xref: /linux/fs/btrfs/defrag.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "transaction.h"
10 #include "locking.h"
11 #include "accessors.h"
12 #include "messages.h"
13 #include "delalloc-space.h"
14 #include "subpage.h"
15 #include "defrag.h"
16 #include "file-item.h"
17 #include "super.h"
18 
19 static struct kmem_cache *btrfs_inode_defrag_cachep;
20 
21 /*
22  * When auto defrag is enabled we queue up these defrag structs to remember
23  * which inodes need defragging passes.
24  */
25 struct inode_defrag {
26 	struct rb_node rb_node;
27 	/* Inode number */
28 	u64 ino;
29 	/*
30 	 * Transid where the defrag was added, we search for extents newer than
31 	 * this.
32 	 */
33 	u64 transid;
34 
35 	/* Root objectid */
36 	u64 root;
37 
38 	/*
39 	 * The extent size threshold for autodefrag.
40 	 *
41 	 * This value is different for compressed/non-compressed extents, thus
42 	 * needs to be passed from higher layer.
43 	 * (aka, inode_should_defrag())
44 	 */
45 	u32 extent_thresh;
46 };
47 
compare_inode_defrag(const struct inode_defrag * defrag1,const struct inode_defrag * defrag2)48 static int compare_inode_defrag(const struct inode_defrag *defrag1,
49 				const struct inode_defrag *defrag2)
50 {
51 	if (defrag1->root > defrag2->root)
52 		return 1;
53 	else if (defrag1->root < defrag2->root)
54 		return -1;
55 	else if (defrag1->ino > defrag2->ino)
56 		return 1;
57 	else if (defrag1->ino < defrag2->ino)
58 		return -1;
59 	else
60 		return 0;
61 }
62 
inode_defrag_cmp(struct rb_node * new,const struct rb_node * existing)63 static int inode_defrag_cmp(struct rb_node *new, const struct rb_node *existing)
64 {
65 	const struct inode_defrag *new_defrag = rb_entry(new, struct inode_defrag, rb_node);
66 	const struct inode_defrag *existing_defrag = rb_entry(existing, struct inode_defrag, rb_node);
67 
68 	return compare_inode_defrag(new_defrag, existing_defrag);
69 }
70 
71 /*
72  * Insert a record for an inode into the defrag tree.  The lock must be held
73  * already.
74  *
75  * If you're inserting a record for an older transid than an existing record,
76  * the transid already in the tree is lowered.
77  */
btrfs_insert_inode_defrag(struct btrfs_inode * inode,struct inode_defrag * defrag)78 static int btrfs_insert_inode_defrag(struct btrfs_inode *inode,
79 				     struct inode_defrag *defrag)
80 {
81 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
82 	struct rb_node *node;
83 
84 	node = rb_find_add(&defrag->rb_node, &fs_info->defrag_inodes, inode_defrag_cmp);
85 	if (node) {
86 		struct inode_defrag *entry;
87 
88 		entry = rb_entry(node, struct inode_defrag, rb_node);
89 		/*
90 		 * If we're reinserting an entry for an old defrag run, make
91 		 * sure to lower the transid of our existing record.
92 		 */
93 		if (defrag->transid < entry->transid)
94 			entry->transid = defrag->transid;
95 		entry->extent_thresh = min(defrag->extent_thresh, entry->extent_thresh);
96 		return -EEXIST;
97 	}
98 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
99 	return 0;
100 }
101 
need_auto_defrag(struct btrfs_fs_info * fs_info)102 static inline bool need_auto_defrag(struct btrfs_fs_info *fs_info)
103 {
104 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
105 		return false;
106 
107 	if (btrfs_fs_closing(fs_info))
108 		return false;
109 
110 	return true;
111 }
112 
113 /*
114  * Insert a defrag record for this inode if auto defrag is enabled. No errors
115  * returned as they're not considered fatal.
116  */
btrfs_add_inode_defrag(struct btrfs_inode * inode,u32 extent_thresh)117 void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh)
118 {
119 	struct btrfs_root *root = inode->root;
120 	struct btrfs_fs_info *fs_info = root->fs_info;
121 	struct inode_defrag *defrag;
122 	int ret;
123 
124 	if (!need_auto_defrag(fs_info))
125 		return;
126 
127 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
128 		return;
129 
130 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
131 	if (!defrag)
132 		return;
133 
134 	defrag->ino = btrfs_ino(inode);
135 	defrag->transid = btrfs_get_root_last_trans(root);
136 	defrag->root = btrfs_root_id(root);
137 	defrag->extent_thresh = extent_thresh;
138 
139 	spin_lock(&fs_info->defrag_inodes_lock);
140 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
141 		/*
142 		 * If we set IN_DEFRAG flag and evict the inode from memory,
143 		 * and then re-read this inode, this new inode doesn't have
144 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
145 		 */
146 		ret = btrfs_insert_inode_defrag(inode, defrag);
147 		if (ret)
148 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
149 	} else {
150 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
151 	}
152 	spin_unlock(&fs_info->defrag_inodes_lock);
153 }
154 
155 /*
156  * Pick the defragable inode that we want, if it doesn't exist, we will get the
157  * next one.
158  */
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)159 static struct inode_defrag *btrfs_pick_defrag_inode(
160 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
161 {
162 	struct inode_defrag *entry = NULL;
163 	struct inode_defrag tmp;
164 	struct rb_node *p;
165 	struct rb_node *parent = NULL;
166 	int ret;
167 
168 	tmp.ino = ino;
169 	tmp.root = root;
170 
171 	spin_lock(&fs_info->defrag_inodes_lock);
172 	p = fs_info->defrag_inodes.rb_node;
173 	while (p) {
174 		parent = p;
175 		entry = rb_entry(parent, struct inode_defrag, rb_node);
176 
177 		ret = compare_inode_defrag(&tmp, entry);
178 		if (ret < 0)
179 			p = parent->rb_left;
180 		else if (ret > 0)
181 			p = parent->rb_right;
182 		else
183 			goto out;
184 	}
185 
186 	if (parent && compare_inode_defrag(&tmp, entry) > 0) {
187 		parent = rb_next(parent);
188 		entry = rb_entry_safe(parent, struct inode_defrag, rb_node);
189 	}
190 out:
191 	if (entry)
192 		rb_erase(parent, &fs_info->defrag_inodes);
193 	spin_unlock(&fs_info->defrag_inodes_lock);
194 	return entry;
195 }
196 
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)197 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
198 {
199 	struct inode_defrag *defrag, *next;
200 
201 	spin_lock(&fs_info->defrag_inodes_lock);
202 
203 	rbtree_postorder_for_each_entry_safe(defrag, next,
204 					     &fs_info->defrag_inodes, rb_node)
205 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
206 
207 	fs_info->defrag_inodes = RB_ROOT;
208 
209 	spin_unlock(&fs_info->defrag_inodes_lock);
210 }
211 
212 #define BTRFS_DEFRAG_BATCH	1024
213 
btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag,struct file_ra_state * ra)214 static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
215 				  struct inode_defrag *defrag,
216 				  struct file_ra_state *ra)
217 {
218 	struct btrfs_root *inode_root;
219 	struct btrfs_inode *inode;
220 	struct btrfs_ioctl_defrag_range_args range;
221 	int ret = 0;
222 	u64 cur = 0;
223 
224 again:
225 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
226 		goto cleanup;
227 	if (!need_auto_defrag(fs_info))
228 		goto cleanup;
229 
230 	/* Get the inode */
231 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
232 	if (IS_ERR(inode_root)) {
233 		ret = PTR_ERR(inode_root);
234 		goto cleanup;
235 	}
236 
237 	inode = btrfs_iget(defrag->ino, inode_root);
238 	btrfs_put_root(inode_root);
239 	if (IS_ERR(inode)) {
240 		ret = PTR_ERR(inode);
241 		goto cleanup;
242 	}
243 
244 	if (cur >= i_size_read(&inode->vfs_inode)) {
245 		iput(&inode->vfs_inode);
246 		goto cleanup;
247 	}
248 
249 	/* Do a chunk of defrag */
250 	clear_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
251 	memset(&range, 0, sizeof(range));
252 	range.len = (u64)-1;
253 	range.start = cur;
254 	range.extent_thresh = defrag->extent_thresh;
255 	file_ra_state_init(ra, inode->vfs_inode.i_mapping);
256 
257 	sb_start_write(fs_info->sb);
258 	ret = btrfs_defrag_file(inode, ra, &range, defrag->transid,
259 				BTRFS_DEFRAG_BATCH);
260 	sb_end_write(fs_info->sb);
261 	iput(&inode->vfs_inode);
262 
263 	if (ret < 0)
264 		goto cleanup;
265 
266 	cur = max(cur + fs_info->sectorsize, range.start);
267 	goto again;
268 
269 cleanup:
270 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
271 	return ret;
272 }
273 
274 /*
275  * Run through the list of inodes in the FS that need defragging.
276  */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)277 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
278 {
279 	struct inode_defrag *defrag;
280 	u64 first_ino = 0;
281 	u64 root_objectid = 0;
282 
283 	atomic_inc(&fs_info->defrag_running);
284 	while (1) {
285 		struct file_ra_state ra = { 0 };
286 
287 		/* Pause the auto defragger. */
288 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
289 			break;
290 
291 		if (!need_auto_defrag(fs_info))
292 			break;
293 
294 		/* find an inode to defrag */
295 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
296 		if (!defrag) {
297 			if (root_objectid || first_ino) {
298 				root_objectid = 0;
299 				first_ino = 0;
300 				continue;
301 			} else {
302 				break;
303 			}
304 		}
305 
306 		first_ino = defrag->ino + 1;
307 		root_objectid = defrag->root;
308 
309 		btrfs_run_defrag_inode(fs_info, defrag, &ra);
310 	}
311 	atomic_dec(&fs_info->defrag_running);
312 
313 	/*
314 	 * During unmount, we use the transaction_wait queue to wait for the
315 	 * defragger to stop.
316 	 */
317 	wake_up(&fs_info->transaction_wait);
318 	return 0;
319 }
320 
321 /*
322  * Check if two blocks addresses are close, used by defrag.
323  */
close_blocks(u64 blocknr,u64 other,u32 blocksize)324 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
325 {
326 	if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
327 		return true;
328 	if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
329 		return true;
330 	return false;
331 }
332 
333 /*
334  * Go through all the leaves pointed to by a node and reallocate them so that
335  * disk order is close to key order.
336  */
btrfs_realloc_node(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * parent,int start_slot,u64 * last_ret,struct btrfs_key * progress)337 static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
338 			      struct btrfs_root *root,
339 			      struct extent_buffer *parent,
340 			      int start_slot, u64 *last_ret,
341 			      struct btrfs_key *progress)
342 {
343 	struct btrfs_fs_info *fs_info = root->fs_info;
344 	const u32 blocksize = fs_info->nodesize;
345 	const int end_slot = btrfs_header_nritems(parent) - 1;
346 	u64 search_start = *last_ret;
347 	u64 last_block = 0;
348 	int ret = 0;
349 	bool progress_passed = false;
350 
351 	/*
352 	 * COWing must happen through a running transaction, which always
353 	 * matches the current fs generation (it's a transaction with a state
354 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
355 	 * into error state to prevent the commit of any transaction.
356 	 */
357 	if (unlikely(trans->transaction != fs_info->running_transaction ||
358 		     trans->transid != fs_info->generation)) {
359 		btrfs_abort_transaction(trans, -EUCLEAN);
360 		btrfs_crit(fs_info,
361 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
362 			   parent->start, btrfs_root_id(root), trans->transid,
363 			   fs_info->running_transaction->transid,
364 			   fs_info->generation);
365 		return -EUCLEAN;
366 	}
367 
368 	if (btrfs_header_nritems(parent) <= 1)
369 		return 0;
370 
371 	for (int i = start_slot; i <= end_slot; i++) {
372 		struct extent_buffer *cur;
373 		struct btrfs_disk_key disk_key;
374 		u64 blocknr;
375 		u64 other;
376 		bool close = true;
377 
378 		btrfs_node_key(parent, &disk_key, i);
379 		if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
380 			continue;
381 
382 		progress_passed = true;
383 		blocknr = btrfs_node_blockptr(parent, i);
384 		if (last_block == 0)
385 			last_block = blocknr;
386 
387 		if (i > 0) {
388 			other = btrfs_node_blockptr(parent, i - 1);
389 			close = close_blocks(blocknr, other, blocksize);
390 		}
391 		if (!close && i < end_slot) {
392 			other = btrfs_node_blockptr(parent, i + 1);
393 			close = close_blocks(blocknr, other, blocksize);
394 		}
395 		if (close) {
396 			last_block = blocknr;
397 			continue;
398 		}
399 
400 		cur = btrfs_read_node_slot(parent, i);
401 		if (IS_ERR(cur))
402 			return PTR_ERR(cur);
403 		if (search_start == 0)
404 			search_start = last_block;
405 
406 		btrfs_tree_lock(cur);
407 		ret = btrfs_force_cow_block(trans, root, cur, parent, i,
408 					    &cur, search_start,
409 					    min(16 * blocksize,
410 						(end_slot - i) * blocksize),
411 					    BTRFS_NESTING_COW);
412 		if (ret) {
413 			btrfs_tree_unlock(cur);
414 			free_extent_buffer(cur);
415 			break;
416 		}
417 		search_start = cur->start;
418 		last_block = cur->start;
419 		*last_ret = search_start;
420 		btrfs_tree_unlock(cur);
421 		free_extent_buffer(cur);
422 	}
423 	return ret;
424 }
425 
426 /*
427  * Defrag all the leaves in a given btree.
428  * Read all the leaves and try to get key order to
429  * better reflect disk order
430  */
431 
btrfs_defrag_leaves(struct btrfs_trans_handle * trans,struct btrfs_root * root)432 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
433 			       struct btrfs_root *root)
434 {
435 	struct btrfs_path *path = NULL;
436 	struct btrfs_key key;
437 	int ret = 0;
438 	int wret;
439 	int level;
440 	int next_key_ret = 0;
441 	u64 last_ret = 0;
442 
443 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
444 		goto out;
445 
446 	path = btrfs_alloc_path();
447 	if (!path) {
448 		ret = -ENOMEM;
449 		goto out;
450 	}
451 
452 	level = btrfs_header_level(root->node);
453 
454 	if (level == 0)
455 		goto out;
456 
457 	if (root->defrag_progress.objectid == 0) {
458 		struct extent_buffer *root_node;
459 		u32 nritems;
460 
461 		root_node = btrfs_lock_root_node(root);
462 		nritems = btrfs_header_nritems(root_node);
463 		root->defrag_max.objectid = 0;
464 		/* from above we know this is not a leaf */
465 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
466 				      nritems - 1);
467 		btrfs_tree_unlock(root_node);
468 		free_extent_buffer(root_node);
469 		memset(&key, 0, sizeof(key));
470 	} else {
471 		memcpy(&key, &root->defrag_progress, sizeof(key));
472 	}
473 
474 	path->keep_locks = 1;
475 
476 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
477 	if (ret < 0)
478 		goto out;
479 	if (ret > 0) {
480 		ret = 0;
481 		goto out;
482 	}
483 	btrfs_release_path(path);
484 	/*
485 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
486 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
487 	 * a deadlock (attempting to write lock an already write locked leaf).
488 	 */
489 	path->lowest_level = 1;
490 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
491 
492 	if (wret < 0) {
493 		ret = wret;
494 		goto out;
495 	}
496 	if (!path->nodes[1]) {
497 		ret = 0;
498 		goto out;
499 	}
500 	/*
501 	 * The node at level 1 must always be locked when our path has
502 	 * keep_locks set and lowest_level is 1, regardless of the value of
503 	 * path->slots[1].
504 	 */
505 	ASSERT(path->locks[1] != 0);
506 	ret = btrfs_realloc_node(trans, root,
507 				 path->nodes[1], 0,
508 				 &last_ret,
509 				 &root->defrag_progress);
510 	if (ret) {
511 		WARN_ON(ret == -EAGAIN);
512 		goto out;
513 	}
514 	/*
515 	 * Now that we reallocated the node we can find the next key. Note that
516 	 * btrfs_find_next_key() can release our path and do another search
517 	 * without COWing, this is because even with path->keep_locks = 1,
518 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
519 	 * node when path->slots[node_level - 1] does not point to the last
520 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
521 	 * we search for the next key after reallocating our node.
522 	 */
523 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
524 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
525 					   BTRFS_OLDEST_GENERATION);
526 	if (next_key_ret == 0) {
527 		memcpy(&root->defrag_progress, &key, sizeof(key));
528 		ret = -EAGAIN;
529 	}
530 out:
531 	btrfs_free_path(path);
532 	if (ret == -EAGAIN) {
533 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
534 			goto done;
535 		if (root->defrag_max.type > root->defrag_progress.type)
536 			goto done;
537 		if (root->defrag_max.offset > root->defrag_progress.offset)
538 			goto done;
539 		ret = 0;
540 	}
541 done:
542 	if (ret != -EAGAIN)
543 		memset(&root->defrag_progress, 0,
544 		       sizeof(root->defrag_progress));
545 
546 	return ret;
547 }
548 
549 /*
550  * Defrag a given btree.  Every leaf in the btree is read and defragmented.
551  */
btrfs_defrag_root(struct btrfs_root * root)552 int btrfs_defrag_root(struct btrfs_root *root)
553 {
554 	struct btrfs_fs_info *fs_info = root->fs_info;
555 	int ret;
556 
557 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
558 		return 0;
559 
560 	while (1) {
561 		struct btrfs_trans_handle *trans;
562 
563 		trans = btrfs_start_transaction(root, 0);
564 		if (IS_ERR(trans)) {
565 			ret = PTR_ERR(trans);
566 			break;
567 		}
568 
569 		ret = btrfs_defrag_leaves(trans, root);
570 
571 		btrfs_end_transaction(trans);
572 		btrfs_btree_balance_dirty(fs_info);
573 		cond_resched();
574 
575 		if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
576 			break;
577 
578 		if (btrfs_defrag_cancelled(fs_info)) {
579 			btrfs_debug(fs_info, "defrag_root cancelled");
580 			ret = -EAGAIN;
581 			break;
582 		}
583 	}
584 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
585 	return ret;
586 }
587 
588 /*
589  * Defrag specific helper to get an extent map.
590  *
591  * Differences between this and btrfs_get_extent() are:
592  *
593  * - No extent_map will be added to inode->extent_tree
594  *   To reduce memory usage in the long run.
595  *
596  * - Extra optimization to skip file extents older than @newer_than
597  *   By using btrfs_search_forward() we can skip entire file ranges that
598  *   have extents created in past transactions, because btrfs_search_forward()
599  *   will not visit leaves and nodes with a generation smaller than given
600  *   minimal generation threshold (@newer_than).
601  *
602  * Return valid em if we find a file extent matching the requirement.
603  * Return NULL if we can not find a file extent matching the requirement.
604  *
605  * Return ERR_PTR() for error.
606  */
defrag_get_extent(struct btrfs_inode * inode,u64 start,u64 newer_than)607 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
608 					    u64 start, u64 newer_than)
609 {
610 	struct btrfs_root *root = inode->root;
611 	struct btrfs_file_extent_item *fi;
612 	struct btrfs_path path = { 0 };
613 	struct extent_map *em;
614 	struct btrfs_key key;
615 	u64 ino = btrfs_ino(inode);
616 	int ret;
617 
618 	em = btrfs_alloc_extent_map();
619 	if (!em) {
620 		ret = -ENOMEM;
621 		goto err;
622 	}
623 
624 	key.objectid = ino;
625 	key.type = BTRFS_EXTENT_DATA_KEY;
626 	key.offset = start;
627 
628 	if (newer_than) {
629 		ret = btrfs_search_forward(root, &key, &path, newer_than);
630 		if (ret < 0)
631 			goto err;
632 		/* Can't find anything newer */
633 		if (ret > 0)
634 			goto not_found;
635 	} else {
636 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
637 		if (ret < 0)
638 			goto err;
639 	}
640 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
641 		/*
642 		 * If btrfs_search_slot() makes path to point beyond nritems,
643 		 * we should not have an empty leaf, as this inode must at
644 		 * least have its INODE_ITEM.
645 		 */
646 		ASSERT(btrfs_header_nritems(path.nodes[0]));
647 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
648 	}
649 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
650 	/* Perfect match, no need to go one slot back */
651 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
652 	    key.offset == start)
653 		goto iterate;
654 
655 	/* We didn't find a perfect match, needs to go one slot back */
656 	if (path.slots[0] > 0) {
657 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
658 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
659 			path.slots[0]--;
660 	}
661 
662 iterate:
663 	/* Iterate through the path to find a file extent covering @start */
664 	while (true) {
665 		u64 extent_end;
666 
667 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
668 			goto next;
669 
670 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
671 
672 		/*
673 		 * We may go one slot back to INODE_REF/XATTR item, then
674 		 * need to go forward until we reach an EXTENT_DATA.
675 		 * But we should still has the correct ino as key.objectid.
676 		 */
677 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
678 			goto next;
679 
680 		/* It's beyond our target range, definitely not extent found */
681 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
682 			goto not_found;
683 
684 		/*
685 		 *	|	|<- File extent ->|
686 		 *	\- start
687 		 *
688 		 * This means there is a hole between start and key.offset.
689 		 */
690 		if (key.offset > start) {
691 			em->start = start;
692 			em->disk_bytenr = EXTENT_MAP_HOLE;
693 			em->disk_num_bytes = 0;
694 			em->ram_bytes = 0;
695 			em->offset = 0;
696 			em->len = key.offset - start;
697 			break;
698 		}
699 
700 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
701 				    struct btrfs_file_extent_item);
702 		extent_end = btrfs_file_extent_end(&path);
703 
704 		/*
705 		 *	|<- file extent ->|	|
706 		 *				\- start
707 		 *
708 		 * We haven't reached start, search next slot.
709 		 */
710 		if (extent_end <= start)
711 			goto next;
712 
713 		/* Now this extent covers @start, convert it to em */
714 		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
715 		break;
716 next:
717 		ret = btrfs_next_item(root, &path);
718 		if (ret < 0)
719 			goto err;
720 		if (ret > 0)
721 			goto not_found;
722 	}
723 	btrfs_release_path(&path);
724 	return em;
725 
726 not_found:
727 	btrfs_release_path(&path);
728 	btrfs_free_extent_map(em);
729 	return NULL;
730 
731 err:
732 	btrfs_release_path(&path);
733 	btrfs_free_extent_map(em);
734 	return ERR_PTR(ret);
735 }
736 
defrag_lookup_extent(struct inode * inode,u64 start,u64 newer_than,bool locked)737 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
738 					       u64 newer_than, bool locked)
739 {
740 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
741 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
742 	struct extent_map *em;
743 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
744 
745 	/*
746 	 * Hopefully we have this extent in the tree already, try without the
747 	 * full extent lock.
748 	 */
749 	read_lock(&em_tree->lock);
750 	em = btrfs_lookup_extent_mapping(em_tree, start, sectorsize);
751 	read_unlock(&em_tree->lock);
752 
753 	/*
754 	 * We can get a merged extent, in that case, we need to re-search
755 	 * tree to get the original em for defrag.
756 	 *
757 	 * This is because even if we have adjacent extents that are contiguous
758 	 * and compatible (same type and flags), we still want to defrag them
759 	 * so that we use less metadata (extent items in the extent tree and
760 	 * file extent items in the inode's subvolume tree).
761 	 */
762 	if (em && (em->flags & EXTENT_FLAG_MERGED)) {
763 		btrfs_free_extent_map(em);
764 		em = NULL;
765 	}
766 
767 	if (!em) {
768 		struct extent_state *cached = NULL;
769 		u64 end = start + sectorsize - 1;
770 
771 		/* Get the big lock and read metadata off disk. */
772 		if (!locked)
773 			btrfs_lock_extent(io_tree, start, end, &cached);
774 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
775 		if (!locked)
776 			btrfs_unlock_extent(io_tree, start, end, &cached);
777 
778 		if (IS_ERR(em))
779 			return NULL;
780 	}
781 
782 	return em;
783 }
784 
get_extent_max_capacity(const struct btrfs_fs_info * fs_info,const struct extent_map * em)785 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
786 				   const struct extent_map *em)
787 {
788 	if (btrfs_extent_map_is_compressed(em))
789 		return BTRFS_MAX_COMPRESSED;
790 	return fs_info->max_extent_size;
791 }
792 
defrag_check_next_extent(struct inode * inode,struct extent_map * em,u32 extent_thresh,u64 newer_than,bool locked)793 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
794 				     u32 extent_thresh, u64 newer_than, bool locked)
795 {
796 	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
797 	struct extent_map *next;
798 	bool ret = false;
799 
800 	/* This is the last extent */
801 	if (em->start + em->len >= i_size_read(inode))
802 		return false;
803 
804 	/*
805 	 * Here we need to pass @newer_then when checking the next extent, or
806 	 * we will hit a case we mark current extent for defrag, but the next
807 	 * one will not be a target.
808 	 * This will just cause extra IO without really reducing the fragments.
809 	 */
810 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
811 	/* No more em or hole */
812 	if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE)
813 		goto out;
814 	if (next->flags & EXTENT_FLAG_PREALLOC)
815 		goto out;
816 	/*
817 	 * If the next extent is at its max capacity, defragging current extent
818 	 * makes no sense, as the total number of extents won't change.
819 	 */
820 	if (next->len >= get_extent_max_capacity(fs_info, em))
821 		goto out;
822 	/* Skip older extent */
823 	if (next->generation < newer_than)
824 		goto out;
825 	/* Also check extent size */
826 	if (next->len >= extent_thresh)
827 		goto out;
828 
829 	ret = true;
830 out:
831 	btrfs_free_extent_map(next);
832 	return ret;
833 }
834 
835 /*
836  * Prepare one page to be defragged.
837  *
838  * This will ensure:
839  *
840  * - Returned page is locked and has been set up properly.
841  * - No ordered extent exists in the page.
842  * - The page is uptodate.
843  *
844  * NOTE: Caller should also wait for page writeback after the cluster is
845  * prepared, here we don't do writeback wait for each page.
846  */
defrag_prepare_one_folio(struct btrfs_inode * inode,pgoff_t index)847 static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
848 {
849 	struct address_space *mapping = inode->vfs_inode.i_mapping;
850 	gfp_t mask = btrfs_alloc_write_mask(mapping);
851 	u64 lock_start;
852 	u64 lock_end;
853 	struct extent_state *cached_state = NULL;
854 	struct folio *folio;
855 	int ret;
856 
857 again:
858 	/* TODO: Add order fgp order flags when large folios are fully enabled. */
859 	folio = __filemap_get_folio(mapping, index,
860 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
861 	if (IS_ERR(folio))
862 		return folio;
863 
864 	/*
865 	 * Since we can defragment files opened read-only, we can encounter
866 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS).
867 	 *
868 	 * The IO for such large folios is not fully tested, thus return
869 	 * an error to reject such folios unless it's an experimental build.
870 	 *
871 	 * Filesystem transparent huge pages are typically only used for
872 	 * executables that explicitly enable them, so this isn't very
873 	 * restrictive.
874 	 */
875 	if (!IS_ENABLED(CONFIG_BTRFS_EXPERIMENTAL) && folio_test_large(folio)) {
876 		folio_unlock(folio);
877 		folio_put(folio);
878 		return ERR_PTR(-ETXTBSY);
879 	}
880 
881 	ret = set_folio_extent_mapped(folio);
882 	if (ret < 0) {
883 		folio_unlock(folio);
884 		folio_put(folio);
885 		return ERR_PTR(ret);
886 	}
887 
888 	lock_start = folio_pos(folio);
889 	lock_end = folio_end(folio) - 1;
890 	/* Wait for any existing ordered extent in the range */
891 	while (1) {
892 		struct btrfs_ordered_extent *ordered;
893 
894 		btrfs_lock_extent(&inode->io_tree, lock_start, lock_end, &cached_state);
895 		ordered = btrfs_lookup_ordered_range(inode, lock_start, folio_size(folio));
896 		btrfs_unlock_extent(&inode->io_tree, lock_start, lock_end, &cached_state);
897 		if (!ordered)
898 			break;
899 
900 		folio_unlock(folio);
901 		btrfs_start_ordered_extent(ordered);
902 		btrfs_put_ordered_extent(ordered);
903 		folio_lock(folio);
904 		/*
905 		 * We unlocked the folio above, so we need check if it was
906 		 * released or not.
907 		 */
908 		if (folio->mapping != mapping || !folio->private) {
909 			folio_unlock(folio);
910 			folio_put(folio);
911 			goto again;
912 		}
913 	}
914 
915 	/*
916 	 * Now the page range has no ordered extent any more.  Read the page to
917 	 * make it uptodate.
918 	 */
919 	if (!folio_test_uptodate(folio)) {
920 		btrfs_read_folio(NULL, folio);
921 		folio_lock(folio);
922 		if (folio->mapping != mapping || !folio->private) {
923 			folio_unlock(folio);
924 			folio_put(folio);
925 			goto again;
926 		}
927 		if (!folio_test_uptodate(folio)) {
928 			folio_unlock(folio);
929 			folio_put(folio);
930 			return ERR_PTR(-EIO);
931 		}
932 	}
933 	return folio;
934 }
935 
936 struct defrag_target_range {
937 	struct list_head list;
938 	u64 start;
939 	u64 len;
940 };
941 
942 /*
943  * Collect all valid target extents.
944  *
945  * @start:	   file offset to lookup
946  * @len:	   length to lookup
947  * @extent_thresh: file extent size threshold, any extent size >= this value
948  *		   will be ignored
949  * @newer_than:    only defrag extents newer than this value
950  * @do_compress:   whether the defrag is doing compression or no-compression
951  *		   if true, @extent_thresh will be ignored and all regular
952  *		   file extents meeting @newer_than will be targets.
953  * @locked:	   if the range has already held extent lock
954  * @target_list:   list of targets file extents
955  */
defrag_collect_targets(struct btrfs_inode * inode,u64 start,u64 len,u32 extent_thresh,u64 newer_than,bool do_compress,bool locked,struct list_head * target_list,u64 * last_scanned_ret)956 static int defrag_collect_targets(struct btrfs_inode *inode,
957 				  u64 start, u64 len, u32 extent_thresh,
958 				  u64 newer_than, bool do_compress,
959 				  bool locked, struct list_head *target_list,
960 				  u64 *last_scanned_ret)
961 {
962 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
963 	bool last_is_target = false;
964 	u64 cur = start;
965 	int ret = 0;
966 
967 	while (cur < start + len) {
968 		struct extent_map *em;
969 		struct defrag_target_range *new;
970 		bool next_mergeable = true;
971 		u64 range_len;
972 
973 		last_is_target = false;
974 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
975 		if (!em)
976 			break;
977 
978 		/*
979 		 * If the file extent is an inlined one, we may still want to
980 		 * defrag it (fallthrough) if it will cause a regular extent.
981 		 * This is for users who want to convert inline extents to
982 		 * regular ones through max_inline= mount option.
983 		 */
984 		if (em->disk_bytenr == EXTENT_MAP_INLINE &&
985 		    em->len <= inode->root->fs_info->max_inline)
986 			goto next;
987 
988 		/* Skip holes and preallocated extents. */
989 		if (em->disk_bytenr == EXTENT_MAP_HOLE ||
990 		    (em->flags & EXTENT_FLAG_PREALLOC))
991 			goto next;
992 
993 		/* Skip older extent */
994 		if (em->generation < newer_than)
995 			goto next;
996 
997 		/* This em is under writeback, no need to defrag */
998 		if (em->generation == (u64)-1)
999 			goto next;
1000 
1001 		/*
1002 		 * Our start offset might be in the middle of an existing extent
1003 		 * map, so take that into account.
1004 		 */
1005 		range_len = em->len - (cur - em->start);
1006 		/*
1007 		 * If this range of the extent map is already flagged for delalloc,
1008 		 * skip it, because:
1009 		 *
1010 		 * 1) We could deadlock later, when trying to reserve space for
1011 		 *    delalloc, because in case we can't immediately reserve space
1012 		 *    the flusher can start delalloc and wait for the respective
1013 		 *    ordered extents to complete. The deadlock would happen
1014 		 *    because we do the space reservation while holding the range
1015 		 *    locked, and starting writeback, or finishing an ordered
1016 		 *    extent, requires locking the range;
1017 		 *
1018 		 * 2) If there's delalloc there, it means there's dirty pages for
1019 		 *    which writeback has not started yet (we clean the delalloc
1020 		 *    flag when starting writeback and after creating an ordered
1021 		 *    extent). If we mark pages in an adjacent range for defrag,
1022 		 *    then we will have a larger contiguous range for delalloc,
1023 		 *    very likely resulting in a larger extent after writeback is
1024 		 *    triggered (except in a case of free space fragmentation).
1025 		 */
1026 		if (btrfs_test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1027 						EXTENT_DELALLOC))
1028 			goto next;
1029 
1030 		/*
1031 		 * For do_compress case, we want to compress all valid file
1032 		 * extents, thus no @extent_thresh or mergeable check.
1033 		 */
1034 		if (do_compress)
1035 			goto add;
1036 
1037 		/* Skip too large extent */
1038 		if (em->len >= extent_thresh)
1039 			goto next;
1040 
1041 		/*
1042 		 * Skip extents already at its max capacity, this is mostly for
1043 		 * compressed extents, which max cap is only 128K.
1044 		 */
1045 		if (em->len >= get_extent_max_capacity(fs_info, em))
1046 			goto next;
1047 
1048 		/*
1049 		 * Normally there are no more extents after an inline one, thus
1050 		 * @next_mergeable will normally be false and not defragged.
1051 		 * So if an inline extent passed all above checks, just add it
1052 		 * for defrag, and be converted to regular extents.
1053 		 */
1054 		if (em->disk_bytenr == EXTENT_MAP_INLINE)
1055 			goto add;
1056 
1057 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1058 						extent_thresh, newer_than, locked);
1059 		if (!next_mergeable) {
1060 			struct defrag_target_range *last;
1061 
1062 			/* Empty target list, no way to merge with last entry */
1063 			if (list_empty(target_list))
1064 				goto next;
1065 			last = list_last_entry(target_list,
1066 					       struct defrag_target_range, list);
1067 			/* Not mergeable with last entry */
1068 			if (last->start + last->len != cur)
1069 				goto next;
1070 
1071 			/* Mergeable, fall through to add it to @target_list. */
1072 		}
1073 
1074 add:
1075 		last_is_target = true;
1076 		range_len = min(btrfs_extent_map_end(em), start + len) - cur;
1077 		/*
1078 		 * This one is a good target, check if it can be merged into
1079 		 * last range of the target list.
1080 		 */
1081 		if (!list_empty(target_list)) {
1082 			struct defrag_target_range *last;
1083 
1084 			last = list_last_entry(target_list,
1085 					       struct defrag_target_range, list);
1086 			ASSERT(last->start + last->len <= cur);
1087 			if (last->start + last->len == cur) {
1088 				/* Mergeable, enlarge the last entry */
1089 				last->len += range_len;
1090 				goto next;
1091 			}
1092 			/* Fall through to allocate a new entry */
1093 		}
1094 
1095 		/* Allocate new defrag_target_range */
1096 		new = kmalloc(sizeof(*new), GFP_NOFS);
1097 		if (!new) {
1098 			btrfs_free_extent_map(em);
1099 			ret = -ENOMEM;
1100 			break;
1101 		}
1102 		new->start = cur;
1103 		new->len = range_len;
1104 		list_add_tail(&new->list, target_list);
1105 
1106 next:
1107 		cur = btrfs_extent_map_end(em);
1108 		btrfs_free_extent_map(em);
1109 	}
1110 	if (ret < 0) {
1111 		struct defrag_target_range *entry;
1112 		struct defrag_target_range *tmp;
1113 
1114 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1115 			list_del_init(&entry->list);
1116 			kfree(entry);
1117 		}
1118 	}
1119 	if (!ret && last_scanned_ret) {
1120 		/*
1121 		 * If the last extent is not a target, the caller can skip to
1122 		 * the end of that extent.
1123 		 * Otherwise, we can only go the end of the specified range.
1124 		 */
1125 		if (!last_is_target)
1126 			*last_scanned_ret = max(cur, *last_scanned_ret);
1127 		else
1128 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1129 	}
1130 	return ret;
1131 }
1132 
1133 #define CLUSTER_SIZE	(SZ_256K)
1134 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1135 
1136 /*
1137  * Defrag one contiguous target range.
1138  *
1139  * @inode:	target inode
1140  * @target:	target range to defrag
1141  * @pages:	locked pages covering the defrag range
1142  * @nr_pages:	number of locked pages
1143  *
1144  * Caller should ensure:
1145  *
1146  * - Pages are prepared
1147  *   Pages should be locked, no ordered extent in the pages range,
1148  *   no writeback.
1149  *
1150  * - Extent bits are locked
1151  */
defrag_one_locked_target(struct btrfs_inode * inode,struct defrag_target_range * target,struct folio ** folios,int nr_pages,struct extent_state ** cached_state)1152 static int defrag_one_locked_target(struct btrfs_inode *inode,
1153 				    struct defrag_target_range *target,
1154 				    struct folio **folios, int nr_pages,
1155 				    struct extent_state **cached_state)
1156 {
1157 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1158 	struct extent_changeset *data_reserved = NULL;
1159 	const u64 start = target->start;
1160 	const u64 len = target->len;
1161 	int ret = 0;
1162 
1163 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1164 	if (ret < 0)
1165 		return ret;
1166 	btrfs_clear_extent_bit(&inode->io_tree, start, start + len - 1,
1167 			       EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1168 			       EXTENT_DEFRAG, cached_state);
1169 	btrfs_set_extent_bit(&inode->io_tree, start, start + len - 1,
1170 			     EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1171 
1172 	/*
1173 	 * Update the page status.
1174 	 * Due to possible large folios, we have to check all folios one by one.
1175 	 */
1176 	for (int i = 0; i < nr_pages && folios[i]; i++) {
1177 		struct folio *folio = folios[i];
1178 
1179 		if (!folio)
1180 			break;
1181 		if (start >= folio_end(folio) || start + len <= folio_pos(folio))
1182 			continue;
1183 		btrfs_folio_clamp_clear_checked(fs_info, folio, start, len);
1184 		btrfs_folio_clamp_set_dirty(fs_info, folio, start, len);
1185 	}
1186 	btrfs_delalloc_release_extents(inode, len);
1187 	extent_changeset_free(data_reserved);
1188 
1189 	return ret;
1190 }
1191 
defrag_one_range(struct btrfs_inode * inode,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,u64 * last_scanned_ret)1192 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1193 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1194 			    u64 *last_scanned_ret)
1195 {
1196 	struct extent_state *cached_state = NULL;
1197 	struct defrag_target_range *entry;
1198 	struct defrag_target_range *tmp;
1199 	LIST_HEAD(target_list);
1200 	struct folio **folios;
1201 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1202 	u64 cur = start;
1203 	const unsigned int nr_pages = ((start + len - 1) >> PAGE_SHIFT) -
1204 				      (start >> PAGE_SHIFT) + 1;
1205 	int ret = 0;
1206 
1207 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1208 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1209 
1210 	folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
1211 	if (!folios)
1212 		return -ENOMEM;
1213 
1214 	/* Prepare all pages */
1215 	for (int i = 0; cur < start + len && i < nr_pages; i++) {
1216 		folios[i] = defrag_prepare_one_folio(inode, cur >> PAGE_SHIFT);
1217 		if (IS_ERR(folios[i])) {
1218 			ret = PTR_ERR(folios[i]);
1219 			folios[i] = NULL;
1220 			goto free_folios;
1221 		}
1222 		cur = folio_end(folios[i]);
1223 	}
1224 	for (int i = 0; i < nr_pages; i++) {
1225 		if (!folios[i])
1226 			break;
1227 		folio_wait_writeback(folios[i]);
1228 	}
1229 
1230 	/* We should get at least one folio. */
1231 	ASSERT(folios[0]);
1232 	/* Lock the pages range */
1233 	btrfs_lock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state);
1234 	/*
1235 	 * Now we have a consistent view about the extent map, re-check
1236 	 * which range really needs to be defragged.
1237 	 *
1238 	 * And this time we have extent locked already, pass @locked = true
1239 	 * so that we won't relock the extent range and cause deadlock.
1240 	 */
1241 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1242 				     newer_than, do_compress, true,
1243 				     &target_list, last_scanned_ret);
1244 	if (ret < 0)
1245 		goto unlock_extent;
1246 
1247 	list_for_each_entry(entry, &target_list, list) {
1248 		ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
1249 					       &cached_state);
1250 		if (ret < 0)
1251 			break;
1252 	}
1253 
1254 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1255 		list_del_init(&entry->list);
1256 		kfree(entry);
1257 	}
1258 unlock_extent:
1259 	btrfs_unlock_extent(&inode->io_tree, folio_pos(folios[0]), cur - 1, &cached_state);
1260 free_folios:
1261 	for (int i = 0; i < nr_pages; i++) {
1262 		if (!folios[i])
1263 			break;
1264 		folio_unlock(folios[i]);
1265 		folio_put(folios[i]);
1266 	}
1267 	kfree(folios);
1268 	return ret;
1269 }
1270 
defrag_one_cluster(struct btrfs_inode * inode,struct file_ra_state * ra,u64 start,u32 len,u32 extent_thresh,u64 newer_than,bool do_compress,unsigned long * sectors_defragged,unsigned long max_sectors,u64 * last_scanned_ret)1271 static int defrag_one_cluster(struct btrfs_inode *inode,
1272 			      struct file_ra_state *ra,
1273 			      u64 start, u32 len, u32 extent_thresh,
1274 			      u64 newer_than, bool do_compress,
1275 			      unsigned long *sectors_defragged,
1276 			      unsigned long max_sectors,
1277 			      u64 *last_scanned_ret)
1278 {
1279 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1280 	struct defrag_target_range *entry;
1281 	struct defrag_target_range *tmp;
1282 	LIST_HEAD(target_list);
1283 	int ret;
1284 
1285 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1286 				     newer_than, do_compress, false,
1287 				     &target_list, NULL);
1288 	if (ret < 0)
1289 		goto out;
1290 
1291 	list_for_each_entry(entry, &target_list, list) {
1292 		u32 range_len = entry->len;
1293 
1294 		/* Reached or beyond the limit */
1295 		if (max_sectors && *sectors_defragged >= max_sectors) {
1296 			ret = 1;
1297 			break;
1298 		}
1299 
1300 		if (max_sectors)
1301 			range_len = min_t(u32, range_len,
1302 				(max_sectors - *sectors_defragged) * sectorsize);
1303 
1304 		/*
1305 		 * If defrag_one_range() has updated last_scanned_ret,
1306 		 * our range may already be invalid (e.g. hole punched).
1307 		 * Skip if our range is before last_scanned_ret, as there is
1308 		 * no need to defrag the range anymore.
1309 		 */
1310 		if (entry->start + range_len <= *last_scanned_ret)
1311 			continue;
1312 
1313 		page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1314 				ra, NULL, entry->start >> PAGE_SHIFT,
1315 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1316 				(entry->start >> PAGE_SHIFT) + 1);
1317 		/*
1318 		 * Here we may not defrag any range if holes are punched before
1319 		 * we locked the pages.
1320 		 * But that's fine, it only affects the @sectors_defragged
1321 		 * accounting.
1322 		 */
1323 		ret = defrag_one_range(inode, entry->start, range_len,
1324 				       extent_thresh, newer_than, do_compress,
1325 				       last_scanned_ret);
1326 		if (ret < 0)
1327 			break;
1328 		*sectors_defragged += range_len >>
1329 				      inode->root->fs_info->sectorsize_bits;
1330 	}
1331 out:
1332 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1333 		list_del_init(&entry->list);
1334 		kfree(entry);
1335 	}
1336 	if (ret >= 0)
1337 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1338 	return ret;
1339 }
1340 
1341 /*
1342  * Entry point to file defragmentation.
1343  *
1344  * @inode:	   inode to be defragged
1345  * @ra:		   readahead state
1346  * @range:	   defrag options including range and flags
1347  * @newer_than:	   minimum transid to defrag
1348  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1349  *		   will be defragged.
1350  *
1351  * Return <0 for error.
1352  * Return >=0 for the number of sectors defragged, and range->start will be updated
1353  * to indicate the file offset where next defrag should be started at.
1354  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1355  *  defragging all the range).
1356  */
btrfs_defrag_file(struct btrfs_inode * inode,struct file_ra_state * ra,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1357 int btrfs_defrag_file(struct btrfs_inode *inode, struct file_ra_state *ra,
1358 		      struct btrfs_ioctl_defrag_range_args *range,
1359 		      u64 newer_than, unsigned long max_to_defrag)
1360 {
1361 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1362 	unsigned long sectors_defragged = 0;
1363 	u64 isize = i_size_read(&inode->vfs_inode);
1364 	u64 cur;
1365 	u64 last_byte;
1366 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1367 	bool no_compress = (range->flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS);
1368 	int compress_type = BTRFS_COMPRESS_ZLIB;
1369 	int compress_level = 0;
1370 	int ret = 0;
1371 	u32 extent_thresh = range->extent_thresh;
1372 	pgoff_t start_index;
1373 
1374 	ASSERT(ra);
1375 
1376 	if (isize == 0)
1377 		return 0;
1378 
1379 	if (range->start >= isize)
1380 		return -EINVAL;
1381 
1382 	if (do_compress) {
1383 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS_LEVEL) {
1384 			if (range->compress.type >= BTRFS_NR_COMPRESS_TYPES)
1385 				return -EINVAL;
1386 			if (range->compress.type) {
1387 				compress_type  = range->compress.type;
1388 				compress_level = range->compress.level;
1389 				if (!btrfs_compress_level_valid(compress_type, compress_level))
1390 					return -EINVAL;
1391 			}
1392 		} else {
1393 			if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1394 				return -EINVAL;
1395 			if (range->compress_type)
1396 				compress_type = range->compress_type;
1397 		}
1398 	} else if (range->flags & BTRFS_DEFRAG_RANGE_NOCOMPRESS) {
1399 		compress_type = BTRFS_DEFRAG_DONT_COMPRESS;
1400 		compress_level = 1;
1401 	}
1402 
1403 	if (extent_thresh == 0)
1404 		extent_thresh = SZ_256K;
1405 
1406 	if (range->start + range->len > range->start) {
1407 		/* Got a specific range */
1408 		last_byte = min(isize, range->start + range->len);
1409 	} else {
1410 		/* Defrag until file end */
1411 		last_byte = isize;
1412 	}
1413 
1414 	/* Align the range */
1415 	cur = round_down(range->start, fs_info->sectorsize);
1416 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1417 
1418 	/*
1419 	 * Make writeback start from the beginning of the range, so that the
1420 	 * defrag range can be written sequentially.
1421 	 */
1422 	start_index = cur >> PAGE_SHIFT;
1423 	if (start_index < inode->vfs_inode.i_mapping->writeback_index)
1424 		inode->vfs_inode.i_mapping->writeback_index = start_index;
1425 
1426 	while (cur < last_byte) {
1427 		const unsigned long prev_sectors_defragged = sectors_defragged;
1428 		u64 last_scanned = cur;
1429 		u64 cluster_end;
1430 
1431 		if (btrfs_defrag_cancelled(fs_info)) {
1432 			ret = -EAGAIN;
1433 			break;
1434 		}
1435 
1436 		/* We want the cluster end at page boundary when possible */
1437 		cluster_end = (((cur >> PAGE_SHIFT) +
1438 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1439 		cluster_end = min(cluster_end, last_byte);
1440 
1441 		btrfs_inode_lock(inode, 0);
1442 		if (IS_SWAPFILE(&inode->vfs_inode)) {
1443 			ret = -ETXTBSY;
1444 			btrfs_inode_unlock(inode, 0);
1445 			break;
1446 		}
1447 		if (!(inode->vfs_inode.i_sb->s_flags & SB_ACTIVE)) {
1448 			btrfs_inode_unlock(inode, 0);
1449 			break;
1450 		}
1451 		if (do_compress || no_compress) {
1452 			inode->defrag_compress = compress_type;
1453 			inode->defrag_compress_level = compress_level;
1454 		}
1455 		ret = defrag_one_cluster(inode, ra, cur,
1456 				cluster_end + 1 - cur, extent_thresh,
1457 				newer_than, do_compress || no_compress,
1458 				&sectors_defragged,
1459 				max_to_defrag, &last_scanned);
1460 
1461 		if (sectors_defragged > prev_sectors_defragged)
1462 			balance_dirty_pages_ratelimited(inode->vfs_inode.i_mapping);
1463 
1464 		btrfs_inode_unlock(inode, 0);
1465 		if (ret < 0)
1466 			break;
1467 		cur = max(cluster_end + 1, last_scanned);
1468 		if (ret > 0) {
1469 			ret = 0;
1470 			break;
1471 		}
1472 		cond_resched();
1473 	}
1474 
1475 	/*
1476 	 * Update range.start for autodefrag, this will indicate where to start
1477 	 * in next run.
1478 	 */
1479 	range->start = cur;
1480 	if (sectors_defragged) {
1481 		/*
1482 		 * We have defragged some sectors, for compression case they
1483 		 * need to be written back immediately.
1484 		 */
1485 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1486 			filemap_flush(inode->vfs_inode.i_mapping);
1487 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1488 				     &inode->runtime_flags))
1489 				filemap_flush(inode->vfs_inode.i_mapping);
1490 		}
1491 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1492 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1493 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1494 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1495 		ret = sectors_defragged;
1496 	}
1497 	if (do_compress || no_compress) {
1498 		btrfs_inode_lock(inode, 0);
1499 		inode->defrag_compress = BTRFS_COMPRESS_NONE;
1500 		btrfs_inode_unlock(inode, 0);
1501 	}
1502 	return ret;
1503 }
1504 
btrfs_auto_defrag_exit(void)1505 void __cold btrfs_auto_defrag_exit(void)
1506 {
1507 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1508 }
1509 
btrfs_auto_defrag_init(void)1510 int __init btrfs_auto_defrag_init(void)
1511 {
1512 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1513 					sizeof(struct inode_defrag), 0, 0, NULL);
1514 	if (!btrfs_inode_defrag_cachep)
1515 		return -ENOMEM;
1516 
1517 	return 0;
1518 }
1519