ON_ONCE((folio_pos(folio) == pos) ||
2411 !folio_contains(folio, pos >> PAGE_SHIFT)))
2412 return -EINVAL;
2413
2414 ret = mpage_submit_folio(mpd, folio);
2415 if (ret)
2416 goto out;
2417 /*
2418 * Update start_pos to prevent this folio from being released in
2419 * mpage_release_unused_pages(), it will be reset to the aligned folio
2420 * pos when this folio is written again in the next round. Additionally,
2421 * do not update wbc->nr_to_write here, as it will be updated once the
2422 * entire folio has finished processing.
2423 */
2424 mpd->start_pos = pos;
2425 out:
2426 folio_unlock(folio);
2427 folio_put(folio);
2428 return ret;
2429 }
2430
2431 /*
2432 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2433 * mpd->len and submit pages underlying it for IO
2434 *
2435 * @handle - handle for journal operations
2436 * @mpd - extent to map
2437 * @give_up_on_write - we set this to true iff there is a fatal error and there
2438 * is no hope of writing the data. The caller should discard
2439 * dirty pages to avoid infinite loops.
2440 *
2441 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2442 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2443 * them to initialized or split the described range from larger unwritten
2444 * extent. Note that we need not map all the described range since allocation
2445 * can return less blocks or the range is covered by more unwritten extents. We
2446 * cannot map more because we are limited by reserved transaction credits. On
2447 * the other hand we always make sure that the last touched page is fully
2448 * mapped so that it can be written out (and thus forward progress is
2449 * guaranteed). After mapping we submit all mapped pages for IO.
2450 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2451 static int mpage_map_and_submit_extent(handle_t *handle,
2452 struct mpage_da_data *mpd,
2453 bool *give_up_on_write)
2454 {
2455 struct inode *inode = mpd->inode;
2456 struct ext4_map_blocks *map = &mpd->map;
2457 int err;
2458 loff_t disksize;
2459 int progress = 0;
2460 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2461 struct ext4_io_end_vec *io_end_vec;
2462
2463 io_end_vec = ext4_alloc_io_end_vec(io_end);
2464 if (IS_ERR(io_end_vec))
2465 return PTR_ERR(io_end_vec);
2466 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2467 do {
2468 err = mpage_map_one_extent(handle, mpd);
2469 if (err < 0) {
2470 struct super_block *sb = inode->i_sb;
2471
2472 if (ext4_emergency_state(sb))
2473 goto invalidate_dirty_pages;
2474 /*
2475 * Let the uper layers retry transient errors.
2476 * In the case of ENOSPC, if ext4_count_free_blocks()
2477 * is non-zero, a commit should free up blocks.
2478 */
2479 if ((err == -ENOMEM) || (err == -EAGAIN) ||
2480 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2481 /*
2482 * We may have already allocated extents for
2483 * some bhs inside the folio, issue the
2484 * corresponding data to prevent stale data.
2485 */
2486 if (progress) {
2487 if (mpage_submit_partial_folio(mpd))
2488 goto invalidate_dirty_pages;
2489 goto update_disksize;
2490 }
2491 return err;
2492 }
2493 ext4_msg(sb, KERN_CRIT,
2494 "Delayed block allocation failed for "
2495 "inode %lu at logical offset %llu with"
2496 " max blocks %u with error %d",
2497 inode->i_ino,
2498 (unsigned long long)map->m_lblk,
2499 (unsigned)map->m_len, -err);
2500 ext4_msg(sb, KERN_CRIT,
2501 "This should not happen!! Data will "
2502 "be lost\n");
2503 if (err == -ENOSPC)
2504 ext4_print_free_blocks(inode);
2505 invalidate_dirty_pages:
2506 *give_up_on_write = true;
2507 return err;
2508 }
2509 progress = 1;
2510 /*
2511 * Update buffer state, submit mapped pages, and get us new
2512 * extent to map
2513 */
2514 err = mpage_map_and_submit_buffers(mpd);
2515 if (err < 0)
2516 goto update_disksize;
2517 } while (map->m_len);
2518
2519 update_disksize:
2520 /*
2521 * Update on-disk size after IO is submitted. Races with
2522 * truncate are avoided by checking i_size under i_data_sem.
2523 */
2524 disksize = mpd->start_pos;
2525 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2526 int err2;
2527 loff_t i_size;
2528
2529 down_write(&EXT4_I(inode)->i_data_sem);
2530 i_size = i_size_read(inode);
2531 if (disksize > i_size)
2532 disksize = i_size;
2533 if (disksize > EXT4_I(inode)->i_disksize)
2534 EXT4_I(inode)->i_disksize = disksize;
2535 up_write(&EXT4_I(inode)->i_data_sem);
2536 err2 = ext4_mark_inode_dirty(handle, inode);
2537 if (err2) {
2538 ext4_error_err(inode->i_sb, -err2,
2539 "Failed to mark inode %lu dirty",
2540 inode->i_ino);
2541 }
2542 if (!err)
2543 err = err2;
2544 }
2545 return err;
2546 }
2547
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2548 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2549 size_t len)
2550 {
2551 struct buffer_head *page_bufs = folio_buffers(folio);
2552 struct inode *inode = folio->mapping->host;
2553 int ret, err;
2554
2555 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2556 NULL, do_journal_get_write_access);
2557 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2558 NULL, write_end_fn);
2559 if (ret == 0)
2560 ret = err;
2561 err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2562 if (ret == 0)
2563 ret = err;
2564 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2565
2566 return ret;
2567 }
2568
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2569 static int mpage_journal_page_buffers(handle_t *handle,
2570 struct mpage_da_data *mpd,
2571 struct folio *folio)
2572 {
2573 struct inode *inode = mpd->inode;
2574 loff_t size = i_size_read(inode);
2575 size_t len = folio_size(folio);
2576
2577 folio_clear_checked(folio);
2578 mpd->wbc->nr_to_write -= folio_nr_pages(folio);
2579
2580 if (folio_pos(folio) + len > size &&
2581 !ext4_verity_in_progress(inode))
2582 len = size & (len - 1);
2583
2584 return ext4_journal_folio_buffers(handle, folio, len);
2585 }
2586
2587 /*
2588 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2589 * needing mapping, submit mapped pages
2590 *
2591 * @mpd - where to look for pages
2592 *
2593 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2594 * IO immediately. If we cannot map blocks, we submit just already mapped
2595 * buffers in the page for IO and keep page dirty. When we can map blocks and
2596 * we find a page which isn't mapped we start accumulating extent of buffers
2597 * underlying these pages that needs mapping (formed by either delayed or
2598 * unwritten buffers). We also lock the pages containing these buffers. The
2599 * extent found is returned in @mpd structure (starting at mpd->lblk with
2600 * length mpd->len blocks).
2601 *
2602 * Note that this function can attach bios to one io_end structure which are
2603 * neither logically nor physically contiguous. Although it may seem as an
2604 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2605 * case as we need to track IO to all buffers underlying a page in one io_end.
2606 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2607 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2608 {
2609 struct address_space *mapping = mpd->inode->i_mapping;
2610 struct folio_batch fbatch;
2611 unsigned int nr_folios;
2612 pgoff_t index = mpd->start_pos >> PAGE_SHIFT;
2613 pgoff_t end = mpd->end_pos >> PAGE_SHIFT;
2614 xa_mark_t tag;
2615 int i, err = 0;
2616 int blkbits = mpd->inode->i_blkbits;
2617 ext4_lblk_t lblk;
2618 struct buffer_head *head;
2619 handle_t *handle = NULL;
2620 int bpp = ext4_journal_blocks_per_folio(mpd->inode);
2621
2622 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2623 tag = PAGECACHE_TAG_TOWRITE;
2624 else
2625 tag = PAGECACHE_TAG_DIRTY;
2626
2627 mpd->map.m_len = 0;
2628 mpd->next_pos = mpd->start_pos;
2629 if (ext4_should_journal_data(mpd->inode)) {
2630 handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2631 bpp);
2632 if (IS_ERR(handle))
2633 return PTR_ERR(handle);
2634 }
2635 folio_batch_init(&fbatch);
2636 while (index <= end) {
2637 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2638 tag, &fbatch);
2639 if (nr_folios == 0)
2640 break;
2641
2642 for (i = 0; i < nr_folios; i++) {
2643 struct folio *folio = fbatch.folios[i];
2644
2645 /*
2646 * Accumulated enough dirty pages? This doesn't apply
2647 * to WB_SYNC_ALL mode. For integrity sync we have to
2648 * keep going because someone may be concurrently
2649 * dirtying pages, and we might have synced a lot of
2650 * newly appeared dirty pages, but have not synced all
2651 * of the old dirty pages.
2652 */
2653 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2654 mpd->wbc->nr_to_write <=
2655 mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2656 goto out;
2657
2658 /* If we can't merge this page, we are done. */
2659 if (mpd->map.m_len > 0 &&
2660 mpd->next_pos != folio_pos(folio))
2661 goto out;
2662
2663 if (handle) {
2664 err = ext4_journal_ensure_credits(handle, bpp,
2665 0);
2666 if (err < 0)
2667 goto out;
2668 }
2669
2670 folio_lock(folio);
2671 /*
2672 * If the page is no longer dirty, or its mapping no
2673 * longer corresponds to inode we are writing (which
2674 * means it has been truncated or invalidated), or the
2675 * page is already under writeback and we are not doing
2676 * a data integrity writeback, skip the page
2677 */
2678 if (!folio_test_dirty(folio) ||
2679 (folio_test_writeback(folio) &&
2680 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2681 unlikely(folio->mapping != mapping)) {
2682 folio_unlock(folio);
2683 continue;
2684 }
2685
2686 folio_wait_writeback(folio);
2687 BUG_ON(folio_test_writeback(folio));
2688
2689 /*
2690 * Should never happen but for buggy code in
2691 * other subsystems that call
2692 * set_page_dirty() without properly warning
2693 * the file system first. See [1] for more
2694 * information.
2695 *
2696 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2697 */
2698 if (!folio_buffers(folio)) {
2699 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2700 folio_clear_dirty(folio);
2701 folio_unlock(folio);
2702 continue;
2703 }
2704
2705 if (mpd->map.m_len == 0)
2706 mpd->start_pos = folio_pos(folio);
2707 mpd->next_pos = folio_pos(folio) + folio_size(folio);
2708 /*
2709 * Writeout when we cannot modify metadata is simple.
2710 * Just submit the page. For data=journal mode we
2711 * first handle writeout of the page for checkpoint and
2712 * only after that handle delayed page dirtying. This
2713 * makes sure current data is checkpointed to the final
2714 * location before possibly journalling it again which
2715 * is desirable when the page is frequently dirtied
2716 * through a pin.
2717 */
2718 if (!mpd->can_map) {
2719 err = mpage_submit_folio(mpd, folio);
2720 if (err < 0)
2721 goto out;
2722 /* Pending dirtying of journalled data? */
2723 if (folio_test_checked(folio)) {
2724 err = mpage_journal_page_buffers(handle,
2725 mpd, folio);
2726 if (err < 0)
2727 goto out;
2728 mpd->journalled_more_data = 1;
2729 }
2730 mpage_folio_done(mpd, folio);
2731 } else {
2732 /* Add all dirty buffers to mpd */
2733 lblk = ((ext4_lblk_t)folio->index) <<
2734 (PAGE_SHIFT - blkbits);
2735 head = folio_buffers(folio);
2736 err = mpage_process_page_bufs(mpd, head, head,
2737 lblk);
2738 if (err <= 0)
2739 goto out;
2740 err = 0;
2741 }
2742 }
2743 folio_batch_release(&fbatch);
2744 cond_resched();
2745 }
2746 mpd->scanned_until_end = 1;
2747 if (handle)
2748 ext4_journal_stop(handle);
2749 return 0;
2750 out:
2751 folio_batch_release(&fbatch);
2752 if (handle)
2753 ext4_journal_stop(handle);
2754 return err;
2755 }
2756
ext4_do_writepages(struct mpage_da_data * mpd)2757 static int ext4_do_writepages(struct mpage_da_data *mpd)
2758 {
2759 struct writeback_control *wbc = mpd->wbc;
2760 pgoff_t writeback_index = 0;
2761 long nr_to_write = wbc->nr_to_write;
2762 int range_whole = 0;
2763 int cycled = 1;
2764 handle_t *handle = NULL;
2765 struct inode *inode = mpd->inode;
2766 struct address_space *mapping = inode->i_mapping;
2767 int needed_blocks, rsv_blocks = 0, ret = 0;
2768 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2769 struct blk_plug plug;
2770 bool give_up_on_write = false;
2771
2772 trace_ext4_writepages(inode, wbc);
2773
2774 /*
2775 * No pages to write? This is mainly a kludge to avoid starting
2776 * a transaction for special inodes like journal inode on last iput()
2777 * because that could violate lock ordering on umount
2778 */
2779 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2780 goto out_writepages;
2781
2782 /*
2783 * If the filesystem has aborted, it is read-only, so return
2784 * right away instead of dumping stack traces later on that
2785 * will obscure the real source of the problem. We test
2786 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2787 * the latter could be true if the filesystem is mounted
2788 * read-only, and in that case, ext4_writepages should
2789 * *never* be called, so if that ever happens, we would want
2790 * the stack trace.
2791 */
2792 ret = ext4_emergency_state(mapping->host->i_sb);
2793 if (unlikely(ret))
2794 goto out_writepages;
2795
2796 /*
2797 * If we have inline data and arrive here, it means that
2798 * we will soon create the block for the 1st page, so
2799 * we'd better clear the inline data here.
2800 */
2801 if (ext4_has_inline_data(inode)) {
2802 /* Just inode will be modified... */
2803 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2804 if (IS_ERR(handle)) {
2805 ret = PTR_ERR(handle);
2806 goto out_writepages;
2807 }
2808 BUG_ON(ext4_test_inode_state(inode,
2809 EXT4_STATE_MAY_INLINE_DATA));
2810 ext4_destroy_inline_data(handle, inode);
2811 ext4_journal_stop(handle);
2812 }
2813
2814 /*
2815 * data=journal mode does not do delalloc so we just need to writeout /
2816 * journal already mapped buffers. On the other hand we need to commit
2817 * transaction to make data stable. We expect all the data to be
2818 * already in the journal (the only exception are DMA pinned pages
2819 * dirtied behind our back) so we commit transaction here and run the
2820 * writeback loop to checkpoint them. The checkpointing is not actually
2821 * necessary to make data persistent *but* quite a few places (extent
2822 * shifting operations, fsverity, ...) depend on being able to drop
2823 * pagecache pages after calling filemap_write_and_wait() and for that
2824 * checkpointing needs to happen.
2825 */
2826 if (ext4_should_journal_data(inode)) {
2827 mpd->can_map = 0;
2828 if (wbc->sync_mode == WB_SYNC_ALL)
2829 ext4_fc_commit(sbi->s_journal,
2830 EXT4_I(inode)->i_datasync_tid);
2831 }
2832 mpd->journalled_more_data = 0;
2833
2834 if (ext4_should_dioread_nolock(inode)) {
2835 int bpf = ext4_journal_blocks_per_folio(inode);
2836 /*
2837 * We may need to convert up to one extent per block in
2838 * the folio and we may dirty the inode.
2839 */
2840 rsv_blocks = 1 + ext4_ext_index_trans_blocks(inode, bpf);
2841 }
2842
2843 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2844 range_whole = 1;
2845
2846 if (wbc->range_cyclic) {
2847 writeback_index = mapping->writeback_index;
2848 if (writeback_index)
2849 cycled = 0;
2850 mpd->start_pos = writeback_index << PAGE_SHIFT;
2851 mpd->end_pos = LLONG_MAX;
2852 } else {
2853 mpd->start_pos = wbc->range_start;
2854 mpd->end_pos = wbc->range_end;
2855 }
2856
2857 ext4_io_submit_init(&mpd->io_submit, wbc);
2858 retry:
2859 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2860 tag_pages_for_writeback(mapping, mpd->start_pos >> PAGE_SHIFT,
2861 mpd->end_pos >> PAGE_SHIFT);
2862 blk_start_plug(&plug);
2863
2864 /*
2865 * First writeback pages that don't need mapping - we can avoid
2866 * starting a transaction unnecessarily and also avoid being blocked
2867 * in the block layer on device congestion while having transaction
2868 * started.
2869 */
2870 mpd->do_map = 0;
2871 mpd->scanned_until_end = 0;
2872 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2873 if (!mpd->io_submit.io_end) {
2874 ret = -ENOMEM;
2875 goto unplug;
2876 }
2877 ret = mpage_prepare_extent_to_map(mpd);
2878 /* Unlock pages we didn't use */
2879 mpage_release_unused_pages(mpd, false);
2880 /* Submit prepared bio */
2881 ext4_io_submit(&mpd->io_submit);
2882 ext4_put_io_end_defer(mpd->io_submit.io_end);
2883 mpd->io_submit.io_end = NULL;
2884 if (ret < 0)
2885 goto unplug;
2886
2887 while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2888 /* For each extent of pages we use new io_end */
2889 mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2890 if (!mpd->io_submit.io_end) {
2891 ret = -ENOMEM;
2892 break;
2893 }
2894
2895 WARN_ON_ONCE(!mpd->can_map);
2896 /*
2897 * We have two constraints: We find one extent to map and we
2898 * must always write out whole page (makes a difference when
2899 * blocksize < pagesize) so that we don't block on IO when we
2900 * try to write out the rest of the page. Journalled mode is
2901 * not supported by delalloc.
2902 */
2903 BUG_ON(ext4_should_journal_data(inode));
2904 /*
2905 * Calculate the number of credits needed to reserve for one
2906 * extent of up to MAX_WRITEPAGES_EXTENT_LEN blocks. It will
2907 * attempt to extend the transaction or start a new iteration
2908 * if the reserved credits are insufficient.
2909 */
2910 needed_blocks = ext4_chunk_trans_blocks(inode,
2911 MAX_WRITEPAGES_EXTENT_LEN);
2912 /* start a new transaction */
2913 handle = ext4_journal_start_with_reserve(inode,
2914 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2915 if (IS_ERR(handle)) {
2916 ret = PTR_ERR(handle);
2917 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2918 "%ld pages, ino %lu; err %d", __func__,
2919 wbc->nr_to_write, inode->i_ino, ret);
2920 /* Release allocated io_end */
2921 ext4_put_io_end(mpd->io_submit.io_end);
2922 mpd->io_submit.io_end = NULL;
2923 break;
2924 }
2925 mpd->do_map = 1;
2926
2927 trace_ext4_da_write_folios_start(inode, mpd->start_pos,
2928 mpd->next_pos, wbc);
2929 ret = mpage_prepare_extent_to_map(mpd);
2930 if (!ret && mpd->map.m_len)
2931 ret = mpage_map_and_submit_extent(handle, mpd,
2932 &give_up_on_write);
2933 /*
2934 * Caution: If the handle is synchronous,
2935 * ext4_journal_stop() can wait for transaction commit
2936 * to finish which may depend on writeback of pages to
2937 * complete or on page lock to be released. In that
2938 * case, we have to wait until after we have
2939 * submitted all the IO, released page locks we hold,
2940 * and dropped io_end reference (for extent conversion
2941 * to be able to complete) before stopping the handle.
2942 */
2943 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2944 ext4_journal_stop(handle);
2945 handle = NULL;
2946 mpd->do_map = 0;
2947 }
2948 /* Unlock pages we didn't use */
2949 mpage_release_unused_pages(mpd, give_up_on_write);
2950 /* Submit prepared bio */
2951 ext4_io_submit(&mpd->io_submit);
2952
2953 /*
2954 * Drop our io_end reference we got from init. We have
2955 * to be careful and use deferred io_end finishing if
2956 * we are still holding the transaction as we can
2957 * release the last reference to io_end which may end
2958 * up doing unwritten extent conversion.
2959 */
2960 if (handle) {
2961 ext4_put_io_end_defer(mpd->io_submit.io_end);
2962 ext4_journal_stop(handle);
2963 } else
2964 ext4_put_io_end(mpd->io_submit.io_end);
2965 mpd->io_submit.io_end = NULL;
2966 trace_ext4_da_write_folios_end(inode, mpd->start_pos,
2967 mpd->next_pos, wbc, ret);
2968
2969 if (ret == -ENOSPC && sbi->s_journal) {
2970 /*
2971 * Commit the transaction which would
2972 * free blocks released in the transaction
2973 * and try again
2974 */
2975 jbd2_journal_force_commit_nested(sbi->s_journal);
2976 ret = 0;
2977 continue;
2978 }
2979 if (ret == -EAGAIN)
2980 ret = 0;
2981 /* Fatal error - ENOMEM, EIO... */
2982 if (ret)
2983 break;
2984 }
2985 unplug:
2986 blk_finish_plug(&plug);
2987 if (!ret && !cycled && wbc->nr_to_write > 0) {
2988 cycled = 1;
2989 mpd->end_pos = (writeback_index << PAGE_SHIFT) - 1;
2990 mpd->start_pos = 0;
2991 goto retry;
2992 }
2993
2994 /* Update index */
2995 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2996 /*
2997 * Set the writeback_index so that range_cyclic
2998 * mode will write it back later
2999 */
3000 mapping->writeback_index = mpd->start_pos >> PAGE_SHIFT;
3001
3002 out_writepages:
3003 trace_ext4_writepages_result(inode, wbc, ret,
3004 nr_to_write - wbc->nr_to_write);
3005 return ret;
3006 }
3007
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)3008 static int ext4_writepages(struct address_space *mapping,
3009 struct writeback_control *wbc)
3010 {
3011 struct super_block *sb = mapping->host->i_sb;
3012 struct mpage_da_data mpd = {
3013 .inode = mapping->host,
3014 .wbc = wbc,
3015 .can_map = 1,
3016 };
3017 int ret;
3018 int alloc_ctx;
3019
3020 ret = ext4_emergency_state(sb);
3021 if (unlikely(ret))
3022 return ret;
3023
3024 alloc_ctx = ext4_writepages_down_read(sb);
3025 ret = ext4_do_writepages(&mpd);
3026 /*
3027 * For data=journal writeback we could have come across pages marked
3028 * for delayed dirtying (PageChecked) which were just added to the
3029 * running transaction. Try once more to get them to stable storage.
3030 */
3031 if (!ret && mpd.journalled_more_data)
3032 ret = ext4_do_writepages(&mpd);
3033 ext4_writepages_up_read(sb, alloc_ctx);
3034
3035 return ret;
3036 }
3037
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)3038 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
3039 {
3040 struct writeback_control wbc = {
3041 .sync_mode = WB_SYNC_ALL,
3042 .nr_to_write = LONG_MAX,
3043 .range_start = jinode->i_dirty_start,
3044 .range_end = jinode->i_dirty_end,
3045 };
3046 struct mpage_da_data mpd = {
3047 .inode = jinode->i_vfs_inode,
3048 .wbc = &wbc,
3049 .can_map = 0,
3050 };
3051 return ext4_do_writepages(&mpd);
3052 }
3053
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)3054 static int ext4_dax_writepages(struct address_space *mapping,
3055 struct writeback_control *wbc)
3056 {
3057 int ret;
3058 long nr_to_write = wbc->nr_to_write;
3059 struct inode *inode = mapping->host;
3060 int alloc_ctx;
3061
3062 ret = ext4_emergency_state(inode->i_sb);
3063 if (unlikely(ret))
3064 return ret;
3065
3066 alloc_ctx = ext4_writepages_down_read(inode->i_sb);
3067 trace_ext4_writepages(inode, wbc);
3068
3069 ret = dax_writeback_mapping_range(mapping,
3070 EXT4_SB(inode->i_sb)->s_daxdev, wbc);
3071 trace_ext4_writepages_result(inode, wbc, ret,
3072 nr_to_write - wbc->nr_to_write);
3073 ext4_writepages_up_read(inode->i_sb, alloc_ctx);
3074 return ret;
3075 }
3076
ext4_nonda_switch(struct super_block * sb)3077 static int ext4_nonda_switch(struct super_block *sb)
3078 {
3079 s64 free_clusters, dirty_clusters;
3080 struct ext4_sb_info *sbi = EXT4_SB(sb);
3081
3082 /*
3083 * switch to non delalloc mode if we are running low
3084 * on free block. The free block accounting via percpu
3085 * counters can get slightly wrong with percpu_counter_batch getting
3086 * accumulated on each CPU without updating global counters
3087 * Delalloc need an accurate free block accounting. So switch
3088 * to non delalloc when we are near to error range.
3089 */
3090 free_clusters =
3091 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
3092 dirty_clusters =
3093 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
3094 /*
3095 * Start pushing delalloc when 1/2 of free blocks are dirty.
3096 */
3097 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
3098 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
3099
3100 if (2 * free_clusters < 3 * dirty_clusters ||
3101 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
3102 /*
3103 * free block count is less than 150% of dirty blocks
3104 * or free blocks is less than watermark
3105 */
3106 return 1;
3107 }
3108 return 0;
3109 }
3110
ext4_da_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3111 static int ext4_da_write_begin(const struct kiocb *iocb,
3112 struct address_space *mapping,
3113 loff_t pos, unsigned len,
3114 struct folio **foliop, void **fsdata)
3115 {
3116 int ret, retries = 0;
3117 struct folio *folio;
3118 pgoff_t index;
3119 struct inode *inode = mapping->host;
3120
3121 ret = ext4_emergency_state(inode->i_sb);
3122 if (unlikely(ret))
3123 return ret;
3124
3125 index = pos >> PAGE_SHIFT;
3126
3127 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
3128 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3129 return ext4_write_begin(iocb, mapping, pos,
3130 len, foliop, fsdata);
3131 }
3132 *fsdata = (void *)0;
3133 trace_ext4_da_write_begin(inode, pos, len);
3134
3135 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3136 ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
3137 foliop, fsdata, true);
3138 if (ret < 0)
3139 return ret;
3140 if (ret == 1)
3141 return 0;
3142 }
3143
3144 retry:
3145 folio = write_begin_get_folio(iocb, mapping, index, len);
3146 if (IS_ERR(folio))
3147 return PTR_ERR(folio);
3148
3149 if (pos + len > folio_pos(folio) + folio_size(folio))
3150 len = folio_pos(folio) + folio_size(folio) - pos;
3151
3152 ret = ext4_block_write_begin(NULL, folio, pos, len,
3153 ext4_da_get_block_prep);
3154 if (ret < 0) {
3155 folio_unlock(folio);
3156 folio_put(folio);
3157 /*
3158 * block_write_begin may have instantiated a few blocks
3159 * outside i_size. Trim these off again. Don't need
3160 * i_size_read because we hold inode lock.
3161 */
3162 if (pos + len > inode->i_size)
3163 ext4_truncate_failed_write(inode);
3164
3165 if (ret == -ENOSPC &&
3166 ext4_should_retry_alloc(inode->i_sb, &retries))
3167 goto retry;
3168 return ret;
3169 }
3170
3171 *foliop = folio;
3172 return ret;
3173 }
3174
3175 /*
3176 * Check if we should update i_disksize
3177 * when write to the end of file but not require block allocation
3178 */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)3179 static int ext4_da_should_update_i_disksize(struct folio *folio,
3180 unsigned long offset)
3181 {
3182 struct buffer_head *bh;
3183 struct inode *inode = folio->mapping->host;
3184 unsigned int idx;
3185 int i;
3186
3187 bh = folio_buffers(folio);
3188 idx = offset >> inode->i_blkbits;
3189
3190 for (i = 0; i < idx; i++)
3191 bh = bh->b_this_page;
3192
3193 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3194 return 0;
3195 return 1;
3196 }
3197
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)3198 static int ext4_da_do_write_end(struct address_space *mapping,
3199 loff_t pos, unsigned len, unsigned copied,
3200 struct folio *folio)
3201 {
3202 struct inode *inode = mapping->host;
3203 loff_t old_size = inode->i_size;
3204 bool disksize_changed = false;
3205 loff_t new_i_size, zero_len = 0;
3206 handle_t *handle;
3207
3208 if (unlikely(!folio_buffers(folio))) {
3209 folio_unlock(folio);
3210 folio_put(folio);
3211 return -EIO;
3212 }
3213 /*
3214 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3215 * flag, which all that's needed to trigger page writeback.
3216 */
3217 copied = block_write_end(pos, len, copied, folio);
3218 new_i_size = pos + copied;
3219
3220 /*
3221 * It's important to update i_size while still holding folio lock,
3222 * because folio writeout could otherwise come in and zero beyond
3223 * i_size.
3224 *
3225 * Since we are holding inode lock, we are sure i_disksize <=
3226 * i_size. We also know that if i_disksize < i_size, there are
3227 * delalloc writes pending in the range up to i_size. If the end of
3228 * the current write is <= i_size, there's no need to touch
3229 * i_disksize since writeback will push i_disksize up to i_size
3230 * eventually. If the end of the current write is > i_size and
3231 * inside an allocated block which ext4_da_should_update_i_disksize()
3232 * checked, we need to update i_disksize here as certain
3233 * ext4_writepages() paths not allocating blocks and update i_disksize.
3234 */
3235 if (new_i_size > inode->i_size) {
3236 unsigned long end;
3237
3238 i_size_write(inode, new_i_size);
3239 end = offset_in_folio(folio, new_i_size - 1);
3240 if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3241 ext4_update_i_disksize(inode, new_i_size);
3242 disksize_changed = true;
3243 }
3244 }
3245
3246 folio_unlock(folio);
3247 folio_put(folio);
3248
3249 if (pos > old_size) {
3250 pagecache_isize_extended(inode, old_size, pos);
3251 zero_len = pos - old_size;
3252 }
3253
3254 if (!disksize_changed && !zero_len)
3255 return copied;
3256
3257 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3258 if (IS_ERR(handle))
3259 return PTR_ERR(handle);
3260 if (zero_len)
3261 ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3262 ext4_mark_inode_dirty(handle, inode);
3263 ext4_journal_stop(handle);
3264
3265 return copied;
3266 }
3267
ext4_da_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3268 static int ext4_da_write_end(const struct kiocb *iocb,
3269 struct address_space *mapping,
3270 loff_t pos, unsigned len, unsigned copied,
3271 struct folio *folio, void *fsdata)
3272 {
3273 struct inode *inode = mapping->host;
3274 int write_mode = (int)(unsigned long)fsdata;
3275
3276 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3277 return ext4_write_end(iocb, mapping, pos,
3278 len, copied, folio, fsdata);
3279
3280 trace_ext4_da_write_end(inode, pos, len, copied);
3281
3282 if (write_mode != CONVERT_INLINE_DATA &&
3283 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3284 ext4_has_inline_data(inode))
3285 return ext4_write_inline_data_end(inode, pos, len, copied,
3286 folio);
3287
3288 if (unlikely(copied < len) && !folio_test_uptodate(folio))
3289 copied = 0;
3290
3291 return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3292 }
3293
3294 /*
3295 * Force all delayed allocation blocks to be allocated for a given inode.
3296 */
ext4_alloc_da_blocks(struct inode * inode)3297 int ext4_alloc_da_blocks(struct inode *inode)
3298 {
3299 trace_ext4_alloc_da_blocks(inode);
3300
3301 if (!EXT4_I(inode)->i_reserved_data_blocks)
3302 return 0;
3303
3304 /*
3305 * We do something simple for now. The filemap_flush() will
3306 * also start triggering a write of the data blocks, which is
3307 * not strictly speaking necessary (and for users of
3308 * laptop_mode, not even desirable). However, to do otherwise
3309 * would require replicating code paths in:
3310 *
3311 * ext4_writepages() ->
3312 * write_cache_pages() ---> (via passed in callback function)
3313 * __mpage_da_writepage() -->
3314 * mpage_add_bh_to_extent()
3315 * mpage_da_map_blocks()
3316 *
3317 * The problem is that write_cache_pages(), located in
3318 * mm/page-writeback.c, marks pages clean in preparation for
3319 * doing I/O, which is not desirable if we're not planning on
3320 * doing I/O at all.
3321 *
3322 * We could call write_cache_pages(), and then redirty all of
3323 * the pages by calling redirty_page_for_writepage() but that
3324 * would be ugly in the extreme. So instead we would need to
3325 * replicate parts of the code in the above functions,
3326 * simplifying them because we wouldn't actually intend to
3327 * write out the pages, but rather only collect contiguous
3328 * logical block extents, call the multi-block allocator, and
3329 * then update the buffer heads with the block allocations.
3330 *
3331 * For now, though, we'll cheat by calling filemap_flush(),
3332 * which will map the blocks, and start the I/O, but not
3333 * actually wait for the I/O to complete.
3334 */
3335 return filemap_flush(inode->i_mapping);
3336 }
3337
3338 /*
3339 * bmap() is special. It gets used by applications such as lilo and by
3340 * the swapper to find the on-disk block of a specific piece of data.
3341 *
3342 * Naturally, this is dangerous if the block concerned is still in the
3343 * journal. If somebody makes a swapfile on an ext4 data-journaling
3344 * filesystem and enables swap, then they may get a nasty shock when the
3345 * data getting swapped to that swapfile suddenly gets overwritten by
3346 * the original zero's written out previously to the journal and
3347 * awaiting writeback in the kernel's buffer cache.
3348 *
3349 * So, if we see any bmap calls here on a modified, data-journaled file,
3350 * take extra steps to flush any blocks which might be in the cache.
3351 */
ext4_bmap(struct address_space * mapping,sector_t block)3352 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3353 {
3354 struct inode *inode = mapping->host;
3355 sector_t ret = 0;
3356
3357 inode_lock_shared(inode);
3358 /*
3359 * We can get here for an inline file via the FIBMAP ioctl
3360 */
3361 if (ext4_has_inline_data(inode))
3362 goto out;
3363
3364 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3365 (test_opt(inode->i_sb, DELALLOC) ||
3366 ext4_should_journal_data(inode))) {
3367 /*
3368 * With delalloc or journalled data we want to sync the file so
3369 * that we can make sure we allocate blocks for file and data
3370 * is in place for the user to see it
3371 */
3372 filemap_write_and_wait(mapping);
3373 }
3374
3375 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3376
3377 out:
3378 inode_unlock_shared(inode);
3379 return ret;
3380 }
3381
ext4_read_folio(struct file * file,struct folio * folio)3382 static int ext4_read_folio(struct file *file, struct folio *folio)
3383 {
3384 int ret = -EAGAIN;
3385 struct inode *inode = folio->mapping->host;
3386
3387 trace_ext4_read_folio(inode, folio);
3388
3389 if (ext4_has_inline_data(inode))
3390 ret = ext4_readpage_inline(inode, folio);
3391
3392 if (ret == -EAGAIN)
3393 return ext4_mpage_readpages(inode, NULL, folio);
3394
3395 return ret;
3396 }
3397
ext4_readahead(struct readahead_control * rac)3398 static void ext4_readahead(struct readahead_control *rac)
3399 {
3400 struct inode *inode = rac->mapping->host;
3401
3402 /* If the file has inline data, no need to do readahead. */
3403 if (ext4_has_inline_data(inode))
3404 return;
3405
3406 ext4_mpage_readpages(inode, rac, NULL);
3407 }
3408
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3409 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3410 size_t length)
3411 {
3412 trace_ext4_invalidate_folio(folio, offset, length);
3413
3414 /* No journalling happens on data buffers when this function is used */
3415 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3416
3417 block_invalidate_folio(folio, offset, length);
3418 }
3419
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3420 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3421 size_t offset, size_t length)
3422 {
3423 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3424
3425 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3426
3427 /*
3428 * If it's a full truncate we just forget about the pending dirtying
3429 */
3430 if (offset == 0 && length == folio_size(folio))
3431 folio_clear_checked(folio);
3432
3433 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3434 }
3435
3436 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3437 static void ext4_journalled_invalidate_folio(struct folio *folio,
3438 size_t offset,
3439 size_t length)
3440 {
3441 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3442 }
3443
ext4_release_folio(struct folio * folio,gfp_t wait)3444 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3445 {
3446 struct inode *inode = folio->mapping->host;
3447 journal_t *journal = EXT4_JOURNAL(inode);
3448
3449 trace_ext4_release_folio(inode, folio);
3450
3451 /* Page has dirty journalled data -> cannot release */
3452 if (folio_test_checked(folio))
3453 return false;
3454 if (journal)
3455 return jbd2_journal_try_to_free_buffers(journal, folio);
3456 else
3457 return try_to_free_buffers(folio);
3458 }
3459
ext4_inode_datasync_dirty(struct inode * inode)3460 static bool ext4_inode_datasync_dirty(struct inode *inode)
3461 {
3462 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3463
3464 if (journal) {
3465 if (jbd2_transaction_committed(journal,
3466 EXT4_I(inode)->i_datasync_tid))
3467 return false;
3468 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3469 return !list_empty(&EXT4_I(inode)->i_fc_list);
3470 return true;
3471 }
3472
3473 /* Any metadata buffers to write? */
3474 if (!list_empty(&inode->i_mapping->i_private_list))
3475 return true;
3476 return inode->i_state & I_DIRTY_DATASYNC;
3477 }
3478
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3479 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3480 struct ext4_map_blocks *map, loff_t offset,
3481 loff_t length, unsigned int flags)
3482 {
3483 u8 blkbits = inode->i_blkbits;
3484
3485 /*
3486 * Writes that span EOF might trigger an I/O size update on completion,
3487 * so consider them to be dirty for the purpose of O_DSYNC, even if
3488 * there is no other metadata changes being made or are pending.
3489 */
3490 iomap->flags = 0;
3491 if (ext4_inode_datasync_dirty(inode) ||
3492 offset + length > i_size_read(inode))
3493 iomap->flags |= IOMAP_F_DIRTY;
3494
3495 if (map->m_flags & EXT4_MAP_NEW)
3496 iomap->flags |= IOMAP_F_NEW;
3497
3498 /* HW-offload atomics are always used */
3499 if (flags & IOMAP_ATOMIC)
3500 iomap->flags |= IOMAP_F_ATOMIC_BIO;
3501
3502 if (flags & IOMAP_DAX)
3503 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3504 else
3505 iomap->bdev = inode->i_sb->s_bdev;
3506 iomap->offset = (u64) map->m_lblk << blkbits;
3507 iomap->length = (u64) map->m_len << blkbits;
3508
3509 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3510 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3511 iomap->flags |= IOMAP_F_MERGED;
3512
3513 /*
3514 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3515 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3516 * set. In order for any allocated unwritten extents to be converted
3517 * into written extents correctly within the ->end_io() handler, we
3518 * need to ensure that the iomap->type is set appropriately. Hence, the
3519 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3520 * been set first.
3521 */
3522 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3523 iomap->type = IOMAP_UNWRITTEN;
3524 iomap->addr = (u64) map->m_pblk << blkbits;
3525 if (flags & IOMAP_DAX)
3526 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3527 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3528 iomap->type = IOMAP_MAPPED;
3529 iomap->addr = (u64) map->m_pblk << blkbits;
3530 if (flags & IOMAP_DAX)
3531 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3532 } else if (map->m_flags & EXT4_MAP_DELAYED) {
3533 iomap->type = IOMAP_DELALLOC;
3534 iomap->addr = IOMAP_NULL_ADDR;
3535 } else {
3536 iomap->type = IOMAP_HOLE;
3537 iomap->addr = IOMAP_NULL_ADDR;
3538 }
3539 }
3540
ext4_map_blocks_atomic_write_slow(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)3541 static int ext4_map_blocks_atomic_write_slow(handle_t *handle,
3542 struct inode *inode, struct ext4_map_blocks *map)
3543 {
3544 ext4_lblk_t m_lblk = map->m_lblk;
3545 unsigned int m_len = map->m_len;
3546 unsigned int mapped_len = 0, m_flags = 0;
3547 ext4_fsblk_t next_pblk;
3548 bool check_next_pblk = false;
3549 int ret = 0;
3550
3551 WARN_ON_ONCE(!ext4_has_feature_bigalloc(inode->i_sb));
3552
3553 /*
3554 * This is a slow path in case of mixed mapping. We use
3555 * EXT4_GET_BLOCKS_CREATE_ZERO flag here to make sure we get a single
3556 * contiguous mapped mapping. This will ensure any unwritten or hole
3557 * regions within the requested range is zeroed out and we return
3558 * a single contiguous mapped extent.
3559 */
3560 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3561
3562 do {
3563 ret = ext4_map_blocks(handle, inode, map, m_flags);
3564 if (ret < 0 && ret != -ENOSPC)
3565 goto out_err;
3566 /*
3567 * This should never happen, but let's return an error code to
3568 * avoid an infinite loop in here.
3569 */
3570 if (ret == 0) {
3571 ret = -EFSCORRUPTED;
3572 ext4_warning_inode(inode,
3573 "ext4_map_blocks() couldn't allocate blocks m_flags: 0x%x, ret:%d",
3574 m_flags, ret);
3575 goto out_err;
3576 }
3577 /*
3578 * With bigalloc we should never get ENOSPC nor discontiguous
3579 * physical extents.
3580 */
3581 if ((check_next_pblk && next_pblk != map->m_pblk) ||
3582 ret == -ENOSPC) {
3583 ext4_warning_inode(inode,
3584 "Non-contiguous allocation detected: expected %llu, got %llu, "
3585 "or ext4_map_blocks() returned out of space ret: %d",
3586 next_pblk, map->m_pblk, ret);
3587 ret = -EFSCORRUPTED;
3588 goto out_err;
3589 }
3590 next_pblk = map->m_pblk + map->m_len;
3591 check_next_pblk = true;
3592
3593 mapped_len += map->m_len;
3594 map->m_lblk += map->m_len;
3595 map->m_len = m_len - mapped_len;
3596 } while (mapped_len < m_len);
3597
3598 /*
3599 * We might have done some work in above loop, so we need to query the
3600 * start of the physical extent, based on the origin m_lblk and m_len.
3601 * Let's also ensure we were able to allocate the required range for
3602 * mixed mapping case.
3603 */
3604 map->m_lblk = m_lblk;
3605 map->m_len = m_len;
3606 map->m_flags = 0;
3607
3608 ret = ext4_map_blocks(handle, inode, map,
3609 EXT4_GET_BLOCKS_QUERY_LAST_IN_LEAF);
3610 if (ret != m_len) {
3611 ext4_warning_inode(inode,
3612 "allocation failed for atomic write request m_lblk:%u, m_len:%u, ret:%d\n",
3613 m_lblk, m_len, ret);
3614 ret = -EINVAL;
3615 }
3616 return ret;
3617
3618 out_err:
3619 /* reset map before returning an error */
3620 map->m_lblk = m_lblk;
3621 map->m_len = m_len;
3622 map->m_flags = 0;
3623 return ret;
3624 }
3625
3626 /*
3627 * ext4_map_blocks_atomic: Helper routine to ensure the entire requested
3628 * range in @map [lblk, lblk + len) is one single contiguous extent with no
3629 * mixed mappings.
3630 *
3631 * We first use m_flags passed to us by our caller (ext4_iomap_alloc()).
3632 * We only call EXT4_GET_BLOCKS_ZERO in the slow path, when the underlying
3633 * physical extent for the requested range does not have a single contiguous
3634 * mapping type i.e. (Hole, Mapped, or Unwritten) throughout.
3635 * In that case we will loop over the requested range to allocate and zero out
3636 * the unwritten / holes in between, to get a single mapped extent from
3637 * [m_lblk, m_lblk + m_len). Note that this is only possible because we know
3638 * this can be called only with bigalloc enabled filesystem where the underlying
3639 * cluster is already allocated. This avoids allocating discontiguous extents
3640 * in the slow path due to multiple calls to ext4_map_blocks().
3641 * The slow path is mostly non-performance critical path, so it should be ok to
3642 * loop using ext4_map_blocks() with appropriate flags to allocate & zero the
3643 * underlying short holes/unwritten extents within the requested range.
3644 */
ext4_map_blocks_atomic_write(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int m_flags,bool * force_commit)3645 static int ext4_map_blocks_atomic_write(handle_t *handle, struct inode *inode,
3646 struct ext4_map_blocks *map, int m_flags,
3647 bool *force_commit)
3648 {
3649 ext4_lblk_t m_lblk = map->m_lblk;
3650 unsigned int m_len = map->m_len;
3651 int ret = 0;
3652
3653 WARN_ON_ONCE(m_len > 1 && !ext4_has_feature_bigalloc(inode->i_sb));
3654
3655 ret = ext4_map_blocks(handle, inode, map, m_flags);
3656 if (ret < 0 || ret == m_len)
3657 goto out;
3658 /*
3659 * This is a mixed mapping case where we were not able to allocate
3660 * a single contiguous extent. In that case let's reset requested
3661 * mapping and call the slow path.
3662 */
3663 map->m_lblk = m_lblk;
3664 map->m_len = m_len;
3665 map->m_flags = 0;
3666
3667 /*
3668 * slow path means we have mixed mapping, that means we will need
3669 * to force txn commit.
3670 */
3671 *force_commit = true;
3672 return ext4_map_blocks_atomic_write_slow(handle, inode, map);
3673 out:
3674 return ret;
3675 }
3676
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3677 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3678 unsigned int flags)
3679 {
3680 handle_t *handle;
3681 u8 blkbits = inode->i_blkbits;
3682 int ret, dio_credits, m_flags = 0, retries = 0;
3683 bool force_commit = false;
3684
3685 /*
3686 * Trim the mapping request to the maximum value that we can map at
3687 * once for direct I/O.
3688 */
3689 if (map->m_len > DIO_MAX_BLOCKS)
3690 map->m_len = DIO_MAX_BLOCKS;
3691
3692 /*
3693 * journal credits estimation for atomic writes. We call
3694 * ext4_map_blocks(), to find if there could be a mixed mapping. If yes,
3695 * then let's assume the no. of pextents required can be m_len i.e.
3696 * every alternate block can be unwritten and hole.
3697 */
3698 if (flags & IOMAP_ATOMIC) {
3699 unsigned int orig_mlen = map->m_len;
3700
3701 ret = ext4_map_blocks(NULL, inode, map, 0);
3702 if (ret < 0)
3703 return ret;
3704 if (map->m_len < orig_mlen) {
3705 map->m_len = orig_mlen;
3706 dio_credits = ext4_meta_trans_blocks(inode, orig_mlen,
3707 map->m_len);
3708 } else {
3709 dio_credits = ext4_chunk_trans_blocks(inode,
3710 map->m_len);
3711 }
3712 } else {
3713 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3714 }
3715
3716 retry:
3717 /*
3718 * Either we allocate blocks and then don't get an unwritten extent, so
3719 * in that case we have reserved enough credits. Or, the blocks are
3720 * already allocated and unwritten. In that case, the extent conversion
3721 * fits into the credits as well.
3722 */
3723 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3724 if (IS_ERR(handle))
3725 return PTR_ERR(handle);
3726
3727 /*
3728 * DAX and direct I/O are the only two operations that are currently
3729 * supported with IOMAP_WRITE.
3730 */
3731 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3732 if (flags & IOMAP_DAX)
3733 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3734 /*
3735 * We use i_size instead of i_disksize here because delalloc writeback
3736 * can complete at any point during the I/O and subsequently push the
3737 * i_disksize out to i_size. This could be beyond where direct I/O is
3738 * happening and thus expose allocated blocks to direct I/O reads.
3739 */
3740 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3741 m_flags = EXT4_GET_BLOCKS_CREATE;
3742 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3743 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3744
3745 if (flags & IOMAP_ATOMIC)
3746 ret = ext4_map_blocks_atomic_write(handle, inode, map, m_flags,
3747 &force_commit);
3748 else
3749 ret = ext4_map_blocks(handle, inode, map, m_flags);
3750
3751 /*
3752 * We cannot fill holes in indirect tree based inodes as that could
3753 * expose stale data in the case of a crash. Use the magic error code
3754 * to fallback to buffered I/O.
3755 */
3756 if (!m_flags && !ret)
3757 ret = -ENOTBLK;
3758
3759 ext4_journal_stop(handle);
3760 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3761 goto retry;
3762
3763 /*
3764 * Force commit the current transaction if the allocation spans a mixed
3765 * mapping range. This ensures any pending metadata updates (like
3766 * unwritten to written extents conversion) in this range are in
3767 * consistent state with the file data blocks, before performing the
3768 * actual write I/O. If the commit fails, the whole I/O must be aborted
3769 * to prevent any possible torn writes.
3770 */
3771 if (ret > 0 && force_commit) {
3772 int ret2;
3773
3774 ret2 = ext4_force_commit(inode->i_sb);
3775 if (ret2)
3776 return ret2;
3777 }
3778
3779 return ret;
3780 }
3781
3782
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3783 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3784 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3785 {
3786 int ret;
3787 struct ext4_map_blocks map;
3788 u8 blkbits = inode->i_blkbits;
3789 unsigned int orig_mlen;
3790
3791 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3792 return -EINVAL;
3793
3794 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3795 return -ERANGE;
3796
3797 /*
3798 * Calculate the first and last logical blocks respectively.
3799 */
3800 map.m_lblk = offset >> blkbits;
3801 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3802 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3803 orig_mlen = map.m_len;
3804
3805 if (flags & IOMAP_WRITE) {
3806 /*
3807 * We check here if the blocks are already allocated, then we
3808 * don't need to start a journal txn and we can directly return
3809 * the mapping information. This could boost performance
3810 * especially in multi-threaded overwrite requests.
3811 */
3812 if (offset + length <= i_size_read(inode)) {
3813 ret = ext4_map_blocks(NULL, inode, &map, 0);
3814 /*
3815 * For atomic writes the entire requested length should
3816 * be mapped.
3817 */
3818 if (map.m_flags & EXT4_MAP_MAPPED) {
3819 if ((!(flags & IOMAP_ATOMIC) && ret > 0) ||
3820 (flags & IOMAP_ATOMIC && ret >= orig_mlen))
3821 goto out;
3822 }
3823 map.m_len = orig_mlen;
3824 }
3825 ret = ext4_iomap_alloc(inode, &map, flags);
3826 } else {
3827 /*
3828 * This can be called for overwrites path from
3829 * ext4_iomap_overwrite_begin().
3830 */
3831 ret = ext4_map_blocks(NULL, inode, &map, 0);
3832 }
3833
3834 if (ret < 0)
3835 return ret;
3836 out:
3837 /*
3838 * When inline encryption is enabled, sometimes I/O to an encrypted file
3839 * has to be broken up to guarantee DUN contiguity. Handle this by
3840 * limiting the length of the mapping returned.
3841 */
3842 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3843
3844 /*
3845 * Before returning to iomap, let's ensure the allocated mapping
3846 * covers the entire requested length for atomic writes.
3847 */
3848 if (flags & IOMAP_ATOMIC) {
3849 if (map.m_len < (length >> blkbits)) {
3850 WARN_ON_ONCE(1);
3851 return -EINVAL;
3852 }
3853 }
3854 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3855
3856 return 0;
3857 }
3858
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3859 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3860 loff_t length, unsigned flags, struct iomap *iomap,
3861 struct iomap *srcmap)
3862 {
3863 int ret;
3864
3865 /*
3866 * Even for writes we don't need to allocate blocks, so just pretend
3867 * we are reading to save overhead of starting a transaction.
3868 */
3869 flags &= ~IOMAP_WRITE;
3870 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3871 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3872 return ret;
3873 }
3874
ext4_want_directio_fallback(unsigned flags,ssize_t written)3875 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3876 {
3877 /* must be a directio to fall back to buffered */
3878 if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3879 (IOMAP_WRITE | IOMAP_DIRECT))
3880 return false;
3881
3882 /* atomic writes are all-or-nothing */
3883 if (flags & IOMAP_ATOMIC)
3884 return false;
3885
3886 /* can only try again if we wrote nothing */
3887 return written == 0;
3888 }
3889
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3890 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3891 ssize_t written, unsigned flags, struct iomap *iomap)
3892 {
3893 /*
3894 * Check to see whether an error occurred while writing out the data to
3895 * the allocated blocks. If so, return the magic error code for
3896 * non-atomic write so that we fallback to buffered I/O and attempt to
3897 * complete the remainder of the I/O.
3898 * For non-atomic writes, any blocks that may have been
3899 * allocated in preparation for the direct I/O will be reused during
3900 * buffered I/O. For atomic write, we never fallback to buffered-io.
3901 */
3902 if (ext4_want_directio_fallback(flags, written))
3903 return -ENOTBLK;
3904
3905 return 0;
3906 }
3907
3908 const struct iomap_ops ext4_iomap_ops = {
3909 .iomap_begin = ext4_iomap_begin,
3910 .iomap_end = ext4_iomap_end,
3911 };
3912
3913 const struct iomap_ops ext4_iomap_overwrite_ops = {
3914 .iomap_begin = ext4_iomap_overwrite_begin,
3915 .iomap_end = ext4_iomap_end,
3916 };
3917
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3918 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3919 loff_t length, unsigned int flags,
3920 struct iomap *iomap, struct iomap *srcmap)
3921 {
3922 int ret;
3923 struct ext4_map_blocks map;
3924 u8 blkbits = inode->i_blkbits;
3925
3926 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3927 return -EINVAL;
3928
3929 if (ext4_has_inline_data(inode)) {
3930 ret = ext4_inline_data_iomap(inode, iomap);
3931 if (ret != -EAGAIN) {
3932 if (ret == 0 && offset >= iomap->length)
3933 ret = -ENOENT;
3934 return ret;
3935 }
3936 }
3937
3938 /*
3939 * Calculate the first and last logical block respectively.
3940 */
3941 map.m_lblk = offset >> blkbits;
3942 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3943 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3944
3945 /*
3946 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3947 * So handle it here itself instead of querying ext4_map_blocks().
3948 * Since ext4_map_blocks() will warn about it and will return
3949 * -EIO error.
3950 */
3951 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3952 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953
3954 if (offset >= sbi->s_bitmap_maxbytes) {
3955 map.m_flags = 0;
3956 goto set_iomap;
3957 }
3958 }
3959
3960 ret = ext4_map_blocks(NULL, inode, &map, 0);
3961 if (ret < 0)
3962 return ret;
3963 set_iomap:
3964 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3965
3966 return 0;
3967 }
3968
3969 const struct iomap_ops ext4_iomap_report_ops = {
3970 .iomap_begin = ext4_iomap_begin_report,
3971 };
3972
3973 /*
3974 * For data=journal mode, folio should be marked dirty only when it was
3975 * writeably mapped. When that happens, it was already attached to the
3976 * transaction and marked as jbddirty (we take care of this in
3977 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3978 * so we should have nothing to do here, except for the case when someone
3979 * had the page pinned and dirtied the page through this pin (e.g. by doing
3980 * direct IO to it). In that case we'd need to attach buffers here to the
3981 * transaction but we cannot due to lock ordering. We cannot just dirty the
3982 * folio and leave attached buffers clean, because the buffers' dirty state is
3983 * "definitive". We cannot just set the buffers dirty or jbddirty because all
3984 * the journalling code will explode. So what we do is to mark the folio
3985 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3986 * to the transaction appropriately.
3987 */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3988 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3989 struct folio *folio)
3990 {
3991 WARN_ON_ONCE(!folio_buffers(folio));
3992 if (folio_maybe_dma_pinned(folio))
3993 folio_set_checked(folio);
3994 return filemap_dirty_folio(mapping, folio);
3995 }
3996
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3997 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3998 {
3999 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
4000 WARN_ON_ONCE(!folio_buffers(folio));
4001 return block_dirty_folio(mapping, folio);
4002 }
4003
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)4004 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
4005 struct file *file, sector_t *span)
4006 {
4007 return iomap_swapfile_activate(sis, file, span,
4008 &ext4_iomap_report_ops);
4009 }
4010
4011 static const struct address_space_operations ext4_aops = {
4012 .read_folio = ext4_read_folio,
4013 .readahead = ext4_readahead,
4014 .writepages = ext4_writepages,
4015 .write_begin = ext4_write_begin,
4016 .write_end = ext4_write_end,
4017 .dirty_folio = ext4_dirty_folio,
4018 .bmap = ext4_bmap,
4019 .invalidate_folio = ext4_invalidate_folio,
4020 .release_folio = ext4_release_folio,
4021 .migrate_folio = buffer_migrate_folio,
4022 .is_partially_uptodate = block_is_partially_uptodate,
4023 .error_remove_folio = generic_error_remove_folio,
4024 .swap_activate = ext4_iomap_swap_activate,
4025 };
4026
4027 static const struct address_space_operations ext4_journalled_aops = {
4028 .read_folio = ext4_read_folio,
4029 .readahead = ext4_readahead,
4030 .writepages = ext4_writepages,
4031 .write_begin = ext4_write_begin,
4032 .write_end = ext4_journalled_write_end,
4033 .dirty_folio = ext4_journalled_dirty_folio,
4034 .bmap = ext4_bmap,
4035 .invalidate_folio = ext4_journalled_invalidate_folio,
4036 .release_folio = ext4_release_folio,
4037 .migrate_folio = buffer_migrate_folio_norefs,
4038 .is_partially_uptodate = block_is_partially_uptodate,
4039 .error_remove_folio = generic_error_remove_folio,
4040 .swap_activate = ext4_iomap_swap_activate,
4041 };
4042
4043 static const struct address_space_operations ext4_da_aops = {
4044 .read_folio = ext4_read_folio,
4045 .readahead = ext4_readahead,
4046 .writepages = ext4_writepages,
4047 .write_begin = ext4_da_write_begin,
4048 .write_end = ext4_da_write_end,
4049 .dirty_folio = ext4_dirty_folio,
4050 .bmap = ext4_bmap,
4051 .invalidate_folio = ext4_invalidate_folio,
4052 .release_folio = ext4_release_folio,
4053 .migrate_folio = buffer_migrate_folio,
4054 .is_partially_uptodate = block_is_partially_uptodate,
4055 .error_remove_folio = generic_error_remove_folio,
4056 .swap_activate = ext4_iomap_swap_activate,
4057 };
4058
4059 static const struct address_space_operations ext4_dax_aops = {
4060 .writepages = ext4_dax_writepages,
4061 .dirty_folio = noop_dirty_folio,
4062 .bmap = ext4_bmap,
4063 .swap_activate = ext4_iomap_swap_activate,
4064 };
4065
ext4_set_aops(struct inode * inode)4066 void ext4_set_aops(struct inode *inode)
4067 {
4068 switch (ext4_inode_journal_mode(inode)) {
4069 case EXT4_INODE_ORDERED_DATA_MODE:
4070 case EXT4_INODE_WRITEBACK_DATA_MODE:
4071 break;
4072 case EXT4_INODE_JOURNAL_DATA_MODE:
4073 inode->i_mapping->a_ops = &ext4_journalled_aops;
4074 return;
4075 default:
4076 BUG();
4077 }
4078 if (IS_DAX(inode))
4079 inode->i_mapping->a_ops = &ext4_dax_aops;
4080 else if (test_opt(inode->i_sb, DELALLOC))
4081 inode->i_mapping->a_ops = &ext4_da_aops;
4082 else
4083 inode->i_mapping->a_ops = &ext4_aops;
4084 }
4085
4086 /*
4087 * Here we can't skip an unwritten buffer even though it usually reads zero
4088 * because it might have data in pagecache (eg, if called from ext4_zero_range,
4089 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
4090 * racing writeback can come later and flush the stale pagecache to disk.
4091 */
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4092 static int __ext4_block_zero_page_range(handle_t *handle,
4093 struct address_space *mapping, loff_t from, loff_t length)
4094 {
4095 unsigned int offset, blocksize, pos;
4096 ext4_lblk_t iblock;
4097 struct inode *inode = mapping->host;
4098 struct buffer_head *bh;
4099 struct folio *folio;
4100 int err = 0;
4101
4102 folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
4103 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
4104 mapping_gfp_constraint(mapping, ~__GFP_FS));
4105 if (IS_ERR(folio))
4106 return PTR_ERR(folio);
4107
4108 blocksize = inode->i_sb->s_blocksize;
4109
4110 iblock = folio->index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4111
4112 bh = folio_buffers(folio);
4113 if (!bh)
4114 bh = create_empty_buffers(folio, blocksize, 0);
4115
4116 /* Find the buffer that contains "offset" */
4117 offset = offset_in_folio(folio, from);
4118 pos = blocksize;
4119 while (offset >= pos) {
4120 bh = bh->b_this_page;
4121 iblock++;
4122 pos += blocksize;
4123 }
4124 if (buffer_freed(bh)) {
4125 BUFFER_TRACE(bh, "freed: skip");
4126 goto unlock;
4127 }
4128 if (!buffer_mapped(bh)) {
4129 BUFFER_TRACE(bh, "unmapped");
4130 ext4_get_block(inode, iblock, bh, 0);
4131 /* unmapped? It's a hole - nothing to do */
4132 if (!buffer_mapped(bh)) {
4133 BUFFER_TRACE(bh, "still unmapped");
4134 goto unlock;
4135 }
4136 }
4137
4138 /* Ok, it's mapped. Make sure it's up-to-date */
4139 if (folio_test_uptodate(folio))
4140 set_buffer_uptodate(bh);
4141
4142 if (!buffer_uptodate(bh)) {
4143 err = ext4_read_bh_lock(bh, 0, true);
4144 if (err)
4145 goto unlock;
4146 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
4147 /* We expect the key to be set. */
4148 BUG_ON(!fscrypt_has_encryption_key(inode));
4149 err = fscrypt_decrypt_pagecache_blocks(folio,
4150 blocksize,
4151 bh_offset(bh));
4152 if (err) {
4153 clear_buffer_uptodate(bh);
4154 goto unlock;
4155 }
4156 }
4157 }
4158 if (ext4_should_journal_data(inode)) {
4159 BUFFER_TRACE(bh, "get write access");
4160 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
4161 EXT4_JTR_NONE);
4162 if (err)
4163 goto unlock;
4164 }
4165 folio_zero_range(folio, offset, length);
4166 BUFFER_TRACE(bh, "zeroed end of block");
4167
4168 if (ext4_should_journal_data(inode)) {
4169 err = ext4_dirty_journalled_data(handle, bh);
4170 } else {
4171 err = 0;
4172 mark_buffer_dirty(bh);
4173 if (ext4_should_order_data(inode))
4174 err = ext4_jbd2_inode_add_write(handle, inode, from,
4175 length);
4176 }
4177
4178 unlock:
4179 folio_unlock(folio);
4180 folio_put(folio);
4181 return err;
4182 }
4183
4184 /*
4185 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4186 * starting from file offset 'from'. The range to be zero'd must
4187 * be contained with in one block. If the specified range exceeds
4188 * the end of the block it will be shortened to end of the block
4189 * that corresponds to 'from'
4190 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)4191 static int ext4_block_zero_page_range(handle_t *handle,
4192 struct address_space *mapping, loff_t from, loff_t length)
4193 {
4194 struct inode *inode = mapping->host;
4195 unsigned offset = from & (PAGE_SIZE-1);
4196 unsigned blocksize = inode->i_sb->s_blocksize;
4197 unsigned max = blocksize - (offset & (blocksize - 1));
4198
4199 /*
4200 * correct length if it does not fall between
4201 * 'from' and the end of the block
4202 */
4203 if (length > max || length < 0)
4204 length = max;
4205
4206 if (IS_DAX(inode)) {
4207 return dax_zero_range(inode, from, length, NULL,
4208 &ext4_iomap_ops);
4209 }
4210 return __ext4_block_zero_page_range(handle, mapping, from, length);
4211 }
4212
4213 /*
4214 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4215 * up to the end of the block which corresponds to `from'.
4216 * This required during truncate. We need to physically zero the tail end
4217 * of that block so it doesn't yield old data if the file is later grown.
4218 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)4219 static int ext4_block_truncate_page(handle_t *handle,
4220 struct address_space *mapping, loff_t from)
4221 {
4222 unsigned offset = from & (PAGE_SIZE-1);
4223 unsigned length;
4224 unsigned blocksize;
4225 struct inode *inode = mapping->host;
4226
4227 /* If we are processing an encrypted inode during orphan list handling */
4228 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4229 return 0;
4230
4231 blocksize = inode->i_sb->s_blocksize;
4232 length = blocksize - (offset & (blocksize - 1));
4233
4234 return ext4_block_zero_page_range(handle, mapping, from, length);
4235 }
4236
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)4237 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4238 loff_t lstart, loff_t length)
4239 {
4240 struct super_block *sb = inode->i_sb;
4241 struct address_space *mapping = inode->i_mapping;
4242 unsigned partial_start, partial_end;
4243 ext4_fsblk_t start, end;
4244 loff_t byte_end = (lstart + length - 1);
4245 int err = 0;
4246
4247 partial_start = lstart & (sb->s_blocksize - 1);
4248 partial_end = byte_end & (sb->s_blocksize - 1);
4249
4250 start = lstart >> sb->s_blocksize_bits;
4251 end = byte_end >> sb->s_blocksize_bits;
4252
4253 /* Handle partial zero within the single block */
4254 if (start == end &&
4255 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4256 err = ext4_block_zero_page_range(handle, mapping,
4257 lstart, length);
4258 return err;
4259 }
4260 /* Handle partial zero out on the start of the range */
4261 if (partial_start) {
4262 err = ext4_block_zero_page_range(handle, mapping,
4263 lstart, sb->s_blocksize);
4264 if (err)
4265 return err;
4266 }
4267 /* Handle partial zero out on the end of the range */
4268 if (partial_end != sb->s_blocksize - 1)
4269 err = ext4_block_zero_page_range(handle, mapping,
4270 byte_end - partial_end,
4271 partial_end + 1);
4272 return err;
4273 }
4274
ext4_can_truncate(struct inode * inode)4275 int ext4_can_truncate(struct inode *inode)
4276 {
4277 if (S_ISREG(inode->i_mode))
4278 return 1;
4279 if (S_ISDIR(inode->i_mode))
4280 return 1;
4281 if (S_ISLNK(inode->i_mode))
4282 return !ext4_inode_is_fast_symlink(inode);
4283 return 0;
4284 }
4285
4286 /*
4287 * We have to make sure i_disksize gets properly updated before we truncate
4288 * page cache due to hole punching or zero range. Otherwise i_disksize update
4289 * can get lost as it may have been postponed to submission of writeback but
4290 * that will never happen after we truncate page cache.
4291 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)4292 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4293 loff_t len)
4294 {
4295 handle_t *handle;
4296 int ret;
4297
4298 loff_t size = i_size_read(inode);
4299
4300 WARN_ON(!inode_is_locked(inode));
4301 if (offset > size || offset + len < size)
4302 return 0;
4303
4304 if (EXT4_I(inode)->i_disksize >= size)
4305 return 0;
4306
4307 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4308 if (IS_ERR(handle))
4309 return PTR_ERR(handle);
4310 ext4_update_i_disksize(inode, size);
4311 ret = ext4_mark_inode_dirty(handle, inode);
4312 ext4_journal_stop(handle);
4313
4314 return ret;
4315 }
4316
ext4_truncate_folio(struct inode * inode,loff_t start,loff_t end)4317 static inline void ext4_truncate_folio(struct inode *inode,
4318 loff_t start, loff_t end)
4319 {
4320 unsigned long blocksize = i_blocksize(inode);
4321 struct folio *folio;
4322
4323 /* Nothing to be done if no complete block needs to be truncated. */
4324 if (round_up(start, blocksize) >= round_down(end, blocksize))
4325 return;
4326
4327 folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
4328 if (IS_ERR(folio))
4329 return;
4330
4331 if (folio_mkclean(folio))
4332 folio_mark_dirty(folio);
4333 folio_unlock(folio);
4334 folio_put(folio);
4335 }
4336
ext4_truncate_page_cache_block_range(struct inode * inode,loff_t start,loff_t end)4337 int ext4_truncate_page_cache_block_range(struct inode *inode,
4338 loff_t start, loff_t end)
4339 {
4340 unsigned long blocksize = i_blocksize(inode);
4341 int ret;
4342
4343 /*
4344 * For journalled data we need to write (and checkpoint) pages
4345 * before discarding page cache to avoid inconsitent data on disk
4346 * in case of crash before freeing or unwritten converting trans
4347 * is committed.
4348 */
4349 if (ext4_should_journal_data(inode)) {
4350 ret = filemap_write_and_wait_range(inode->i_mapping, start,
4351 end - 1);
4352 if (ret)
4353 return ret;
4354 goto truncate_pagecache;
4355 }
4356
4357 /*
4358 * If the block size is less than the page size, the file's mapped
4359 * blocks within one page could be freed or converted to unwritten.
4360 * So it's necessary to remove writable userspace mappings, and then
4361 * ext4_page_mkwrite() can be called during subsequent write access
4362 * to these partial folios.
4363 */
4364 if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
4365 blocksize < PAGE_SIZE && start < inode->i_size) {
4366 loff_t page_boundary = round_up(start, PAGE_SIZE);
4367
4368 ext4_truncate_folio(inode, start, min(page_boundary, end));
4369 if (end > page_boundary)
4370 ext4_truncate_folio(inode,
4371 round_down(end, PAGE_SIZE), end);
4372 }
4373
4374 truncate_pagecache:
4375 truncate_pagecache_range(inode, start, end - 1);
4376 return 0;
4377 }
4378
ext4_wait_dax_page(struct inode * inode)4379 static void ext4_wait_dax_page(struct inode *inode)
4380 {
4381 filemap_invalidate_unlock(inode->i_mapping);
4382 schedule();
4383 filemap_invalidate_lock(inode->i_mapping);
4384 }
4385
ext4_break_layouts(struct inode * inode)4386 int ext4_break_layouts(struct inode *inode)
4387 {
4388 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
4389 return -EINVAL;
4390
4391 return dax_break_layout_inode(inode, ext4_wait_dax_page);
4392 }
4393
4394 /*
4395 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4396 * associated with the given offset and length
4397 *
4398 * @inode: File inode
4399 * @offset: The offset where the hole will begin
4400 * @len: The length of the hole
4401 *
4402 * Returns: 0 on success or negative on failure
4403 */
4404
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)4405 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4406 {
4407 struct inode *inode = file_inode(file);
4408 struct super_block *sb = inode->i_sb;
4409 ext4_lblk_t start_lblk, end_lblk;
4410 loff_t max_end = sb->s_maxbytes;
4411 loff_t end = offset + length;
4412 handle_t *handle;
4413 unsigned int credits;
4414 int ret;
4415
4416 trace_ext4_punch_hole(inode, offset, length, 0);
4417 WARN_ON_ONCE(!inode_is_locked(inode));
4418
4419 /*
4420 * For indirect-block based inodes, make sure that the hole within
4421 * one block before last range.
4422 */
4423 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4424 max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4425
4426 /* No need to punch hole beyond i_size */
4427 if (offset >= inode->i_size || offset >= max_end)
4428 return 0;
4429
4430 /*
4431 * If the hole extends beyond i_size, set the hole to end after
4432 * the page that contains i_size.
4433 */
4434 if (end > inode->i_size)
4435 end = round_up(inode->i_size, PAGE_SIZE);
4436 if (end > max_end)
4437 end = max_end;
4438 length = end - offset;
4439
4440 /*
4441 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4442 * block.
4443 */
4444 if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4445 ret = ext4_inode_attach_jinode(inode);
4446 if (ret < 0)
4447 return ret;
4448 }
4449
4450
4451 ret = ext4_update_disksize_before_punch(inode, offset, length);
4452 if (ret)
4453 return ret;
4454
4455 /* Now release the pages and zero block aligned part of pages*/
4456 ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4457 if (ret)
4458 return ret;
4459
4460 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4461 credits = ext4_chunk_trans_extent(inode, 2);
4462 else
4463 credits = ext4_blocks_for_truncate(inode);
4464 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4465 if (IS_ERR(handle)) {
4466 ret = PTR_ERR(handle);
4467 ext4_std_error(sb, ret);
4468 return ret;
4469 }
4470
4471 ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4472 if (ret)
4473 goto out_handle;
4474
4475 /* If there are blocks to remove, do it */
4476 start_lblk = EXT4_B_TO_LBLK(inode, offset);
4477 end_lblk = end >> inode->i_blkbits;
4478
4479 if (end_lblk > start_lblk) {
4480 ext4_lblk_t hole_len = end_lblk - start_lblk;
4481
4482 ext4_fc_track_inode(handle, inode);
4483 ext4_check_map_extents_env(inode);
4484 down_write(&EXT4_I(inode)->i_data_sem);
4485 ext4_discard_preallocations(inode);
4486
4487 ext4_es_remove_extent(inode, start_lblk, hole_len);
4488
4489 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4490 ret = ext4_ext_remove_space(inode, start_lblk,
4491 end_lblk - 1);
4492 else
4493 ret = ext4_ind_remove_space(handle, inode, start_lblk,
4494 end_lblk);
4495 if (ret) {
4496 up_write(&EXT4_I(inode)->i_data_sem);
4497 goto out_handle;
4498 }
4499
4500 ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4501 EXTENT_STATUS_HOLE, 0);
4502 up_write(&EXT4_I(inode)->i_data_sem);
4503 }
4504 ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4505
4506 ret = ext4_mark_inode_dirty(handle, inode);
4507 if (unlikely(ret))
4508 goto out_handle;
4509
4510 ext4_update_inode_fsync_trans(handle, inode, 1);
4511 if (IS_SYNC(inode))
4512 ext4_handle_sync(handle);
4513 out_handle:
4514 ext4_journal_stop(handle);
4515 return ret;
4516 }
4517
ext4_inode_attach_jinode(struct inode * inode)4518 int ext4_inode_attach_jinode(struct inode *inode)
4519 {
4520 struct ext4_inode_info *ei = EXT4_I(inode);
4521 struct jbd2_inode *jinode;
4522
4523 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4524 return 0;
4525
4526 jinode = jbd2_alloc_inode(GFP_KERNEL);
4527 spin_lock(&inode->i_lock);
4528 if (!ei->jinode) {
4529 if (!jinode) {
4530 spin_unlock(&inode->i_lock);
4531 return -ENOMEM;
4532 }
4533 ei->jinode = jinode;
4534 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4535 jinode = NULL;
4536 }
4537 spin_unlock(&inode->i_lock);
4538 if (unlikely(jinode != NULL))
4539 jbd2_free_inode(jinode);
4540 return 0;
4541 }
4542
4543 /*
4544 * ext4_truncate()
4545 *
4546 * We block out ext4_get_block() block instantiations across the entire
4547 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4548 * simultaneously on behalf of the same inode.
4549 *
4550 * As we work through the truncate and commit bits of it to the journal there
4551 * is one core, guiding principle: the file's tree must always be consistent on
4552 * disk. We must be able to restart the truncate after a crash.
4553 *
4554 * The file's tree may be transiently inconsistent in memory (although it
4555 * probably isn't), but whenever we close off and commit a journal transaction,
4556 * the contents of (the filesystem + the journal) must be consistent and
4557 * restartable. It's pretty simple, really: bottom up, right to left (although
4558 * left-to-right works OK too).
4559 *
4560 * Note that at recovery time, journal replay occurs *before* the restart of
4561 * truncate against the orphan inode list.
4562 *
4563 * The committed inode has the new, desired i_size (which is the same as
4564 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4565 * that this inode's truncate did not complete and it will again call
4566 * ext4_truncate() to have another go. So there will be instantiated blocks
4567 * to the right of the truncation point in a crashed ext4 filesystem. But
4568 * that's fine - as long as they are linked from the inode, the post-crash
4569 * ext4_truncate() run will find them and release them.
4570 */
ext4_truncate(struct inode * inode)4571 int ext4_truncate(struct inode *inode)
4572 {
4573 struct ext4_inode_info *ei = EXT4_I(inode);
4574 unsigned int credits;
4575 int err = 0, err2;
4576 handle_t *handle;
4577 struct address_space *mapping = inode->i_mapping;
4578
4579 /*
4580 * There is a possibility that we're either freeing the inode
4581 * or it's a completely new inode. In those cases we might not
4582 * have i_rwsem locked because it's not necessary.
4583 */
4584 if (!(inode->i_state & (I_NEW|I_FREEING)))
4585 WARN_ON(!inode_is_locked(inode));
4586 trace_ext4_truncate_enter(inode);
4587
4588 if (!ext4_can_truncate(inode))
4589 goto out_trace;
4590
4591 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4592 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4593
4594 if (ext4_has_inline_data(inode)) {
4595 int has_inline = 1;
4596
4597 err = ext4_inline_data_truncate(inode, &has_inline);
4598 if (err || has_inline)
4599 goto out_trace;
4600 }
4601
4602 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4603 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4604 err = ext4_inode_attach_jinode(inode);
4605 if (err)
4606 goto out_trace;
4607 }
4608
4609 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4610 credits = ext4_chunk_trans_extent(inode, 1);
4611 else
4612 credits = ext4_blocks_for_truncate(inode);
4613
4614 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4615 if (IS_ERR(handle)) {
4616 err = PTR_ERR(handle);
4617 goto out_trace;
4618 }
4619
4620 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4621 ext4_block_truncate_page(handle, mapping, inode->i_size);
4622
4623 /*
4624 * We add the inode to the orphan list, so that if this
4625 * truncate spans multiple transactions, and we crash, we will
4626 * resume the truncate when the filesystem recovers. It also
4627 * marks the inode dirty, to catch the new size.
4628 *
4629 * Implication: the file must always be in a sane, consistent
4630 * truncatable state while each transaction commits.
4631 */
4632 err = ext4_orphan_add(handle, inode);
4633 if (err)
4634 goto out_stop;
4635
4636 ext4_fc_track_inode(handle, inode);
4637 ext4_check_map_extents_env(inode);
4638
4639 down_write(&EXT4_I(inode)->i_data_sem);
4640 ext4_discard_preallocations(inode);
4641
4642 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4643 err = ext4_ext_truncate(handle, inode);
4644 else
4645 ext4_ind_truncate(handle, inode);
4646
4647 up_write(&ei->i_data_sem);
4648 if (err)
4649 goto out_stop;
4650
4651 if (IS_SYNC(inode))
4652 ext4_handle_sync(handle);
4653
4654 out_stop:
4655 /*
4656 * If this was a simple ftruncate() and the file will remain alive,
4657 * then we need to clear up the orphan record which we created above.
4658 * However, if this was a real unlink then we were called by
4659 * ext4_evict_inode(), and we allow that function to clean up the
4660 * orphan info for us.
4661 */
4662 if (inode->i_nlink)
4663 ext4_orphan_del(handle, inode);
4664
4665 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4666 err2 = ext4_mark_inode_dirty(handle, inode);
4667 if (unlikely(err2 && !err))
4668 err = err2;
4669 ext4_journal_stop(handle);
4670
4671 out_trace:
4672 trace_ext4_truncate_exit(inode);
4673 return err;
4674 }
4675
ext4_inode_peek_iversion(const struct inode * inode)4676 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4677 {
4678 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4679 return inode_peek_iversion_raw(inode);
4680 else
4681 return inode_peek_iversion(inode);
4682 }
4683
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4684 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4685 struct ext4_inode_info *ei)
4686 {
4687 struct inode *inode = &(ei->vfs_inode);
4688 u64 i_blocks = READ_ONCE(inode->i_blocks);
4689 struct super_block *sb = inode->i_sb;
4690
4691 if (i_blocks <= ~0U) {
4692 /*
4693 * i_blocks can be represented in a 32 bit variable
4694 * as multiple of 512 bytes
4695 */
4696 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4697 raw_inode->i_blocks_high = 0;
4698 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4699 return 0;
4700 }
4701
4702 /*
4703 * This should never happen since sb->s_maxbytes should not have
4704 * allowed this, sb->s_maxbytes was set according to the huge_file
4705 * feature in ext4_fill_super().
4706 */
4707 if (!ext4_has_feature_huge_file(sb))
4708 return -EFSCORRUPTED;
4709
4710 if (i_blocks <= 0xffffffffffffULL) {
4711 /*
4712 * i_blocks can be represented in a 48 bit variable
4713 * as multiple of 512 bytes
4714 */
4715 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4716 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4717 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4718 } else {
4719 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4720 /* i_block is stored in file system block size */
4721 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4722 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4723 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4724 }
4725 return 0;
4726 }
4727
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4728 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4729 {
4730 struct ext4_inode_info *ei = EXT4_I(inode);
4731 uid_t i_uid;
4732 gid_t i_gid;
4733 projid_t i_projid;
4734 int block;
4735 int err;
4736
4737 err = ext4_inode_blocks_set(raw_inode, ei);
4738
4739 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4740 i_uid = i_uid_read(inode);
4741 i_gid = i_gid_read(inode);
4742 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4743 if (!(test_opt(inode->i_sb, NO_UID32))) {
4744 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4745 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4746 /*
4747 * Fix up interoperability with old kernels. Otherwise,
4748 * old inodes get re-used with the upper 16 bits of the
4749 * uid/gid intact.
4750 */
4751 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4752 raw_inode->i_uid_high = 0;
4753 raw_inode->i_gid_high = 0;
4754 } else {
4755 raw_inode->i_uid_high =
4756 cpu_to_le16(high_16_bits(i_uid));
4757 raw_inode->i_gid_high =
4758 cpu_to_le16(high_16_bits(i_gid));
4759 }
4760 } else {
4761 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4762 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4763 raw_inode->i_uid_high = 0;
4764 raw_inode->i_gid_high = 0;
4765 }
4766 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4767
4768 EXT4_INODE_SET_CTIME(inode, raw_inode);
4769 EXT4_INODE_SET_MTIME(inode, raw_inode);
4770 EXT4_INODE_SET_ATIME(inode, raw_inode);
4771 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4772
4773 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4774 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4775 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4776 raw_inode->i_file_acl_high =
4777 cpu_to_le16(ei->i_file_acl >> 32);
4778 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4779 ext4_isize_set(raw_inode, ei->i_disksize);
4780
4781 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4782 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4783 if (old_valid_dev(inode->i_rdev)) {
4784 raw_inode->i_block[0] =
4785 cpu_to_le32(old_encode_dev(inode->i_rdev));
4786 raw_inode->i_block[1] = 0;
4787 } else {
4788 raw_inode->i_block[0] = 0;
4789 raw_inode->i_block[1] =
4790 cpu_to_le32(new_encode_dev(inode->i_rdev));
4791 raw_inode->i_block[2] = 0;
4792 }
4793 } else if (!ext4_has_inline_data(inode)) {
4794 for (block = 0; block < EXT4_N_BLOCKS; block++)
4795 raw_inode->i_block[block] = ei->i_data[block];
4796 }
4797
4798 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4799 u64 ivers = ext4_inode_peek_iversion(inode);
4800
4801 raw_inode->i_disk_version = cpu_to_le32(ivers);
4802 if (ei->i_extra_isize) {
4803 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4804 raw_inode->i_version_hi =
4805 cpu_to_le32(ivers >> 32);
4806 raw_inode->i_extra_isize =
4807 cpu_to_le16(ei->i_extra_isize);
4808 }
4809 }
4810
4811 if (i_projid != EXT4_DEF_PROJID &&
4812 !ext4_has_feature_project(inode->i_sb))
4813 err = err ?: -EFSCORRUPTED;
4814
4815 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4816 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4817 raw_inode->i_projid = cpu_to_le32(i_projid);
4818
4819 ext4_inode_csum_set(inode, raw_inode, ei);
4820 return err;
4821 }
4822
4823 /*
4824 * ext4_get_inode_loc returns with an extra refcount against the inode's
4825 * underlying buffer_head on success. If we pass 'inode' and it does not
4826 * have in-inode xattr, we have all inode data in memory that is needed
4827 * to recreate the on-disk version of this inode.
4828 */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4829 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4830 struct inode *inode, struct ext4_iloc *iloc,
4831 ext4_fsblk_t *ret_block)
4832 {
4833 struct ext4_group_desc *gdp;
4834 struct buffer_head *bh;
4835 ext4_fsblk_t block;
4836 struct blk_plug plug;
4837 int inodes_per_block, inode_offset;
4838
4839 iloc->bh = NULL;
4840 if (ino < EXT4_ROOT_INO ||
4841 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4842 return -EFSCORRUPTED;
4843
4844 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4845 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4846 if (!gdp)
4847 return -EIO;
4848
4849 /*
4850 * Figure out the offset within the block group inode table
4851 */
4852 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4853 inode_offset = ((ino - 1) %
4854 EXT4_INODES_PER_GROUP(sb));
4855 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4856
4857 block = ext4_inode_table(sb, gdp);
4858 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4859 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4860 ext4_error(sb, "Invalid inode table block %llu in "
4861 "block_group %u", block, iloc->block_group);
4862 return -EFSCORRUPTED;
4863 }
4864 block += (inode_offset / inodes_per_block);
4865
4866 bh = sb_getblk(sb, block);
4867 if (unlikely(!bh))
4868 return -ENOMEM;
4869 if (ext4_buffer_uptodate(bh))
4870 goto has_buffer;
4871
4872 lock_buffer(bh);
4873 if (ext4_buffer_uptodate(bh)) {
4874 /* Someone brought it uptodate while we waited */
4875 unlock_buffer(bh);
4876 goto has_buffer;
4877 }
4878
4879 /*
4880 * If we have all information of the inode in memory and this
4881 * is the only valid inode in the block, we need not read the
4882 * block.
4883 */
4884 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4885 struct buffer_head *bitmap_bh;
4886 int i, start;
4887
4888 start = inode_offset & ~(inodes_per_block - 1);
4889
4890 /* Is the inode bitmap in cache? */
4891 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4892 if (unlikely(!bitmap_bh))
4893 goto make_io;
4894
4895 /*
4896 * If the inode bitmap isn't in cache then the
4897 * optimisation may end up performing two reads instead
4898 * of one, so skip it.
4899 */
4900 if (!buffer_uptodate(bitmap_bh)) {
4901 brelse(bitmap_bh);
4902 goto make_io;
4903 }
4904 for (i = start; i < start + inodes_per_block; i++) {
4905 if (i == inode_offset)
4906 continue;
4907 if (ext4_test_bit(i, bitmap_bh->b_data))
4908 break;
4909 }
4910 brelse(bitmap_bh);
4911 if (i == start + inodes_per_block) {
4912 struct ext4_inode *raw_inode =
4913 (struct ext4_inode *) (bh->b_data + iloc->offset);
4914
4915 /* all other inodes are free, so skip I/O */
4916 memset(bh->b_data, 0, bh->b_size);
4917 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4918 ext4_fill_raw_inode(inode, raw_inode);
4919 set_buffer_uptodate(bh);
4920 unlock_buffer(bh);
4921 goto has_buffer;
4922 }
4923 }
4924
4925 make_io:
4926 /*
4927 * If we need to do any I/O, try to pre-readahead extra
4928 * blocks from the inode table.
4929 */
4930 blk_start_plug(&plug);
4931 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4932 ext4_fsblk_t b, end, table;
4933 unsigned num;
4934 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4935
4936 table = ext4_inode_table(sb, gdp);
4937 /* s_inode_readahead_blks is always a power of 2 */
4938 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4939 if (table > b)
4940 b = table;
4941 end = b + ra_blks;
4942 num = EXT4_INODES_PER_GROUP(sb);
4943 if (ext4_has_group_desc_csum(sb))
4944 num -= ext4_itable_unused_count(sb, gdp);
4945 table += num / inodes_per_block;
4946 if (end > table)
4947 end = table;
4948 while (b <= end)
4949 ext4_sb_breadahead_unmovable(sb, b++);
4950 }
4951
4952 /*
4953 * There are other valid inodes in the buffer, this inode
4954 * has in-inode xattrs, or we don't have this inode in memory.
4955 * Read the block from disk.
4956 */
4957 trace_ext4_load_inode(sb, ino);
4958 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4959 ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4960 blk_finish_plug(&plug);
4961 wait_on_buffer(bh);
4962 if (!buffer_uptodate(bh)) {
4963 if (ret_block)
4964 *ret_block = block;
4965 brelse(bh);
4966 return -EIO;
4967 }
4968 has_buffer:
4969 iloc->bh = bh;
4970 return 0;
4971 }
4972
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4973 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4974 struct ext4_iloc *iloc)
4975 {
4976 ext4_fsblk_t err_blk = 0;
4977 int ret;
4978
4979 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4980 &err_blk);
4981
4982 if (ret == -EIO)
4983 ext4_error_inode_block(inode, err_blk, EIO,
4984 "unable to read itable block");
4985
4986 return ret;
4987 }
4988
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4989 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4990 {
4991 ext4_fsblk_t err_blk = 0;
4992 int ret;
4993
4994 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4995 &err_blk);
4996
4997 if (ret == -EIO)
4998 ext4_error_inode_block(inode, err_blk, EIO,
4999 "unable to read itable block");
5000
5001 return ret;
5002 }
5003
5004
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)5005 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
5006 struct ext4_iloc *iloc)
5007 {
5008 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
5009 }
5010
ext4_should_enable_dax(struct inode * inode)5011 static bool ext4_should_enable_dax(struct inode *inode)
5012 {
5013 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5014
5015 if (test_opt2(inode->i_sb, DAX_NEVER))
5016 return false;
5017 if (!S_ISREG(inode->i_mode))
5018 return false;
5019 if (ext4_should_journal_data(inode))
5020 return false;
5021 if (ext4_has_inline_data(inode))
5022 return false;
5023 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
5024 return false;
5025 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
5026 return false;
5027 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
5028 return false;
5029 if (test_opt(inode->i_sb, DAX_ALWAYS))
5030 return true;
5031
5032 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
5033 }
5034
ext4_set_inode_flags(struct inode * inode,bool init)5035 void ext4_set_inode_flags(struct inode *inode, bool init)
5036 {
5037 unsigned int flags = EXT4_I(inode)->i_flags;
5038 unsigned int new_fl = 0;
5039
5040 WARN_ON_ONCE(IS_DAX(inode) && init);
5041
5042 if (flags & EXT4_SYNC_FL)
5043 new_fl |= S_SYNC;
5044 if (flags & EXT4_APPEND_FL)
5045 new_fl |= S_APPEND;
5046 if (flags & EXT4_IMMUTABLE_FL)
5047 new_fl |= S_IMMUTABLE;
5048 if (flags & EXT4_NOATIME_FL)
5049 new_fl |= S_NOATIME;
5050 if (flags & EXT4_DIRSYNC_FL)
5051 new_fl |= S_DIRSYNC;
5052
5053 /* Because of the way inode_set_flags() works we must preserve S_DAX
5054 * here if already set. */
5055 new_fl |= (inode->i_flags & S_DAX);
5056 if (init && ext4_should_enable_dax(inode))
5057 new_fl |= S_DAX;
5058
5059 if (flags & EXT4_ENCRYPT_FL)
5060 new_fl |= S_ENCRYPTED;
5061 if (flags & EXT4_CASEFOLD_FL)
5062 new_fl |= S_CASEFOLD;
5063 if (flags & EXT4_VERITY_FL)
5064 new_fl |= S_VERITY;
5065 inode_set_flags(inode, new_fl,
5066 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
5067 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
5068 }
5069
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5070 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
5071 struct ext4_inode_info *ei)
5072 {
5073 blkcnt_t i_blocks ;
5074 struct inode *inode = &(ei->vfs_inode);
5075 struct super_block *sb = inode->i_sb;
5076
5077 if (ext4_has_feature_huge_file(sb)) {
5078 /* we are using combined 48 bit field */
5079 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5080 le32_to_cpu(raw_inode->i_blocks_lo);
5081 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
5082 /* i_blocks represent file system block size */
5083 return i_blocks << (inode->i_blkbits - 9);
5084 } else {
5085 return i_blocks;
5086 }
5087 } else {
5088 return le32_to_cpu(raw_inode->i_blocks_lo);
5089 }
5090 }
5091
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)5092 static inline int ext4_iget_extra_inode(struct inode *inode,
5093 struct ext4_inode *raw_inode,
5094 struct ext4_inode_info *ei)
5095 {
5096 __le32 *magic = (void *)raw_inode +
5097 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
5098
5099 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
5100 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
5101 int err;
5102
5103 err = xattr_check_inode(inode, IHDR(inode, raw_inode),
5104 ITAIL(inode, raw_inode));
5105 if (err)
5106 return err;
5107
5108 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5109 err = ext4_find_inline_data_nolock(inode);
5110 if (!err && ext4_has_inline_data(inode))
5111 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
5112 return err;
5113 } else
5114 EXT4_I(inode)->i_inline_off = 0;
5115 return 0;
5116 }
5117
ext4_get_projid(struct inode * inode,kprojid_t * projid)5118 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
5119 {
5120 if (!ext4_has_feature_project(inode->i_sb))
5121 return -EOPNOTSUPP;
5122 *projid = EXT4_I(inode)->i_projid;
5123 return 0;
5124 }
5125
5126 /*
5127 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
5128 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
5129 * set.
5130 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)5131 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
5132 {
5133 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
5134 inode_set_iversion_raw(inode, val);
5135 else
5136 inode_set_iversion_queried(inode, val);
5137 }
5138
check_igot_inode(struct inode * inode,ext4_iget_flags flags,const char * function,unsigned int line)5139 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
5140 const char *function, unsigned int line)
5141 {
5142 const char *err_str;
5143
5144 if (flags & EXT4_IGET_EA_INODE) {
5145 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5146 err_str = "missing EA_INODE flag";
5147 goto error;
5148 }
5149 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5150 EXT4_I(inode)->i_file_acl) {
5151 err_str = "ea_inode with extended attributes";
5152 goto error;
5153 }
5154 } else {
5155 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
5156 /*
5157 * open_by_handle_at() could provide an old inode number
5158 * that has since been reused for an ea_inode; this does
5159 * not indicate filesystem corruption
5160 */
5161 if (flags & EXT4_IGET_HANDLE)
5162 return -ESTALE;
5163 err_str = "unexpected EA_INODE flag";
5164 goto error;
5165 }
5166 }
5167 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
5168 err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
5169 goto error;
5170 }
5171 return 0;
5172
5173 error:
5174 ext4_error_inode(inode, function, line, 0, "%s", err_str);
5175 return -EFSCORRUPTED;
5176 }
5177
ext4_should_enable_large_folio(struct inode * inode)5178 static bool ext4_should_enable_large_folio(struct inode *inode)
5179 {
5180 struct super_block *sb = inode->i_sb;
5181
5182 if (!S_ISREG(inode->i_mode))
5183 return false;
5184 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
5185 ext4_test_inode_flag(inode, EXT4_INODE_JOURNAL_DATA))
5186 return false;
5187 if (ext4_has_feature_verity(sb))
5188 return false;
5189 if (ext4_has_feature_encrypt(sb))
5190 return false;
5191
5192 return true;
5193 }
5194
5195 /*
5196 * Limit the maximum folio order to 2048 blocks to prevent overestimation
5197 * of reserve handle credits during the folio writeback in environments
5198 * where the PAGE_SIZE exceeds 4KB.
5199 */
5200 #define EXT4_MAX_PAGECACHE_ORDER(i) \
5201 umin(MAX_PAGECACHE_ORDER, (11 + (i)->i_blkbits - PAGE_SHIFT))
ext4_set_inode_mapping_order(struct inode * inode)5202 void ext4_set_inode_mapping_order(struct inode *inode)
5203 {
5204 if (!ext4_should_enable_large_folio(inode))
5205 return;
5206
5207 mapping_set_folio_order_range(inode->i_mapping, 0,
5208 EXT4_MAX_PAGECACHE_ORDER(inode));
5209 }
5210
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)5211 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
5212 ext4_iget_flags flags, const char *function,
5213 unsigned int line)
5214 {
5215 struct ext4_iloc iloc;
5216 struct ext4_inode *raw_inode;
5217 struct ext4_inode_info *ei;
5218 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
5219 struct inode *inode;
5220 journal_t *journal = EXT4_SB(sb)->s_journal;
5221 long ret;
5222 loff_t size;
5223 int block;
5224 uid_t i_uid;
5225 gid_t i_gid;
5226 projid_t i_projid;
5227
5228 if ((!(flags & EXT4_IGET_SPECIAL) && is_special_ino(sb, ino)) ||
5229 (ino < EXT4_ROOT_INO) ||
5230 (ino > le32_to_cpu(es->s_inodes_count))) {
5231 if (flags & EXT4_IGET_HANDLE)
5232 return ERR_PTR(-ESTALE);
5233 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
5234 "inode #%lu: comm %s: iget: illegal inode #",
5235 ino, current->comm);
5236 return ERR_PTR(-EFSCORRUPTED);
5237 }
5238
5239 inode = iget_locked(sb, ino);
5240 if (!inode)
5241 return ERR_PTR(-ENOMEM);
5242 if (!(inode->i_state & I_NEW)) {
5243 ret = check_igot_inode(inode, flags, function, line);
5244 if (ret) {
5245 iput(inode);
5246 return ERR_PTR(ret);
5247 }
5248 return inode;
5249 }
5250
5251 ei = EXT4_I(inode);
5252 iloc.bh = NULL;
5253
5254 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
5255 if (ret < 0)
5256 goto bad_inode;
5257 raw_inode = ext4_raw_inode(&iloc);
5258
5259 if ((flags & EXT4_IGET_HANDLE) &&
5260 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
5261 ret = -ESTALE;
5262 goto bad_inode;
5263 }
5264
5265 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5266 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5267 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5268 EXT4_INODE_SIZE(inode->i_sb) ||
5269 (ei->i_extra_isize & 3)) {
5270 ext4_error_inode(inode, function, line, 0,
5271 "iget: bad extra_isize %u "
5272 "(inode size %u)",
5273 ei->i_extra_isize,
5274 EXT4_INODE_SIZE(inode->i_sb));
5275 ret = -EFSCORRUPTED;
5276 goto bad_inode;
5277 }
5278 } else
5279 ei->i_extra_isize = 0;
5280
5281 /* Precompute checksum seed for inode metadata */
5282 if (ext4_has_feature_metadata_csum(sb)) {
5283 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5284 __u32 csum;
5285 __le32 inum = cpu_to_le32(inode->i_ino);
5286 __le32 gen = raw_inode->i_generation;
5287 csum = ext4_chksum(sbi->s_csum_seed, (__u8 *)&inum,
5288 sizeof(inum));
5289 ei->i_csum_seed = ext4_chksum(csum, (__u8 *)&gen, sizeof(gen));
5290 }
5291
5292 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
5293 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
5294 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
5295 ext4_error_inode_err(inode, function, line, 0,
5296 EFSBADCRC, "iget: checksum invalid");
5297 ret = -EFSBADCRC;
5298 goto bad_inode;
5299 }
5300
5301 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5302 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5303 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5304 if (ext4_has_feature_project(sb) &&
5305 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5306 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5307 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
5308 else
5309 i_projid = EXT4_DEF_PROJID;
5310
5311 if (!(test_opt(inode->i_sb, NO_UID32))) {
5312 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5313 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5314 }
5315 i_uid_write(inode, i_uid);
5316 i_gid_write(inode, i_gid);
5317 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
5318 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
5319
5320 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
5321 ei->i_inline_off = 0;
5322 ei->i_dir_start_lookup = 0;
5323 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5324 /* We now have enough fields to check if the inode was active or not.
5325 * This is needed because nfsd might try to access dead inodes
5326 * the test is that same one that e2fsck uses
5327 * NeilBrown 1999oct15
5328 */
5329 if (inode->i_nlink == 0) {
5330 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
5331 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
5332 ino != EXT4_BOOT_LOADER_INO) {
5333 /* this inode is deleted or unallocated */
5334 if (flags & EXT4_IGET_SPECIAL) {
5335 ext4_error_inode(inode, function, line, 0,
5336 "iget: special inode unallocated");
5337 ret = -EFSCORRUPTED;
5338 } else
5339 ret = -ESTALE;
5340 goto bad_inode;
5341 }
5342 /* The only unlinked inodes we let through here have
5343 * valid i_mode and are being read by the orphan
5344 * recovery code: that's fine, we're about to complete
5345 * the process of deleting those.
5346 * OR it is the EXT4_BOOT_LOADER_INO which is
5347 * not initialized on a new filesystem. */
5348 }
5349 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5350 ext4_set_inode_flags(inode, true);
5351 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5352 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5353 if (ext4_has_feature_64bit(sb))
5354 ei->i_file_acl |=
5355 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5356 inode->i_size = ext4_isize(sb, raw_inode);
5357 size = i_size_read(inode);
5358 if (size < 0 || size > ext4_get_maxbytes(inode)) {
5359 ext4_error_inode(inode, function, line, 0,
5360 "iget: bad i_size value: %lld", size);
5361 ret = -EFSCORRUPTED;
5362 goto bad_inode;
5363 }
5364 /*
5365 * If dir_index is not enabled but there's dir with INDEX flag set,
5366 * we'd normally treat htree data as empty space. But with metadata
5367 * checksumming that corrupts checksums so forbid that.
5368 */
5369 if (!ext4_has_feature_dir_index(sb) &&
5370 ext4_has_feature_metadata_csum(sb) &&
5371 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
5372 ext4_error_inode(inode, function, line, 0,
5373 "iget: Dir with htree data on filesystem without dir_index feature.");
5374 ret = -EFSCORRUPTED;
5375 goto bad_inode;
5376 }
5377 ei->i_disksize = inode->i_size;
5378 #ifdef CONFIG_QUOTA
5379 ei->i_reserved_quota = 0;
5380 #endif
5381 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5382 ei->i_block_group = iloc.block_group;
5383 ei->i_last_alloc_group = ~0;
5384 /*
5385 * NOTE! The in-memory inode i_data array is in little-endian order
5386 * even on big-endian machines: we do NOT byteswap the block numbers!
5387 */
5388 for (block = 0; block < EXT4_N_BLOCKS; block++)
5389 ei->i_data[block] = raw_inode->i_block[block];
5390 INIT_LIST_HEAD(&ei->i_orphan);
5391 ext4_fc_init_inode(&ei->vfs_inode);
5392
5393 /*
5394 * Set transaction id's of transactions that have to be committed
5395 * to finish f[data]sync. We set them to currently running transaction
5396 * as we cannot be sure that the inode or some of its metadata isn't
5397 * part of the transaction - the inode could have been reclaimed and
5398 * now it is reread from disk.
5399 */
5400 if (journal) {
5401 transaction_t *transaction;
5402 tid_t tid;
5403
5404 read_lock(&journal->j_state_lock);
5405 if (journal->j_running_transaction)
5406 transaction = journal->j_running_transaction;
5407 else
5408 transaction = journal->j_committing_transaction;
5409 if (transaction)
5410 tid = transaction->t_tid;
5411 else
5412 tid = journal->j_commit_sequence;
5413 read_unlock(&journal->j_state_lock);
5414 ei->i_sync_tid = tid;
5415 ei->i_datasync_tid = tid;
5416 }
5417
5418 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5419 if (ei->i_extra_isize == 0) {
5420 /* The extra space is currently unused. Use it. */
5421 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5422 ei->i_extra_isize = sizeof(struct ext4_inode) -
5423 EXT4_GOOD_OLD_INODE_SIZE;
5424 } else {
5425 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5426 if (ret)
5427 goto bad_inode;
5428 }
5429 }
5430
5431 EXT4_INODE_GET_CTIME(inode, raw_inode);
5432 EXT4_INODE_GET_ATIME(inode, raw_inode);
5433 EXT4_INODE_GET_MTIME(inode, raw_inode);
5434 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5435
5436 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5437 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5438
5439 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5440 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5441 ivers |=
5442 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5443 }
5444 ext4_inode_set_iversion_queried(inode, ivers);
5445 }
5446
5447 ret = 0;
5448 if (ei->i_file_acl &&
5449 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5450 ext4_error_inode(inode, function, line, 0,
5451 "iget: bad extended attribute block %llu",
5452 ei->i_file_acl);
5453 ret = -EFSCORRUPTED;
5454 goto bad_inode;
5455 } else if (!ext4_has_inline_data(inode)) {
5456 /* validate the block references in the inode */
5457 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5458 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5459 (S_ISLNK(inode->i_mode) &&
5460 !ext4_inode_is_fast_symlink(inode)))) {
5461 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5462 ret = ext4_ext_check_inode(inode);
5463 else
5464 ret = ext4_ind_check_inode(inode);
5465 }
5466 }
5467 if (ret)
5468 goto bad_inode;
5469
5470 if (S_ISREG(inode->i_mode)) {
5471 inode->i_op = &ext4_file_inode_operations;
5472 inode->i_fop = &ext4_file_operations;
5473 ext4_set_aops(inode);
5474 } else if (S_ISDIR(inode->i_mode)) {
5475 inode->i_op = &ext4_dir_inode_operations;
5476 inode->i_fop = &ext4_dir_operations;
5477 } else if (S_ISLNK(inode->i_mode)) {
5478 /* VFS does not allow setting these so must be corruption */
5479 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5480 ext4_error_inode(inode, function, line, 0,
5481 "iget: immutable or append flags "
5482 "not allowed on symlinks");
5483 ret = -EFSCORRUPTED;
5484 goto bad_inode;
5485 }
5486 if (IS_ENCRYPTED(inode)) {
5487 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5488 } else if (ext4_inode_is_fast_symlink(inode)) {
5489 inode->i_op = &ext4_fast_symlink_inode_operations;
5490 if (inode->i_size == 0 ||
5491 inode->i_size >= sizeof(ei->i_data) ||
5492 strnlen((char *)ei->i_data, inode->i_size + 1) !=
5493 inode->i_size) {
5494 ext4_error_inode(inode, function, line, 0,
5495 "invalid fast symlink length %llu",
5496 (unsigned long long)inode->i_size);
5497 ret = -EFSCORRUPTED;
5498 goto bad_inode;
5499 }
5500 inode_set_cached_link(inode, (char *)ei->i_data,
5501 inode->i_size);
5502 } else {
5503 inode->i_op = &ext4_symlink_inode_operations;
5504 }
5505 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5506 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5507 inode->i_op = &ext4_special_inode_operations;
5508 if (raw_inode->i_block[0])
5509 init_special_inode(inode, inode->i_mode,
5510 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5511 else
5512 init_special_inode(inode, inode->i_mode,
5513 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5514 } else if (ino == EXT4_BOOT_LOADER_INO) {
5515 make_bad_inode(inode);
5516 } else {
5517 ret = -EFSCORRUPTED;
5518 ext4_error_inode(inode, function, line, 0,
5519 "iget: bogus i_mode (%o)", inode->i_mode);
5520 goto bad_inode;
5521 }
5522 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5523 ext4_error_inode(inode, function, line, 0,
5524 "casefold flag without casefold feature");
5525 ret = -EFSCORRUPTED;
5526 goto bad_inode;
5527 }
5528
5529 ext4_set_inode_mapping_order(inode);
5530
5531 ret = check_igot_inode(inode, flags, function, line);
5532 /*
5533 * -ESTALE here means there is nothing inherently wrong with the inode,
5534 * it's just not an inode we can return for an fhandle lookup.
5535 */
5536 if (ret == -ESTALE) {
5537 brelse(iloc.bh);
5538 unlock_new_inode(inode);
5539 iput(inode);
5540 return ERR_PTR(-ESTALE);
5541 }
5542 if (ret)
5543 goto bad_inode;
5544 brelse(iloc.bh);
5545
5546 unlock_new_inode(inode);
5547 return inode;
5548
5549 bad_inode:
5550 brelse(iloc.bh);
5551 iget_failed(inode);
5552 return ERR_PTR(ret);
5553 }
5554
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5555 static void __ext4_update_other_inode_time(struct super_block *sb,
5556 unsigned long orig_ino,
5557 unsigned long ino,
5558 struct ext4_inode *raw_inode)
5559 {
5560 struct inode *inode;
5561
5562 inode = find_inode_by_ino_rcu(sb, ino);
5563 if (!inode)
5564 return;
5565
5566 if (!inode_is_dirtytime_only(inode))
5567 return;
5568
5569 spin_lock(&inode->i_lock);
5570 if (inode_is_dirtytime_only(inode)) {
5571 struct ext4_inode_info *ei = EXT4_I(inode);
5572
5573 inode->i_state &= ~I_DIRTY_TIME;
5574 spin_unlock(&inode->i_lock);
5575
5576 spin_lock(&ei->i_raw_lock);
5577 EXT4_INODE_SET_CTIME(inode, raw_inode);
5578 EXT4_INODE_SET_MTIME(inode, raw_inode);
5579 EXT4_INODE_SET_ATIME(inode, raw_inode);
5580 ext4_inode_csum_set(inode, raw_inode, ei);
5581 spin_unlock(&ei->i_raw_lock);
5582 trace_ext4_other_inode_update_time(inode, orig_ino);
5583 return;
5584 }
5585 spin_unlock(&inode->i_lock);
5586 }
5587
5588 /*
5589 * Opportunistically update the other time fields for other inodes in
5590 * the same inode table block.
5591 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5592 static void ext4_update_other_inodes_time(struct super_block *sb,
5593 unsigned long orig_ino, char *buf)
5594 {
5595 unsigned long ino;
5596 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5597 int inode_size = EXT4_INODE_SIZE(sb);
5598
5599 /*
5600 * Calculate the first inode in the inode table block. Inode
5601 * numbers are one-based. That is, the first inode in a block
5602 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5603 */
5604 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5605 rcu_read_lock();
5606 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5607 if (ino == orig_ino)
5608 continue;
5609 __ext4_update_other_inode_time(sb, orig_ino, ino,
5610 (struct ext4_inode *)buf);
5611 }
5612 rcu_read_unlock();
5613 }
5614
5615 /*
5616 * Post the struct inode info into an on-disk inode location in the
5617 * buffer-cache. This gobbles the caller's reference to the
5618 * buffer_head in the inode location struct.
5619 *
5620 * The caller must have write access to iloc->bh.
5621 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5622 static int ext4_do_update_inode(handle_t *handle,
5623 struct inode *inode,
5624 struct ext4_iloc *iloc)
5625 {
5626 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5627 struct ext4_inode_info *ei = EXT4_I(inode);
5628 struct buffer_head *bh = iloc->bh;
5629 struct super_block *sb = inode->i_sb;
5630 int err;
5631 int need_datasync = 0, set_large_file = 0;
5632
5633 spin_lock(&ei->i_raw_lock);
5634
5635 /*
5636 * For fields not tracked in the in-memory inode, initialise them
5637 * to zero for new inodes.
5638 */
5639 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5640 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5641
5642 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5643 need_datasync = 1;
5644 if (ei->i_disksize > 0x7fffffffULL) {
5645 if (!ext4_has_feature_large_file(sb) ||
5646 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5647 set_large_file = 1;
5648 }
5649
5650 err = ext4_fill_raw_inode(inode, raw_inode);
5651 spin_unlock(&ei->i_raw_lock);
5652 if (err) {
5653 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5654 goto out_brelse;
5655 }
5656
5657 if (inode->i_sb->s_flags & SB_LAZYTIME)
5658 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5659 bh->b_data);
5660
5661 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5662 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5663 if (err)
5664 goto out_error;
5665 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5666 if (set_large_file) {
5667 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5668 err = ext4_journal_get_write_access(handle, sb,
5669 EXT4_SB(sb)->s_sbh,
5670 EXT4_JTR_NONE);
5671 if (err)
5672 goto out_error;
5673 lock_buffer(EXT4_SB(sb)->s_sbh);
5674 ext4_set_feature_large_file(sb);
5675 ext4_superblock_csum_set(sb);
5676 unlock_buffer(EXT4_SB(sb)->s_sbh);
5677 ext4_handle_sync(handle);
5678 err = ext4_handle_dirty_metadata(handle, NULL,
5679 EXT4_SB(sb)->s_sbh);
5680 }
5681 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5682 out_error:
5683 ext4_std_error(inode->i_sb, err);
5684 out_brelse:
5685 brelse(bh);
5686 return err;
5687 }
5688
5689 /*
5690 * ext4_write_inode()
5691 *
5692 * We are called from a few places:
5693 *
5694 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5695 * Here, there will be no transaction running. We wait for any running
5696 * transaction to commit.
5697 *
5698 * - Within flush work (sys_sync(), kupdate and such).
5699 * We wait on commit, if told to.
5700 *
5701 * - Within iput_final() -> write_inode_now()
5702 * We wait on commit, if told to.
5703 *
5704 * In all cases it is actually safe for us to return without doing anything,
5705 * because the inode has been copied into a raw inode buffer in
5706 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5707 * writeback.
5708 *
5709 * Note that we are absolutely dependent upon all inode dirtiers doing the
5710 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5711 * which we are interested.
5712 *
5713 * It would be a bug for them to not do this. The code:
5714 *
5715 * mark_inode_dirty(inode)
5716 * stuff();
5717 * inode->i_size = expr;
5718 *
5719 * is in error because write_inode() could occur while `stuff()' is running,
5720 * and the new i_size will be lost. Plus the inode will no longer be on the
5721 * superblock's dirty inode list.
5722 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5723 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5724 {
5725 int err;
5726
5727 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5728 return 0;
5729
5730 err = ext4_emergency_state(inode->i_sb);
5731 if (unlikely(err))
5732 return err;
5733
5734 if (EXT4_SB(inode->i_sb)->s_journal) {
5735 if (ext4_journal_current_handle()) {
5736 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5737 dump_stack();
5738 return -EIO;
5739 }
5740
5741 /*
5742 * No need to force transaction in WB_SYNC_NONE mode. Also
5743 * ext4_sync_fs() will force the commit after everything is
5744 * written.
5745 */
5746 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5747 return 0;
5748
5749 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5750 EXT4_I(inode)->i_sync_tid);
5751 } else {
5752 struct ext4_iloc iloc;
5753
5754 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5755 if (err)
5756 return err;
5757 /*
5758 * sync(2) will flush the whole buffer cache. No need to do
5759 * it here separately for each inode.
5760 */
5761 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5762 sync_dirty_buffer(iloc.bh);
5763 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5764 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5765 "IO error syncing inode");
5766 err = -EIO;
5767 }
5768 brelse(iloc.bh);
5769 }
5770 return err;
5771 }
5772
5773 /*
5774 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5775 * buffers that are attached to a folio straddling i_size and are undergoing
5776 * commit. In that case we have to wait for commit to finish and try again.
5777 */
ext4_wait_for_tail_page_commit(struct inode * inode)5778 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5779 {
5780 unsigned offset;
5781 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5782 tid_t commit_tid;
5783 int ret;
5784 bool has_transaction;
5785
5786 offset = inode->i_size & (PAGE_SIZE - 1);
5787 /*
5788 * If the folio is fully truncated, we don't need to wait for any commit
5789 * (and we even should not as __ext4_journalled_invalidate_folio() may
5790 * strip all buffers from the folio but keep the folio dirty which can then
5791 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5792 * buffers). Also we don't need to wait for any commit if all buffers in
5793 * the folio remain valid. This is most beneficial for the common case of
5794 * blocksize == PAGESIZE.
5795 */
5796 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5797 return;
5798 while (1) {
5799 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5800 inode->i_size >> PAGE_SHIFT);
5801 if (IS_ERR(folio))
5802 return;
5803 ret = __ext4_journalled_invalidate_folio(folio, offset,
5804 folio_size(folio) - offset);
5805 folio_unlock(folio);
5806 folio_put(folio);
5807 if (ret != -EBUSY)
5808 return;
5809 has_transaction = false;
5810 read_lock(&journal->j_state_lock);
5811 if (journal->j_committing_transaction) {
5812 commit_tid = journal->j_committing_transaction->t_tid;
5813 has_transaction = true;
5814 }
5815 read_unlock(&journal->j_state_lock);
5816 if (has_transaction)
5817 jbd2_log_wait_commit(journal, commit_tid);
5818 }
5819 }
5820
5821 /*
5822 * ext4_setattr()
5823 *
5824 * Called from notify_change.
5825 *
5826 * We want to trap VFS attempts to truncate the file as soon as
5827 * possible. In particular, we want to make sure that when the VFS
5828 * shrinks i_size, we put the inode on the orphan list and modify
5829 * i_disksize immediately, so that during the subsequent flushing of
5830 * dirty pages and freeing of disk blocks, we can guarantee that any
5831 * commit will leave the blocks being flushed in an unused state on
5832 * disk. (On recovery, the inode will get truncated and the blocks will
5833 * be freed, so we have a strong guarantee that no future commit will
5834 * leave these blocks visible to the user.)
5835 *
5836 * Another thing we have to assure is that if we are in ordered mode
5837 * and inode is still attached to the committing transaction, we must
5838 * we start writeout of all the dirty pages which are being truncated.
5839 * This way we are sure that all the data written in the previous
5840 * transaction are already on disk (truncate waits for pages under
5841 * writeback).
5842 *
5843 * Called with inode->i_rwsem down.
5844 */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5845 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5846 struct iattr *attr)
5847 {
5848 struct inode *inode = d_inode(dentry);
5849 int error, rc = 0;
5850 int orphan = 0;
5851 const unsigned int ia_valid = attr->ia_valid;
5852 bool inc_ivers = true;
5853
5854 error = ext4_emergency_state(inode->i_sb);
5855 if (unlikely(error))
5856 return error;
5857
5858 if (unlikely(IS_IMMUTABLE(inode)))
5859 return -EPERM;
5860
5861 if (unlikely(IS_APPEND(inode) &&
5862 (ia_valid & (ATTR_MODE | ATTR_UID |
5863 ATTR_GID | ATTR_TIMES_SET))))
5864 return -EPERM;
5865
5866 error = setattr_prepare(idmap, dentry, attr);
5867 if (error)
5868 return error;
5869
5870 error = fscrypt_prepare_setattr(dentry, attr);
5871 if (error)
5872 return error;
5873
5874 error = fsverity_prepare_setattr(dentry, attr);
5875 if (error)
5876 return error;
5877
5878 if (is_quota_modification(idmap, inode, attr)) {
5879 error = dquot_initialize(inode);
5880 if (error)
5881 return error;
5882 }
5883
5884 if (i_uid_needs_update(idmap, attr, inode) ||
5885 i_gid_needs_update(idmap, attr, inode)) {
5886 handle_t *handle;
5887
5888 /* (user+group)*(old+new) structure, inode write (sb,
5889 * inode block, ? - but truncate inode update has it) */
5890 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5891 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5892 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5893 if (IS_ERR(handle)) {
5894 error = PTR_ERR(handle);
5895 goto err_out;
5896 }
5897
5898 /* dquot_transfer() calls back ext4_get_inode_usage() which
5899 * counts xattr inode references.
5900 */
5901 down_read(&EXT4_I(inode)->xattr_sem);
5902 error = dquot_transfer(idmap, inode, attr);
5903 up_read(&EXT4_I(inode)->xattr_sem);
5904
5905 if (error) {
5906 ext4_journal_stop(handle);
5907 return error;
5908 }
5909 /* Update corresponding info in inode so that everything is in
5910 * one transaction */
5911 i_uid_update(idmap, attr, inode);
5912 i_gid_update(idmap, attr, inode);
5913 error = ext4_mark_inode_dirty(handle, inode);
5914 ext4_journal_stop(handle);
5915 if (unlikely(error)) {
5916 return error;
5917 }
5918 }
5919
5920 if (attr->ia_valid & ATTR_SIZE) {
5921 handle_t *handle;
5922 loff_t oldsize = inode->i_size;
5923 loff_t old_disksize;
5924 int shrink = (attr->ia_size < inode->i_size);
5925
5926 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5927 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5928
5929 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5930 return -EFBIG;
5931 }
5932 }
5933 if (!S_ISREG(inode->i_mode)) {
5934 return -EINVAL;
5935 }
5936
5937 if (attr->ia_size == inode->i_size)
5938 inc_ivers = false;
5939
5940 if (shrink) {
5941 if (ext4_should_order_data(inode)) {
5942 error = ext4_begin_ordered_truncate(inode,
5943 attr->ia_size);
5944 if (error)
5945 goto err_out;
5946 }
5947 /*
5948 * Blocks are going to be removed from the inode. Wait
5949 * for dio in flight.
5950 */
5951 inode_dio_wait(inode);
5952 }
5953
5954 filemap_invalidate_lock(inode->i_mapping);
5955
5956 rc = ext4_break_layouts(inode);
5957 if (rc) {
5958 filemap_invalidate_unlock(inode->i_mapping);
5959 goto err_out;
5960 }
5961
5962 if (attr->ia_size != inode->i_size) {
5963 /* attach jbd2 jinode for EOF folio tail zeroing */
5964 if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5965 oldsize & (inode->i_sb->s_blocksize - 1)) {
5966 error = ext4_inode_attach_jinode(inode);
5967 if (error)
5968 goto out_mmap_sem;
5969 }
5970
5971 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5972 if (IS_ERR(handle)) {
5973 error = PTR_ERR(handle);
5974 goto out_mmap_sem;
5975 }
5976 if (ext4_handle_valid(handle) && shrink) {
5977 error = ext4_orphan_add(handle, inode);
5978 orphan = 1;
5979 }
5980 /*
5981 * Update c/mtime and tail zero the EOF folio on
5982 * truncate up. ext4_truncate() handles the shrink case
5983 * below.
5984 */
5985 if (!shrink) {
5986 inode_set_mtime_to_ts(inode,
5987 inode_set_ctime_current(inode));
5988 if (oldsize & (inode->i_sb->s_blocksize - 1))
5989 ext4_block_truncate_page(handle,
5990 inode->i_mapping, oldsize);
5991 }
5992
5993 if (shrink)
5994 ext4_fc_track_range(handle, inode,
5995 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5996 inode->i_sb->s_blocksize_bits,
5997 EXT_MAX_BLOCKS - 1);
5998 else
5999 ext4_fc_track_range(
6000 handle, inode,
6001 (oldsize > 0 ? oldsize - 1 : oldsize) >>
6002 inode->i_sb->s_blocksize_bits,
6003 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
6004 inode->i_sb->s_blocksize_bits);
6005
6006 down_write(&EXT4_I(inode)->i_data_sem);
6007 old_disksize = EXT4_I(inode)->i_disksize;
6008 EXT4_I(inode)->i_disksize = attr->ia_size;
6009
6010 /*
6011 * We have to update i_size under i_data_sem together
6012 * with i_disksize to avoid races with writeback code
6013 * running ext4_wb_update_i_disksize().
6014 */
6015 if (!error)
6016 i_size_write(inode, attr->ia_size);
6017 else
6018 EXT4_I(inode)->i_disksize = old_disksize;
6019 up_write(&EXT4_I(inode)->i_data_sem);
6020 rc = ext4_mark_inode_dirty(handle, inode);
6021 if (!error)
6022 error = rc;
6023 ext4_journal_stop(handle);
6024 if (error)
6025 goto out_mmap_sem;
6026 if (!shrink) {
6027 pagecache_isize_extended(inode, oldsize,
6028 inode->i_size);
6029 } else if (ext4_should_journal_data(inode)) {
6030 ext4_wait_for_tail_page_commit(inode);
6031 }
6032 }
6033
6034 /*
6035 * Truncate pagecache after we've waited for commit
6036 * in data=journal mode to make pages freeable.
6037 */
6038 truncate_pagecache(inode, inode->i_size);
6039 /*
6040 * Call ext4_truncate() even if i_size didn't change to
6041 * truncate possible preallocated blocks.
6042 */
6043 if (attr->ia_size <= oldsize) {
6044 rc = ext4_truncate(inode);
6045 if (rc)
6046 error = rc;
6047 }
6048 out_mmap_sem:
6049 filemap_invalidate_unlock(inode->i_mapping);
6050 }
6051
6052 if (!error) {
6053 if (inc_ivers)
6054 inode_inc_iversion(inode);
6055 setattr_copy(idmap, inode, attr);
6056 mark_inode_dirty(inode);
6057 }
6058
6059 /*
6060 * If the call to ext4_truncate failed to get a transaction handle at
6061 * all, we need to clean up the in-core orphan list manually.
6062 */
6063 if (orphan && inode->i_nlink)
6064 ext4_orphan_del(NULL, inode);
6065
6066 if (!error && (ia_valid & ATTR_MODE))
6067 rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
6068
6069 err_out:
6070 if (error)
6071 ext4_std_error(inode->i_sb, error);
6072 if (!error)
6073 error = rc;
6074 return error;
6075 }
6076
ext4_dio_alignment(struct inode * inode)6077 u32 ext4_dio_alignment(struct inode *inode)
6078 {
6079 if (fsverity_active(inode))
6080 return 0;
6081 if (ext4_should_journal_data(inode))
6082 return 0;
6083 if (ext4_has_inline_data(inode))
6084 return 0;
6085 if (IS_ENCRYPTED(inode)) {
6086 if (!fscrypt_dio_supported(inode))
6087 return 0;
6088 return i_blocksize(inode);
6089 }
6090 return 1; /* use the iomap defaults */
6091 }
6092
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)6093 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
6094 struct kstat *stat, u32 request_mask, unsigned int query_flags)
6095 {
6096 struct inode *inode = d_inode(path->dentry);
6097 struct ext4_inode *raw_inode;
6098 struct ext4_inode_info *ei = EXT4_I(inode);
6099 unsigned int flags;
6100
6101 if ((request_mask & STATX_BTIME) &&
6102 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
6103 stat->result_mask |= STATX_BTIME;
6104 stat->btime.tv_sec = ei->i_crtime.tv_sec;
6105 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
6106 }
6107
6108 /*
6109 * Return the DIO alignment restrictions if requested. We only return
6110 * this information when requested, since on encrypted files it might
6111 * take a fair bit of work to get if the file wasn't opened recently.
6112 */
6113 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
6114 u32 dio_align = ext4_dio_alignment(inode);
6115
6116 stat->result_mask |= STATX_DIOALIGN;
6117 if (dio_align == 1) {
6118 struct block_device *bdev = inode->i_sb->s_bdev;
6119
6120 /* iomap defaults */
6121 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
6122 stat->dio_offset_align = bdev_logical_block_size(bdev);
6123 } else {
6124 stat->dio_mem_align = dio_align;
6125 stat->dio_offset_align = dio_align;
6126 }
6127 }
6128
6129 if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
6130 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6131 unsigned int awu_min = 0, awu_max = 0;
6132
6133 if (ext4_inode_can_atomic_write(inode)) {
6134 awu_min = sbi->s_awu_min;
6135 awu_max = sbi->s_awu_max;
6136 }
6137
6138 generic_fill_statx_atomic_writes(stat, awu_min, awu_max, 0);
6139 }
6140
6141 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
6142 if (flags & EXT4_APPEND_FL)
6143 stat->attributes |= STATX_ATTR_APPEND;
6144 if (flags & EXT4_COMPR_FL)
6145 stat->attributes |= STATX_ATTR_COMPRESSED;
6146 if (flags & EXT4_ENCRYPT_FL)
6147 stat->attributes |= STATX_ATTR_ENCRYPTED;
6148 if (flags & EXT4_IMMUTABLE_FL)
6149 stat->attributes |= STATX_ATTR_IMMUTABLE;
6150 if (flags & EXT4_NODUMP_FL)
6151 stat->attributes |= STATX_ATTR_NODUMP;
6152 if (flags & EXT4_VERITY_FL)
6153 stat->attributes |= STATX_ATTR_VERITY;
6154
6155 stat->attributes_mask |= (STATX_ATTR_APPEND |
6156 STATX_ATTR_COMPRESSED |
6157 STATX_ATTR_ENCRYPTED |
6158 STATX_ATTR_IMMUTABLE |
6159 STATX_ATTR_NODUMP |
6160 STATX_ATTR_VERITY);
6161
6162 generic_fillattr(idmap, request_mask, inode, stat);
6163 return 0;
6164 }
6165
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)6166 int ext4_file_getattr(struct mnt_idmap *idmap,
6167 const struct path *path, struct kstat *stat,
6168 u32 request_mask, unsigned int query_flags)
6169 {
6170 struct inode *inode = d_inode(path->dentry);
6171 u64 delalloc_blocks;
6172
6173 ext4_getattr(idmap, path, stat, request_mask, query_flags);
6174
6175 /*
6176 * If there is inline data in the inode, the inode will normally not
6177 * have data blocks allocated (it may have an external xattr block).
6178 * Report at least one sector for such files, so tools like tar, rsync,
6179 * others don't incorrectly think the file is completely sparse.
6180 */
6181 if (unlikely(ext4_has_inline_data(inode)))
6182 stat->blocks += (stat->size + 511) >> 9;
6183
6184 /*
6185 * We can't update i_blocks if the block allocation is delayed
6186 * otherwise in the case of system crash before the real block
6187 * allocation is done, we will have i_blocks inconsistent with
6188 * on-disk file blocks.
6189 * We always keep i_blocks updated together with real
6190 * allocation. But to not confuse with user, stat
6191 * will return the blocks that include the delayed allocation
6192 * blocks for this file.
6193 */
6194 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
6195 EXT4_I(inode)->i_reserved_data_blocks);
6196 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
6197 return 0;
6198 }
6199
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)6200 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
6201 int pextents)
6202 {
6203 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
6204 return ext4_ind_trans_blocks(inode, lblocks);
6205 return ext4_ext_index_trans_blocks(inode, pextents);
6206 }
6207
6208 /*
6209 * Account for index blocks, block groups bitmaps and block group
6210 * descriptor blocks if modify datablocks and index blocks
6211 * worse case, the indexs blocks spread over different block groups
6212 *
6213 * If datablocks are discontiguous, they are possible to spread over
6214 * different block groups too. If they are contiguous, with flexbg,
6215 * they could still across block group boundary.
6216 *
6217 * Also account for superblock, inode, quota and xattr blocks
6218 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)6219 int ext4_meta_trans_blocks(struct inode *inode, int lblocks, int pextents)
6220 {
6221 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
6222 int gdpblocks;
6223 int idxblocks;
6224 int ret;
6225
6226 /*
6227 * How many index and leaf blocks need to touch to map @lblocks
6228 * logical blocks to @pextents physical extents?
6229 */
6230 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
6231
6232 /*
6233 * Now let's see how many group bitmaps and group descriptors need
6234 * to account
6235 */
6236 groups = idxblocks + pextents;
6237 gdpblocks = groups;
6238 if (groups > ngroups)
6239 groups = ngroups;
6240 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
6241 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
6242
6243 /* bitmaps and block group descriptor blocks */
6244 ret = idxblocks + groups + gdpblocks;
6245
6246 /* Blocks for super block, inode, quota and xattr blocks */
6247 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
6248
6249 return ret;
6250 }
6251
6252 /*
6253 * Calculate the journal credits for modifying the number of blocks
6254 * in a single extent within one transaction. 'nrblocks' is used only
6255 * for non-extent inodes. For extent type inodes, 'nrblocks' can be
6256 * zero if the exact number of blocks is unknown.
6257 */
ext4_chunk_trans_extent(struct inode * inode,int nrblocks)6258 int ext4_chunk_trans_extent(struct inode *inode, int nrblocks)
6259 {
6260 int ret;
6261
6262 ret = ext4_meta_trans_blocks(inode, nrblocks, 1);
6263 /* Account for data blocks for journalled mode */
6264 if (ext4_should_journal_data(inode))
6265 ret += nrblocks;
6266 return ret;
6267 }
6268
6269 /*
6270 * Calculate the journal credits for a chunk of data modification.
6271 *
6272 * This is called from DIO, fallocate or whoever calling
6273 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
6274 *
6275 * journal buffers for data blocks are not included here, as DIO
6276 * and fallocate do no need to journal data buffers.
6277 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)6278 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
6279 {
6280 return ext4_meta_trans_blocks(inode, nrblocks, 1);
6281 }
6282
6283 /*
6284 * The caller must have previously called ext4_reserve_inode_write().
6285 * Give this, we know that the caller already has write access to iloc->bh.
6286 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)6287 int ext4_mark_iloc_dirty(handle_t *handle,
6288 struct inode *inode, struct ext4_iloc *iloc)
6289 {
6290 int err = 0;
6291
6292 err = ext4_emergency_state(inode->i_sb);
6293 if (unlikely(err)) {
6294 put_bh(iloc->bh);
6295 return err;
6296 }
6297 ext4_fc_track_inode(handle, inode);
6298
6299 /* the do_update_inode consumes one bh->b_count */
6300 get_bh(iloc->bh);
6301
6302 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
6303 err = ext4_do_update_inode(handle, inode, iloc);
6304 put_bh(iloc->bh);
6305 return err;
6306 }
6307
6308 /*
6309 * On success, We end up with an outstanding reference count against
6310 * iloc->bh. This _must_ be cleaned up later.
6311 */
6312
6313 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)6314 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
6315 struct ext4_iloc *iloc)
6316 {
6317 int err;
6318
6319 err = ext4_emergency_state(inode->i_sb);
6320 if (unlikely(err))
6321 return err;
6322
6323 err = ext4_get_inode_loc(inode, iloc);
6324 if (!err) {
6325 BUFFER_TRACE(iloc->bh, "get_write_access");
6326 err = ext4_journal_get_write_access(handle, inode->i_sb,
6327 iloc->bh, EXT4_JTR_NONE);
6328 if (err) {
6329 brelse(iloc->bh);
6330 iloc->bh = NULL;
6331 }
6332 ext4_fc_track_inode(handle, inode);
6333 }
6334 ext4_std_error(inode->i_sb, err);
6335 return err;
6336 }
6337
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)6338 static int __ext4_expand_extra_isize(struct inode *inode,
6339 unsigned int new_extra_isize,
6340 struct ext4_iloc *iloc,
6341 handle_t *handle, int *no_expand)
6342 {
6343 struct ext4_inode *raw_inode;
6344 struct ext4_xattr_ibody_header *header;
6345 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
6346 struct ext4_inode_info *ei = EXT4_I(inode);
6347 int error;
6348
6349 /* this was checked at iget time, but double check for good measure */
6350 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
6351 (ei->i_extra_isize & 3)) {
6352 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
6353 ei->i_extra_isize,
6354 EXT4_INODE_SIZE(inode->i_sb));
6355 return -EFSCORRUPTED;
6356 }
6357 if ((new_extra_isize < ei->i_extra_isize) ||
6358 (new_extra_isize < 4) ||
6359 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
6360 return -EINVAL; /* Should never happen */
6361
6362 raw_inode = ext4_raw_inode(iloc);
6363
6364 header = IHDR(inode, raw_inode);
6365
6366 /* No extended attributes present */
6367 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
6368 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6369 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
6370 EXT4_I(inode)->i_extra_isize, 0,
6371 new_extra_isize - EXT4_I(inode)->i_extra_isize);
6372 EXT4_I(inode)->i_extra_isize = new_extra_isize;
6373 return 0;
6374 }
6375
6376 /*
6377 * We may need to allocate external xattr block so we need quotas
6378 * initialized. Here we can be called with various locks held so we
6379 * cannot affort to initialize quotas ourselves. So just bail.
6380 */
6381 if (dquot_initialize_needed(inode))
6382 return -EAGAIN;
6383
6384 /* try to expand with EAs present */
6385 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
6386 raw_inode, handle);
6387 if (error) {
6388 /*
6389 * Inode size expansion failed; don't try again
6390 */
6391 *no_expand = 1;
6392 }
6393
6394 return error;
6395 }
6396
6397 /*
6398 * Expand an inode by new_extra_isize bytes.
6399 * Returns 0 on success or negative error number on failure.
6400 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)6401 static int ext4_try_to_expand_extra_isize(struct inode *inode,
6402 unsigned int new_extra_isize,
6403 struct ext4_iloc iloc,
6404 handle_t *handle)
6405 {
6406 int no_expand;
6407 int error;
6408
6409 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
6410 return -EOVERFLOW;
6411
6412 /*
6413 * In nojournal mode, we can immediately attempt to expand
6414 * the inode. When journaled, we first need to obtain extra
6415 * buffer credits since we may write into the EA block
6416 * with this same handle. If journal_extend fails, then it will
6417 * only result in a minor loss of functionality for that inode.
6418 * If this is felt to be critical, then e2fsck should be run to
6419 * force a large enough s_min_extra_isize.
6420 */
6421 if (ext4_journal_extend(handle,
6422 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
6423 return -ENOSPC;
6424
6425 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
6426 return -EBUSY;
6427
6428 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
6429 handle, &no_expand);
6430 ext4_write_unlock_xattr(inode, &no_expand);
6431
6432 return error;
6433 }
6434
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)6435 int ext4_expand_extra_isize(struct inode *inode,
6436 unsigned int new_extra_isize,
6437 struct ext4_iloc *iloc)
6438 {
6439 handle_t *handle;
6440 int no_expand;
6441 int error, rc;
6442
6443 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6444 brelse(iloc->bh);
6445 return -EOVERFLOW;
6446 }
6447
6448 handle = ext4_journal_start(inode, EXT4_HT_INODE,
6449 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6450 if (IS_ERR(handle)) {
6451 error = PTR_ERR(handle);
6452 brelse(iloc->bh);
6453 return error;
6454 }
6455
6456 ext4_write_lock_xattr(inode, &no_expand);
6457
6458 BUFFER_TRACE(iloc->bh, "get_write_access");
6459 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6460 EXT4_JTR_NONE);
6461 if (error) {
6462 brelse(iloc->bh);
6463 goto out_unlock;
6464 }
6465
6466 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6467 handle, &no_expand);
6468
6469 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6470 if (!error)
6471 error = rc;
6472
6473 out_unlock:
6474 ext4_write_unlock_xattr(inode, &no_expand);
6475 ext4_journal_stop(handle);
6476 return error;
6477 }
6478
6479 /*
6480 * What we do here is to mark the in-core inode as clean with respect to inode
6481 * dirtiness (it may still be data-dirty).
6482 * This means that the in-core inode may be reaped by prune_icache
6483 * without having to perform any I/O. This is a very good thing,
6484 * because *any* task may call prune_icache - even ones which
6485 * have a transaction open against a different journal.
6486 *
6487 * Is this cheating? Not really. Sure, we haven't written the
6488 * inode out, but prune_icache isn't a user-visible syncing function.
6489 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6490 * we start and wait on commits.
6491 */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6492 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6493 const char *func, unsigned int line)
6494 {
6495 struct ext4_iloc iloc;
6496 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6497 int err;
6498
6499 might_sleep();
6500 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6501 err = ext4_reserve_inode_write(handle, inode, &iloc);
6502 if (err)
6503 goto out;
6504
6505 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6506 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6507 iloc, handle);
6508
6509 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6510 out:
6511 if (unlikely(err))
6512 ext4_error_inode_err(inode, func, line, 0, err,
6513 "mark_inode_dirty error");
6514 return err;
6515 }
6516
6517 /*
6518 * ext4_dirty_inode() is called from __mark_inode_dirty()
6519 *
6520 * We're really interested in the case where a file is being extended.
6521 * i_size has been changed by generic_commit_write() and we thus need
6522 * to include the updated inode in the current transaction.
6523 *
6524 * Also, dquot_alloc_block() will always dirty the inode when blocks
6525 * are allocated to the file.
6526 *
6527 * If the inode is marked synchronous, we don't honour that here - doing
6528 * so would cause a commit on atime updates, which we don't bother doing.
6529 * We handle synchronous inodes at the highest possible level.
6530 */
ext4_dirty_inode(struct inode * inode,int flags)6531 void ext4_dirty_inode(struct inode *inode, int flags)
6532 {
6533 handle_t *handle;
6534
6535 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6536 if (IS_ERR(handle))
6537 return;
6538 ext4_mark_inode_dirty(handle, inode);
6539 ext4_journal_stop(handle);
6540 }
6541
ext4_change_inode_journal_flag(struct inode * inode,int val)6542 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6543 {
6544 journal_t *journal;
6545 handle_t *handle;
6546 int err;
6547 int alloc_ctx;
6548
6549 /*
6550 * We have to be very careful here: changing a data block's
6551 * journaling status dynamically is dangerous. If we write a
6552 * data block to the journal, change the status and then delete
6553 * that block, we risk forgetting to revoke the old log record
6554 * from the journal and so a subsequent replay can corrupt data.
6555 * So, first we make sure that the journal is empty and that
6556 * nobody is changing anything.
6557 */
6558
6559 journal = EXT4_JOURNAL(inode);
6560 if (!journal)
6561 return 0;
6562 if (is_journal_aborted(journal))
6563 return -EROFS;
6564
6565 /* Wait for all existing dio workers */
6566 inode_dio_wait(inode);
6567
6568 /*
6569 * Before flushing the journal and switching inode's aops, we have
6570 * to flush all dirty data the inode has. There can be outstanding
6571 * delayed allocations, there can be unwritten extents created by
6572 * fallocate or buffered writes in dioread_nolock mode covered by
6573 * dirty data which can be converted only after flushing the dirty
6574 * data (and journalled aops don't know how to handle these cases).
6575 */
6576 if (val) {
6577 filemap_invalidate_lock(inode->i_mapping);
6578 err = filemap_write_and_wait(inode->i_mapping);
6579 if (err < 0) {
6580 filemap_invalidate_unlock(inode->i_mapping);
6581 return err;
6582 }
6583 }
6584
6585 alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6586 jbd2_journal_lock_updates(journal);
6587
6588 /*
6589 * OK, there are no updates running now, and all cached data is
6590 * synced to disk. We are now in a completely consistent state
6591 * which doesn't have anything in the journal, and we know that
6592 * no filesystem updates are running, so it is safe to modify
6593 * the inode's in-core data-journaling state flag now.
6594 */
6595
6596 if (val)
6597 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6598 else {
6599 err = jbd2_journal_flush(journal, 0);
6600 if (err < 0) {
6601 jbd2_journal_unlock_updates(journal);
6602 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6603 return err;
6604 }
6605 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6606 }
6607 ext4_set_aops(inode);
6608
6609 jbd2_journal_unlock_updates(journal);
6610 ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6611
6612 if (val)
6613 filemap_invalidate_unlock(inode->i_mapping);
6614
6615 /* Finally we can mark the inode as dirty. */
6616
6617 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6618 if (IS_ERR(handle))
6619 return PTR_ERR(handle);
6620
6621 ext4_fc_mark_ineligible(inode->i_sb,
6622 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6623 err = ext4_mark_inode_dirty(handle, inode);
6624 ext4_handle_sync(handle);
6625 ext4_journal_stop(handle);
6626 ext4_std_error(inode->i_sb, err);
6627
6628 return err;
6629 }
6630
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6631 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6632 struct buffer_head *bh)
6633 {
6634 return !buffer_mapped(bh);
6635 }
6636
ext4_block_page_mkwrite(struct inode * inode,struct folio * folio,get_block_t get_block)6637 static int ext4_block_page_mkwrite(struct inode *inode, struct folio *folio,
6638 get_block_t get_block)
6639 {
6640 handle_t *handle;
6641 loff_t size;
6642 unsigned long len;
6643 int credits;
6644 int ret;
6645
6646 credits = ext4_chunk_trans_extent(inode,
6647 ext4_journal_blocks_per_folio(inode));
6648 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, credits);
6649 if (IS_ERR(handle))
6650 return PTR_ERR(handle);
6651
6652 folio_lock(folio);
6653 size = i_size_read(inode);
6654 /* Page got truncated from under us? */
6655 if (folio->mapping != inode->i_mapping || folio_pos(folio) > size) {
6656 ret = -EFAULT;
6657 goto out_error;
6658 }
6659
6660 len = folio_size(folio);
6661 if (folio_pos(folio) + len > size)
6662 len = size - folio_pos(folio);
6663
6664 ret = ext4_block_write_begin(handle, folio, 0, len, get_block);
6665 if (ret)
6666 goto out_error;
6667
6668 if (!ext4_should_journal_data(inode)) {
6669 block_commit_write(folio, 0, len);
6670 folio_mark_dirty(folio);
6671 } else {
6672 ret = ext4_journal_folio_buffers(handle, folio, len);
6673 if (ret)
6674 goto out_error;
6675 }
6676 ext4_journal_stop(handle);
6677 folio_wait_stable(folio);
6678 return ret;
6679
6680 out_error:
6681 folio_unlock(folio);
6682 ext4_journal_stop(handle);
6683 return ret;
6684 }
6685
ext4_page_mkwrite(struct vm_fault * vmf)6686 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6687 {
6688 struct vm_area_struct *vma = vmf->vma;
6689 struct folio *folio = page_folio(vmf->page);
6690 loff_t size;
6691 unsigned long len;
6692 int err;
6693 vm_fault_t ret;
6694 struct file *file = vma->vm_file;
6695 struct inode *inode = file_inode(file);
6696 struct address_space *mapping = inode->i_mapping;
6697 get_block_t *get_block = ext4_get_block;
6698 int retries = 0;
6699
6700 if (unlikely(IS_IMMUTABLE(inode)))
6701 return VM_FAULT_SIGBUS;
6702
6703 sb_start_pagefault(inode->i_sb);
6704 file_update_time(vma->vm_file);
6705
6706 filemap_invalidate_lock_shared(mapping);
6707
6708 err = ext4_convert_inline_data(inode);
6709 if (err)
6710 goto out_ret;
6711
6712 /*
6713 * On data journalling we skip straight to the transaction handle:
6714 * there's no delalloc; page truncated will be checked later; the
6715 * early return w/ all buffers mapped (calculates size/len) can't
6716 * be used; and there's no dioread_nolock, so only ext4_get_block.
6717 */
6718 if (ext4_should_journal_data(inode))
6719 goto retry_alloc;
6720
6721 /* Delalloc case is easy... */
6722 if (test_opt(inode->i_sb, DELALLOC) &&
6723 !ext4_nonda_switch(inode->i_sb)) {
6724 do {
6725 err = block_page_mkwrite(vma, vmf,
6726 ext4_da_get_block_prep);
6727 } while (err == -ENOSPC &&
6728 ext4_should_retry_alloc(inode->i_sb, &retries));
6729 goto out_ret;
6730 }
6731
6732 folio_lock(folio);
6733 size = i_size_read(inode);
6734 /* Page got truncated from under us? */
6735 if (folio->mapping != mapping || folio_pos(folio) > size) {
6736 folio_unlock(folio);
6737 ret = VM_FAULT_NOPAGE;
6738 goto out;
6739 }
6740
6741 len = folio_size(folio);
6742 if (folio_pos(folio) + len > size)
6743 len = size - folio_pos(folio);
6744 /*
6745 * Return if we have all the buffers mapped. This avoids the need to do
6746 * journal_start/journal_stop which can block and take a long time
6747 *
6748 * This cannot be done for data journalling, as we have to add the
6749 * inode to the transaction's list to writeprotect pages on commit.
6750 */
6751 if (folio_buffers(folio)) {
6752 if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6753 0, len, NULL,
6754 ext4_bh_unmapped)) {
6755 /* Wait so that we don't change page under IO */
6756 folio_wait_stable(folio);
6757 ret = VM_FAULT_LOCKED;
6758 goto out;
6759 }
6760 }
6761 folio_unlock(folio);
6762 /* OK, we need to fill the hole... */
6763 if (ext4_should_dioread_nolock(inode))
6764 get_block = ext4_get_block_unwritten;
6765 retry_alloc:
6766 /* Start journal and allocate blocks */
6767 err = ext4_block_page_mkwrite(inode, folio, get_block);
6768 if (err == -EAGAIN ||
6769 (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)))
6770 goto retry_alloc;
6771 out_ret:
6772 ret = vmf_fs_error(err);
6773 out:
6774 filemap_invalidate_unlock_shared(mapping);
6775 sb_end_pagefault(inode->i_sb);
6776 return ret;
6777 }
6778