1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "block-group.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
entry_end(struct btrfs_ordered_extent * entry)26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
tree_insert(struct rb_root * root,u64 file_offset,struct rb_node * node)36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38 {
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58 }
59
60 /*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
__tree_search(struct rb_root * root,u64 file_offset,struct rb_node ** prev_ret)64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66 {
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112 }
113
btrfs_range_overlaps(struct btrfs_ordered_extent * entry,u64 file_offset,u64 len)114 static int btrfs_range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116 {
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121 }
122
123 /*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
ordered_tree_search(struct btrfs_inode * inode,u64 file_offset)127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128 u64 file_offset)
129 {
130 struct rb_node *prev = NULL;
131 struct rb_node *ret;
132 struct btrfs_ordered_extent *entry;
133
134 if (inode->ordered_tree_last) {
135 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136 rb_node);
137 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138 return inode->ordered_tree_last;
139 }
140 ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141 if (!ret)
142 ret = prev;
143 if (ret)
144 inode->ordered_tree_last = ret;
145 return ret;
146 }
147
alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,u64 num_bytes,u64 ram_bytes,u64 disk_bytenr,u64 disk_num_bytes,u64 offset,unsigned long flags,int compress_type)148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149 struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150 u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151 u64 offset, unsigned long flags, int compress_type)
152 {
153 struct btrfs_ordered_extent *entry;
154 int ret;
155 u64 qgroup_rsv = 0;
156 const bool is_nocow = (flags &
157 ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)));
158
159 /*
160 * For a NOCOW write we can free the qgroup reserve right now. For a COW
161 * one we transfer the reserved space from the inode's iotree into the
162 * ordered extent by calling btrfs_qgroup_release_data() and tracking
163 * the qgroup reserved amount in the ordered extent, so that later after
164 * completing the ordered extent, when running the data delayed ref it
165 * creates, we free the reserved data with btrfs_qgroup_free_refroot().
166 */
167 if (is_nocow)
168 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
169 else
170 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
171
172 if (ret < 0)
173 return ERR_PTR(ret);
174
175 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
176 if (!entry) {
177 entry = ERR_PTR(-ENOMEM);
178 goto out;
179 }
180
181 entry->file_offset = file_offset;
182 entry->num_bytes = num_bytes;
183 entry->ram_bytes = ram_bytes;
184 entry->disk_bytenr = disk_bytenr;
185 entry->disk_num_bytes = disk_num_bytes;
186 entry->offset = offset;
187 entry->bytes_left = num_bytes;
188 if (WARN_ON_ONCE(!igrab(&inode->vfs_inode))) {
189 kmem_cache_free(btrfs_ordered_extent_cache, entry);
190 entry = ERR_PTR(-ESTALE);
191 goto out;
192 }
193 entry->inode = inode;
194 entry->compress_type = compress_type;
195 entry->truncated_len = (u64)-1;
196 entry->qgroup_rsv = qgroup_rsv;
197 entry->flags = flags;
198 refcount_set(&entry->refs, 1);
199 init_waitqueue_head(&entry->wait);
200 INIT_LIST_HEAD(&entry->list);
201 INIT_LIST_HEAD(&entry->log_list);
202 INIT_LIST_HEAD(&entry->root_extent_list);
203 INIT_LIST_HEAD(&entry->work_list);
204 INIT_LIST_HEAD(&entry->bioc_list);
205 init_completion(&entry->completion);
206
207 /*
208 * We don't need the count_max_extents here, we can assume that all of
209 * that work has been done at higher layers, so this is truly the
210 * smallest the extent is going to get.
211 */
212 spin_lock(&inode->lock);
213 btrfs_mod_outstanding_extents(inode, 1);
214 spin_unlock(&inode->lock);
215
216 out:
217 if (IS_ERR(entry) && !is_nocow)
218 btrfs_qgroup_free_refroot(inode->root->fs_info,
219 btrfs_root_id(inode->root),
220 qgroup_rsv, BTRFS_QGROUP_RSV_DATA);
221
222 return entry;
223 }
224
insert_ordered_extent(struct btrfs_ordered_extent * entry)225 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
226 {
227 struct btrfs_inode *inode = entry->inode;
228 struct btrfs_root *root = inode->root;
229 struct btrfs_fs_info *fs_info = root->fs_info;
230 struct rb_node *node;
231
232 trace_btrfs_ordered_extent_add(inode, entry);
233
234 percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
235 fs_info->delalloc_batch);
236
237 /* One ref for the tree. */
238 refcount_inc(&entry->refs);
239
240 spin_lock_irq(&inode->ordered_tree_lock);
241 node = tree_insert(&inode->ordered_tree, entry->file_offset,
242 &entry->rb_node);
243 if (unlikely(node))
244 btrfs_panic(fs_info, -EEXIST,
245 "inconsistency in ordered tree at offset %llu",
246 entry->file_offset);
247 spin_unlock_irq(&inode->ordered_tree_lock);
248
249 spin_lock(&root->ordered_extent_lock);
250 list_add_tail(&entry->root_extent_list,
251 &root->ordered_extents);
252 root->nr_ordered_extents++;
253 if (root->nr_ordered_extents == 1) {
254 spin_lock(&fs_info->ordered_root_lock);
255 BUG_ON(!list_empty(&root->ordered_root));
256 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
257 spin_unlock(&fs_info->ordered_root_lock);
258 }
259 spin_unlock(&root->ordered_extent_lock);
260 }
261
262 /*
263 * Add an ordered extent to the per-inode tree.
264 *
265 * @inode: Inode that this extent is for.
266 * @file_offset: Logical offset in file where the extent starts.
267 * @num_bytes: Logical length of extent in file.
268 * @ram_bytes: Full length of unencoded data.
269 * @disk_bytenr: Offset of extent on disk.
270 * @disk_num_bytes: Size of extent on disk.
271 * @offset: Offset into unencoded data where file data starts.
272 * @flags: Flags specifying type of extent (1U << BTRFS_ORDERED_*).
273 * @compress_type: Compression algorithm used for data.
274 *
275 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
276 * tree is given a single reference on the ordered extent that was inserted, and
277 * the returned pointer is given a second reference.
278 *
279 * Return: the new ordered extent or error pointer.
280 */
btrfs_alloc_ordered_extent(struct btrfs_inode * inode,u64 file_offset,const struct btrfs_file_extent * file_extent,unsigned long flags)281 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
282 struct btrfs_inode *inode, u64 file_offset,
283 const struct btrfs_file_extent *file_extent, unsigned long flags)
284 {
285 struct btrfs_ordered_extent *entry;
286
287 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
288
289 /*
290 * For regular writes, we just use the members in @file_extent.
291 *
292 * For NOCOW, we don't really care about the numbers except @start and
293 * file_extent->num_bytes, as we won't insert a file extent item at all.
294 *
295 * For PREALLOC, we do not use ordered extent members, but
296 * btrfs_mark_extent_written() handles everything.
297 *
298 * So here we always pass 0 as offset for NOCOW/PREALLOC ordered extents,
299 * or btrfs_split_ordered_extent() cannot handle it correctly.
300 */
301 if (flags & ((1U << BTRFS_ORDERED_NOCOW) | (1U << BTRFS_ORDERED_PREALLOC)))
302 entry = alloc_ordered_extent(inode, file_offset,
303 file_extent->num_bytes,
304 file_extent->num_bytes,
305 file_extent->disk_bytenr + file_extent->offset,
306 file_extent->num_bytes, 0, flags,
307 file_extent->compression);
308 else
309 entry = alloc_ordered_extent(inode, file_offset,
310 file_extent->num_bytes,
311 file_extent->ram_bytes,
312 file_extent->disk_bytenr,
313 file_extent->disk_num_bytes,
314 file_extent->offset, flags,
315 file_extent->compression);
316 if (!IS_ERR(entry))
317 insert_ordered_extent(entry);
318 return entry;
319 }
320
321 /*
322 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
323 * when an ordered extent is finished. If the list covers more than one
324 * ordered extent, it is split across multiples.
325 */
btrfs_add_ordered_sum(struct btrfs_ordered_extent * entry,struct btrfs_ordered_sum * sum)326 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
327 struct btrfs_ordered_sum *sum)
328 {
329 struct btrfs_inode *inode = entry->inode;
330
331 spin_lock_irq(&inode->ordered_tree_lock);
332 list_add_tail(&sum->list, &entry->list);
333 spin_unlock_irq(&inode->ordered_tree_lock);
334 }
335
btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent * ordered)336 void btrfs_mark_ordered_extent_error(struct btrfs_ordered_extent *ordered)
337 {
338 if (!test_and_set_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
339 mapping_set_error(ordered->inode->vfs_inode.i_mapping, -EIO);
340 }
341
finish_ordered_fn(struct btrfs_work * work)342 static void finish_ordered_fn(struct btrfs_work *work)
343 {
344 struct btrfs_ordered_extent *ordered_extent;
345
346 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
347 btrfs_finish_ordered_io(ordered_extent);
348 }
349
can_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)350 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
351 struct folio *folio, u64 file_offset,
352 u64 len, bool uptodate)
353 {
354 struct btrfs_inode *inode = ordered->inode;
355 struct btrfs_fs_info *fs_info = inode->root->fs_info;
356
357 lockdep_assert_held(&inode->ordered_tree_lock);
358
359 if (folio) {
360 ASSERT(folio->mapping);
361 ASSERT(folio_pos(folio) <= file_offset);
362 ASSERT(file_offset + len <= folio_end(folio));
363
364 /*
365 * Ordered flag indicates whether we still have
366 * pending io unfinished for the ordered extent.
367 *
368 * If it's not set, we need to skip to next range.
369 */
370 if (!btrfs_folio_test_ordered(fs_info, folio, file_offset, len))
371 return false;
372 btrfs_folio_clear_ordered(fs_info, folio, file_offset, len);
373 }
374
375 /* Now we're fine to update the accounting. */
376 if (WARN_ON_ONCE(len > ordered->bytes_left)) {
377 btrfs_crit(fs_info,
378 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
379 btrfs_root_id(inode->root), btrfs_ino(inode),
380 ordered->file_offset, ordered->num_bytes,
381 len, ordered->bytes_left);
382 ordered->bytes_left = 0;
383 } else {
384 ordered->bytes_left -= len;
385 }
386
387 if (!uptodate)
388 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
389
390 if (ordered->bytes_left)
391 return false;
392
393 /*
394 * All the IO of the ordered extent is finished, we need to queue
395 * the finish_func to be executed.
396 */
397 set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
398 cond_wake_up(&ordered->wait);
399 refcount_inc(&ordered->refs);
400 trace_btrfs_ordered_extent_mark_finished(inode, ordered);
401 return true;
402 }
403
btrfs_queue_ordered_fn(struct btrfs_ordered_extent * ordered)404 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
405 {
406 struct btrfs_inode *inode = ordered->inode;
407 struct btrfs_fs_info *fs_info = inode->root->fs_info;
408 struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
409 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
410
411 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
412 btrfs_queue_work(wq, &ordered->work);
413 }
414
btrfs_finish_ordered_extent(struct btrfs_ordered_extent * ordered,struct folio * folio,u64 file_offset,u64 len,bool uptodate)415 void btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
416 struct folio *folio, u64 file_offset, u64 len,
417 bool uptodate)
418 {
419 struct btrfs_inode *inode = ordered->inode;
420 unsigned long flags;
421 bool ret;
422
423 trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
424
425 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
426 ret = can_finish_ordered_extent(ordered, folio, file_offset, len,
427 uptodate);
428 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
429
430 /*
431 * If this is a COW write it means we created new extent maps for the
432 * range and they point to unwritten locations if we got an error either
433 * before submitting a bio or during IO.
434 *
435 * We have marked the ordered extent with BTRFS_ORDERED_IOERR, and we
436 * are queuing its completion below. During completion, at
437 * btrfs_finish_one_ordered(), we will drop the extent maps for the
438 * unwritten extents.
439 *
440 * However because completion runs in a work queue we can end up having
441 * a fast fsync running before that. In the case of direct IO, once we
442 * unlock the inode the fsync might start, and we queue the completion
443 * before unlocking the inode. In the case of buffered IO when writeback
444 * finishes (end_bbio_data_write()) we queue the completion, so if the
445 * writeback was triggered by a fast fsync, the fsync might start
446 * logging before ordered extent completion runs in the work queue.
447 *
448 * The fast fsync will log file extent items based on the extent maps it
449 * finds, so if by the time it collects extent maps the ordered extent
450 * completion didn't happen yet, it will log file extent items that
451 * point to unwritten extents, resulting in a corruption if a crash
452 * happens and the log tree is replayed. Note that a fast fsync does not
453 * wait for completion of ordered extents in order to reduce latency.
454 *
455 * Set a flag in the inode so that the next fast fsync will wait for
456 * ordered extents to complete before starting to log.
457 */
458 if (!uptodate && !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
459 set_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
460
461 if (ret)
462 btrfs_queue_ordered_fn(ordered);
463 }
464
465 /*
466 * Mark all ordered extents io inside the specified range finished.
467 *
468 * @folio: The involved folio for the operation.
469 * For uncompressed buffered IO, the folio status also needs to be
470 * updated to indicate whether the pending ordered io is finished.
471 * Can be NULL for direct IO and compressed write.
472 * For these cases, callers are ensured they won't execute the
473 * endio function twice.
474 *
475 * This function is called for endio, thus the range must have ordered
476 * extent(s) covering it.
477 */
btrfs_mark_ordered_io_finished(struct btrfs_inode * inode,struct folio * folio,u64 file_offset,u64 num_bytes,bool uptodate)478 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
479 struct folio *folio, u64 file_offset,
480 u64 num_bytes, bool uptodate)
481 {
482 struct rb_node *node;
483 struct btrfs_ordered_extent *entry = NULL;
484 unsigned long flags;
485 u64 cur = file_offset;
486
487 trace_btrfs_writepage_end_io_hook(inode, file_offset,
488 file_offset + num_bytes - 1,
489 uptodate);
490
491 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
492 while (cur < file_offset + num_bytes) {
493 u64 entry_end;
494 u64 end;
495 u32 len;
496
497 node = ordered_tree_search(inode, cur);
498 /* No ordered extents at all */
499 if (!node)
500 break;
501
502 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
503 entry_end = entry->file_offset + entry->num_bytes;
504 /*
505 * |<-- OE --->| |
506 * cur
507 * Go to next OE.
508 */
509 if (cur >= entry_end) {
510 node = rb_next(node);
511 /* No more ordered extents, exit */
512 if (!node)
513 break;
514 entry = rb_entry(node, struct btrfs_ordered_extent,
515 rb_node);
516
517 /* Go to next ordered extent and continue */
518 cur = entry->file_offset;
519 continue;
520 }
521 /*
522 * | |<--- OE --->|
523 * cur
524 * Go to the start of OE.
525 */
526 if (cur < entry->file_offset) {
527 cur = entry->file_offset;
528 continue;
529 }
530
531 /*
532 * Now we are definitely inside one ordered extent.
533 *
534 * |<--- OE --->|
535 * |
536 * cur
537 */
538 end = min(entry->file_offset + entry->num_bytes,
539 file_offset + num_bytes) - 1;
540 ASSERT(end + 1 - cur < U32_MAX);
541 len = end + 1 - cur;
542
543 if (can_finish_ordered_extent(entry, folio, cur, len, uptodate)) {
544 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
545 btrfs_queue_ordered_fn(entry);
546 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
547 }
548 cur += len;
549 }
550 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
551 }
552
553 /*
554 * Finish IO for one ordered extent across a given range. The range can only
555 * contain one ordered extent.
556 *
557 * @cached: The cached ordered extent. If not NULL, we can skip the tree
558 * search and use the ordered extent directly.
559 * Will be also used to store the finished ordered extent.
560 * @file_offset: File offset for the finished IO
561 * @io_size: Length of the finish IO range
562 *
563 * Return true if the ordered extent is finished in the range, and update
564 * @cached.
565 * Return false otherwise.
566 *
567 * NOTE: The range can NOT cross multiple ordered extents.
568 * Thus caller should ensure the range doesn't cross ordered extents.
569 */
btrfs_dec_test_ordered_pending(struct btrfs_inode * inode,struct btrfs_ordered_extent ** cached,u64 file_offset,u64 io_size)570 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
571 struct btrfs_ordered_extent **cached,
572 u64 file_offset, u64 io_size)
573 {
574 struct rb_node *node;
575 struct btrfs_ordered_extent *entry = NULL;
576 unsigned long flags;
577 bool finished = false;
578
579 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
580 if (cached && *cached) {
581 entry = *cached;
582 goto have_entry;
583 }
584
585 node = ordered_tree_search(inode, file_offset);
586 if (!node)
587 goto out;
588
589 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
590 have_entry:
591 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
592 goto out;
593
594 if (io_size > entry->bytes_left)
595 btrfs_crit(inode->root->fs_info,
596 "bad ordered accounting left %llu size %llu",
597 entry->bytes_left, io_size);
598
599 entry->bytes_left -= io_size;
600
601 if (entry->bytes_left == 0) {
602 /*
603 * Ensure only one caller can set the flag and finished_ret
604 * accordingly
605 */
606 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
607 /* test_and_set_bit implies a barrier */
608 cond_wake_up_nomb(&entry->wait);
609 }
610 out:
611 if (finished && cached && entry) {
612 *cached = entry;
613 refcount_inc(&entry->refs);
614 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
615 }
616 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
617 return finished;
618 }
619
620 /*
621 * used to drop a reference on an ordered extent. This will free
622 * the extent if the last reference is dropped
623 */
btrfs_put_ordered_extent(struct btrfs_ordered_extent * entry)624 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
625 {
626 trace_btrfs_ordered_extent_put(entry->inode, entry);
627
628 if (refcount_dec_and_test(&entry->refs)) {
629 struct btrfs_ordered_sum *sum;
630 struct btrfs_ordered_sum *tmp;
631
632 ASSERT(list_empty(&entry->root_extent_list));
633 ASSERT(list_empty(&entry->log_list));
634 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
635 btrfs_add_delayed_iput(entry->inode);
636 list_for_each_entry_safe(sum, tmp, &entry->list, list)
637 kvfree(sum);
638 kmem_cache_free(btrfs_ordered_extent_cache, entry);
639 }
640 }
641
642 /*
643 * remove an ordered extent from the tree. No references are dropped
644 * and waiters are woken up.
645 */
btrfs_remove_ordered_extent(struct btrfs_inode * btrfs_inode,struct btrfs_ordered_extent * entry)646 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
647 struct btrfs_ordered_extent *entry)
648 {
649 struct btrfs_root *root = btrfs_inode->root;
650 struct btrfs_fs_info *fs_info = root->fs_info;
651 struct rb_node *node;
652 bool pending;
653 bool freespace_inode;
654
655 /*
656 * If this is a free space inode the thread has not acquired the ordered
657 * extents lockdep map.
658 */
659 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
660
661 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
662 /* This is paired with alloc_ordered_extent(). */
663 spin_lock(&btrfs_inode->lock);
664 btrfs_mod_outstanding_extents(btrfs_inode, -1);
665 spin_unlock(&btrfs_inode->lock);
666 if (root != fs_info->tree_root) {
667 u64 release;
668
669 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
670 release = entry->disk_num_bytes;
671 else
672 release = entry->num_bytes;
673 btrfs_delalloc_release_metadata(btrfs_inode, release,
674 test_bit(BTRFS_ORDERED_IOERR,
675 &entry->flags));
676 }
677
678 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
679 fs_info->delalloc_batch);
680
681 spin_lock_irq(&btrfs_inode->ordered_tree_lock);
682 node = &entry->rb_node;
683 rb_erase(node, &btrfs_inode->ordered_tree);
684 RB_CLEAR_NODE(node);
685 if (btrfs_inode->ordered_tree_last == node)
686 btrfs_inode->ordered_tree_last = NULL;
687 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
688 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
689 spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
690
691 /*
692 * The current running transaction is waiting on us, we need to let it
693 * know that we're complete and wake it up.
694 */
695 if (pending) {
696 struct btrfs_transaction *trans;
697
698 /*
699 * The checks for trans are just a formality, it should be set,
700 * but if it isn't we don't want to deref/assert under the spin
701 * lock, so be nice and check if trans is set, but ASSERT() so
702 * if it isn't set a developer will notice.
703 */
704 spin_lock(&fs_info->trans_lock);
705 trans = fs_info->running_transaction;
706 if (trans)
707 refcount_inc(&trans->use_count);
708 spin_unlock(&fs_info->trans_lock);
709
710 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
711 if (trans) {
712 if (atomic_dec_and_test(&trans->pending_ordered))
713 wake_up(&trans->pending_wait);
714 btrfs_put_transaction(trans);
715 }
716 }
717
718 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
719
720 spin_lock(&root->ordered_extent_lock);
721 list_del_init(&entry->root_extent_list);
722 root->nr_ordered_extents--;
723
724 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
725
726 if (!root->nr_ordered_extents) {
727 spin_lock(&fs_info->ordered_root_lock);
728 BUG_ON(list_empty(&root->ordered_root));
729 list_del_init(&root->ordered_root);
730 spin_unlock(&fs_info->ordered_root_lock);
731 }
732 spin_unlock(&root->ordered_extent_lock);
733 wake_up(&entry->wait);
734 if (!freespace_inode)
735 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
736 }
737
btrfs_run_ordered_extent_work(struct btrfs_work * work)738 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
739 {
740 struct btrfs_ordered_extent *ordered;
741
742 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
743 btrfs_start_ordered_extent(ordered);
744 complete(&ordered->completion);
745 }
746
747 /*
748 * Wait for all the ordered extents in a root. Use @bg as range or do whole
749 * range if it's NULL.
750 */
btrfs_wait_ordered_extents(struct btrfs_root * root,u64 nr,const struct btrfs_block_group * bg)751 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
752 const struct btrfs_block_group *bg)
753 {
754 struct btrfs_fs_info *fs_info = root->fs_info;
755 LIST_HEAD(splice);
756 LIST_HEAD(skipped);
757 LIST_HEAD(works);
758 struct btrfs_ordered_extent *ordered, *next;
759 u64 count = 0;
760 u64 range_start, range_len;
761 u64 range_end;
762
763 if (bg) {
764 range_start = bg->start;
765 range_len = bg->length;
766 } else {
767 range_start = 0;
768 range_len = U64_MAX;
769 }
770 range_end = range_start + range_len;
771
772 mutex_lock(&root->ordered_extent_mutex);
773 spin_lock(&root->ordered_extent_lock);
774 list_splice_init(&root->ordered_extents, &splice);
775 while (!list_empty(&splice) && nr) {
776 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
777 root_extent_list);
778
779 if (range_end <= ordered->disk_bytenr ||
780 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
781 list_move_tail(&ordered->root_extent_list, &skipped);
782 cond_resched_lock(&root->ordered_extent_lock);
783 continue;
784 }
785
786 list_move_tail(&ordered->root_extent_list,
787 &root->ordered_extents);
788 refcount_inc(&ordered->refs);
789 spin_unlock(&root->ordered_extent_lock);
790
791 btrfs_init_work(&ordered->flush_work,
792 btrfs_run_ordered_extent_work, NULL);
793 list_add_tail(&ordered->work_list, &works);
794 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
795
796 cond_resched();
797 if (nr != U64_MAX)
798 nr--;
799 count++;
800 spin_lock(&root->ordered_extent_lock);
801 }
802 list_splice_tail(&skipped, &root->ordered_extents);
803 list_splice_tail(&splice, &root->ordered_extents);
804 spin_unlock(&root->ordered_extent_lock);
805
806 list_for_each_entry_safe(ordered, next, &works, work_list) {
807 list_del_init(&ordered->work_list);
808 wait_for_completion(&ordered->completion);
809 btrfs_put_ordered_extent(ordered);
810 cond_resched();
811 }
812 mutex_unlock(&root->ordered_extent_mutex);
813
814 return count;
815 }
816
817 /*
818 * Wait for @nr ordered extents that intersect the @bg, or the whole range of
819 * the filesystem if @bg is NULL.
820 */
btrfs_wait_ordered_roots(struct btrfs_fs_info * fs_info,u64 nr,const struct btrfs_block_group * bg)821 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
822 const struct btrfs_block_group *bg)
823 {
824 struct btrfs_root *root;
825 LIST_HEAD(splice);
826 u64 done;
827
828 mutex_lock(&fs_info->ordered_operations_mutex);
829 spin_lock(&fs_info->ordered_root_lock);
830 list_splice_init(&fs_info->ordered_roots, &splice);
831 while (!list_empty(&splice) && nr) {
832 root = list_first_entry(&splice, struct btrfs_root,
833 ordered_root);
834 root = btrfs_grab_root(root);
835 BUG_ON(!root);
836 list_move_tail(&root->ordered_root,
837 &fs_info->ordered_roots);
838 spin_unlock(&fs_info->ordered_root_lock);
839
840 done = btrfs_wait_ordered_extents(root, nr, bg);
841 btrfs_put_root(root);
842
843 if (nr != U64_MAX)
844 nr -= done;
845
846 spin_lock(&fs_info->ordered_root_lock);
847 }
848 list_splice_tail(&splice, &fs_info->ordered_roots);
849 spin_unlock(&fs_info->ordered_root_lock);
850 mutex_unlock(&fs_info->ordered_operations_mutex);
851 }
852
853 /*
854 * Start IO and wait for a given ordered extent to finish.
855 *
856 * Wait on page writeback for all the pages in the extent but not in
857 * [@nowriteback_start, @nowriteback_start + @nowriteback_len) and the
858 * IO completion code to insert metadata into the btree corresponding to the extent.
859 */
btrfs_start_ordered_extent_nowriteback(struct btrfs_ordered_extent * entry,u64 nowriteback_start,u32 nowriteback_len)860 void btrfs_start_ordered_extent_nowriteback(struct btrfs_ordered_extent *entry,
861 u64 nowriteback_start, u32 nowriteback_len)
862 {
863 u64 start = entry->file_offset;
864 u64 end = start + entry->num_bytes - 1;
865 struct btrfs_inode *inode = entry->inode;
866 bool freespace_inode;
867
868 trace_btrfs_ordered_extent_start(inode, entry);
869
870 /*
871 * If this is a free space inode do not take the ordered extents lockdep
872 * map.
873 */
874 freespace_inode = btrfs_is_free_space_inode(inode);
875
876 /*
877 * pages in the range can be dirty, clean or writeback. We
878 * start IO on any dirty ones so the wait doesn't stall waiting
879 * for the flusher thread to find them
880 */
881 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) {
882 if (!nowriteback_len) {
883 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
884 } else {
885 if (start < nowriteback_start)
886 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start,
887 nowriteback_start - 1);
888 if (nowriteback_start + nowriteback_len < end)
889 filemap_fdatawrite_range(inode->vfs_inode.i_mapping,
890 nowriteback_start + nowriteback_len,
891 end);
892 }
893 }
894
895 if (!freespace_inode)
896 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
897 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
898 }
899
900 /*
901 * Used to wait on ordered extents across a large range of bytes.
902 */
btrfs_wait_ordered_range(struct btrfs_inode * inode,u64 start,u64 len)903 int btrfs_wait_ordered_range(struct btrfs_inode *inode, u64 start, u64 len)
904 {
905 int ret = 0;
906 int ret_wb = 0;
907 u64 end;
908 u64 orig_end;
909 struct btrfs_ordered_extent *ordered;
910
911 if (start + len < start) {
912 orig_end = OFFSET_MAX;
913 } else {
914 orig_end = start + len - 1;
915 if (orig_end > OFFSET_MAX)
916 orig_end = OFFSET_MAX;
917 }
918
919 /* start IO across the range first to instantiate any delalloc
920 * extents
921 */
922 ret = btrfs_fdatawrite_range(inode, start, orig_end);
923 if (ret)
924 return ret;
925
926 /*
927 * If we have a writeback error don't return immediately. Wait first
928 * for any ordered extents that haven't completed yet. This is to make
929 * sure no one can dirty the same page ranges and call writepages()
930 * before the ordered extents complete - to avoid failures (-EEXIST)
931 * when adding the new ordered extents to the ordered tree.
932 */
933 ret_wb = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, orig_end);
934
935 end = orig_end;
936 while (1) {
937 ordered = btrfs_lookup_first_ordered_extent(inode, end);
938 if (!ordered)
939 break;
940 if (ordered->file_offset > orig_end) {
941 btrfs_put_ordered_extent(ordered);
942 break;
943 }
944 if (ordered->file_offset + ordered->num_bytes <= start) {
945 btrfs_put_ordered_extent(ordered);
946 break;
947 }
948 btrfs_start_ordered_extent(ordered);
949 end = ordered->file_offset;
950 /*
951 * If the ordered extent had an error save the error but don't
952 * exit without waiting first for all other ordered extents in
953 * the range to complete.
954 */
955 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
956 ret = -EIO;
957 btrfs_put_ordered_extent(ordered);
958 if (end == 0 || end == start)
959 break;
960 end--;
961 }
962 return ret_wb ? ret_wb : ret;
963 }
964
965 /*
966 * find an ordered extent corresponding to file_offset. return NULL if
967 * nothing is found, otherwise take a reference on the extent and return it
968 */
btrfs_lookup_ordered_extent(struct btrfs_inode * inode,u64 file_offset)969 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
970 u64 file_offset)
971 {
972 struct rb_node *node;
973 struct btrfs_ordered_extent *entry = NULL;
974 unsigned long flags;
975
976 spin_lock_irqsave(&inode->ordered_tree_lock, flags);
977 node = ordered_tree_search(inode, file_offset);
978 if (!node)
979 goto out;
980
981 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
982 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
983 entry = NULL;
984 if (entry) {
985 refcount_inc(&entry->refs);
986 trace_btrfs_ordered_extent_lookup(inode, entry);
987 }
988 out:
989 spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
990 return entry;
991 }
992
993 /* Since the DIO code tries to lock a wide area we need to look for any ordered
994 * extents that exist in the range, rather than just the start of the range.
995 */
btrfs_lookup_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)996 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
997 struct btrfs_inode *inode, u64 file_offset, u64 len)
998 {
999 struct rb_node *node;
1000 struct btrfs_ordered_extent *entry = NULL;
1001
1002 spin_lock_irq(&inode->ordered_tree_lock);
1003 node = ordered_tree_search(inode, file_offset);
1004 if (!node) {
1005 node = ordered_tree_search(inode, file_offset + len);
1006 if (!node)
1007 goto out;
1008 }
1009
1010 while (1) {
1011 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1012 if (btrfs_range_overlaps(entry, file_offset, len))
1013 break;
1014
1015 if (entry->file_offset >= file_offset + len) {
1016 entry = NULL;
1017 break;
1018 }
1019 entry = NULL;
1020 node = rb_next(node);
1021 if (!node)
1022 break;
1023 }
1024 out:
1025 if (entry) {
1026 refcount_inc(&entry->refs);
1027 trace_btrfs_ordered_extent_lookup_range(inode, entry);
1028 }
1029 spin_unlock_irq(&inode->ordered_tree_lock);
1030 return entry;
1031 }
1032
1033 /*
1034 * Adds all ordered extents to the given list. The list ends up sorted by the
1035 * file_offset of the ordered extents.
1036 */
btrfs_get_ordered_extents_for_logging(struct btrfs_inode * inode,struct list_head * list)1037 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
1038 struct list_head *list)
1039 {
1040 struct rb_node *n;
1041
1042 btrfs_assert_inode_locked(inode);
1043
1044 spin_lock_irq(&inode->ordered_tree_lock);
1045 for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
1046 struct btrfs_ordered_extent *ordered;
1047
1048 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
1049
1050 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
1051 continue;
1052
1053 ASSERT(list_empty(&ordered->log_list));
1054 list_add_tail(&ordered->log_list, list);
1055 refcount_inc(&ordered->refs);
1056 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
1057 }
1058 spin_unlock_irq(&inode->ordered_tree_lock);
1059 }
1060
1061 /*
1062 * lookup and return any extent before 'file_offset'. NULL is returned
1063 * if none is found
1064 */
1065 struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct btrfs_inode * inode,u64 file_offset)1066 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
1067 {
1068 struct rb_node *node;
1069 struct btrfs_ordered_extent *entry = NULL;
1070
1071 spin_lock_irq(&inode->ordered_tree_lock);
1072 node = ordered_tree_search(inode, file_offset);
1073 if (!node)
1074 goto out;
1075
1076 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1077 refcount_inc(&entry->refs);
1078 trace_btrfs_ordered_extent_lookup_first(inode, entry);
1079 out:
1080 spin_unlock_irq(&inode->ordered_tree_lock);
1081 return entry;
1082 }
1083
1084 /*
1085 * Lookup the first ordered extent that overlaps the range
1086 * [@file_offset, @file_offset + @len).
1087 *
1088 * The difference between this and btrfs_lookup_first_ordered_extent() is
1089 * that this one won't return any ordered extent that does not overlap the range.
1090 * And the difference against btrfs_lookup_ordered_extent() is, this function
1091 * ensures the first ordered extent gets returned.
1092 */
btrfs_lookup_first_ordered_range(struct btrfs_inode * inode,u64 file_offset,u64 len)1093 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
1094 struct btrfs_inode *inode, u64 file_offset, u64 len)
1095 {
1096 struct rb_node *node;
1097 struct rb_node *cur;
1098 struct rb_node *prev;
1099 struct rb_node *next;
1100 struct btrfs_ordered_extent *entry = NULL;
1101
1102 spin_lock_irq(&inode->ordered_tree_lock);
1103 node = inode->ordered_tree.rb_node;
1104 /*
1105 * Here we don't want to use tree_search() which will use tree->last
1106 * and screw up the search order.
1107 * And __tree_search() can't return the adjacent ordered extents
1108 * either, thus here we do our own search.
1109 */
1110 while (node) {
1111 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1112
1113 if (file_offset < entry->file_offset) {
1114 node = node->rb_left;
1115 } else if (file_offset >= entry_end(entry)) {
1116 node = node->rb_right;
1117 } else {
1118 /*
1119 * Direct hit, got an ordered extent that starts at
1120 * @file_offset
1121 */
1122 goto out;
1123 }
1124 }
1125 if (!entry) {
1126 /* Empty tree */
1127 goto out;
1128 }
1129
1130 cur = &entry->rb_node;
1131 /* We got an entry around @file_offset, check adjacent entries */
1132 if (entry->file_offset < file_offset) {
1133 prev = cur;
1134 next = rb_next(cur);
1135 } else {
1136 prev = rb_prev(cur);
1137 next = cur;
1138 }
1139 if (prev) {
1140 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1141 if (btrfs_range_overlaps(entry, file_offset, len))
1142 goto out;
1143 }
1144 if (next) {
1145 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1146 if (btrfs_range_overlaps(entry, file_offset, len))
1147 goto out;
1148 }
1149 /* No ordered extent in the range */
1150 entry = NULL;
1151 out:
1152 if (entry) {
1153 refcount_inc(&entry->refs);
1154 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1155 }
1156
1157 spin_unlock_irq(&inode->ordered_tree_lock);
1158 return entry;
1159 }
1160
1161 /*
1162 * Lock the passed range and ensures all pending ordered extents in it are run
1163 * to completion.
1164 *
1165 * @inode: Inode whose ordered tree is to be searched
1166 * @start: Beginning of range to flush
1167 * @end: Last byte of range to lock
1168 * @cached_state: If passed, will return the extent state responsible for the
1169 * locked range. It's the caller's responsibility to free the
1170 * cached state.
1171 *
1172 * Always return with the given range locked, ensuring after it's called no
1173 * order extent can be pending.
1174 */
btrfs_lock_and_flush_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1175 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1176 u64 end,
1177 struct extent_state **cached_state)
1178 {
1179 struct btrfs_ordered_extent *ordered;
1180 struct extent_state *cache = NULL;
1181 struct extent_state **cachedp = &cache;
1182
1183 if (cached_state)
1184 cachedp = cached_state;
1185
1186 while (1) {
1187 btrfs_lock_extent(&inode->io_tree, start, end, cachedp);
1188 ordered = btrfs_lookup_ordered_range(inode, start,
1189 end - start + 1);
1190 if (!ordered) {
1191 /*
1192 * If no external cached_state has been passed then
1193 * decrement the extra ref taken for cachedp since we
1194 * aren't exposing it outside of this function
1195 */
1196 if (!cached_state)
1197 refcount_dec(&cache->refs);
1198 break;
1199 }
1200 btrfs_unlock_extent(&inode->io_tree, start, end, cachedp);
1201 btrfs_start_ordered_extent(ordered);
1202 btrfs_put_ordered_extent(ordered);
1203 }
1204 }
1205
1206 /*
1207 * Lock the passed range and ensure all pending ordered extents in it are run
1208 * to completion in nowait mode.
1209 *
1210 * Return true if btrfs_lock_ordered_range does not return any extents,
1211 * otherwise false.
1212 */
btrfs_try_lock_ordered_range(struct btrfs_inode * inode,u64 start,u64 end,struct extent_state ** cached_state)1213 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1214 struct extent_state **cached_state)
1215 {
1216 struct btrfs_ordered_extent *ordered;
1217
1218 if (!btrfs_try_lock_extent(&inode->io_tree, start, end, cached_state))
1219 return false;
1220
1221 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1222 if (!ordered)
1223 return true;
1224
1225 btrfs_put_ordered_extent(ordered);
1226 btrfs_unlock_extent(&inode->io_tree, start, end, cached_state);
1227
1228 return false;
1229 }
1230
1231 /* Split out a new ordered extent for this first @len bytes of @ordered. */
btrfs_split_ordered_extent(struct btrfs_ordered_extent * ordered,u64 len)1232 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1233 struct btrfs_ordered_extent *ordered, u64 len)
1234 {
1235 struct btrfs_inode *inode = ordered->inode;
1236 struct btrfs_root *root = inode->root;
1237 struct btrfs_fs_info *fs_info = root->fs_info;
1238 u64 file_offset = ordered->file_offset;
1239 u64 disk_bytenr = ordered->disk_bytenr;
1240 unsigned long flags = ordered->flags;
1241 struct btrfs_ordered_sum *sum, *tmpsum;
1242 struct btrfs_ordered_extent *new;
1243 struct rb_node *node;
1244 u64 offset = 0;
1245
1246 trace_btrfs_ordered_extent_split(inode, ordered);
1247
1248 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1249
1250 /*
1251 * The entire bio must be covered by the ordered extent, but we can't
1252 * reduce the original extent to a zero length either.
1253 */
1254 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1255 return ERR_PTR(-EINVAL);
1256 /*
1257 * If our ordered extent had an error there's no point in continuing.
1258 * The error may have come from a transaction abort done either by this
1259 * task or some other concurrent task, and the transaction abort path
1260 * iterates over all existing ordered extents and sets the flag
1261 * BTRFS_ORDERED_IOERR on them.
1262 */
1263 if (unlikely(flags & (1U << BTRFS_ORDERED_IOERR))) {
1264 const int fs_error = BTRFS_FS_ERROR(fs_info);
1265
1266 return fs_error ? ERR_PTR(fs_error) : ERR_PTR(-EIO);
1267 }
1268 /* We cannot split partially completed ordered extents. */
1269 if (ordered->bytes_left) {
1270 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1271 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1272 return ERR_PTR(-EINVAL);
1273 }
1274 /* We cannot split a compressed ordered extent. */
1275 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1276 return ERR_PTR(-EINVAL);
1277
1278 new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1279 len, 0, flags, ordered->compress_type);
1280 if (IS_ERR(new))
1281 return new;
1282
1283 /* One ref for the tree. */
1284 refcount_inc(&new->refs);
1285
1286 /*
1287 * Take the root's ordered_extent_lock to avoid a race with
1288 * btrfs_wait_ordered_extents() when updating the disk_bytenr and
1289 * disk_num_bytes fields of the ordered extent below. And we disable
1290 * IRQs because the inode's ordered_tree_lock is used in IRQ context
1291 * elsewhere.
1292 *
1293 * There's no concern about a previous caller of
1294 * btrfs_wait_ordered_extents() getting the trimmed ordered extent
1295 * before we insert the new one, because even if it gets the ordered
1296 * extent before it's trimmed and the new one inserted, right before it
1297 * uses it or during its use, the ordered extent might have been
1298 * trimmed in the meanwhile, and it missed the new ordered extent.
1299 * There's no way around this and it's harmless for current use cases,
1300 * so we take the root's ordered_extent_lock to fix that race during
1301 * trimming and silence tools like KCSAN.
1302 */
1303 spin_lock_irq(&root->ordered_extent_lock);
1304 spin_lock(&inode->ordered_tree_lock);
1305
1306 /*
1307 * We don't have overlapping ordered extents (that would imply double
1308 * allocation of extents) and we checked above that the split length
1309 * does not cross the ordered extent's num_bytes field, so there's
1310 * no need to remove it and re-insert it in the tree.
1311 */
1312 ordered->file_offset += len;
1313 ordered->disk_bytenr += len;
1314 ordered->num_bytes -= len;
1315 ordered->disk_num_bytes -= len;
1316 ordered->ram_bytes -= len;
1317
1318 if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1319 ASSERT(ordered->bytes_left == 0);
1320 new->bytes_left = 0;
1321 } else {
1322 ordered->bytes_left -= len;
1323 }
1324
1325 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1326 if (ordered->truncated_len > len) {
1327 ordered->truncated_len -= len;
1328 } else {
1329 new->truncated_len = ordered->truncated_len;
1330 ordered->truncated_len = 0;
1331 }
1332 }
1333
1334 list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1335 if (offset == len)
1336 break;
1337 list_move_tail(&sum->list, &new->list);
1338 offset += sum->len;
1339 }
1340
1341 node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1342 if (unlikely(node))
1343 btrfs_panic(fs_info, -EEXIST,
1344 "inconsistency in ordered tree at offset %llu after split",
1345 new->file_offset);
1346 spin_unlock(&inode->ordered_tree_lock);
1347
1348 list_add_tail(&new->root_extent_list, &root->ordered_extents);
1349 root->nr_ordered_extents++;
1350 spin_unlock_irq(&root->ordered_extent_lock);
1351 return new;
1352 }
1353
ordered_data_init(void)1354 int __init ordered_data_init(void)
1355 {
1356 btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
1357 if (!btrfs_ordered_extent_cache)
1358 return -ENOMEM;
1359
1360 return 0;
1361 }
1362
ordered_data_exit(void)1363 void __cold ordered_data_exit(void)
1364 {
1365 kmem_cache_destroy(btrfs_ordered_extent_cache);
1366 }
1367