1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Texas Instruments Ethernet Switch Driver
4 *
5 * Copyright (C) 2019 Texas Instruments
6 */
7
8 #include <linux/bpf.h>
9 #include <linux/bpf_trace.h>
10 #include <linux/if_ether.h>
11 #include <linux/if_vlan.h>
12 #include <linux/kmemleak.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/net_tstamp.h>
16 #include <linux/of.h>
17 #include <linux/phy.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/skbuff.h>
21 #include <net/page_pool/helpers.h>
22 #include <net/pkt_cls.h>
23 #include <net/pkt_sched.h>
24
25 #include "cpsw.h"
26 #include "cpts.h"
27 #include "cpsw_ale.h"
28 #include "cpsw_priv.h"
29 #include "cpsw_sl.h"
30 #include "davinci_cpdma.h"
31
32 #define CPTS_N_ETX_TS 4
33
34 int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv);
35
cpsw_intr_enable(struct cpsw_common * cpsw)36 void cpsw_intr_enable(struct cpsw_common *cpsw)
37 {
38 writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
39 writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
40
41 cpdma_ctlr_int_ctrl(cpsw->dma, true);
42 }
43
cpsw_intr_disable(struct cpsw_common * cpsw)44 void cpsw_intr_disable(struct cpsw_common *cpsw)
45 {
46 writel_relaxed(0, &cpsw->wr_regs->tx_en);
47 writel_relaxed(0, &cpsw->wr_regs->rx_en);
48
49 cpdma_ctlr_int_ctrl(cpsw->dma, false);
50 }
51
cpsw_tx_handler(void * token,int len,int status)52 void cpsw_tx_handler(void *token, int len, int status)
53 {
54 struct cpsw_meta_xdp *xmeta;
55 struct xdp_frame *xdpf;
56 struct net_device *ndev;
57 struct netdev_queue *txq;
58 struct sk_buff *skb;
59 int ch;
60
61 if (cpsw_is_xdpf_handle(token)) {
62 xdpf = cpsw_handle_to_xdpf(token);
63 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
64 ndev = xmeta->ndev;
65 ch = xmeta->ch;
66 xdp_return_frame(xdpf);
67 } else {
68 skb = token;
69 ndev = skb->dev;
70 ch = skb_get_queue_mapping(skb);
71 cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb);
72 dev_kfree_skb_any(skb);
73 }
74
75 /* Check whether the queue is stopped due to stalled tx dma, if the
76 * queue is stopped then start the queue as we have free desc for tx
77 */
78 txq = netdev_get_tx_queue(ndev, ch);
79 if (unlikely(netif_tx_queue_stopped(txq)))
80 netif_tx_wake_queue(txq);
81
82 ndev->stats.tx_packets++;
83 ndev->stats.tx_bytes += len;
84 }
85
cpsw_tx_interrupt(int irq,void * dev_id)86 irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
87 {
88 struct cpsw_common *cpsw = dev_id;
89
90 writel(0, &cpsw->wr_regs->tx_en);
91 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
92
93 if (cpsw->quirk_irq) {
94 disable_irq_nosync(cpsw->irqs_table[1]);
95 cpsw->tx_irq_disabled = true;
96 }
97
98 napi_schedule(&cpsw->napi_tx);
99 return IRQ_HANDLED;
100 }
101
cpsw_rx_interrupt(int irq,void * dev_id)102 irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
103 {
104 struct cpsw_common *cpsw = dev_id;
105
106 writel(0, &cpsw->wr_regs->rx_en);
107 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
108
109 if (cpsw->quirk_irq) {
110 disable_irq_nosync(cpsw->irqs_table[0]);
111 cpsw->rx_irq_disabled = true;
112 }
113
114 napi_schedule(&cpsw->napi_rx);
115 return IRQ_HANDLED;
116 }
117
cpsw_misc_interrupt(int irq,void * dev_id)118 irqreturn_t cpsw_misc_interrupt(int irq, void *dev_id)
119 {
120 struct cpsw_common *cpsw = dev_id;
121
122 writel(0, &cpsw->wr_regs->misc_en);
123 cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_MISC);
124 cpts_misc_interrupt(cpsw->cpts);
125 writel(0x10, &cpsw->wr_regs->misc_en);
126
127 return IRQ_HANDLED;
128 }
129
cpsw_tx_mq_poll(struct napi_struct * napi_tx,int budget)130 int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget)
131 {
132 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
133 int num_tx, cur_budget, ch;
134 u32 ch_map;
135 struct cpsw_vector *txv;
136
137 /* process every unprocessed channel */
138 ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
139 for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) {
140 if (!(ch_map & 0x80))
141 continue;
142
143 txv = &cpsw->txv[ch];
144 if (unlikely(txv->budget > budget - num_tx))
145 cur_budget = budget - num_tx;
146 else
147 cur_budget = txv->budget;
148
149 num_tx += cpdma_chan_process(txv->ch, cur_budget);
150 if (num_tx >= budget)
151 break;
152 }
153
154 if (num_tx < budget) {
155 napi_complete(napi_tx);
156 writel(0xff, &cpsw->wr_regs->tx_en);
157 }
158
159 return num_tx;
160 }
161
cpsw_tx_poll(struct napi_struct * napi_tx,int budget)162 int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
163 {
164 struct cpsw_common *cpsw = napi_to_cpsw(napi_tx);
165 int num_tx;
166
167 num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget);
168 if (num_tx < budget) {
169 napi_complete(napi_tx);
170 writel(0xff, &cpsw->wr_regs->tx_en);
171 if (cpsw->tx_irq_disabled) {
172 cpsw->tx_irq_disabled = false;
173 enable_irq(cpsw->irqs_table[1]);
174 }
175 }
176
177 return num_tx;
178 }
179
cpsw_rx_mq_poll(struct napi_struct * napi_rx,int budget)180 int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget)
181 {
182 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
183 int num_rx, cur_budget, ch;
184 u32 ch_map;
185 struct cpsw_vector *rxv;
186
187 /* process every unprocessed channel */
188 ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
189 for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
190 if (!(ch_map & 0x01))
191 continue;
192
193 rxv = &cpsw->rxv[ch];
194 if (unlikely(rxv->budget > budget - num_rx))
195 cur_budget = budget - num_rx;
196 else
197 cur_budget = rxv->budget;
198
199 num_rx += cpdma_chan_process(rxv->ch, cur_budget);
200 if (num_rx >= budget)
201 break;
202 }
203
204 if (num_rx < budget) {
205 napi_complete_done(napi_rx, num_rx);
206 writel(0xff, &cpsw->wr_regs->rx_en);
207 }
208
209 return num_rx;
210 }
211
cpsw_rx_poll(struct napi_struct * napi_rx,int budget)212 int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
213 {
214 struct cpsw_common *cpsw = napi_to_cpsw(napi_rx);
215 int num_rx;
216
217 num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget);
218 if (num_rx < budget) {
219 napi_complete_done(napi_rx, num_rx);
220 writel(0xff, &cpsw->wr_regs->rx_en);
221 if (cpsw->rx_irq_disabled) {
222 cpsw->rx_irq_disabled = false;
223 enable_irq(cpsw->irqs_table[0]);
224 }
225 }
226
227 return num_rx;
228 }
229
cpsw_rx_vlan_encap(struct sk_buff * skb)230 void cpsw_rx_vlan_encap(struct sk_buff *skb)
231 {
232 struct cpsw_priv *priv = netdev_priv(skb->dev);
233 u32 rx_vlan_encap_hdr = *((u32 *)skb->data);
234 struct cpsw_common *cpsw = priv->cpsw;
235 u16 vtag, vid, prio, pkt_type;
236
237 /* Remove VLAN header encapsulation word */
238 skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE);
239
240 pkt_type = (rx_vlan_encap_hdr >>
241 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) &
242 CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK;
243 /* Ignore unknown & Priority-tagged packets*/
244 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV ||
245 pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG)
246 return;
247
248 vid = (rx_vlan_encap_hdr >>
249 CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) &
250 VLAN_VID_MASK;
251 /* Ignore vid 0 and pass packet as is */
252 if (!vid)
253 return;
254
255 /* Untag P0 packets if set for vlan */
256 if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) {
257 prio = (rx_vlan_encap_hdr >>
258 CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) &
259 CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK;
260
261 vtag = (prio << VLAN_PRIO_SHIFT) | vid;
262 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag);
263 }
264
265 /* strip vlan tag for VLAN-tagged packet */
266 if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) {
267 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
268 skb_pull(skb, VLAN_HLEN);
269 }
270 }
271
cpsw_set_slave_mac(struct cpsw_slave * slave,struct cpsw_priv * priv)272 void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv)
273 {
274 slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
275 slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
276 }
277
soft_reset(const char * module,void __iomem * reg)278 void soft_reset(const char *module, void __iomem *reg)
279 {
280 unsigned long timeout = jiffies + HZ;
281
282 writel_relaxed(1, reg);
283 do {
284 cpu_relax();
285 } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
286
287 WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
288 }
289
cpsw_ndo_tx_timeout(struct net_device * ndev,unsigned int txqueue)290 void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue)
291 {
292 struct cpsw_priv *priv = netdev_priv(ndev);
293 struct cpsw_common *cpsw = priv->cpsw;
294 int ch;
295
296 cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
297 ndev->stats.tx_errors++;
298 cpsw_intr_disable(cpsw);
299 for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
300 cpdma_chan_stop(cpsw->txv[ch].ch);
301 cpdma_chan_start(cpsw->txv[ch].ch);
302 }
303
304 cpsw_intr_enable(cpsw);
305 netif_trans_update(ndev);
306 netif_tx_wake_all_queues(ndev);
307 }
308
cpsw_get_common_speed(struct cpsw_common * cpsw)309 static int cpsw_get_common_speed(struct cpsw_common *cpsw)
310 {
311 int i, speed;
312
313 for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
314 if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
315 speed += cpsw->slaves[i].phy->speed;
316
317 return speed;
318 }
319
cpsw_need_resplit(struct cpsw_common * cpsw)320 int cpsw_need_resplit(struct cpsw_common *cpsw)
321 {
322 int i, rlim_ch_num;
323 int speed, ch_rate;
324
325 /* re-split resources only in case speed was changed */
326 speed = cpsw_get_common_speed(cpsw);
327 if (speed == cpsw->speed || !speed)
328 return 0;
329
330 cpsw->speed = speed;
331
332 for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
333 ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
334 if (!ch_rate)
335 break;
336
337 rlim_ch_num++;
338 }
339
340 /* cases not dependent on speed */
341 if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
342 return 0;
343
344 return 1;
345 }
346
cpsw_split_res(struct cpsw_common * cpsw)347 void cpsw_split_res(struct cpsw_common *cpsw)
348 {
349 u32 consumed_rate = 0, bigest_rate = 0;
350 struct cpsw_vector *txv = cpsw->txv;
351 int i, ch_weight, rlim_ch_num = 0;
352 int budget, bigest_rate_ch = 0;
353 u32 ch_rate, max_rate;
354 int ch_budget = 0;
355
356 for (i = 0; i < cpsw->tx_ch_num; i++) {
357 ch_rate = cpdma_chan_get_rate(txv[i].ch);
358 if (!ch_rate)
359 continue;
360
361 rlim_ch_num++;
362 consumed_rate += ch_rate;
363 }
364
365 if (cpsw->tx_ch_num == rlim_ch_num) {
366 max_rate = consumed_rate;
367 } else if (!rlim_ch_num) {
368 ch_budget = NAPI_POLL_WEIGHT / cpsw->tx_ch_num;
369 bigest_rate = 0;
370 max_rate = consumed_rate;
371 } else {
372 max_rate = cpsw->speed * 1000;
373
374 /* if max_rate is less then expected due to reduced link speed,
375 * split proportionally according next potential max speed
376 */
377 if (max_rate < consumed_rate)
378 max_rate *= 10;
379
380 if (max_rate < consumed_rate)
381 max_rate *= 10;
382
383 ch_budget = (consumed_rate * NAPI_POLL_WEIGHT) / max_rate;
384 ch_budget = (NAPI_POLL_WEIGHT - ch_budget) /
385 (cpsw->tx_ch_num - rlim_ch_num);
386 bigest_rate = (max_rate - consumed_rate) /
387 (cpsw->tx_ch_num - rlim_ch_num);
388 }
389
390 /* split tx weight/budget */
391 budget = NAPI_POLL_WEIGHT;
392 for (i = 0; i < cpsw->tx_ch_num; i++) {
393 ch_rate = cpdma_chan_get_rate(txv[i].ch);
394 if (ch_rate) {
395 txv[i].budget = (ch_rate * NAPI_POLL_WEIGHT) / max_rate;
396 if (!txv[i].budget)
397 txv[i].budget++;
398 if (ch_rate > bigest_rate) {
399 bigest_rate_ch = i;
400 bigest_rate = ch_rate;
401 }
402
403 ch_weight = (ch_rate * 100) / max_rate;
404 if (!ch_weight)
405 ch_weight++;
406 cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
407 } else {
408 txv[i].budget = ch_budget;
409 if (!bigest_rate_ch)
410 bigest_rate_ch = i;
411 cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
412 }
413
414 budget -= txv[i].budget;
415 }
416
417 if (budget)
418 txv[bigest_rate_ch].budget += budget;
419
420 /* split rx budget */
421 budget = NAPI_POLL_WEIGHT;
422 ch_budget = budget / cpsw->rx_ch_num;
423 for (i = 0; i < cpsw->rx_ch_num; i++) {
424 cpsw->rxv[i].budget = ch_budget;
425 budget -= ch_budget;
426 }
427
428 if (budget)
429 cpsw->rxv[0].budget += budget;
430 }
431
cpsw_init_common(struct cpsw_common * cpsw,void __iomem * ss_regs,int ale_ageout,phys_addr_t desc_mem_phys,int descs_pool_size)432 int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs,
433 int ale_ageout, phys_addr_t desc_mem_phys,
434 int descs_pool_size)
435 {
436 u32 slave_offset, sliver_offset, slave_size;
437 struct cpsw_ale_params ale_params;
438 struct cpsw_platform_data *data;
439 struct cpdma_params dma_params;
440 struct device *dev = cpsw->dev;
441 struct device_node *cpts_node;
442 void __iomem *cpts_regs;
443 int ret = 0, i;
444
445 data = &cpsw->data;
446 cpsw->rx_ch_num = 1;
447 cpsw->tx_ch_num = 1;
448
449 cpsw->version = readl(&cpsw->regs->id_ver);
450
451 memset(&dma_params, 0, sizeof(dma_params));
452 memset(&ale_params, 0, sizeof(ale_params));
453
454 switch (cpsw->version) {
455 case CPSW_VERSION_1:
456 cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
457 cpts_regs = ss_regs + CPSW1_CPTS_OFFSET;
458 cpsw->hw_stats = ss_regs + CPSW1_HW_STATS;
459 dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET;
460 dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET;
461 ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET;
462 slave_offset = CPSW1_SLAVE_OFFSET;
463 slave_size = CPSW1_SLAVE_SIZE;
464 sliver_offset = CPSW1_SLIVER_OFFSET;
465 dma_params.desc_mem_phys = 0;
466 break;
467 case CPSW_VERSION_2:
468 case CPSW_VERSION_3:
469 case CPSW_VERSION_4:
470 cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
471 cpts_regs = ss_regs + CPSW2_CPTS_OFFSET;
472 cpsw->hw_stats = ss_regs + CPSW2_HW_STATS;
473 dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET;
474 dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET;
475 ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET;
476 slave_offset = CPSW2_SLAVE_OFFSET;
477 slave_size = CPSW2_SLAVE_SIZE;
478 sliver_offset = CPSW2_SLIVER_OFFSET;
479 dma_params.desc_mem_phys = desc_mem_phys;
480 break;
481 default:
482 dev_err(dev, "unknown version 0x%08x\n", cpsw->version);
483 return -ENODEV;
484 }
485
486 for (i = 0; i < cpsw->data.slaves; i++) {
487 struct cpsw_slave *slave = &cpsw->slaves[i];
488 void __iomem *regs = cpsw->regs;
489
490 slave->slave_num = i;
491 slave->data = &cpsw->data.slave_data[i];
492 slave->regs = regs + slave_offset;
493 slave->port_vlan = slave->data->dual_emac_res_vlan;
494 slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset);
495 if (IS_ERR(slave->mac_sl))
496 return PTR_ERR(slave->mac_sl);
497
498 slave_offset += slave_size;
499 sliver_offset += SLIVER_SIZE;
500 }
501
502 ale_params.dev = dev;
503 ale_params.ale_ageout = ale_ageout;
504 ale_params.ale_ports = CPSW_ALE_PORTS_NUM;
505 ale_params.dev_id = "cpsw";
506 ale_params.bus_freq = cpsw->bus_freq_mhz * 1000000;
507
508 cpsw->ale = cpsw_ale_create(&ale_params);
509 if (IS_ERR(cpsw->ale)) {
510 dev_err(dev, "error initializing ale engine\n");
511 return PTR_ERR(cpsw->ale);
512 }
513
514 dma_params.dev = dev;
515 dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH;
516 dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE;
517 dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP;
518 dma_params.txcp = dma_params.txhdp + CPDMA_TXCP;
519 dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP;
520
521 dma_params.num_chan = data->channels;
522 dma_params.has_soft_reset = true;
523 dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE;
524 dma_params.desc_mem_size = data->bd_ram_size;
525 dma_params.desc_align = 16;
526 dma_params.has_ext_regs = true;
527 dma_params.desc_hw_addr = dma_params.desc_mem_phys;
528 dma_params.bus_freq_mhz = cpsw->bus_freq_mhz;
529 dma_params.descs_pool_size = descs_pool_size;
530
531 cpsw->dma = cpdma_ctlr_create(&dma_params);
532 if (!cpsw->dma) {
533 dev_err(dev, "error initializing dma\n");
534 return -ENOMEM;
535 }
536
537 cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts");
538 if (!cpts_node)
539 cpts_node = cpsw->dev->of_node;
540
541 cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node,
542 CPTS_N_ETX_TS);
543 if (IS_ERR(cpsw->cpts)) {
544 ret = PTR_ERR(cpsw->cpts);
545 cpdma_ctlr_destroy(cpsw->dma);
546 }
547 of_node_put(cpts_node);
548
549 return ret;
550 }
551
552 #if IS_ENABLED(CONFIG_TI_CPTS)
553
cpsw_hwtstamp_v1(struct cpsw_priv * priv)554 static void cpsw_hwtstamp_v1(struct cpsw_priv *priv)
555 {
556 struct cpsw_common *cpsw = priv->cpsw;
557 struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
558 u32 ts_en, seq_id;
559
560 if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) {
561 slave_write(slave, 0, CPSW1_TS_CTL);
562 return;
563 }
564
565 seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
566 ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;
567
568 if (priv->tx_ts_enabled)
569 ts_en |= CPSW_V1_TS_TX_EN;
570
571 if (priv->rx_ts_enabled)
572 ts_en |= CPSW_V1_TS_RX_EN;
573
574 slave_write(slave, ts_en, CPSW1_TS_CTL);
575 slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
576 }
577
cpsw_hwtstamp_v2(struct cpsw_priv * priv)578 static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
579 {
580 struct cpsw_common *cpsw = priv->cpsw;
581 struct cpsw_slave *slave;
582 u32 ctrl, mtype;
583
584 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
585
586 ctrl = slave_read(slave, CPSW2_CONTROL);
587 switch (cpsw->version) {
588 case CPSW_VERSION_2:
589 ctrl &= ~CTRL_V2_ALL_TS_MASK;
590
591 if (priv->tx_ts_enabled)
592 ctrl |= CTRL_V2_TX_TS_BITS;
593
594 if (priv->rx_ts_enabled)
595 ctrl |= CTRL_V2_RX_TS_BITS;
596 break;
597 case CPSW_VERSION_3:
598 default:
599 ctrl &= ~CTRL_V3_ALL_TS_MASK;
600
601 if (priv->tx_ts_enabled)
602 ctrl |= CTRL_V3_TX_TS_BITS;
603
604 if (priv->rx_ts_enabled)
605 ctrl |= CTRL_V3_RX_TS_BITS;
606 break;
607 }
608
609 mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;
610
611 slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
612 slave_write(slave, ctrl, CPSW2_CONTROL);
613 writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
614 writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype);
615 }
616
cpsw_hwtstamp_set(struct net_device * dev,struct kernel_hwtstamp_config * cfg,struct netlink_ext_ack * extack)617 int cpsw_hwtstamp_set(struct net_device *dev,
618 struct kernel_hwtstamp_config *cfg,
619 struct netlink_ext_ack *extack)
620 {
621 struct cpsw_priv *priv = netdev_priv(dev);
622 struct cpsw_common *cpsw = priv->cpsw;
623
624 /* This will only execute if dev->see_all_hwtstamp_requests is set */
625 if (cfg->source != HWTSTAMP_SOURCE_NETDEV) {
626 NL_SET_ERR_MSG_MOD(extack,
627 "Switch mode only supports MAC timestamping");
628 return -EOPNOTSUPP;
629 }
630
631 if (cpsw->version != CPSW_VERSION_1 &&
632 cpsw->version != CPSW_VERSION_2 &&
633 cpsw->version != CPSW_VERSION_3)
634 return -EOPNOTSUPP;
635
636 if (cfg->tx_type != HWTSTAMP_TX_OFF && cfg->tx_type != HWTSTAMP_TX_ON)
637 return -ERANGE;
638
639 switch (cfg->rx_filter) {
640 case HWTSTAMP_FILTER_NONE:
641 priv->rx_ts_enabled = 0;
642 break;
643 case HWTSTAMP_FILTER_ALL:
644 case HWTSTAMP_FILTER_NTP_ALL:
645 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
646 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
647 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
648 return -ERANGE;
649 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
650 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
651 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
652 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
653 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
654 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
655 case HWTSTAMP_FILTER_PTP_V2_EVENT:
656 case HWTSTAMP_FILTER_PTP_V2_SYNC:
657 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
658 priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT;
659 cfg->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
660 break;
661 default:
662 return -ERANGE;
663 }
664
665 priv->tx_ts_enabled = cfg->tx_type == HWTSTAMP_TX_ON;
666
667 switch (cpsw->version) {
668 case CPSW_VERSION_1:
669 cpsw_hwtstamp_v1(priv);
670 break;
671 case CPSW_VERSION_2:
672 case CPSW_VERSION_3:
673 cpsw_hwtstamp_v2(priv);
674 break;
675 default:
676 WARN_ON(1);
677 }
678
679 return 0;
680 }
681
cpsw_hwtstamp_get(struct net_device * dev,struct kernel_hwtstamp_config * cfg)682 int cpsw_hwtstamp_get(struct net_device *dev,
683 struct kernel_hwtstamp_config *cfg)
684 {
685 struct cpsw_common *cpsw = ndev_to_cpsw(dev);
686 struct cpsw_priv *priv = netdev_priv(dev);
687
688 if (cpsw->version != CPSW_VERSION_1 &&
689 cpsw->version != CPSW_VERSION_2 &&
690 cpsw->version != CPSW_VERSION_3)
691 return -EOPNOTSUPP;
692
693 cfg->tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
694 cfg->rx_filter = priv->rx_ts_enabled;
695
696 return 0;
697 }
698 #else
cpsw_hwtstamp_get(struct net_device * dev,struct kernel_hwtstamp_config * cfg)699 int cpsw_hwtstamp_get(struct net_device *dev,
700 struct kernel_hwtstamp_config *cfg)
701 {
702 return -EOPNOTSUPP;
703 }
704
cpsw_hwtstamp_set(struct net_device * dev,struct kernel_hwtstamp_config * cfg,struct netlink_ext_ack * extack)705 int cpsw_hwtstamp_set(struct net_device *dev,
706 struct kernel_hwtstamp_config *cfg,
707 struct netlink_ext_ack *extack)
708 {
709 return -EOPNOTSUPP;
710 }
711 #endif /*CONFIG_TI_CPTS*/
712
cpsw_ndo_set_tx_maxrate(struct net_device * ndev,int queue,u32 rate)713 int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
714 {
715 struct cpsw_priv *priv = netdev_priv(ndev);
716 struct cpsw_common *cpsw = priv->cpsw;
717 struct cpsw_slave *slave;
718 u32 min_rate;
719 u32 ch_rate;
720 int i, ret;
721
722 ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
723 if (ch_rate == rate)
724 return 0;
725
726 ch_rate = rate * 1000;
727 min_rate = cpdma_chan_get_min_rate(cpsw->dma);
728 if ((ch_rate < min_rate && ch_rate)) {
729 dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
730 min_rate);
731 return -EINVAL;
732 }
733
734 if (rate > cpsw->speed) {
735 dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
736 return -EINVAL;
737 }
738
739 ret = pm_runtime_resume_and_get(cpsw->dev);
740 if (ret < 0)
741 return ret;
742
743 ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
744 pm_runtime_put(cpsw->dev);
745
746 if (ret)
747 return ret;
748
749 /* update rates for slaves tx queues */
750 for (i = 0; i < cpsw->data.slaves; i++) {
751 slave = &cpsw->slaves[i];
752 if (!slave->ndev)
753 continue;
754
755 netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
756 }
757
758 cpsw_split_res(cpsw);
759 return ret;
760 }
761
cpsw_tc_to_fifo(int tc,int num_tc)762 static int cpsw_tc_to_fifo(int tc, int num_tc)
763 {
764 if (tc == num_tc - 1)
765 return 0;
766
767 return CPSW_FIFO_SHAPERS_NUM - tc;
768 }
769
cpsw_shp_is_off(struct cpsw_priv * priv)770 bool cpsw_shp_is_off(struct cpsw_priv *priv)
771 {
772 struct cpsw_common *cpsw = priv->cpsw;
773 struct cpsw_slave *slave;
774 u32 shift, mask, val;
775
776 val = readl_relaxed(&cpsw->regs->ptype);
777
778 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
779 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
780 mask = 7 << shift;
781 val = val & mask;
782
783 return !val;
784 }
785
cpsw_fifo_shp_on(struct cpsw_priv * priv,int fifo,int on)786 static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on)
787 {
788 struct cpsw_common *cpsw = priv->cpsw;
789 struct cpsw_slave *slave;
790 u32 shift, mask, val;
791
792 val = readl_relaxed(&cpsw->regs->ptype);
793
794 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
795 shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num;
796 mask = (1 << --fifo) << shift;
797 val = on ? val | mask : val & ~mask;
798
799 writel_relaxed(val, &cpsw->regs->ptype);
800 }
801
cpsw_set_fifo_bw(struct cpsw_priv * priv,int fifo,int bw)802 static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw)
803 {
804 struct cpsw_common *cpsw = priv->cpsw;
805 u32 val = 0, send_pct, shift;
806 struct cpsw_slave *slave;
807 int pct = 0, i;
808
809 if (bw > priv->shp_cfg_speed * 1000)
810 goto err;
811
812 /* shaping has to stay enabled for highest fifos linearly
813 * and fifo bw no more then interface can allow
814 */
815 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
816 send_pct = slave_read(slave, SEND_PERCENT);
817 for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) {
818 if (!bw) {
819 if (i >= fifo || !priv->fifo_bw[i])
820 continue;
821
822 dev_warn(priv->dev, "Prev FIFO%d is shaped", i);
823 continue;
824 }
825
826 if (!priv->fifo_bw[i] && i > fifo) {
827 dev_err(priv->dev, "Upper FIFO%d is not shaped", i);
828 return -EINVAL;
829 }
830
831 shift = (i - 1) * 8;
832 if (i == fifo) {
833 send_pct &= ~(CPSW_PCT_MASK << shift);
834 val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10);
835 if (!val)
836 val = 1;
837
838 send_pct |= val << shift;
839 pct += val;
840 continue;
841 }
842
843 if (priv->fifo_bw[i])
844 pct += (send_pct >> shift) & CPSW_PCT_MASK;
845 }
846
847 if (pct >= 100)
848 goto err;
849
850 slave_write(slave, send_pct, SEND_PERCENT);
851 priv->fifo_bw[fifo] = bw;
852
853 dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo,
854 DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100));
855
856 return 0;
857 err:
858 dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration");
859 return -EINVAL;
860 }
861
cpsw_set_fifo_rlimit(struct cpsw_priv * priv,int fifo,int bw)862 static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw)
863 {
864 struct cpsw_common *cpsw = priv->cpsw;
865 struct cpsw_slave *slave;
866 u32 tx_in_ctl_rg, val;
867 int ret;
868
869 ret = cpsw_set_fifo_bw(priv, fifo, bw);
870 if (ret)
871 return ret;
872
873 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
874 tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ?
875 CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL;
876
877 if (!bw)
878 cpsw_fifo_shp_on(priv, fifo, bw);
879
880 val = slave_read(slave, tx_in_ctl_rg);
881 if (cpsw_shp_is_off(priv)) {
882 /* disable FIFOs rate limited queues */
883 val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT);
884
885 /* set type of FIFO queues to normal priority mode */
886 val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT);
887
888 /* set type of FIFO queues to be rate limited */
889 if (bw)
890 val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT;
891 else
892 priv->shp_cfg_speed = 0;
893 }
894
895 /* toggle a FIFO rate limited queue */
896 if (bw)
897 val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
898 else
899 val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT);
900 slave_write(slave, val, tx_in_ctl_rg);
901
902 /* FIFO transmit shape enable */
903 cpsw_fifo_shp_on(priv, fifo, bw);
904 return 0;
905 }
906
907 /* Defaults:
908 * class A - prio 3
909 * class B - prio 2
910 * shaping for class A should be set first
911 */
cpsw_set_cbs(struct net_device * ndev,struct tc_cbs_qopt_offload * qopt)912 static int cpsw_set_cbs(struct net_device *ndev,
913 struct tc_cbs_qopt_offload *qopt)
914 {
915 struct cpsw_priv *priv = netdev_priv(ndev);
916 struct cpsw_common *cpsw = priv->cpsw;
917 struct cpsw_slave *slave;
918 int prev_speed = 0;
919 int tc, ret, fifo;
920 u32 bw = 0;
921
922 tc = netdev_txq_to_tc(priv->ndev, qopt->queue);
923
924 /* enable channels in backward order, as highest FIFOs must be rate
925 * limited first and for compliance with CPDMA rate limited channels
926 * that also used in bacward order. FIFO0 cannot be rate limited.
927 */
928 fifo = cpsw_tc_to_fifo(tc, ndev->num_tc);
929 if (!fifo) {
930 dev_err(priv->dev, "Last tc%d can't be rate limited", tc);
931 return -EINVAL;
932 }
933
934 /* do nothing, it's disabled anyway */
935 if (!qopt->enable && !priv->fifo_bw[fifo])
936 return 0;
937
938 /* shapers can be set if link speed is known */
939 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
940 if (slave->phy && slave->phy->link) {
941 if (priv->shp_cfg_speed &&
942 priv->shp_cfg_speed != slave->phy->speed)
943 prev_speed = priv->shp_cfg_speed;
944
945 priv->shp_cfg_speed = slave->phy->speed;
946 }
947
948 if (!priv->shp_cfg_speed) {
949 dev_err(priv->dev, "Link speed is not known");
950 return -1;
951 }
952
953 ret = pm_runtime_resume_and_get(cpsw->dev);
954 if (ret < 0)
955 return ret;
956
957 bw = qopt->enable ? qopt->idleslope : 0;
958 ret = cpsw_set_fifo_rlimit(priv, fifo, bw);
959 if (ret) {
960 priv->shp_cfg_speed = prev_speed;
961 prev_speed = 0;
962 }
963
964 if (bw && prev_speed)
965 dev_warn(priv->dev,
966 "Speed was changed, CBS shaper speeds are changed!");
967
968 pm_runtime_put_sync(cpsw->dev);
969 return ret;
970 }
971
cpsw_set_mqprio(struct net_device * ndev,void * type_data)972 static int cpsw_set_mqprio(struct net_device *ndev, void *type_data)
973 {
974 struct tc_mqprio_qopt_offload *mqprio = type_data;
975 struct cpsw_priv *priv = netdev_priv(ndev);
976 struct cpsw_common *cpsw = priv->cpsw;
977 int fifo, num_tc, count, offset;
978 struct cpsw_slave *slave;
979 u32 tx_prio_map = 0;
980 int i, tc, ret;
981
982 num_tc = mqprio->qopt.num_tc;
983 if (num_tc > CPSW_TC_NUM)
984 return -EINVAL;
985
986 if (mqprio->mode != TC_MQPRIO_MODE_DCB)
987 return -EINVAL;
988
989 ret = pm_runtime_resume_and_get(cpsw->dev);
990 if (ret < 0)
991 return ret;
992
993 if (num_tc) {
994 for (i = 0; i < 8; i++) {
995 tc = mqprio->qopt.prio_tc_map[i];
996 fifo = cpsw_tc_to_fifo(tc, num_tc);
997 tx_prio_map |= fifo << (4 * i);
998 }
999
1000 netdev_set_num_tc(ndev, num_tc);
1001 for (i = 0; i < num_tc; i++) {
1002 count = mqprio->qopt.count[i];
1003 offset = mqprio->qopt.offset[i];
1004 netdev_set_tc_queue(ndev, i, count, offset);
1005 }
1006 }
1007
1008 if (!mqprio->qopt.hw) {
1009 /* restore default configuration */
1010 netdev_reset_tc(ndev);
1011 tx_prio_map = TX_PRIORITY_MAPPING;
1012 }
1013
1014 priv->mqprio_hw = mqprio->qopt.hw;
1015
1016 offset = cpsw->version == CPSW_VERSION_1 ?
1017 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1018
1019 slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1020 slave_write(slave, tx_prio_map, offset);
1021
1022 pm_runtime_put_sync(cpsw->dev);
1023
1024 return 0;
1025 }
1026
1027 static int cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f);
1028
cpsw_ndo_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)1029 int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1030 void *type_data)
1031 {
1032 switch (type) {
1033 case TC_SETUP_QDISC_CBS:
1034 return cpsw_set_cbs(ndev, type_data);
1035
1036 case TC_SETUP_QDISC_MQPRIO:
1037 return cpsw_set_mqprio(ndev, type_data);
1038
1039 case TC_SETUP_BLOCK:
1040 return cpsw_qos_setup_tc_block(ndev, type_data);
1041
1042 default:
1043 return -EOPNOTSUPP;
1044 }
1045 }
1046
cpsw_cbs_resume(struct cpsw_slave * slave,struct cpsw_priv * priv)1047 void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1048 {
1049 int fifo, bw;
1050
1051 for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) {
1052 bw = priv->fifo_bw[fifo];
1053 if (!bw)
1054 continue;
1055
1056 cpsw_set_fifo_rlimit(priv, fifo, bw);
1057 }
1058 }
1059
cpsw_mqprio_resume(struct cpsw_slave * slave,struct cpsw_priv * priv)1060 void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv)
1061 {
1062 struct cpsw_common *cpsw = priv->cpsw;
1063 u32 tx_prio_map = 0;
1064 int i, tc, fifo;
1065 u32 tx_prio_rg;
1066
1067 if (!priv->mqprio_hw)
1068 return;
1069
1070 for (i = 0; i < 8; i++) {
1071 tc = netdev_get_prio_tc_map(priv->ndev, i);
1072 fifo = CPSW_FIFO_SHAPERS_NUM - tc;
1073 tx_prio_map |= fifo << (4 * i);
1074 }
1075
1076 tx_prio_rg = cpsw->version == CPSW_VERSION_1 ?
1077 CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP;
1078
1079 slave_write(slave, tx_prio_map, tx_prio_rg);
1080 }
1081
cpsw_fill_rx_channels(struct cpsw_priv * priv)1082 int cpsw_fill_rx_channels(struct cpsw_priv *priv)
1083 {
1084 struct cpsw_common *cpsw = priv->cpsw;
1085 struct cpsw_meta_xdp *xmeta;
1086 struct page_pool *pool;
1087 struct page *page;
1088 int ch_buf_num;
1089 int ch, i, ret;
1090 dma_addr_t dma;
1091
1092 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1093 pool = cpsw->page_pool[ch];
1094 ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1095 for (i = 0; i < ch_buf_num; i++) {
1096 page = page_pool_dev_alloc_pages(pool);
1097 if (!page) {
1098 cpsw_err(priv, ifup, "allocate rx page err\n");
1099 return -ENOMEM;
1100 }
1101
1102 xmeta = page_address(page) + CPSW_XMETA_OFFSET;
1103 xmeta->ndev = priv->ndev;
1104 xmeta->ch = ch;
1105
1106 dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM_NA;
1107 ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch,
1108 page, dma,
1109 cpsw->rx_packet_max,
1110 0);
1111 if (ret < 0) {
1112 cpsw_err(priv, ifup,
1113 "cannot submit page to channel %d rx, error %d\n",
1114 ch, ret);
1115 page_pool_recycle_direct(pool, page);
1116 return ret;
1117 }
1118 }
1119
1120 cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
1121 ch, ch_buf_num);
1122 }
1123
1124 return 0;
1125 }
1126
cpsw_create_page_pool(struct cpsw_common * cpsw,int size)1127 static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw,
1128 int size)
1129 {
1130 struct page_pool_params pp_params = {};
1131 struct page_pool *pool;
1132
1133 pp_params.order = 0;
1134 pp_params.flags = PP_FLAG_DMA_MAP;
1135 pp_params.pool_size = size;
1136 pp_params.nid = NUMA_NO_NODE;
1137 pp_params.dma_dir = DMA_BIDIRECTIONAL;
1138 pp_params.dev = cpsw->dev;
1139
1140 pool = page_pool_create(&pp_params);
1141 if (IS_ERR(pool))
1142 dev_err(cpsw->dev, "cannot create rx page pool\n");
1143
1144 return pool;
1145 }
1146
cpsw_create_rx_pool(struct cpsw_common * cpsw,int ch)1147 static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch)
1148 {
1149 struct page_pool *pool;
1150 int ret = 0, pool_size;
1151
1152 pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1153 pool = cpsw_create_page_pool(cpsw, pool_size);
1154 if (IS_ERR(pool))
1155 ret = PTR_ERR(pool);
1156 else
1157 cpsw->page_pool[ch] = pool;
1158
1159 return ret;
1160 }
1161
cpsw_ndev_create_xdp_rxq(struct cpsw_priv * priv,int ch)1162 static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch)
1163 {
1164 struct cpsw_common *cpsw = priv->cpsw;
1165 struct xdp_rxq_info *rxq;
1166 struct page_pool *pool;
1167 int ret;
1168
1169 pool = cpsw->page_pool[ch];
1170 rxq = &priv->xdp_rxq[ch];
1171
1172 ret = xdp_rxq_info_reg(rxq, priv->ndev, ch, 0);
1173 if (ret)
1174 return ret;
1175
1176 ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool);
1177 if (ret)
1178 xdp_rxq_info_unreg(rxq);
1179
1180 return ret;
1181 }
1182
cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv * priv,int ch)1183 static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch)
1184 {
1185 struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch];
1186
1187 if (!xdp_rxq_info_is_reg(rxq))
1188 return;
1189
1190 xdp_rxq_info_unreg(rxq);
1191 }
1192
cpsw_destroy_xdp_rxqs(struct cpsw_common * cpsw)1193 void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw)
1194 {
1195 struct net_device *ndev;
1196 int i, ch;
1197
1198 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1199 for (i = 0; i < cpsw->data.slaves; i++) {
1200 ndev = cpsw->slaves[i].ndev;
1201 if (!ndev)
1202 continue;
1203
1204 cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch);
1205 }
1206
1207 page_pool_destroy(cpsw->page_pool[ch]);
1208 cpsw->page_pool[ch] = NULL;
1209 }
1210 }
1211
cpsw_create_xdp_rxqs(struct cpsw_common * cpsw)1212 int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw)
1213 {
1214 struct net_device *ndev;
1215 int i, ch, ret;
1216
1217 for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1218 ret = cpsw_create_rx_pool(cpsw, ch);
1219 if (ret)
1220 goto err_cleanup;
1221
1222 /* using same page pool is allowed as no running rx handlers
1223 * simultaneously for both ndevs
1224 */
1225 for (i = 0; i < cpsw->data.slaves; i++) {
1226 ndev = cpsw->slaves[i].ndev;
1227 if (!ndev)
1228 continue;
1229
1230 ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch);
1231 if (ret)
1232 goto err_cleanup;
1233 }
1234 }
1235
1236 return 0;
1237
1238 err_cleanup:
1239 cpsw_destroy_xdp_rxqs(cpsw);
1240
1241 return ret;
1242 }
1243
cpsw_xdp_prog_setup(struct cpsw_priv * priv,struct netdev_bpf * bpf)1244 static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf)
1245 {
1246 struct bpf_prog *prog = bpf->prog;
1247
1248 if (!priv->xdpi.prog && !prog)
1249 return 0;
1250
1251 WRITE_ONCE(priv->xdp_prog, prog);
1252
1253 xdp_attachment_setup(&priv->xdpi, bpf);
1254
1255 return 0;
1256 }
1257
cpsw_ndo_bpf(struct net_device * ndev,struct netdev_bpf * bpf)1258 int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
1259 {
1260 struct cpsw_priv *priv = netdev_priv(ndev);
1261
1262 switch (bpf->command) {
1263 case XDP_SETUP_PROG:
1264 return cpsw_xdp_prog_setup(priv, bpf);
1265
1266 default:
1267 return -EINVAL;
1268 }
1269 }
1270
cpsw_xdp_tx_frame(struct cpsw_priv * priv,struct xdp_frame * xdpf,struct page * page,int port)1271 int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf,
1272 struct page *page, int port)
1273 {
1274 struct cpsw_common *cpsw = priv->cpsw;
1275 struct cpsw_meta_xdp *xmeta;
1276 struct cpdma_chan *txch;
1277 dma_addr_t dma;
1278 int ret;
1279
1280 xmeta = (void *)xdpf + CPSW_XMETA_OFFSET;
1281 xmeta->ndev = priv->ndev;
1282 xmeta->ch = 0;
1283 txch = cpsw->txv[0].ch;
1284
1285 if (page) {
1286 dma = page_pool_get_dma_addr(page);
1287 dma += xdpf->headroom + sizeof(struct xdp_frame);
1288 ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf),
1289 dma, xdpf->len, port);
1290 } else {
1291 if (sizeof(*xmeta) > xdpf->headroom)
1292 return -EINVAL;
1293
1294 ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf),
1295 xdpf->data, xdpf->len, port);
1296 }
1297
1298 if (ret)
1299 priv->ndev->stats.tx_dropped++;
1300
1301 return ret;
1302 }
1303
cpsw_run_xdp(struct cpsw_priv * priv,int ch,struct xdp_buff * xdp,struct page * page,int port,int * len)1304 int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp,
1305 struct page *page, int port, int *len)
1306 {
1307 struct cpsw_common *cpsw = priv->cpsw;
1308 struct net_device *ndev = priv->ndev;
1309 int ret = CPSW_XDP_CONSUMED;
1310 struct xdp_frame *xdpf;
1311 struct bpf_prog *prog;
1312 u32 act;
1313
1314 prog = READ_ONCE(priv->xdp_prog);
1315 if (!prog)
1316 return CPSW_XDP_PASS;
1317
1318 act = bpf_prog_run_xdp(prog, xdp);
1319 /* XDP prog might have changed packet data and boundaries */
1320 *len = xdp->data_end - xdp->data;
1321
1322 switch (act) {
1323 case XDP_PASS:
1324 ret = CPSW_XDP_PASS;
1325 goto out;
1326 case XDP_TX:
1327 xdpf = xdp_convert_buff_to_frame(xdp);
1328 if (unlikely(!xdpf))
1329 goto drop;
1330
1331 if (cpsw_xdp_tx_frame(priv, xdpf, page, port))
1332 xdp_return_frame_rx_napi(xdpf);
1333 break;
1334 case XDP_REDIRECT:
1335 if (xdp_do_redirect(ndev, xdp, prog))
1336 goto drop;
1337
1338 /* Have to flush here, per packet, instead of doing it in bulk
1339 * at the end of the napi handler. The RX devices on this
1340 * particular hardware is sharing a common queue, so the
1341 * incoming device might change per packet.
1342 */
1343 xdp_do_flush();
1344 break;
1345 default:
1346 bpf_warn_invalid_xdp_action(ndev, prog, act);
1347 fallthrough;
1348 case XDP_ABORTED:
1349 trace_xdp_exception(ndev, prog, act);
1350 fallthrough; /* handle aborts by dropping packet */
1351 case XDP_DROP:
1352 ndev->stats.rx_bytes += *len;
1353 ndev->stats.rx_packets++;
1354 goto drop;
1355 }
1356
1357 ndev->stats.rx_bytes += *len;
1358 ndev->stats.rx_packets++;
1359 out:
1360 return ret;
1361 drop:
1362 page_pool_recycle_direct(cpsw->page_pool[ch], page);
1363 return ret;
1364 }
1365
cpsw_qos_clsflower_add_policer(struct cpsw_priv * priv,struct netlink_ext_ack * extack,struct flow_cls_offload * cls,u64 rate_pkt_ps)1366 static int cpsw_qos_clsflower_add_policer(struct cpsw_priv *priv,
1367 struct netlink_ext_ack *extack,
1368 struct flow_cls_offload *cls,
1369 u64 rate_pkt_ps)
1370 {
1371 struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
1372 struct flow_dissector *dissector = rule->match.dissector;
1373 static const u8 mc_mac[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00};
1374 struct flow_match_eth_addrs match;
1375 u32 port_id;
1376 int ret;
1377
1378 if (dissector->used_keys &
1379 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
1380 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
1381 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS))) {
1382 NL_SET_ERR_MSG_MOD(extack,
1383 "Unsupported keys used");
1384 return -EOPNOTSUPP;
1385 }
1386
1387 if (flow_rule_match_has_control_flags(rule, extack))
1388 return -EOPNOTSUPP;
1389
1390 if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
1391 NL_SET_ERR_MSG_MOD(extack, "Not matching on eth address");
1392 return -EOPNOTSUPP;
1393 }
1394
1395 flow_rule_match_eth_addrs(rule, &match);
1396
1397 if (!is_zero_ether_addr(match.mask->src)) {
1398 NL_SET_ERR_MSG_MOD(extack,
1399 "Matching on source MAC not supported");
1400 return -EOPNOTSUPP;
1401 }
1402
1403 port_id = cpsw_slave_index(priv->cpsw, priv) + 1;
1404
1405 if (is_broadcast_ether_addr(match.key->dst) &&
1406 is_broadcast_ether_addr(match.mask->dst)) {
1407 ret = cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, rate_pkt_ps);
1408 if (ret)
1409 return ret;
1410
1411 priv->ale_bc_ratelimit.cookie = cls->cookie;
1412 priv->ale_bc_ratelimit.rate_packet_ps = rate_pkt_ps;
1413 } else if (ether_addr_equal_unaligned(match.key->dst, mc_mac) &&
1414 ether_addr_equal_unaligned(match.mask->dst, mc_mac)) {
1415 ret = cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, rate_pkt_ps);
1416 if (ret)
1417 return ret;
1418
1419 priv->ale_mc_ratelimit.cookie = cls->cookie;
1420 priv->ale_mc_ratelimit.rate_packet_ps = rate_pkt_ps;
1421 } else {
1422 NL_SET_ERR_MSG_MOD(extack, "Not supported matching key");
1423 return -EOPNOTSUPP;
1424 }
1425
1426 return 0;
1427 }
1428
cpsw_qos_clsflower_policer_validate(const struct flow_action * action,const struct flow_action_entry * act,struct netlink_ext_ack * extack)1429 static int cpsw_qos_clsflower_policer_validate(const struct flow_action *action,
1430 const struct flow_action_entry *act,
1431 struct netlink_ext_ack *extack)
1432 {
1433 if (act->police.exceed.act_id != FLOW_ACTION_DROP) {
1434 NL_SET_ERR_MSG_MOD(extack,
1435 "Offload not supported when exceed action is not drop");
1436 return -EOPNOTSUPP;
1437 }
1438
1439 if (act->police.notexceed.act_id != FLOW_ACTION_PIPE &&
1440 act->police.notexceed.act_id != FLOW_ACTION_ACCEPT) {
1441 NL_SET_ERR_MSG_MOD(extack,
1442 "Offload not supported when conform action is not pipe or ok");
1443 return -EOPNOTSUPP;
1444 }
1445
1446 if (act->police.notexceed.act_id == FLOW_ACTION_ACCEPT &&
1447 !flow_action_is_last_entry(action, act)) {
1448 NL_SET_ERR_MSG_MOD(extack,
1449 "Offload not supported when conform action is ok, but action is not last");
1450 return -EOPNOTSUPP;
1451 }
1452
1453 if (act->police.rate_bytes_ps || act->police.peakrate_bytes_ps ||
1454 act->police.avrate || act->police.overhead) {
1455 NL_SET_ERR_MSG_MOD(extack,
1456 "Offload not supported when bytes per second/peakrate/avrate/overhead is configured");
1457 return -EOPNOTSUPP;
1458 }
1459
1460 return 0;
1461 }
1462
cpsw_qos_configure_clsflower(struct cpsw_priv * priv,struct flow_cls_offload * cls)1463 static int cpsw_qos_configure_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls)
1464 {
1465 struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
1466 struct netlink_ext_ack *extack = cls->common.extack;
1467 const struct flow_action_entry *act;
1468 int i, ret;
1469
1470 flow_action_for_each(i, act, &rule->action) {
1471 switch (act->id) {
1472 case FLOW_ACTION_POLICE:
1473 ret = cpsw_qos_clsflower_policer_validate(&rule->action, act, extack);
1474 if (ret)
1475 return ret;
1476
1477 return cpsw_qos_clsflower_add_policer(priv, extack, cls,
1478 act->police.rate_pkt_ps);
1479 default:
1480 NL_SET_ERR_MSG_MOD(extack, "Action not supported");
1481 return -EOPNOTSUPP;
1482 }
1483 }
1484 return -EOPNOTSUPP;
1485 }
1486
cpsw_qos_delete_clsflower(struct cpsw_priv * priv,struct flow_cls_offload * cls)1487 static int cpsw_qos_delete_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls)
1488 {
1489 u32 port_id = cpsw_slave_index(priv->cpsw, priv) + 1;
1490
1491 if (cls->cookie == priv->ale_bc_ratelimit.cookie) {
1492 priv->ale_bc_ratelimit.cookie = 0;
1493 priv->ale_bc_ratelimit.rate_packet_ps = 0;
1494 cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, 0);
1495 }
1496
1497 if (cls->cookie == priv->ale_mc_ratelimit.cookie) {
1498 priv->ale_mc_ratelimit.cookie = 0;
1499 priv->ale_mc_ratelimit.rate_packet_ps = 0;
1500 cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, 0);
1501 }
1502
1503 return 0;
1504 }
1505
cpsw_qos_setup_tc_clsflower(struct cpsw_priv * priv,struct flow_cls_offload * cls_flower)1506 static int cpsw_qos_setup_tc_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls_flower)
1507 {
1508 switch (cls_flower->command) {
1509 case FLOW_CLS_REPLACE:
1510 return cpsw_qos_configure_clsflower(priv, cls_flower);
1511 case FLOW_CLS_DESTROY:
1512 return cpsw_qos_delete_clsflower(priv, cls_flower);
1513 default:
1514 return -EOPNOTSUPP;
1515 }
1516 }
1517
cpsw_qos_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)1518 static int cpsw_qos_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
1519 {
1520 struct cpsw_priv *priv = cb_priv;
1521 int ret;
1522
1523 if (!tc_cls_can_offload_and_chain0(priv->ndev, type_data))
1524 return -EOPNOTSUPP;
1525
1526 ret = pm_runtime_get_sync(priv->dev);
1527 if (ret < 0) {
1528 pm_runtime_put_noidle(priv->dev);
1529 return ret;
1530 }
1531
1532 switch (type) {
1533 case TC_SETUP_CLSFLOWER:
1534 ret = cpsw_qos_setup_tc_clsflower(priv, type_data);
1535 break;
1536 default:
1537 ret = -EOPNOTSUPP;
1538 }
1539
1540 pm_runtime_put(priv->dev);
1541 return ret;
1542 }
1543
1544 static LIST_HEAD(cpsw_qos_block_cb_list);
1545
cpsw_qos_setup_tc_block(struct net_device * ndev,struct flow_block_offload * f)1546 static int cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f)
1547 {
1548 struct cpsw_priv *priv = netdev_priv(ndev);
1549
1550 return flow_block_cb_setup_simple(f, &cpsw_qos_block_cb_list,
1551 cpsw_qos_setup_tc_block_cb,
1552 priv, priv, true);
1553 }
1554
cpsw_qos_clsflower_resume(struct cpsw_priv * priv)1555 void cpsw_qos_clsflower_resume(struct cpsw_priv *priv)
1556 {
1557 u32 port_id = cpsw_slave_index(priv->cpsw, priv) + 1;
1558
1559 if (priv->ale_bc_ratelimit.cookie)
1560 cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id,
1561 priv->ale_bc_ratelimit.rate_packet_ps);
1562
1563 if (priv->ale_mc_ratelimit.cookie)
1564 cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id,
1565 priv->ale_mc_ratelimit.rate_packet_ps);
1566 }
1567