1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "transaction.h"
10 #include "locking.h"
11 #include "accessors.h"
12 #include "messages.h"
13 #include "delalloc-space.h"
14 #include "subpage.h"
15 #include "defrag.h"
16 #include "file-item.h"
17 #include "super.h"
18
19 static struct kmem_cache *btrfs_inode_defrag_cachep;
20
21 /*
22 * When auto defrag is enabled we queue up these defrag structs to remember
23 * which inodes need defragging passes.
24 */
25 struct inode_defrag {
26 struct rb_node rb_node;
27 /* Inode number */
28 u64 ino;
29 /*
30 * Transid where the defrag was added, we search for extents newer than
31 * this.
32 */
33 u64 transid;
34
35 /* Root objectid */
36 u64 root;
37
38 /*
39 * The extent size threshold for autodefrag.
40 *
41 * This value is different for compressed/non-compressed extents, thus
42 * needs to be passed from higher layer.
43 * (aka, inode_should_defrag())
44 */
45 u32 extent_thresh;
46 };
47
compare_inode_defrag(const struct inode_defrag * defrag1,const struct inode_defrag * defrag2)48 static int compare_inode_defrag(const struct inode_defrag *defrag1,
49 const struct inode_defrag *defrag2)
50 {
51 if (defrag1->root > defrag2->root)
52 return 1;
53 else if (defrag1->root < defrag2->root)
54 return -1;
55 else if (defrag1->ino > defrag2->ino)
56 return 1;
57 else if (defrag1->ino < defrag2->ino)
58 return -1;
59 else
60 return 0;
61 }
62
inode_defrag_cmp(struct rb_node * new,const struct rb_node * existing)63 static int inode_defrag_cmp(struct rb_node *new, const struct rb_node *existing)
64 {
65 const struct inode_defrag *new_defrag = rb_entry(new, struct inode_defrag, rb_node);
66 const struct inode_defrag *existing_defrag = rb_entry(existing, struct inode_defrag, rb_node);
67
68 return compare_inode_defrag(new_defrag, existing_defrag);
69 }
70
71 /*
72 * Insert a record for an inode into the defrag tree. The lock must be held
73 * already.
74 *
75 * If you're inserting a record for an older transid than an existing record,
76 * the transid already in the tree is lowered.
77 */
btrfs_insert_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)78 static int btrfs_insert_inode_defrag(struct btrfs_inode *inode,
79 struct inode_defrag *defrag)
80 {
81 struct btrfs_fs_info *fs_info = inode->root->fs_info;
82 struct rb_node *node;
83
84 node = rb_find_add(&defrag->rb_node, &fs_info->defrag_inodes, inode_defrag_cmp);
85 if (node) {
86 struct inode_defrag *entry;
87
88 entry = rb_entry(node, struct inode_defrag, rb_node);
89 /*
90 * If we're reinserting an entry for an old defrag run, make
91 * sure to lower the transid of our existing record.
92 */
93 if (defrag->transid < entry->transid)
94 entry->transid = defrag->transid;
95 entry->extent_thresh = min(defrag->extent_thresh, entry->extent_thresh);
96 return -EEXIST;
97 }
98 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
99 return 0;
100 }
101
need_auto_defrag(struct btrfs_fs_info * fs_info)102 static inline bool need_auto_defrag(struct btrfs_fs_info *fs_info)
103 {
104 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
105 return false;
106
107 if (btrfs_fs_closing(fs_info))
108 return false;
109
110 return true;
111 }
112
113 /*
114 * Insert a defrag record for this inode if auto defrag is enabled. No errors
115 * returned as they're not considered fatal.
116 */
btrfs_add_inode_defrag(struct btrfs_inode * inode,u32 extent_thresh)117 void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh)
118 {
119 struct btrfs_root *root = inode->root;
120 struct btrfs_fs_info *fs_info = root->fs_info;
121 struct inode_defrag *defrag;
122 int ret;
123
124 if (!need_auto_defrag(fs_info))
125 return;
126
127 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
128 return;
129
130 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
131 if (!defrag)
132 return;
133
134 defrag->ino = btrfs_ino(inode);
135 defrag->transid = btrfs_get_root_last_trans(root);
136 defrag->root = btrfs_root_id(root);
137 defrag->extent_thresh = extent_thresh;
138
139 spin_lock(&fs_info->defrag_inodes_lock);
140 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
141 /*
142 * If we set IN_DEFRAG flag and evict the inode from memory,
143 * and then re-read this inode, this new inode doesn't have
144 * IN_DEFRAG flag. At the case, we may find the existed defrag.
145 */
146 ret = btrfs_insert_inode_defrag(inode, defrag);
147 if (ret)
148 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
149 } else {
150 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
151 }
152 spin_unlock(&fs_info->defrag_inodes_lock);
153 }
154
155 /*
156 * Pick the defragable inode that we want, if it doesn't exist, we will get the
157 * next one.
158 */
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)159 static struct inode_defrag *btrfs_pick_defrag_inode(
160 struct btrfs_fs_info *fs_info, u64 root, u64 ino)
161 {
162 struct inode_defrag *entry = NULL;
163 struct inode_defrag tmp;
164 struct rb_node *p;
165 struct rb_node *parent = NULL;
166 int ret;
167
168 tmp.ino = ino;
169 tmp.root = root;
170
171 spin_lock(&fs_info->defrag_inodes_lock);
172 p = fs_info->defrag_inodes.rb_node;
173 while (p) {
174 parent = p;
175 entry = rb_entry(parent, struct inode_defrag, rb_node);
176
177 ret = compare_inode_defrag(&tmp, entry);
178 if (ret < 0)
179 p = parent->rb_left;
180 else if (ret > 0)
181 p = parent->rb_right;
182 else
183 goto out;
184 }
185
186 if (parent && compare_inode_defrag(&tmp, entry) > 0) {
187 parent = rb_next(parent);
188 entry = rb_entry_safe(parent, struct inode_defrag, rb_node);
189 }
190 out:
191 if (entry)
192 rb_erase(parent, &fs_info->defrag_inodes);
193 spin_unlock(&fs_info->defrag_inodes_lock);
194 return entry;
195 }
196
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)197 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
198 {
199 struct inode_defrag *defrag, *next;
200
201 spin_lock(&fs_info->defrag_inodes_lock);
202
203 rbtree_postorder_for_each_entry_safe(defrag, next,
204 &fs_info->defrag_inodes, rb_node)
205 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
206
207 fs_info->defrag_inodes = RB_ROOT;
208
209 spin_unlock(&fs_info->defrag_inodes_lock);
210 }
211
212 #define BTRFS_DEFRAG_BATCH 1024
213
btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag,struct file_ra_state * ra)214 static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
215 struct inode_defrag *defrag,
216 struct file_ra_state *ra)
217 {
218 struct btrfs_root *inode_root;
219 struct btrfs_inode *inode;
220 struct btrfs_ioctl_defrag_range_args range;
221 int ret = 0;
222 u64 cur = 0;
223
224 again:
225 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
226 goto cleanup;
227 if (!need_auto_defrag(fs_info))
228 goto cleanup;
229
230 /* Get the inode */
231 inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
232 if (IS_ERR(inode_root)) {
233 ret = PTR_ERR(inode_root);
234 goto cleanup;
235 }
236
237 inode = btrfs_iget(defrag->ino, inode_root);
238 btrfs_put_root(inode_root);
239 if (IS_ERR(inode)) {
240 ret = PTR_ERR(inode);
241 goto cleanup;
242 }
243
244 if (cur >= i_size_read(&inode->vfs_inode)) {
245 iput(&inode->vfs_inode);
246 goto cleanup;
247 }
248
249 /* Do a chunk of defrag */
250 clear_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
251 memset(&range, 0, sizeof(range));
252 range.len = (u64)-1;
253 range.start = cur;
254 range.extent_thresh = defrag->extent_thresh;
255 file_ra_state_init(ra, inode->vfs_inode.i_mapping);
256
257 sb_start_write(fs_info->sb);
258 ret = btrfs_defrag_file(inode, ra, &range, defrag->transid,
259 BTRFS_DEFRAG_BATCH);
260 sb_end_write(fs_info->sb);
261 iput(&inode->vfs_inode);
262
263 if (ret < 0)
264 goto cleanup;
265
266 cur = max(cur + fs_info->sectorsize, range.start);
267 goto again;
268
269 cleanup:
270 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
271 return ret;
272 }
273
274 /*
275 * Run through the list of inodes in the FS that need defragging.
276 */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)277 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
278 {
279 struct inode_defrag *defrag;
280 u64 first_ino = 0;
281 u64 root_objectid = 0;
282
283 atomic_inc(&fs_info->defrag_running);
284 while (1) {
285 struct file_ra_state ra = { 0 };
286
287 /* Pause the auto defragger. */
288 if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
289 break;
290
291 if (!need_auto_defrag(fs_info))
292 break;
293
294 /* find an inode to defrag */
295 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
296 if (!defrag) {
297 if (root_objectid || first_ino) {
298 root_objectid = 0;
299 first_ino = 0;
300 continue;
301 } else {
302 break;
303 }
304 }
305
306 first_ino = defrag->ino + 1;
307 root_objectid = defrag->root;
308
309 btrfs_run_defrag_inode(fs_info, defrag, &ra);
310 }
311 atomic_dec(&fs_info->defrag_running);
312
313 /*
314 * During unmount, we use the transaction_wait queue to wait for the
315 * defragger to stop.
316 */
317 wake_up(&fs_info->transaction_wait);
318 return 0;
319 }
320
321 /*
322 * Check if two blocks addresses are close, used by defrag.
323 */
close_blocks(u64 blocknr,u64 other,u32 blocksize)324 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
325 {
326 if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
327 return true;
328 if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
329 return true;
330 return false;
331 }
332
333 /*
334 * Go through all the leaves pointed to by a node and reallocate them so that
335 * disk order is close to key order.
336 */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)337 static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
338 struct btrfs_root *root,
339 struct extent_buffer *parent,
340 int start_slot, u64 *last_ret,
341 struct btrfs_key *progress)
342 {
343 struct btrfs_fs_info *fs_info = root->fs_info;
344 const u32 blocksize = fs_info->nodesize;
345 const int end_slot = btrfs_header_nritems(parent) - 1;
346 u64 search_start = *last_ret;
347 u64 last_block = 0;
348 int ret = 0;
349 bool progress_passed = false;
350
351 /*
352 * COWing must happen through a running transaction, which always
353 * matches the current fs generation (it's a transaction with a state
354 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
355 * into error state to prevent the commit of any transaction.
356 */
357 if (unlikely(trans->transaction != fs_info->running_transaction ||
358 trans->transid != fs_info->generation)) {
359 btrfs_abort_transaction(trans, -EUCLEAN);
360 btrfs_crit(fs_info,
361 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
362 parent->start, btrfs_root_id(root), trans->transid,
363 fs_info->running_transaction->transid,
364 fs_info->generation);
365 return -EUCLEAN;
366 }
367
368 if (btrfs_header_nritems(parent) <= 1)
369 return 0;
370
371 for (int i = start_slot; i <= end_slot; i++) {
372 struct extent_buffer *cur;
373 struct btrfs_disk_key disk_key;
374 u64 blocknr;
375 u64 other;
376 bool close = true;
377
378 btrfs_node_key(parent, &disk_key, i);
379 if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
380 continue;
381
382 progress_passed = true;
383 blocknr = btrfs_node_blockptr(parent, i);
384 if (last_block == 0)
385 last_block = blocknr;
386
387 if (i > 0) {
388 other = btrfs_node_blockptr(parent, i - 1);
389 close = close_blocks(blocknr, other, blocksize);
390 }
391 if (!close && i < end_slot) {
392 other = btrfs_node_blockptr(parent, i + 1);
393 close = close_blocks(blocknr, other, blocksize);
394 }
395 if (close) {
396 last_block = blocknr;
397 continue;
398 }
399
400 cur = btrfs_read_node_slot(parent, i);
401 if (IS_ERR(cur))
402 return PTR_ERR(cur);
403 if (search_start == 0)
404 search_start = last_block;
405
406 btrfs_tree_lock(cur);
407 ret = btrfs_force_cow_block(trans, root, cur, parent, i,
408 &cur, search_start,
409 min(16 * blocksize,
410 (end_slot - i) * blocksize),
411 BTRFS_NESTING_COW);
412 if (ret) {
413 btrfs_tree_unlock(cur);
414 free_extent_buffer(cur);
415 break;
416 }
417 search_start = cur->start;
418 last_block = cur->start;
419 *last_ret = search_start;
420 btrfs_tree_unlock(cur);
421 free_extent_buffer(cur);
422 }
423 return ret;
424 }
425
426 /*
427 * Defrag all the leaves in a given btree.
428 * Read all the leaves and try to get key order to
429 * better reflect disk order
430 */
431
btrfs_defrag_leaves(struct btrfs_trans_handle * trans,struct btrfs_root * root)432 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
433 struct btrfs_root *root)
434 {
435 struct btrfs_path *path = NULL;
436 struct btrfs_key key;
437 int ret = 0;
438 int wret;
439 int level;
440 int next_key_ret = 0;
441 u64 last_ret = 0;
442
443 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
444 goto out;
445
446 path = btrfs_alloc_path();
447 if (!path) {
448 ret = -ENOMEM;
449 goto out;
450 }
451
452 level = btrfs_header_level(root->node);
453
454 if (level == 0)
455 goto out;
456
457 if (root->defrag_progress.objectid == 0) {
458 struct extent_buffer *root_node;
459 u32 nritems;
460
461 root_node = btrfs_lock_root_node(root);
462 nritems = btrfs_header_nritems(root_node);
463 root->defrag_max.objectid = 0;
464 /* from above we know this is not a leaf */
465 btrfs_node_key_to_cpu(root_node, &root->defrag_max,
466 nritems - 1);
467 btrfs_tree_unlock(root_node);
468 free_extent_buffer(root_node);
469 memset(&key, 0, sizeof(key));
470 } else {
471 memcpy(&key, &root->defrag_progress, sizeof(key));
472 }
473
474 path->keep_locks = 1;
475
476 ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
477 if (ret < 0)
478 goto out;
479 if (ret > 0) {
480 ret = 0;
481 goto out;
482 }
483 btrfs_release_path(path);
484 /*
485 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
486 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
487 * a deadlock (attempting to write lock an already write locked leaf).
488 */
489 path->lowest_level = 1;
490 wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
491
492 if (wret < 0) {
493 ret = wret;
494 goto out;
495 }
496 if (!path->nodes[1]) {
497 ret = 0;
498 goto out;
499 }
500 /*
501 * The node at level 1 must always be locked when our path has
502 * keep_locks set and lowest_level is 1, regardless of the value of
503 * path->slots[1].
504 */
505 ASSERT(path->locks[1] != 0);
506 ret = btrfs_realloc_node(trans, root,
507 path->nodes[1], 0,
508 &last_ret,
509 &root->defrag_progress);
510 if (ret) {
511 WARN_ON(ret == -EAGAIN);
512 goto out;
513 }
514 /*
515 * Now that we reallocated the node we can find the next key. Note that
516 * btrfs_find_next_key() can release our path and do another search
517 * without COWing, this is because even with path->keep_locks = 1,
518 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
519 * node when path->slots[node_level - 1] does not point to the last
520 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
521 * we search for the next key after reallocating our node.
522 */
523 path->slots[1] = btrfs_header_nritems(path->nodes[1]);
524 next_key_ret = btrfs_find_next_key(root, path, &key, 1,
525 BTRFS_OLDEST_GENERATION);
526 if (next_key_ret == 0) {
527 memcpy(&root->defrag_progress, &key, sizeof(key));
528 ret = -EAGAIN;
529 }
530 out:
531 btrfs_free_path(path);
532 if (ret == -EAGAIN) {
533 if (root->defrag_max.objectid > root->defrag_progress.objectid)
534 goto done;
535 if (root->defrag_max.type > root->defrag_progress.type)
536 goto done;
537 if (root->defrag_max.offset > root->defrag_progress.offset)
538 goto done;
539 ret = 0;
540 }
541 done:
542 if (ret != -EAGAIN)
543 memset(&root->defrag_progress, 0,
544 sizeof(root->defrag_progress));
545
546 return ret;
547 }
548
549 /*
550 * Defrag a given btree. Every leaf in the btree is read and defragmented.
551 */
btrfs_defrag_root(struct btrfs_root * root)552 int btrfs_defrag_root(struct btrfs_root *root)
553 {
554 struct btrfs_fs_info *fs_info = root->fs_info;
555 int ret;
556
557 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
558 return 0;
559
560 while (1) {
561 struct btrfs_trans_handle *trans;
562
563 trans = btrfs_start_transaction(root, 0);
564 if (IS_ERR(trans)) {
565 ret = PTR_ERR(trans);
566 break;
567 }
568
569 ret = btrfs_defrag_leaves(trans, root);
570
571 btrfs_end_transaction(trans);
572 btrfs_btree_balance_dirty(fs_info);
573 cond_resched();
574
575 if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
576 break;
577
578 if (btrfs_defrag_cancelled(fs_info)) {
579 btrfs_debug(fs_info, "defrag_root cancelled");
580 ret = -EAGAIN;
581 break;
582 }
583 }
584 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
585 return ret;
586 }
587
588 /*
589 * Defrag specific helper to get an extent map.
590 *
591 * Differences between this and btrfs_get_extent() are:
592 *
593 * - No extent_map will be added to inode->extent_tree
594 * To reduce memory usage in the long run.
595 *
596 * - Extra optimization to skip file extents older than @newer_than
597 * By using btrfs_search_forward() we can skip entire file ranges that
598 * have extents created in past transactions, because btrfs_search_forward()
599 * will not visit leaves and nodes with a generation smaller than given
600 * minimal generation threshold (@newer_than).
601 *
602 * Return valid em if we find a file extent matching the requirement.
603 * Return NULL if we can not find a file extent matching the requirement.
604 *
605 * Return ERR_PTR() for error.
606 */
defrag_get_extent(struct btrfs_inode * inode,u64 start,u64 newer_than)607 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
608 u64 start, u64 newer_than)
609 {
610 struct btrfs_root *root = inode->root;
611 struct btrfs_file_extent_item *fi;
612 struct btrfs_path path = { 0 };
613 struct extent_map *em;
614 struct btrfs_key key;
615 u64 ino = btrfs_ino(inode);
616 int ret;
617
618 em = btrfs_alloc_extent_map();
619 if (!em) {
620 ret = -ENOMEM;
621 goto err;
622 }
623
624 key.objectid = ino;
625 key.type = BTRFS_EXTENT_DATA_KEY;
626 key.offset = start;
627
628 if (newer_than) {
629 ret = btrfs_search_forward(root, &key, &path, newer_than);
630 if (ret < 0)
631 goto err;
632 /* Can't find anything newer */
633 if (ret > 0)
634 goto not_found;
635 } else {
636 ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
637 if (ret < 0)
638 goto err;
639 }
640 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
641 /*
642 * If btrfs_search_slot() makes path to point beyond nritems,
643 * we should not have an empty leaf, as this inode must at
644 * least have its INODE_ITEM.
645 */
646 ASSERT(btrfs_header_nritems(path.nodes[0]));
647 path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
648 }
649 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
650 /* Perfect match, no need to go one slot back */
651 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
652 key.offset == start)
653 goto iterate;
654
655 /* We didn't find a perfect match, needs to go one slot back */
656 if (path.slots[0] > 0) {
657 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
658 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
659 path.slots[0]--;
660 }
661
662 iterate:
663 /* Iterate through the path to find a file extent covering @start */
664 while (true) {
665 u64 extent_end;
666
667 if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
668 goto next;
669
670 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
671
672 /*
673 * We may go one slot back to INODE_REF/XATTR item, then
674 * need to go forward until we reach an EXTENT_DATA.
675 * But we should still has the correct ino as key.objectid.
676 */
677 if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
678 goto next;
679
680 /* It's beyond our target range, definitely not extent found */
681 if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
682 goto not_found;
683
684 /*
685 * | |<- File extent ->|
686 * \- start
687 *
688 * This means there is a hole between start and key.offset.
689 */
690 if (key.offset > start) {
691 em->start = start;
692 em->disk_bytenr = EXTENT_MAP_HOLE;
693 em->disk_num_bytes = 0;
694 em->ram_bytes = 0;
695 em->offset = 0;
696 em->len = key.offset - start;
697 break;
698 }
699
700 fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
701 struct btrfs_file_extent_item);
702 extent_end = btrfs_file_extent_end(&path);
703
704 /*
705 * |<- file extent ->| |
706 * \- start
707 *
708 * We haven't reached start, search next slot.
709 */
710 if (extent_end <= start)
711 goto next;
712
713 /* Now this extent covers @start, convert it to em */
714 btrfs_extent_item_to_extent_map(inode, &path, fi, em);
715 break;
716 next:
717 ret = btrfs_next_item(root, &path);
718 if (ret < 0)
719 goto err;
720 if (ret > 0)
721 goto not_found;
722 }
723 btrfs_release_path(&path);
724 return em;
725
726 not_found:
727 btrfs_release_path(&path);
728 btrfs_free_extent_map(em);
729 return NULL;
730
731 err:
732 btrfs_release_path(&path);
733 btrfs_free_extent_map(em);
734 return ERR_PTR(ret);
735 }
736
defrag_lookup_extent(struct inode * inode,u64 start,u64 newer_than,bool locked)737 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
738 u64 newer_than, bool locked)
739 {
740 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
741 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
742 struct extent_map *em;
743 const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
744
745 /*
746 * Hopefully we have this extent in the tree already, try without the
747 * full extent lock.
748 */
749 read_lock(&em_tree->lock);
750 em = btrfs_lookup_extent_mapping(em_tree, start, sectorsize);
751 read_unlock(&em_tree->lock);
752
753 /*
754 * We can get a merged extent, in that case, we need to re-search
755 * tree to get the original em for defrag.
756 *
757 * This is because even if we have adjacent extents that are contiguous
758 * and compatible (same type and flags), we still want to defrag them
759 * so that we use less metadata (extent items in the extent tree and
760 * file extent items in the inode's subvolume tree).
761 */
762 if (em && (em->flags & EXTENT_FLAG_MERGED)) {
763 btrfs_free_extent_map(em);
764 em = NULL;
765 }
766
767 if (!em) {
768 struct extent_state *cached = NULL;
769 u64 end = start + sectorsize - 1;
770
771 /* Get the big lock and read metadata off disk. */
772 if (!locked)
773 btrfs_lock_extent(io_tree, start, end, &cached);
774 em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
775 if (!locked)
776 btrfs_unlock_extent(io_tree, start, end, &cached);
777
778 if (IS_ERR(em))
779 return NULL;
780 }
781
782 return em;
783 }
784
get_extent_max_capacity(const struct btrfs_fs_info * fs_info,const struct extent_map * em)785 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
786 const struct extent_map *em)
787 {
788 if (btrfs_extent_map_is_compressed(em))
789 return BTRFS_MAX_COMPRESSED;
790 return fs_info->max_extent_size;
791 }
792
defrag_check_next_extent(struct inode * inode,struct extent_map * em,u32 extent_thresh,u64 newer_than,bool locked)793 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
794 u32 extent_thresh, u64 newer_than, bool locked)
795 {
796 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
797 struct extent_map *next;
798 bool ret = false;
799
800 /* This is the last extent */
801 if (em->start + em->len >= i_size_read(inode))
802 return false;
803
804 /*
805 * Here we need to pass @newer_then when checking the next extent, or
806 * we will hit a case we mark current extent for defrag, but the next
807 * one will not be a target.
808 * This will just cause extra IO without really reducing the fragments.
809 */
810 next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
811 /* No more em or hole */
812 if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE)
813 goto out;
814 if (next->flags & EXTENT_FLAG_PREALLOC)
815 goto out;
816 /*
817 * If the next extent is at its max capacity, defragging current extent
818 * makes no sense, as the total number of extents won't change.
819 */
820 if (next->len >= get_extent_max_capacity(fs_info, em))
821 goto out;
822 /* Skip older extent */
823 if (next->generation < newer_than)
824 goto out;
825 /* Also check extent size */
826 if (next->len >= extent_thresh)
827 goto out;
828
829 ret = true;
830 out:
831 btrfs_free_extent_map(next);
832 return ret;
833 }
834
835 /*
836 * Prepare one page to be defragged.
837 *
838 * This will ensure:
839 *
840 * - Returned page is locked and has been set up properly.
841 * - No ordered extent exists in the page.
842 * - The page is uptodate.
843 *
844 * NOTE: Caller should also wait for page writeback after the cluster is
845 * prepared, here we don't do writeback wait for each page.
846 */
defrag_prepare_one_folio(struct btrfs_inode * inode,pgoff_t index)847 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
848 {
849 struct address_space *mapping = inode->vfs_inode.i_mapping;
850 gfp_t mask = btrfs_alloc_write_mask(mapping);
851 u64 lock_start;
852 u64 lock_end;
853 struct extent_state *cached_state = NULL;
854 struct folio *folio;
855 int ret;
856
857 again:
858 /* TODO: Add order fgp order flags when large folios are fully enabled. */
859 folio = __filemap_get_folio(mapping, index,
860 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
861 if (IS_ERR(folio))
862 return folio;
863
864 /*
865 * Since we can defragment files opened read-only, we can encounter
866 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS).
867 *
868 * The IO for such large folios is not fully tested, thus return
869 * an error to reject such folios unless it's an experimental build.
870 *
871 * Filesystem transparent huge pages are typically only used for
872 * executables that explicitly enable them, so this isn't very
873 * restrictive.
874 */
875 if (!IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && folio_test_large(folio)) {
876 folio_unlock(folio);
877 folio_put(folio);
878 return ERR_PTR(-ETXTBSY);
879 }
880
881 ret = set_folio_extent_mapped(folio);
882 if (ret < 0) {
883 folio_unlock(folio);
884 folio_put(folio);
885 return ERR_PTR(ret);
886 }
887
888 lock_start = folio_pos(folio);
889 lock_end = folio_end(folio) - 1;
890 /* Wait for any existing ordered extent in the range */
891 while (1) {
892 struct btrfs_ordered_extent *ordered;
893
894 btrfs_lock_extent(&inode->io_tree, lock_start, lock_end, &cached_state);
895 ordered = btrfs_lookup_ordered_range(inode, lock_start, folio_size(folio));
896 btrfs_unlock_extent(&inode->io_tree, lock_start, lock_end, &cached_state);
897 if (!ordered)
898 break;
899
900 folio_unlock(folio);
901 btrfs_start_ordered_extent(ordered);
902 btrfs_put_ordered_extent(ordered);
903 folio_lock(folio);
904 /*
905 * We unlocked the folio above, so we need check if it was
906 * released or not.
907 */
908 if (folio->mapping != mapping || !folio->private) {
909 folio_unlock(folio);
910 folio_put(folio);
911 goto again;
912 }
913 }
914
915 /*
916 * Now the page range has no ordered extent any more. Read the page to
917 * make it uptodate.
918 */
919 if (!folio_test_uptodate(folio)) {
920 btrfs_read_folio(NULL, folio);
921 folio_lock(folio);
922 if (folio->mapping != mapping || !folio->private) {
923 folio_unlock(folio);
924 folio_put(folio);
925 goto again;
926 }
927 if (!folio_test_uptodate(folio)) {
928 folio_unlock(folio);
929 folio_put(folio);
930 return ERR_PTR(-EIO);
931 }
932 }
933 return folio;
934 }
935
936 struct defrag_target_range {
937 struct list_head list;
938 u64 start;
939 u64 len;
940 };
941
942 /*
943 * Collect all valid target extents.
944 *
945 * @start: file offset to lookup
946 * @len: length to lookup
947 * @extent_thresh: file extent size threshold, any extent size >= this value
948 * will be ignored
949 * @newer_than: only defrag extents newer than this value
950 * @do_compress: whether the defrag is doing compression or no-compression
951 * if true, @extent_thresh will be ignored and all regular
952 * file extents meeting @newer_than will be targets.
953 * @locked: if the range has already held extent lock
954 * @target_list: list of targets file extents
955 */
defrag_collect_targets(struct btrfs_inode * inode,u64 start,u64 len,u32 extent_thresh,u64 newer_than,bool do_compress,bool locked,struct list_head * target_list,u64 * last_scanned_ret)956 static int defrag_collect_targets(struct btrfs_inode *inode,
957 u64 start, u64 len, u32 extent_thresh,
958 u64 newer_than, bool do_compress,
959 bool locked, struct list_head *target_list,
960 u64 *last_scanned_ret)
961 {
962 struct btrfs_fs_info *fs_info = inode->root->fs_info;
963 bool last_is_target = false;
964 u64 cur = start;
965 int ret = 0;
966
967 while (cur < start + len) {
968 struct extent_map *em;
969 struct defrag_target_range *new;
970 bool next_mergeable = true;
971 u64 range_len;
972
973 last_is_target = false;
974 em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
975 if (!em)
976 break;
977
978 /*
979 * If the file extent is an inlined one, we may still want to
980 * defrag it (fallthrough) if it will cause a regular extent.
981 * This is for users who want to convert inline extents to
982 * regular ones through max_inline= mount option.
983 */
984 if (em->disk_bytenr == EXTENT_MAP_INLINE &&
985 em->len <= inode->root->fs_info->max_inline)
986 goto next;
987
988 /* Skip holes and preallocated extents. */
989 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
990 (em->flags & EXTENT_FLAG_PREALLOC))
991 goto next;
992
993 /* Skip older extent */
994 if (em->generation < newer_than)
995 goto next;
996
997 /* This em is under writeback, no need to defrag */
998 if (em->generation == (u64)-1)
999 goto next;
1000
1001 /*
1002 * Our start offset might be in the middle of an existing extent
1003 * map, so take that into account.
1004 */
1005 range_len = em->len - (cur - em->start);
1006 /*
1007 * If this range of the extent map is already flagged for delalloc,
1008 * skip it, because:
1009 *
1010 * 1) We could deadlock later, when trying to reserve space for
1011 * delalloc, because in case we can't immediately reserve space
1012 * the flusher can start delalloc and wait for the respective
1013 * ordered extents to complete. The deadlock would happen
1014 * because we do the space reservation while holding the range
1015 * locked, and starting writeback, or finishing an ordered
1016 * extent, requires locking the range;
1017 *
1018 * 2) If there's delalloc there, it means there's dirty pages for
1019 * which writeback has not started yet (we clean the delalloc
1020 * flag when starting writeback and after creating an ordered
1021 * extent). If we mark pages in an adjacent range for defrag,
1022 * then we will have a larger contiguous range for delalloc,
1023 * very likely resulting in a larger extent after writeback is
1024 * triggered (except in a case of free space fragmentation).
1025 */
1026 if (btrfs_test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1027 EXTENT_DELALLOC))
1028 goto next;
1029
1030 /*
1031 * For do_compress case, we want to compress all valid file
1032 * extents, thus no @extent_thresh or mergeable check.
1033 */
1034 if (do_compress)
1035 goto add;
1036
1037 /* Skip too large extent */
1038 if (em->len >= extent_thresh)
1039 goto next;
1040
1041 /*
1042 * Skip extents already at its max capacity, this is mostly for
1043 * compressed extents, which max cap is only 128K.
1044 */
1045 if (em->len >= get_extent_max_capacity(fs_info, em))
1046 goto next;
1047
1048 /*
1049 * Normally there are no more extents after an inline one, thus
1050 * @next_mergeable will normally be false and not defragged.
1051 * So if an inline extent passed all above checks, just add it
1052 * for defrag, and be converted to regular extents.
1053 */
1054 if (em->disk_bytenr == EXTENT_MAP_INLINE)
1055 goto add;
1056
1057 next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1058 extent_thresh, newer_than, locked);
1059 if (!next_mergeable) {
1060 struct defrag_target_range *last;
1061
1062 /* Empty target list, no way to merge with last entry */
1063 if (list_empty(target_list))
1064 goto next;
1065 last = list_last_entry(target_list,
1066 struct defrag_target_range, list);
1067 /* Not mergeable with last entry */
1068 if (last->start + last->len != cur)
1069 goto next;
1070
1071 /* Mergeable, fall through to add it to @target_list. */
1072 }
1073
1074 add:
1075 last_is_target = true;
1076 range_len = min(btrfs_extent_map_end(em), start + len) - cur;
1077 /*
1078 * This one is a good target, check if it can be merged into
1079 * last range of the target list.
1080 */
1081 if (!list_empty(target_list)) {
1082 struct defrag_target_range *last;
1083
1084 last = list_last_entry(target_list,
1085 struct defrag_target_range, list);
1086 ASSERT(last->start + last->len <= cur);
1087 if (last->start + last->len == cur) {
1088 /* Mergeable, enlarge the last entry */
1089 last->len += range_len;
1090 goto next;
1091 }
1092 /* Fall through to allocate a new entry */
1093 }
1094
1095 /* Allocate new defrag_target_range */
1096 new = kmalloc(sizeof(*new), GFP_NOFS);
1097 if (!new) {
1098 btrfs_free_extent_map(em);
1099 ret = -ENOMEM;
1100 break;
1101 }
1102 new->start = cur;
1103 new->len = range_len;
1104 list_add_tail(&new->list, target_list);
1105
1106 next:
1107 cur = btrfs_extent_map_end(em);
1108 btrfs_free_extent_map(em);
1109 }
1110 if (ret < 0) {
1111 struct defrag_target_range *entry;
1112 struct defrag_target_range *tmp;
1113
1114 list_for_each_entry_safe(entry, tmp, target_list, list) {
1115 list_del_init(&entry->list);
1116 kfree(entry);
1117 }
1118 }
1119 if (!ret && last_scanned_ret) {
1120 /*
1121 * If the last extent is not a target, the caller can skip to
1122 * the end of that extent.
1123 * Otherwise, we can only go the end of the specified range.
1124 */
1125 if (!last_is_target)
1126 *last_scanned_ret = max(cur, *last_scanned_ret);
1127 else
1128 *last_scanned_ret = max(start + len, *last_scanned_ret);
1129 }
1130 return ret;
1131 }
1132
1133 #define CLUSTER_SIZE (SZ_256K)
1134 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1135
1136 /*
1137 * Defrag one contiguous target range.
1138 *
1139 * @inode: target inode
1140 * @target: target range to defrag
1141 * @pages: locked pages covering the defrag range
1142 * @nr_pages: number of locked pages
1143 *
1144 * Caller should ensure:
1145 *
1146 * - Pages are prepared
1147 * Pages should be locked, no ordered extent in the pages range,
1148 * no writeback.
1149 *
1150 * - Extent bits are locked
1151 */
defrag_one_locked_target(struct btrfs_inode * inode,struct defrag_target_range * target,struct folio ** folios,int nr_pages,struct extent_state ** cached_state)1152 static int defrag_one_locked_target(struct btrfs_inode *inode,
1153 struct defrag_target_range *target,
1154 struct folio **folios, int nr_pages,
1155 struct extent_state **cached_state)
1156 {
1157 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1158 struct extent_changeset *data_reserved = NULL;
1159 const u64 start = target->start;
1160 const u64 len = target->len;
1161 int ret = 0;
1162
1163 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1164 if (ret < 0)
1165 return ret;
1166 btrfs_clear_extent_bit(&inode->io_tree, start, start + len - 1,
1167 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1168 EXTENT_DEFRAG, cached_state);
1169 btrfs_set_extent_bit(&inode->io_tree, start, start + len - 1,
1170 EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1171
1172 /*
1173 * Update the page status.
1174 * Due to possible large folios, we have to check all folios one by one.
1175 */
1176 for (int i = 0; i < nr_pages && folios[i]; i++) {
1177 struct folio *folio = folios[i];
1178
1179 if (!folio)
1180 break;
1181 if (start >= folio_end(folio) || start + len <= folio_pos(folio))
1182 continue;
1183 btrfs_folio_clamp_clear_checked(fs_info, folio, start, len);
1184 btrfs_folio_clamp_set_dirty(fs_info, folio, start, len);
1185 }
1186 btrfs_delalloc_release_extents(inode, len);
1187 extent_changeset_free(data_reserved);
1188
1189 return ret;
1190 }
1191
defrag_one_range(struct btrfs_inode * inode,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,u64 * last_scanned_ret)1192 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1193 u32 extent_thresh, u64 newer_than, bool do_compress,
1194 u64 *last_scanned_ret)
1195 {
1196 struct extent_state *cached_state = NULL;
1197 struct defrag_target_range *entry;
1198 struct defrag_target_range *tmp;
1199 LIST_HEAD(target_list);
1200 struct folio **folios;
1201 const u32 sectorsize = inode->root->fs_info->sectorsize;
1202 u64 cur = start;
1203 const unsigned int nr_pages = ((start + len - 1) >> PAGE_SHIFT) -
1204 (start >> PAGE_SHIFT) + 1;
1205 int ret = 0;
1206
1207 ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1208 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1209
1210 folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
1211 if (!folios)
1212 return -ENOMEM;
1213
1214 /* Prepare all pages */
1215 for (int i = 0; cur < start + len && i < nr_pages; i++) {
1216 folios[i] = defrag_prepare_one_folio(inode, cur >> PAGE_SHIFT);
1217 if (IS_ERR(folios[i])) {
1218 ret = PTR_ERR(folios[i]);
1219 folios[i] = NULL;
1220 goto free_folios;
1221 }
1222 cur = folio_end(folios[i]);
1223 }
1224 for (int i = 0; i < nr_pages; i++) {
1225 if (!folios[i])
1226 break;
1227 folio_wait_writeback(folios[i]);
1228 }
1229
1230 /* We should get at least one folio. */
1231 ASSERT(folios[0]);
1232 /* Lock the pages range */
1233 btrfs_lock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state);
1234 /*
1235 * Now we have a consistent view about the extent map, re-check
1236 * which range really needs to be defragged.
1237 *
1238 * And this time we have extent locked already, pass @locked = true
1239 * so that we won't relock the extent range and cause deadlock.
1240 */
1241 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1242 newer_than, do_compress, true,
1243 &target_list, last_scanned_ret);
1244 if (ret < 0)
1245 goto unlock_extent;
1246
1247 list_for_each_entry(entry, &target_list, list) {
1248 ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
1249 &cached_state);
1250 if (ret < 0)
1251 break;
1252 }
1253
1254 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1255 list_del_init(&entry->list);
1256 kfree(entry);
1257 }
1258 unlock_extent:
1259 btrfs_unlock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state);
1260 free_folios:
1261 for (int i = 0; i < nr_pages; i++) {
1262 if (!folios[i])
1263 break;
1264 folio_unlock(folios[i]);
1265 folio_put(folios[i]);
1266 }
1267 kfree(folios);
1268 return ret;
1269 }
1270
defrag_one_cluster(struct btrfs_inode * inode,struct file_ra_state * ra,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,unsigned long * sectors_defragged,unsigned long max_sectors,u64 * last_scanned_ret)1271 static int defrag_one_cluster(struct btrfs_inode *inode,
1272 struct file_ra_state *ra,
1273 u64 start, u32 len, u32 extent_thresh,
1274 u64 newer_than, bool do_compress,
1275 unsigned long *sectors_defragged,
1276 unsigned long max_sectors,
1277 u64 *last_scanned_ret)
1278 {
1279 const u32 sectorsize = inode->root->fs_info->sectorsize;
1280 struct defrag_target_range *entry;
1281 struct defrag_target_range *tmp;
1282 LIST_HEAD(target_list);
1283 int ret;
1284
1285 ret = defrag_collect_targets(inode, start, len, extent_thresh,
1286 newer_than, do_compress, false,
1287 &target_list, NULL);
1288 if (ret < 0)
1289 goto out;
1290
1291 list_for_each_entry(entry, &target_list, list) {
1292 u32 range_len = entry->len;
1293
1294 /* Reached or beyond the limit */
1295 if (max_sectors && *sectors_defragged >= max_sectors) {
1296 ret = 1;
1297 break;
1298 }
1299
1300 if (max_sectors)
1301 range_len = min_t(u32, range_len,
1302 (max_sectors - *sectors_defragged) * sectorsize);
1303
1304 /*
1305 * If defrag_one_range() has updated last_scanned_ret,
1306 * our range may already be invalid (e.g. hole punched).
1307 * Skip if our range is before last_scanned_ret, as there is
1308 * no need to defrag the range anymore.
1309 */
1310 if (entry->start + range_len <= *last_scanned_ret)
1311 continue;
1312
1313 page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1314 ra, NULL, entry->start >> PAGE_SHIFT,
1315 ((entry->start + range_len - 1) >> PAGE_SHIFT) -
1316 (entry->start >> PAGE_SHIFT) + 1);
1317 /*
1318 * Here we may not defrag any range if holes are punched before
1319 * we locked the pages.
1320 * But that's fine, it only affects the @sectors_defragged
1321 * accounting.
1322 */
1323 ret = defrag_one_range(inode, entry->start, range_len,
1324 extent_thresh, newer_than, do_compress,
1325 last_scanned_ret);
1326 if (ret < 0)
1327 break;
1328 *sectors_defragged += range_len >>
1329 inode->root->fs_info->sectorsize_bits;
1330 }
1331 out:
1332 list_for_each_entry_safe(entry, tmp, &target_list, list) {
1333 list_del_init(&entry->list);
1334 kfree(entry);
1335 }
1336 if (ret >= 0)
1337 *last_scanned_ret = max(*last_scanned_ret, start + len);
1338 return ret;
1339 }
1340
1341 /*
1342 * Entry point to file defragmentation.
1343 *
1344 * @inode: inode to be defragged
1345 * @ra: readahead state
1346 * @range: defrag options including range and flags
1347 * @newer_than: minimum transid to defrag
1348 * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1349 * will be defragged.
1350 *
1351 * Return <0 for error.
1352 * Return >=0 for the number of sectors defragged, and range->start will be updated
1353 * to indicate the file offset where next defrag should be started at.
1354 * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1355 * defragging all the range).
1356 */
btrfs_defrag_file(struct btrfs_inode * inode,struct file_ra_state * ra,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1357 int btrfs_defrag_file(struct btrfs_inode *inode, struct file_ra_state *ra,
1358 struct btrfs_ioctl_defrag_range_args *range,
1359 u64 newer_than, unsigned long max_to_defrag)
1360 {
1361 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1362 unsigned long sectors_defragged = 0;
1363 u64 isize = i_size_read(&inode->vfs_inode);
1364 u64 cur;
1365 u64 last_byte;
1366 bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1367 bool no_compress = (range->flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS);
1368 int compress_type = BTRFS_COMPRESS_ZLIB;
1369 int compress_level = 0;
1370 int ret = 0;
1371 u32 extent_thresh = range->extent_thresh;
1372 pgoff_t start_index;
1373
1374 ASSERT(ra);
1375
1376 if (isize == 0)
1377 return 0;
1378
1379 if (range->start >= isize)
1380 return -EINVAL;
1381
1382 if (do_compress) {
1383 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS_LEVEL) {
1384 if (range->compress.type >= BTRFS_NR_COMPRESS_TYPES)
1385 return -EINVAL;
1386 if (range->compress.type) {
1387 compress_type = range->compress.type;
1388 compress_level = range->compress.level;
1389 if (!btrfs_compress_level_valid(compress_type, compress_level))
1390 return -EINVAL;
1391 }
1392 } else {
1393 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1394 return -EINVAL;
1395 if (range->compress_type)
1396 compress_type = range->compress_type;
1397 }
1398 } else if (range->flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS) {
1399 compress_type = BTRFS_DEFRAG_DONT_COMPRESS;
1400 compress_level = 1;
1401 }
1402
1403 if (extent_thresh == 0)
1404 extent_thresh = SZ_256K;
1405
1406 if (range->start + range->len > range->start) {
1407 /* Got a specific range */
1408 last_byte = min(isize, range->start + range->len);
1409 } else {
1410 /* Defrag until file end */
1411 last_byte = isize;
1412 }
1413
1414 /* Align the range */
1415 cur = round_down(range->start, fs_info->sectorsize);
1416 last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1417
1418 /*
1419 * Make writeback start from the beginning of the range, so that the
1420 * defrag range can be written sequentially.
1421 */
1422 start_index = cur >> PAGE_SHIFT;
1423 if (start_index < inode->vfs_inode.i_mapping->writeback_index)
1424 inode->vfs_inode.i_mapping->writeback_index = start_index;
1425
1426 while (cur < last_byte) {
1427 const unsigned long prev_sectors_defragged = sectors_defragged;
1428 u64 last_scanned = cur;
1429 u64 cluster_end;
1430
1431 if (btrfs_defrag_cancelled(fs_info)) {
1432 ret = -EAGAIN;
1433 break;
1434 }
1435
1436 /* We want the cluster end at page boundary when possible */
1437 cluster_end = (((cur >> PAGE_SHIFT) +
1438 (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1439 cluster_end = min(cluster_end, last_byte);
1440
1441 btrfs_inode_lock(inode, 0);
1442 if (IS_SWAPFILE(&inode->vfs_inode)) {
1443 ret = -ETXTBSY;
1444 btrfs_inode_unlock(inode, 0);
1445 break;
1446 }
1447 if (!(inode->vfs_inode.i_sb->s_flags & SB_ACTIVE)) {
1448 btrfs_inode_unlock(inode, 0);
1449 break;
1450 }
1451 if (do_compress || no_compress) {
1452 inode->defrag_compress = compress_type;
1453 inode->defrag_compress_level = compress_level;
1454 }
1455 ret = defrag_one_cluster(inode, ra, cur,
1456 cluster_end + 1 - cur, extent_thresh,
1457 newer_than, do_compress || no_compress,
1458 §ors_defragged,
1459 max_to_defrag, &last_scanned);
1460
1461 if (sectors_defragged > prev_sectors_defragged)
1462 balance_dirty_pages_ratelimited(inode->vfs_inode.i_mapping);
1463
1464 btrfs_inode_unlock(inode, 0);
1465 if (ret < 0)
1466 break;
1467 cur = max(cluster_end + 1, last_scanned);
1468 if (ret > 0) {
1469 ret = 0;
1470 break;
1471 }
1472 cond_resched();
1473 }
1474
1475 /*
1476 * Update range.start for autodefrag, this will indicate where to start
1477 * in next run.
1478 */
1479 range->start = cur;
1480 if (sectors_defragged) {
1481 /*
1482 * We have defragged some sectors, for compression case they
1483 * need to be written back immediately.
1484 */
1485 if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1486 filemap_flush(inode->vfs_inode.i_mapping);
1487 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1488 &inode->runtime_flags))
1489 filemap_flush(inode->vfs_inode.i_mapping);
1490 }
1491 if (range->compress_type == BTRFS_COMPRESS_LZO)
1492 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1493 else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1494 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1495 ret = sectors_defragged;
1496 }
1497 if (do_compress || no_compress) {
1498 btrfs_inode_lock(inode, 0);
1499 inode->defrag_compress = BTRFS_COMPRESS_NONE;
1500 btrfs_inode_unlock(inode, 0);
1501 }
1502 return ret;
1503 }
1504
btrfs_auto_defrag_exit(void)1505 void __cold btrfs_auto_defrag_exit(void)
1506 {
1507 kmem_cache_destroy(btrfs_inode_defrag_cachep);
1508 }
1509
btrfs_auto_defrag_init(void)1510 int __init btrfs_auto_defrag_init(void)
1511 {
1512 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1513 sizeof(struct inode_defrag), 0, 0, NULL);
1514 if (!btrfs_inode_defrag_cachep)
1515 return -ENOMEM;
1516
1517 return 0;
1518 }
1519