1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
4 */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27
28 #include <net/bpf_sk_storage.h>
29
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32
33 #include <asm/tlb.h>
34
35 #include "trace_probe.h"
36 #include "trace.h"
37
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40
41 #define bpf_event_rcu_dereference(p) \
42 rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49 struct module *module;
50 struct list_head list;
51 };
52
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55
bpf_get_raw_tracepoint_module(const char * name)56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 struct bpf_raw_event_map *btp, *ret = NULL;
59 struct bpf_trace_module *btm;
60 unsigned int i;
61
62 mutex_lock(&bpf_module_mutex);
63 list_for_each_entry(btm, &bpf_trace_modules, list) {
64 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65 btp = &btm->module->bpf_raw_events[i];
66 if (!strcmp(btp->tp->name, name)) {
67 if (try_module_get(btm->module))
68 ret = btp;
69 goto out;
70 }
71 }
72 }
73 out:
74 mutex_unlock(&bpf_module_mutex);
75 return ret;
76 }
77 #else
bpf_get_raw_tracepoint_module(const char * name)78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80 return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88 u64 flags, const struct btf **btf,
89 s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95
96 /**
97 * trace_call_bpf - invoke BPF program
98 * @call: tracepoint event
99 * @ctx: opaque context pointer
100 *
101 * kprobe handlers execute BPF programs via this helper.
102 * Can be used from static tracepoints in the future.
103 *
104 * Return: BPF programs always return an integer which is interpreted by
105 * kprobe handler as:
106 * 0 - return from kprobe (event is filtered out)
107 * 1 - store kprobe event into ring buffer
108 * Other values are reserved and currently alias to 1
109 */
trace_call_bpf(struct trace_event_call * call,void * ctx)110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112 unsigned int ret;
113
114 cant_sleep();
115
116 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117 /*
118 * since some bpf program is already running on this cpu,
119 * don't call into another bpf program (same or different)
120 * and don't send kprobe event into ring-buffer,
121 * so return zero here
122 */
123 rcu_read_lock();
124 bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
125 rcu_read_unlock();
126 ret = 0;
127 goto out;
128 }
129
130 /*
131 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
132 * to all call sites, we did a bpf_prog_array_valid() there to check
133 * whether call->prog_array is empty or not, which is
134 * a heuristic to speed up execution.
135 *
136 * If bpf_prog_array_valid() fetched prog_array was
137 * non-NULL, we go into trace_call_bpf() and do the actual
138 * proper rcu_dereference() under RCU lock.
139 * If it turns out that prog_array is NULL then, we bail out.
140 * For the opposite, if the bpf_prog_array_valid() fetched pointer
141 * was NULL, you'll skip the prog_array with the risk of missing
142 * out of events when it was updated in between this and the
143 * rcu_dereference() which is accepted risk.
144 */
145 rcu_read_lock();
146 ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
147 ctx, bpf_prog_run);
148 rcu_read_unlock();
149
150 out:
151 __this_cpu_dec(bpf_prog_active);
152
153 return ret;
154 }
155
156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
BPF_CALL_2(bpf_override_return,struct pt_regs *,regs,unsigned long,rc)157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
158 {
159 regs_set_return_value(regs, rc);
160 override_function_with_return(regs);
161 return 0;
162 }
163
164 static const struct bpf_func_proto bpf_override_return_proto = {
165 .func = bpf_override_return,
166 .gpl_only = true,
167 .ret_type = RET_INTEGER,
168 .arg1_type = ARG_PTR_TO_CTX,
169 .arg2_type = ARG_ANYTHING,
170 };
171 #endif
172
173 static __always_inline int
bpf_probe_read_user_common(void * dst,u32 size,const void __user * unsafe_ptr)174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
175 {
176 int ret;
177
178 ret = copy_from_user_nofault(dst, unsafe_ptr, size);
179 if (unlikely(ret < 0))
180 memset(dst, 0, size);
181 return ret;
182 }
183
BPF_CALL_3(bpf_probe_read_user,void *,dst,u32,size,const void __user *,unsafe_ptr)184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
185 const void __user *, unsafe_ptr)
186 {
187 return bpf_probe_read_user_common(dst, size, unsafe_ptr);
188 }
189
190 const struct bpf_func_proto bpf_probe_read_user_proto = {
191 .func = bpf_probe_read_user,
192 .gpl_only = true,
193 .ret_type = RET_INTEGER,
194 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
195 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
196 .arg3_type = ARG_ANYTHING,
197 };
198
199 static __always_inline int
bpf_probe_read_user_str_common(void * dst,u32 size,const void __user * unsafe_ptr)200 bpf_probe_read_user_str_common(void *dst, u32 size,
201 const void __user *unsafe_ptr)
202 {
203 int ret;
204
205 /*
206 * NB: We rely on strncpy_from_user() not copying junk past the NUL
207 * terminator into `dst`.
208 *
209 * strncpy_from_user() does long-sized strides in the fast path. If the
210 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
211 * then there could be junk after the NUL in `dst`. If user takes `dst`
212 * and keys a hash map with it, then semantically identical strings can
213 * occupy multiple entries in the map.
214 */
215 ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
216 if (unlikely(ret < 0))
217 memset(dst, 0, size);
218 return ret;
219 }
220
BPF_CALL_3(bpf_probe_read_user_str,void *,dst,u32,size,const void __user *,unsafe_ptr)221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
222 const void __user *, unsafe_ptr)
223 {
224 return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
225 }
226
227 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
228 .func = bpf_probe_read_user_str,
229 .gpl_only = true,
230 .ret_type = RET_INTEGER,
231 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
232 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
233 .arg3_type = ARG_ANYTHING,
234 };
235
BPF_CALL_3(bpf_probe_read_kernel,void *,dst,u32,size,const void *,unsafe_ptr)236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
237 const void *, unsafe_ptr)
238 {
239 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
240 }
241
242 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
243 .func = bpf_probe_read_kernel,
244 .gpl_only = true,
245 .ret_type = RET_INTEGER,
246 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
247 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
248 .arg3_type = ARG_ANYTHING,
249 };
250
251 static __always_inline int
bpf_probe_read_kernel_str_common(void * dst,u32 size,const void * unsafe_ptr)252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
253 {
254 int ret;
255
256 /*
257 * The strncpy_from_kernel_nofault() call will likely not fill the
258 * entire buffer, but that's okay in this circumstance as we're probing
259 * arbitrary memory anyway similar to bpf_probe_read_*() and might
260 * as well probe the stack. Thus, memory is explicitly cleared
261 * only in error case, so that improper users ignoring return
262 * code altogether don't copy garbage; otherwise length of string
263 * is returned that can be used for bpf_perf_event_output() et al.
264 */
265 ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
266 if (unlikely(ret < 0))
267 memset(dst, 0, size);
268 return ret;
269 }
270
BPF_CALL_3(bpf_probe_read_kernel_str,void *,dst,u32,size,const void *,unsafe_ptr)271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
272 const void *, unsafe_ptr)
273 {
274 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
275 }
276
277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
278 .func = bpf_probe_read_kernel_str,
279 .gpl_only = true,
280 .ret_type = RET_INTEGER,
281 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
282 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
283 .arg3_type = ARG_ANYTHING,
284 };
285
286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
BPF_CALL_3(bpf_probe_read_compat,void *,dst,u32,size,const void *,unsafe_ptr)287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
288 const void *, unsafe_ptr)
289 {
290 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
291 return bpf_probe_read_user_common(dst, size,
292 (__force void __user *)unsafe_ptr);
293 }
294 return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
295 }
296
297 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
298 .func = bpf_probe_read_compat,
299 .gpl_only = true,
300 .ret_type = RET_INTEGER,
301 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
302 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
303 .arg3_type = ARG_ANYTHING,
304 };
305
BPF_CALL_3(bpf_probe_read_compat_str,void *,dst,u32,size,const void *,unsafe_ptr)306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
307 const void *, unsafe_ptr)
308 {
309 if ((unsigned long)unsafe_ptr < TASK_SIZE) {
310 return bpf_probe_read_user_str_common(dst, size,
311 (__force void __user *)unsafe_ptr);
312 }
313 return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
314 }
315
316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
317 .func = bpf_probe_read_compat_str,
318 .gpl_only = true,
319 .ret_type = RET_INTEGER,
320 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
321 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
322 .arg3_type = ARG_ANYTHING,
323 };
324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
325
BPF_CALL_3(bpf_probe_write_user,void __user *,unsafe_ptr,const void *,src,u32,size)326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
327 u32, size)
328 {
329 /*
330 * Ensure we're in user context which is safe for the helper to
331 * run. This helper has no business in a kthread.
332 *
333 * access_ok() should prevent writing to non-user memory, but in
334 * some situations (nommu, temporary switch, etc) access_ok() does
335 * not provide enough validation, hence the check on KERNEL_DS.
336 *
337 * nmi_uaccess_okay() ensures the probe is not run in an interim
338 * state, when the task or mm are switched. This is specifically
339 * required to prevent the use of temporary mm.
340 */
341
342 if (unlikely(in_interrupt() ||
343 current->flags & (PF_KTHREAD | PF_EXITING)))
344 return -EPERM;
345 if (unlikely(!nmi_uaccess_okay()))
346 return -EPERM;
347
348 return copy_to_user_nofault(unsafe_ptr, src, size);
349 }
350
351 static const struct bpf_func_proto bpf_probe_write_user_proto = {
352 .func = bpf_probe_write_user,
353 .gpl_only = true,
354 .ret_type = RET_INTEGER,
355 .arg1_type = ARG_ANYTHING,
356 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
357 .arg3_type = ARG_CONST_SIZE,
358 };
359
360 #define MAX_TRACE_PRINTK_VARARGS 3
361 #define BPF_TRACE_PRINTK_SIZE 1024
362
BPF_CALL_5(bpf_trace_printk,char *,fmt,u32,fmt_size,u64,arg1,u64,arg2,u64,arg3)363 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
364 u64, arg2, u64, arg3)
365 {
366 u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
367 struct bpf_bprintf_data data = {
368 .get_bin_args = true,
369 .get_buf = true,
370 };
371 int ret;
372
373 ret = bpf_bprintf_prepare(fmt, fmt_size, args,
374 MAX_TRACE_PRINTK_VARARGS, &data);
375 if (ret < 0)
376 return ret;
377
378 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
379
380 trace_bpf_trace_printk(data.buf);
381
382 bpf_bprintf_cleanup(&data);
383
384 return ret;
385 }
386
387 static const struct bpf_func_proto bpf_trace_printk_proto = {
388 .func = bpf_trace_printk,
389 .gpl_only = true,
390 .ret_type = RET_INTEGER,
391 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
392 .arg2_type = ARG_CONST_SIZE,
393 };
394
__set_printk_clr_event(struct work_struct * work)395 static void __set_printk_clr_event(struct work_struct *work)
396 {
397 /*
398 * This program might be calling bpf_trace_printk,
399 * so enable the associated bpf_trace/bpf_trace_printk event.
400 * Repeat this each time as it is possible a user has
401 * disabled bpf_trace_printk events. By loading a program
402 * calling bpf_trace_printk() however the user has expressed
403 * the intent to see such events.
404 */
405 if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
406 pr_warn_ratelimited("could not enable bpf_trace_printk events");
407 }
408 static DECLARE_WORK(set_printk_work, __set_printk_clr_event);
409
bpf_get_trace_printk_proto(void)410 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
411 {
412 schedule_work(&set_printk_work);
413 return &bpf_trace_printk_proto;
414 }
415
BPF_CALL_4(bpf_trace_vprintk,char *,fmt,u32,fmt_size,const void *,args,u32,data_len)416 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
417 u32, data_len)
418 {
419 struct bpf_bprintf_data data = {
420 .get_bin_args = true,
421 .get_buf = true,
422 };
423 int ret, num_args;
424
425 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
426 (data_len && !args))
427 return -EINVAL;
428 num_args = data_len / 8;
429
430 ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
431 if (ret < 0)
432 return ret;
433
434 ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
435
436 trace_bpf_trace_printk(data.buf);
437
438 bpf_bprintf_cleanup(&data);
439
440 return ret;
441 }
442
443 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
444 .func = bpf_trace_vprintk,
445 .gpl_only = true,
446 .ret_type = RET_INTEGER,
447 .arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
448 .arg2_type = ARG_CONST_SIZE,
449 .arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
450 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
451 };
452
bpf_get_trace_vprintk_proto(void)453 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
454 {
455 schedule_work(&set_printk_work);
456 return &bpf_trace_vprintk_proto;
457 }
458
BPF_CALL_5(bpf_seq_printf,struct seq_file *,m,char *,fmt,u32,fmt_size,const void *,args,u32,data_len)459 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
460 const void *, args, u32, data_len)
461 {
462 struct bpf_bprintf_data data = {
463 .get_bin_args = true,
464 };
465 int err, num_args;
466
467 if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
468 (data_len && !args))
469 return -EINVAL;
470 num_args = data_len / 8;
471
472 err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
473 if (err < 0)
474 return err;
475
476 seq_bprintf(m, fmt, data.bin_args);
477
478 bpf_bprintf_cleanup(&data);
479
480 return seq_has_overflowed(m) ? -EOVERFLOW : 0;
481 }
482
483 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
484
485 static const struct bpf_func_proto bpf_seq_printf_proto = {
486 .func = bpf_seq_printf,
487 .gpl_only = true,
488 .ret_type = RET_INTEGER,
489 .arg1_type = ARG_PTR_TO_BTF_ID,
490 .arg1_btf_id = &btf_seq_file_ids[0],
491 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
492 .arg3_type = ARG_CONST_SIZE,
493 .arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
494 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
495 };
496
BPF_CALL_3(bpf_seq_write,struct seq_file *,m,const void *,data,u32,len)497 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
498 {
499 return seq_write(m, data, len) ? -EOVERFLOW : 0;
500 }
501
502 static const struct bpf_func_proto bpf_seq_write_proto = {
503 .func = bpf_seq_write,
504 .gpl_only = true,
505 .ret_type = RET_INTEGER,
506 .arg1_type = ARG_PTR_TO_BTF_ID,
507 .arg1_btf_id = &btf_seq_file_ids[0],
508 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
509 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
510 };
511
BPF_CALL_4(bpf_seq_printf_btf,struct seq_file *,m,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)512 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
513 u32, btf_ptr_size, u64, flags)
514 {
515 const struct btf *btf;
516 s32 btf_id;
517 int ret;
518
519 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
520 if (ret)
521 return ret;
522
523 return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
524 }
525
526 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
527 .func = bpf_seq_printf_btf,
528 .gpl_only = true,
529 .ret_type = RET_INTEGER,
530 .arg1_type = ARG_PTR_TO_BTF_ID,
531 .arg1_btf_id = &btf_seq_file_ids[0],
532 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
533 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
534 .arg4_type = ARG_ANYTHING,
535 };
536
537 static __always_inline int
get_map_perf_counter(struct bpf_map * map,u64 flags,u64 * value,u64 * enabled,u64 * running)538 get_map_perf_counter(struct bpf_map *map, u64 flags,
539 u64 *value, u64 *enabled, u64 *running)
540 {
541 struct bpf_array *array = container_of(map, struct bpf_array, map);
542 unsigned int cpu = smp_processor_id();
543 u64 index = flags & BPF_F_INDEX_MASK;
544 struct bpf_event_entry *ee;
545
546 if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
547 return -EINVAL;
548 if (index == BPF_F_CURRENT_CPU)
549 index = cpu;
550 if (unlikely(index >= array->map.max_entries))
551 return -E2BIG;
552
553 ee = READ_ONCE(array->ptrs[index]);
554 if (!ee)
555 return -ENOENT;
556
557 return perf_event_read_local(ee->event, value, enabled, running);
558 }
559
BPF_CALL_2(bpf_perf_event_read,struct bpf_map *,map,u64,flags)560 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
561 {
562 u64 value = 0;
563 int err;
564
565 err = get_map_perf_counter(map, flags, &value, NULL, NULL);
566 /*
567 * this api is ugly since we miss [-22..-2] range of valid
568 * counter values, but that's uapi
569 */
570 if (err)
571 return err;
572 return value;
573 }
574
575 const struct bpf_func_proto bpf_perf_event_read_proto = {
576 .func = bpf_perf_event_read,
577 .gpl_only = true,
578 .ret_type = RET_INTEGER,
579 .arg1_type = ARG_CONST_MAP_PTR,
580 .arg2_type = ARG_ANYTHING,
581 };
582
BPF_CALL_4(bpf_perf_event_read_value,struct bpf_map *,map,u64,flags,struct bpf_perf_event_value *,buf,u32,size)583 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
584 struct bpf_perf_event_value *, buf, u32, size)
585 {
586 int err = -EINVAL;
587
588 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
589 goto clear;
590 err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
591 &buf->running);
592 if (unlikely(err))
593 goto clear;
594 return 0;
595 clear:
596 memset(buf, 0, size);
597 return err;
598 }
599
600 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
601 .func = bpf_perf_event_read_value,
602 .gpl_only = true,
603 .ret_type = RET_INTEGER,
604 .arg1_type = ARG_CONST_MAP_PTR,
605 .arg2_type = ARG_ANYTHING,
606 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
607 .arg4_type = ARG_CONST_SIZE,
608 };
609
bpf_get_perf_event_read_value_proto(void)610 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void)
611 {
612 return &bpf_perf_event_read_value_proto;
613 }
614
615 static __always_inline u64
__bpf_perf_event_output(struct pt_regs * regs,struct bpf_map * map,u64 flags,struct perf_raw_record * raw,struct perf_sample_data * sd)616 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
617 u64 flags, struct perf_raw_record *raw,
618 struct perf_sample_data *sd)
619 {
620 struct bpf_array *array = container_of(map, struct bpf_array, map);
621 unsigned int cpu = smp_processor_id();
622 u64 index = flags & BPF_F_INDEX_MASK;
623 struct bpf_event_entry *ee;
624 struct perf_event *event;
625
626 if (index == BPF_F_CURRENT_CPU)
627 index = cpu;
628 if (unlikely(index >= array->map.max_entries))
629 return -E2BIG;
630
631 ee = READ_ONCE(array->ptrs[index]);
632 if (!ee)
633 return -ENOENT;
634
635 event = ee->event;
636 if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
637 event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
638 return -EINVAL;
639
640 if (unlikely(event->oncpu != cpu))
641 return -EOPNOTSUPP;
642
643 perf_sample_save_raw_data(sd, event, raw);
644
645 return perf_event_output(event, sd, regs);
646 }
647
648 /*
649 * Support executing tracepoints in normal, irq, and nmi context that each call
650 * bpf_perf_event_output
651 */
652 struct bpf_trace_sample_data {
653 struct perf_sample_data sds[3];
654 };
655
656 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
657 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
BPF_CALL_5(bpf_perf_event_output,struct pt_regs *,regs,struct bpf_map *,map,u64,flags,void *,data,u64,size)658 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
659 u64, flags, void *, data, u64, size)
660 {
661 struct bpf_trace_sample_data *sds;
662 struct perf_raw_record raw = {
663 .frag = {
664 .size = size,
665 .data = data,
666 },
667 };
668 struct perf_sample_data *sd;
669 int nest_level, err;
670
671 preempt_disable();
672 sds = this_cpu_ptr(&bpf_trace_sds);
673 nest_level = this_cpu_inc_return(bpf_trace_nest_level);
674
675 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
676 err = -EBUSY;
677 goto out;
678 }
679
680 sd = &sds->sds[nest_level - 1];
681
682 if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
683 err = -EINVAL;
684 goto out;
685 }
686
687 perf_sample_data_init(sd, 0, 0);
688
689 err = __bpf_perf_event_output(regs, map, flags, &raw, sd);
690 out:
691 this_cpu_dec(bpf_trace_nest_level);
692 preempt_enable();
693 return err;
694 }
695
696 static const struct bpf_func_proto bpf_perf_event_output_proto = {
697 .func = bpf_perf_event_output,
698 .gpl_only = true,
699 .ret_type = RET_INTEGER,
700 .arg1_type = ARG_PTR_TO_CTX,
701 .arg2_type = ARG_CONST_MAP_PTR,
702 .arg3_type = ARG_ANYTHING,
703 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
704 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
705 };
706
707 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
708 struct bpf_nested_pt_regs {
709 struct pt_regs regs[3];
710 };
711 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
712 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
713
bpf_event_output(struct bpf_map * map,u64 flags,void * meta,u64 meta_size,void * ctx,u64 ctx_size,bpf_ctx_copy_t ctx_copy)714 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
715 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
716 {
717 struct perf_raw_frag frag = {
718 .copy = ctx_copy,
719 .size = ctx_size,
720 .data = ctx,
721 };
722 struct perf_raw_record raw = {
723 .frag = {
724 {
725 .next = ctx_size ? &frag : NULL,
726 },
727 .size = meta_size,
728 .data = meta,
729 },
730 };
731 struct perf_sample_data *sd;
732 struct pt_regs *regs;
733 int nest_level;
734 u64 ret;
735
736 preempt_disable();
737 nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
738
739 if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
740 ret = -EBUSY;
741 goto out;
742 }
743 sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
744 regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
745
746 perf_fetch_caller_regs(regs);
747 perf_sample_data_init(sd, 0, 0);
748
749 ret = __bpf_perf_event_output(regs, map, flags, &raw, sd);
750 out:
751 this_cpu_dec(bpf_event_output_nest_level);
752 preempt_enable();
753 return ret;
754 }
755
BPF_CALL_0(bpf_get_current_task)756 BPF_CALL_0(bpf_get_current_task)
757 {
758 return (long) current;
759 }
760
761 const struct bpf_func_proto bpf_get_current_task_proto = {
762 .func = bpf_get_current_task,
763 .gpl_only = true,
764 .ret_type = RET_INTEGER,
765 };
766
BPF_CALL_0(bpf_get_current_task_btf)767 BPF_CALL_0(bpf_get_current_task_btf)
768 {
769 return (unsigned long) current;
770 }
771
772 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
773 .func = bpf_get_current_task_btf,
774 .gpl_only = true,
775 .ret_type = RET_PTR_TO_BTF_ID_TRUSTED,
776 .ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
777 };
778
BPF_CALL_1(bpf_task_pt_regs,struct task_struct *,task)779 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
780 {
781 return (unsigned long) task_pt_regs(task);
782 }
783
784 BTF_ID_LIST_SINGLE(bpf_task_pt_regs_ids, struct, pt_regs)
785
786 const struct bpf_func_proto bpf_task_pt_regs_proto = {
787 .func = bpf_task_pt_regs,
788 .gpl_only = true,
789 .arg1_type = ARG_PTR_TO_BTF_ID,
790 .arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
791 .ret_type = RET_PTR_TO_BTF_ID,
792 .ret_btf_id = &bpf_task_pt_regs_ids[0],
793 };
794
795 struct send_signal_irq_work {
796 struct irq_work irq_work;
797 struct task_struct *task;
798 u32 sig;
799 enum pid_type type;
800 bool has_siginfo;
801 struct kernel_siginfo info;
802 };
803
804 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
805
do_bpf_send_signal(struct irq_work * entry)806 static void do_bpf_send_signal(struct irq_work *entry)
807 {
808 struct send_signal_irq_work *work;
809 struct kernel_siginfo *siginfo;
810
811 work = container_of(entry, struct send_signal_irq_work, irq_work);
812 siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
813
814 group_send_sig_info(work->sig, siginfo, work->task, work->type);
815 put_task_struct(work->task);
816 }
817
bpf_send_signal_common(u32 sig,enum pid_type type,struct task_struct * task,u64 value)818 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
819 {
820 struct send_signal_irq_work *work = NULL;
821 struct kernel_siginfo info;
822 struct kernel_siginfo *siginfo;
823
824 if (!task) {
825 task = current;
826 siginfo = SEND_SIG_PRIV;
827 } else {
828 clear_siginfo(&info);
829 info.si_signo = sig;
830 info.si_errno = 0;
831 info.si_code = SI_KERNEL;
832 info.si_pid = 0;
833 info.si_uid = 0;
834 info.si_value.sival_ptr = (void *)(unsigned long)value;
835 siginfo = &info;
836 }
837
838 /* Similar to bpf_probe_write_user, task needs to be
839 * in a sound condition and kernel memory access be
840 * permitted in order to send signal to the current
841 * task.
842 */
843 if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
844 return -EPERM;
845 if (unlikely(!nmi_uaccess_okay()))
846 return -EPERM;
847 /* Task should not be pid=1 to avoid kernel panic. */
848 if (unlikely(is_global_init(task)))
849 return -EPERM;
850
851 if (preempt_count() != 0 || irqs_disabled()) {
852 /* Do an early check on signal validity. Otherwise,
853 * the error is lost in deferred irq_work.
854 */
855 if (unlikely(!valid_signal(sig)))
856 return -EINVAL;
857
858 work = this_cpu_ptr(&send_signal_work);
859 if (irq_work_is_busy(&work->irq_work))
860 return -EBUSY;
861
862 /* Add the current task, which is the target of sending signal,
863 * to the irq_work. The current task may change when queued
864 * irq works get executed.
865 */
866 work->task = get_task_struct(task);
867 work->has_siginfo = siginfo == &info;
868 if (work->has_siginfo)
869 copy_siginfo(&work->info, &info);
870 work->sig = sig;
871 work->type = type;
872 irq_work_queue(&work->irq_work);
873 return 0;
874 }
875
876 return group_send_sig_info(sig, siginfo, task, type);
877 }
878
BPF_CALL_1(bpf_send_signal,u32,sig)879 BPF_CALL_1(bpf_send_signal, u32, sig)
880 {
881 return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
882 }
883
884 const struct bpf_func_proto bpf_send_signal_proto = {
885 .func = bpf_send_signal,
886 .gpl_only = false,
887 .ret_type = RET_INTEGER,
888 .arg1_type = ARG_ANYTHING,
889 };
890
BPF_CALL_1(bpf_send_signal_thread,u32,sig)891 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
892 {
893 return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
894 }
895
896 const struct bpf_func_proto bpf_send_signal_thread_proto = {
897 .func = bpf_send_signal_thread,
898 .gpl_only = false,
899 .ret_type = RET_INTEGER,
900 .arg1_type = ARG_ANYTHING,
901 };
902
BPF_CALL_3(bpf_d_path,struct path *,path,char *,buf,u32,sz)903 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
904 {
905 struct path copy;
906 long len;
907 char *p;
908
909 if (!sz)
910 return 0;
911
912 /*
913 * The path pointer is verified as trusted and safe to use,
914 * but let's double check it's valid anyway to workaround
915 * potentially broken verifier.
916 */
917 len = copy_from_kernel_nofault(©, path, sizeof(*path));
918 if (len < 0)
919 return len;
920
921 p = d_path(©, buf, sz);
922 if (IS_ERR(p)) {
923 len = PTR_ERR(p);
924 } else {
925 len = buf + sz - p;
926 memmove(buf, p, len);
927 }
928
929 return len;
930 }
931
932 BTF_SET_START(btf_allowlist_d_path)
933 #ifdef CONFIG_SECURITY
BTF_ID(func,security_file_permission)934 BTF_ID(func, security_file_permission)
935 BTF_ID(func, security_inode_getattr)
936 BTF_ID(func, security_file_open)
937 #endif
938 #ifdef CONFIG_SECURITY_PATH
939 BTF_ID(func, security_path_truncate)
940 #endif
941 BTF_ID(func, vfs_truncate)
942 BTF_ID(func, vfs_fallocate)
943 BTF_ID(func, dentry_open)
944 BTF_ID(func, vfs_getattr)
945 BTF_ID(func, filp_close)
946 BTF_SET_END(btf_allowlist_d_path)
947
948 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
949 {
950 if (prog->type == BPF_PROG_TYPE_TRACING &&
951 prog->expected_attach_type == BPF_TRACE_ITER)
952 return true;
953
954 if (prog->type == BPF_PROG_TYPE_LSM)
955 return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
956
957 return btf_id_set_contains(&btf_allowlist_d_path,
958 prog->aux->attach_btf_id);
959 }
960
961 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
962
963 static const struct bpf_func_proto bpf_d_path_proto = {
964 .func = bpf_d_path,
965 .gpl_only = false,
966 .ret_type = RET_INTEGER,
967 .arg1_type = ARG_PTR_TO_BTF_ID,
968 .arg1_btf_id = &bpf_d_path_btf_ids[0],
969 .arg2_type = ARG_PTR_TO_MEM,
970 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
971 .allowed = bpf_d_path_allowed,
972 };
973
974 #define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
975 BTF_F_PTR_RAW | BTF_F_ZERO)
976
bpf_btf_printf_prepare(struct btf_ptr * ptr,u32 btf_ptr_size,u64 flags,const struct btf ** btf,s32 * btf_id)977 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
978 u64 flags, const struct btf **btf,
979 s32 *btf_id)
980 {
981 const struct btf_type *t;
982
983 if (unlikely(flags & ~(BTF_F_ALL)))
984 return -EINVAL;
985
986 if (btf_ptr_size != sizeof(struct btf_ptr))
987 return -EINVAL;
988
989 *btf = bpf_get_btf_vmlinux();
990
991 if (IS_ERR_OR_NULL(*btf))
992 return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
993
994 if (ptr->type_id > 0)
995 *btf_id = ptr->type_id;
996 else
997 return -EINVAL;
998
999 if (*btf_id > 0)
1000 t = btf_type_by_id(*btf, *btf_id);
1001 if (*btf_id <= 0 || !t)
1002 return -ENOENT;
1003
1004 return 0;
1005 }
1006
BPF_CALL_5(bpf_snprintf_btf,char *,str,u32,str_size,struct btf_ptr *,ptr,u32,btf_ptr_size,u64,flags)1007 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1008 u32, btf_ptr_size, u64, flags)
1009 {
1010 const struct btf *btf;
1011 s32 btf_id;
1012 int ret;
1013
1014 ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1015 if (ret)
1016 return ret;
1017
1018 return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1019 flags);
1020 }
1021
1022 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1023 .func = bpf_snprintf_btf,
1024 .gpl_only = false,
1025 .ret_type = RET_INTEGER,
1026 .arg1_type = ARG_PTR_TO_MEM,
1027 .arg2_type = ARG_CONST_SIZE,
1028 .arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1029 .arg4_type = ARG_CONST_SIZE,
1030 .arg5_type = ARG_ANYTHING,
1031 };
1032
BPF_CALL_1(bpf_get_func_ip_tracing,void *,ctx)1033 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1034 {
1035 /* This helper call is inlined by verifier. */
1036 return ((u64 *)ctx)[-2];
1037 }
1038
1039 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1040 .func = bpf_get_func_ip_tracing,
1041 .gpl_only = true,
1042 .ret_type = RET_INTEGER,
1043 .arg1_type = ARG_PTR_TO_CTX,
1044 };
1045
get_entry_ip(unsigned long fentry_ip)1046 static inline unsigned long get_entry_ip(unsigned long fentry_ip)
1047 {
1048 #ifdef CONFIG_X86_KERNEL_IBT
1049 if (is_endbr((void *)(fentry_ip - ENDBR_INSN_SIZE)))
1050 fentry_ip -= ENDBR_INSN_SIZE;
1051 #endif
1052 return fentry_ip;
1053 }
1054
BPF_CALL_1(bpf_get_func_ip_kprobe,struct pt_regs *,regs)1055 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1056 {
1057 struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1058 struct kprobe *kp;
1059
1060 #ifdef CONFIG_UPROBES
1061 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1062 if (run_ctx->is_uprobe)
1063 return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1064 #endif
1065
1066 kp = kprobe_running();
1067
1068 if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1069 return 0;
1070
1071 return get_entry_ip((uintptr_t)kp->addr);
1072 }
1073
1074 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1075 .func = bpf_get_func_ip_kprobe,
1076 .gpl_only = true,
1077 .ret_type = RET_INTEGER,
1078 .arg1_type = ARG_PTR_TO_CTX,
1079 };
1080
BPF_CALL_1(bpf_get_func_ip_kprobe_multi,struct pt_regs *,regs)1081 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1082 {
1083 return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1084 }
1085
1086 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1087 .func = bpf_get_func_ip_kprobe_multi,
1088 .gpl_only = false,
1089 .ret_type = RET_INTEGER,
1090 .arg1_type = ARG_PTR_TO_CTX,
1091 };
1092
BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi,struct pt_regs *,regs)1093 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1094 {
1095 return bpf_kprobe_multi_cookie(current->bpf_ctx);
1096 }
1097
1098 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1099 .func = bpf_get_attach_cookie_kprobe_multi,
1100 .gpl_only = false,
1101 .ret_type = RET_INTEGER,
1102 .arg1_type = ARG_PTR_TO_CTX,
1103 };
1104
BPF_CALL_1(bpf_get_func_ip_uprobe_multi,struct pt_regs *,regs)1105 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1106 {
1107 return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1108 }
1109
1110 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1111 .func = bpf_get_func_ip_uprobe_multi,
1112 .gpl_only = false,
1113 .ret_type = RET_INTEGER,
1114 .arg1_type = ARG_PTR_TO_CTX,
1115 };
1116
BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi,struct pt_regs *,regs)1117 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1118 {
1119 return bpf_uprobe_multi_cookie(current->bpf_ctx);
1120 }
1121
1122 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1123 .func = bpf_get_attach_cookie_uprobe_multi,
1124 .gpl_only = false,
1125 .ret_type = RET_INTEGER,
1126 .arg1_type = ARG_PTR_TO_CTX,
1127 };
1128
BPF_CALL_1(bpf_get_attach_cookie_trace,void *,ctx)1129 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1130 {
1131 struct bpf_trace_run_ctx *run_ctx;
1132
1133 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1134 return run_ctx->bpf_cookie;
1135 }
1136
1137 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1138 .func = bpf_get_attach_cookie_trace,
1139 .gpl_only = false,
1140 .ret_type = RET_INTEGER,
1141 .arg1_type = ARG_PTR_TO_CTX,
1142 };
1143
BPF_CALL_1(bpf_get_attach_cookie_pe,struct bpf_perf_event_data_kern *,ctx)1144 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1145 {
1146 return ctx->event->bpf_cookie;
1147 }
1148
1149 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1150 .func = bpf_get_attach_cookie_pe,
1151 .gpl_only = false,
1152 .ret_type = RET_INTEGER,
1153 .arg1_type = ARG_PTR_TO_CTX,
1154 };
1155
BPF_CALL_1(bpf_get_attach_cookie_tracing,void *,ctx)1156 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1157 {
1158 struct bpf_trace_run_ctx *run_ctx;
1159
1160 run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1161 return run_ctx->bpf_cookie;
1162 }
1163
1164 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1165 .func = bpf_get_attach_cookie_tracing,
1166 .gpl_only = false,
1167 .ret_type = RET_INTEGER,
1168 .arg1_type = ARG_PTR_TO_CTX,
1169 };
1170
BPF_CALL_3(bpf_get_branch_snapshot,void *,buf,u32,size,u64,flags)1171 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1172 {
1173 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1174 u32 entry_cnt = size / br_entry_size;
1175
1176 entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1177
1178 if (unlikely(flags))
1179 return -EINVAL;
1180
1181 if (!entry_cnt)
1182 return -ENOENT;
1183
1184 return entry_cnt * br_entry_size;
1185 }
1186
1187 const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1188 .func = bpf_get_branch_snapshot,
1189 .gpl_only = true,
1190 .ret_type = RET_INTEGER,
1191 .arg1_type = ARG_PTR_TO_UNINIT_MEM,
1192 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1193 };
1194
BPF_CALL_3(get_func_arg,void *,ctx,u32,n,u64 *,value)1195 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1196 {
1197 /* This helper call is inlined by verifier. */
1198 u64 nr_args = ((u64 *)ctx)[-1];
1199
1200 if ((u64) n >= nr_args)
1201 return -EINVAL;
1202 *value = ((u64 *)ctx)[n];
1203 return 0;
1204 }
1205
1206 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1207 .func = get_func_arg,
1208 .ret_type = RET_INTEGER,
1209 .arg1_type = ARG_PTR_TO_CTX,
1210 .arg2_type = ARG_ANYTHING,
1211 .arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1212 .arg3_size = sizeof(u64),
1213 };
1214
BPF_CALL_2(get_func_ret,void *,ctx,u64 *,value)1215 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1216 {
1217 /* This helper call is inlined by verifier. */
1218 u64 nr_args = ((u64 *)ctx)[-1];
1219
1220 *value = ((u64 *)ctx)[nr_args];
1221 return 0;
1222 }
1223
1224 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1225 .func = get_func_ret,
1226 .ret_type = RET_INTEGER,
1227 .arg1_type = ARG_PTR_TO_CTX,
1228 .arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1229 .arg2_size = sizeof(u64),
1230 };
1231
BPF_CALL_1(get_func_arg_cnt,void *,ctx)1232 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1233 {
1234 /* This helper call is inlined by verifier. */
1235 return ((u64 *)ctx)[-1];
1236 }
1237
1238 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1239 .func = get_func_arg_cnt,
1240 .ret_type = RET_INTEGER,
1241 .arg1_type = ARG_PTR_TO_CTX,
1242 };
1243
1244 #ifdef CONFIG_KEYS
1245 __bpf_kfunc_start_defs();
1246
1247 /**
1248 * bpf_lookup_user_key - lookup a key by its serial
1249 * @serial: key handle serial number
1250 * @flags: lookup-specific flags
1251 *
1252 * Search a key with a given *serial* and the provided *flags*.
1253 * If found, increment the reference count of the key by one, and
1254 * return it in the bpf_key structure.
1255 *
1256 * The bpf_key structure must be passed to bpf_key_put() when done
1257 * with it, so that the key reference count is decremented and the
1258 * bpf_key structure is freed.
1259 *
1260 * Permission checks are deferred to the time the key is used by
1261 * one of the available key-specific kfuncs.
1262 *
1263 * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1264 * special keyring (e.g. session keyring), if it doesn't yet exist.
1265 * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1266 * for the key construction, and to retrieve uninstantiated keys (keys
1267 * without data attached to them).
1268 *
1269 * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1270 * NULL pointer otherwise.
1271 */
bpf_lookup_user_key(s32 serial,u64 flags)1272 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags)
1273 {
1274 key_ref_t key_ref;
1275 struct bpf_key *bkey;
1276
1277 if (flags & ~KEY_LOOKUP_ALL)
1278 return NULL;
1279
1280 /*
1281 * Permission check is deferred until the key is used, as the
1282 * intent of the caller is unknown here.
1283 */
1284 key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1285 if (IS_ERR(key_ref))
1286 return NULL;
1287
1288 bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1289 if (!bkey) {
1290 key_put(key_ref_to_ptr(key_ref));
1291 return NULL;
1292 }
1293
1294 bkey->key = key_ref_to_ptr(key_ref);
1295 bkey->has_ref = true;
1296
1297 return bkey;
1298 }
1299
1300 /**
1301 * bpf_lookup_system_key - lookup a key by a system-defined ID
1302 * @id: key ID
1303 *
1304 * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1305 * The key pointer is marked as invalid, to prevent bpf_key_put() from
1306 * attempting to decrement the key reference count on that pointer. The key
1307 * pointer set in such way is currently understood only by
1308 * verify_pkcs7_signature().
1309 *
1310 * Set *id* to one of the values defined in include/linux/verification.h:
1311 * 0 for the primary keyring (immutable keyring of system keys);
1312 * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1313 * (where keys can be added only if they are vouched for by existing keys
1314 * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1315 * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1316 * kerned image and, possibly, the initramfs signature).
1317 *
1318 * Return: a bpf_key pointer with an invalid key pointer set from the
1319 * pre-determined ID on success, a NULL pointer otherwise
1320 */
bpf_lookup_system_key(u64 id)1321 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1322 {
1323 struct bpf_key *bkey;
1324
1325 if (system_keyring_id_check(id) < 0)
1326 return NULL;
1327
1328 bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1329 if (!bkey)
1330 return NULL;
1331
1332 bkey->key = (struct key *)(unsigned long)id;
1333 bkey->has_ref = false;
1334
1335 return bkey;
1336 }
1337
1338 /**
1339 * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1340 * @bkey: bpf_key structure
1341 *
1342 * Decrement the reference count of the key inside *bkey*, if the pointer
1343 * is valid, and free *bkey*.
1344 */
bpf_key_put(struct bpf_key * bkey)1345 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1346 {
1347 if (bkey->has_ref)
1348 key_put(bkey->key);
1349
1350 kfree(bkey);
1351 }
1352
1353 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1354 /**
1355 * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1356 * @data_p: data to verify
1357 * @sig_p: signature of the data
1358 * @trusted_keyring: keyring with keys trusted for signature verification
1359 *
1360 * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1361 * with keys in a keyring referenced by *trusted_keyring*.
1362 *
1363 * Return: 0 on success, a negative value on error.
1364 */
bpf_verify_pkcs7_signature(struct bpf_dynptr * data_p,struct bpf_dynptr * sig_p,struct bpf_key * trusted_keyring)1365 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
1366 struct bpf_dynptr *sig_p,
1367 struct bpf_key *trusted_keyring)
1368 {
1369 struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
1370 struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
1371 const void *data, *sig;
1372 u32 data_len, sig_len;
1373 int ret;
1374
1375 if (trusted_keyring->has_ref) {
1376 /*
1377 * Do the permission check deferred in bpf_lookup_user_key().
1378 * See bpf_lookup_user_key() for more details.
1379 *
1380 * A call to key_task_permission() here would be redundant, as
1381 * it is already done by keyring_search() called by
1382 * find_asymmetric_key().
1383 */
1384 ret = key_validate(trusted_keyring->key);
1385 if (ret < 0)
1386 return ret;
1387 }
1388
1389 data_len = __bpf_dynptr_size(data_ptr);
1390 data = __bpf_dynptr_data(data_ptr, data_len);
1391 sig_len = __bpf_dynptr_size(sig_ptr);
1392 sig = __bpf_dynptr_data(sig_ptr, sig_len);
1393
1394 return verify_pkcs7_signature(data, data_len, sig, sig_len,
1395 trusted_keyring->key,
1396 VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1397 NULL);
1398 }
1399 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1400
1401 __bpf_kfunc_end_defs();
1402
1403 BTF_KFUNCS_START(key_sig_kfunc_set)
1404 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1405 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1406 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1407 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1408 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1409 #endif
1410 BTF_KFUNCS_END(key_sig_kfunc_set)
1411
1412 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1413 .owner = THIS_MODULE,
1414 .set = &key_sig_kfunc_set,
1415 };
1416
bpf_key_sig_kfuncs_init(void)1417 static int __init bpf_key_sig_kfuncs_init(void)
1418 {
1419 return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1420 &bpf_key_sig_kfunc_set);
1421 }
1422
1423 late_initcall(bpf_key_sig_kfuncs_init);
1424 #endif /* CONFIG_KEYS */
1425
1426 static const struct bpf_func_proto *
bpf_tracing_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1427 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1428 {
1429 const struct bpf_func_proto *func_proto;
1430
1431 switch (func_id) {
1432 case BPF_FUNC_get_smp_processor_id:
1433 return &bpf_get_smp_processor_id_proto;
1434 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1435 case BPF_FUNC_probe_read:
1436 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1437 NULL : &bpf_probe_read_compat_proto;
1438 case BPF_FUNC_probe_read_str:
1439 return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1440 NULL : &bpf_probe_read_compat_str_proto;
1441 #endif
1442 case BPF_FUNC_get_func_ip:
1443 return &bpf_get_func_ip_proto_tracing;
1444 default:
1445 break;
1446 }
1447
1448 func_proto = bpf_base_func_proto(func_id, prog);
1449 if (func_proto)
1450 return func_proto;
1451
1452 if (!bpf_token_capable(prog->aux->token, CAP_SYS_ADMIN))
1453 return NULL;
1454
1455 switch (func_id) {
1456 case BPF_FUNC_probe_write_user:
1457 return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1458 NULL : &bpf_probe_write_user_proto;
1459 default:
1460 return NULL;
1461 }
1462 }
1463
is_kprobe_multi(const struct bpf_prog * prog)1464 static bool is_kprobe_multi(const struct bpf_prog *prog)
1465 {
1466 return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1467 prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1468 }
1469
is_kprobe_session(const struct bpf_prog * prog)1470 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1471 {
1472 return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1473 }
1474
is_uprobe_multi(const struct bpf_prog * prog)1475 static inline bool is_uprobe_multi(const struct bpf_prog *prog)
1476 {
1477 return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
1478 prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1479 }
1480
is_uprobe_session(const struct bpf_prog * prog)1481 static inline bool is_uprobe_session(const struct bpf_prog *prog)
1482 {
1483 return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
1484 }
1485
1486 static const struct bpf_func_proto *
kprobe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1487 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1488 {
1489 switch (func_id) {
1490 case BPF_FUNC_perf_event_output:
1491 return &bpf_perf_event_output_proto;
1492 case BPF_FUNC_get_stackid:
1493 return &bpf_get_stackid_proto;
1494 case BPF_FUNC_get_stack:
1495 return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1496 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1497 case BPF_FUNC_override_return:
1498 return &bpf_override_return_proto;
1499 #endif
1500 case BPF_FUNC_get_func_ip:
1501 if (is_kprobe_multi(prog))
1502 return &bpf_get_func_ip_proto_kprobe_multi;
1503 if (is_uprobe_multi(prog))
1504 return &bpf_get_func_ip_proto_uprobe_multi;
1505 return &bpf_get_func_ip_proto_kprobe;
1506 case BPF_FUNC_get_attach_cookie:
1507 if (is_kprobe_multi(prog))
1508 return &bpf_get_attach_cookie_proto_kmulti;
1509 if (is_uprobe_multi(prog))
1510 return &bpf_get_attach_cookie_proto_umulti;
1511 return &bpf_get_attach_cookie_proto_trace;
1512 default:
1513 return bpf_tracing_func_proto(func_id, prog);
1514 }
1515 }
1516
1517 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
kprobe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1518 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1519 const struct bpf_prog *prog,
1520 struct bpf_insn_access_aux *info)
1521 {
1522 if (off < 0 || off >= sizeof(struct pt_regs))
1523 return false;
1524 if (type != BPF_READ)
1525 return false;
1526 if (off % size != 0)
1527 return false;
1528 /*
1529 * Assertion for 32 bit to make sure last 8 byte access
1530 * (BPF_DW) to the last 4 byte member is disallowed.
1531 */
1532 if (off + size > sizeof(struct pt_regs))
1533 return false;
1534
1535 return true;
1536 }
1537
1538 const struct bpf_verifier_ops kprobe_verifier_ops = {
1539 .get_func_proto = kprobe_prog_func_proto,
1540 .is_valid_access = kprobe_prog_is_valid_access,
1541 };
1542
1543 const struct bpf_prog_ops kprobe_prog_ops = {
1544 };
1545
BPF_CALL_5(bpf_perf_event_output_tp,void *,tp_buff,struct bpf_map *,map,u64,flags,void *,data,u64,size)1546 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1547 u64, flags, void *, data, u64, size)
1548 {
1549 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1550
1551 /*
1552 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1553 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1554 * from there and call the same bpf_perf_event_output() helper inline.
1555 */
1556 return ____bpf_perf_event_output(regs, map, flags, data, size);
1557 }
1558
1559 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1560 .func = bpf_perf_event_output_tp,
1561 .gpl_only = true,
1562 .ret_type = RET_INTEGER,
1563 .arg1_type = ARG_PTR_TO_CTX,
1564 .arg2_type = ARG_CONST_MAP_PTR,
1565 .arg3_type = ARG_ANYTHING,
1566 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1567 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1568 };
1569
BPF_CALL_3(bpf_get_stackid_tp,void *,tp_buff,struct bpf_map *,map,u64,flags)1570 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1571 u64, flags)
1572 {
1573 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1574
1575 /*
1576 * Same comment as in bpf_perf_event_output_tp(), only that this time
1577 * the other helper's function body cannot be inlined due to being
1578 * external, thus we need to call raw helper function.
1579 */
1580 return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1581 flags, 0, 0);
1582 }
1583
1584 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1585 .func = bpf_get_stackid_tp,
1586 .gpl_only = true,
1587 .ret_type = RET_INTEGER,
1588 .arg1_type = ARG_PTR_TO_CTX,
1589 .arg2_type = ARG_CONST_MAP_PTR,
1590 .arg3_type = ARG_ANYTHING,
1591 };
1592
BPF_CALL_4(bpf_get_stack_tp,void *,tp_buff,void *,buf,u32,size,u64,flags)1593 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1594 u64, flags)
1595 {
1596 struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1597
1598 return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1599 (unsigned long) size, flags, 0);
1600 }
1601
1602 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1603 .func = bpf_get_stack_tp,
1604 .gpl_only = true,
1605 .ret_type = RET_INTEGER,
1606 .arg1_type = ARG_PTR_TO_CTX,
1607 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1608 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1609 .arg4_type = ARG_ANYTHING,
1610 };
1611
1612 static const struct bpf_func_proto *
tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1613 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1614 {
1615 switch (func_id) {
1616 case BPF_FUNC_perf_event_output:
1617 return &bpf_perf_event_output_proto_tp;
1618 case BPF_FUNC_get_stackid:
1619 return &bpf_get_stackid_proto_tp;
1620 case BPF_FUNC_get_stack:
1621 return &bpf_get_stack_proto_tp;
1622 case BPF_FUNC_get_attach_cookie:
1623 return &bpf_get_attach_cookie_proto_trace;
1624 default:
1625 return bpf_tracing_func_proto(func_id, prog);
1626 }
1627 }
1628
tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1629 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1630 const struct bpf_prog *prog,
1631 struct bpf_insn_access_aux *info)
1632 {
1633 if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1634 return false;
1635 if (type != BPF_READ)
1636 return false;
1637 if (off % size != 0)
1638 return false;
1639
1640 BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1641 return true;
1642 }
1643
1644 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1645 .get_func_proto = tp_prog_func_proto,
1646 .is_valid_access = tp_prog_is_valid_access,
1647 };
1648
1649 const struct bpf_prog_ops tracepoint_prog_ops = {
1650 };
1651
BPF_CALL_3(bpf_perf_prog_read_value,struct bpf_perf_event_data_kern *,ctx,struct bpf_perf_event_value *,buf,u32,size)1652 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1653 struct bpf_perf_event_value *, buf, u32, size)
1654 {
1655 int err = -EINVAL;
1656
1657 if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1658 goto clear;
1659 err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1660 &buf->running);
1661 if (unlikely(err))
1662 goto clear;
1663 return 0;
1664 clear:
1665 memset(buf, 0, size);
1666 return err;
1667 }
1668
1669 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1670 .func = bpf_perf_prog_read_value,
1671 .gpl_only = true,
1672 .ret_type = RET_INTEGER,
1673 .arg1_type = ARG_PTR_TO_CTX,
1674 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1675 .arg3_type = ARG_CONST_SIZE,
1676 };
1677
BPF_CALL_4(bpf_read_branch_records,struct bpf_perf_event_data_kern *,ctx,void *,buf,u32,size,u64,flags)1678 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1679 void *, buf, u32, size, u64, flags)
1680 {
1681 static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1682 struct perf_branch_stack *br_stack = ctx->data->br_stack;
1683 u32 to_copy;
1684
1685 if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1686 return -EINVAL;
1687
1688 if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1689 return -ENOENT;
1690
1691 if (unlikely(!br_stack))
1692 return -ENOENT;
1693
1694 if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1695 return br_stack->nr * br_entry_size;
1696
1697 if (!buf || (size % br_entry_size != 0))
1698 return -EINVAL;
1699
1700 to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1701 memcpy(buf, br_stack->entries, to_copy);
1702
1703 return to_copy;
1704 }
1705
1706 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1707 .func = bpf_read_branch_records,
1708 .gpl_only = true,
1709 .ret_type = RET_INTEGER,
1710 .arg1_type = ARG_PTR_TO_CTX,
1711 .arg2_type = ARG_PTR_TO_MEM_OR_NULL,
1712 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1713 .arg4_type = ARG_ANYTHING,
1714 };
1715
1716 static const struct bpf_func_proto *
pe_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1717 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1718 {
1719 switch (func_id) {
1720 case BPF_FUNC_perf_event_output:
1721 return &bpf_perf_event_output_proto_tp;
1722 case BPF_FUNC_get_stackid:
1723 return &bpf_get_stackid_proto_pe;
1724 case BPF_FUNC_get_stack:
1725 return &bpf_get_stack_proto_pe;
1726 case BPF_FUNC_perf_prog_read_value:
1727 return &bpf_perf_prog_read_value_proto;
1728 case BPF_FUNC_read_branch_records:
1729 return &bpf_read_branch_records_proto;
1730 case BPF_FUNC_get_attach_cookie:
1731 return &bpf_get_attach_cookie_proto_pe;
1732 default:
1733 return bpf_tracing_func_proto(func_id, prog);
1734 }
1735 }
1736
1737 /*
1738 * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1739 * to avoid potential recursive reuse issue when/if tracepoints are added
1740 * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1741 *
1742 * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1743 * in normal, irq, and nmi context.
1744 */
1745 struct bpf_raw_tp_regs {
1746 struct pt_regs regs[3];
1747 };
1748 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1749 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
get_bpf_raw_tp_regs(void)1750 static struct pt_regs *get_bpf_raw_tp_regs(void)
1751 {
1752 struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1753 int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1754
1755 if (nest_level > ARRAY_SIZE(tp_regs->regs)) {
1756 this_cpu_dec(bpf_raw_tp_nest_level);
1757 return ERR_PTR(-EBUSY);
1758 }
1759
1760 return &tp_regs->regs[nest_level - 1];
1761 }
1762
put_bpf_raw_tp_regs(void)1763 static void put_bpf_raw_tp_regs(void)
1764 {
1765 this_cpu_dec(bpf_raw_tp_nest_level);
1766 }
1767
BPF_CALL_5(bpf_perf_event_output_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags,void *,data,u64,size)1768 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1769 struct bpf_map *, map, u64, flags, void *, data, u64, size)
1770 {
1771 struct pt_regs *regs = get_bpf_raw_tp_regs();
1772 int ret;
1773
1774 if (IS_ERR(regs))
1775 return PTR_ERR(regs);
1776
1777 perf_fetch_caller_regs(regs);
1778 ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1779
1780 put_bpf_raw_tp_regs();
1781 return ret;
1782 }
1783
1784 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1785 .func = bpf_perf_event_output_raw_tp,
1786 .gpl_only = true,
1787 .ret_type = RET_INTEGER,
1788 .arg1_type = ARG_PTR_TO_CTX,
1789 .arg2_type = ARG_CONST_MAP_PTR,
1790 .arg3_type = ARG_ANYTHING,
1791 .arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1792 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
1793 };
1794
1795 extern const struct bpf_func_proto bpf_skb_output_proto;
1796 extern const struct bpf_func_proto bpf_xdp_output_proto;
1797 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1798
BPF_CALL_3(bpf_get_stackid_raw_tp,struct bpf_raw_tracepoint_args *,args,struct bpf_map *,map,u64,flags)1799 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1800 struct bpf_map *, map, u64, flags)
1801 {
1802 struct pt_regs *regs = get_bpf_raw_tp_regs();
1803 int ret;
1804
1805 if (IS_ERR(regs))
1806 return PTR_ERR(regs);
1807
1808 perf_fetch_caller_regs(regs);
1809 /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1810 ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1811 flags, 0, 0);
1812 put_bpf_raw_tp_regs();
1813 return ret;
1814 }
1815
1816 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1817 .func = bpf_get_stackid_raw_tp,
1818 .gpl_only = true,
1819 .ret_type = RET_INTEGER,
1820 .arg1_type = ARG_PTR_TO_CTX,
1821 .arg2_type = ARG_CONST_MAP_PTR,
1822 .arg3_type = ARG_ANYTHING,
1823 };
1824
BPF_CALL_4(bpf_get_stack_raw_tp,struct bpf_raw_tracepoint_args *,args,void *,buf,u32,size,u64,flags)1825 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1826 void *, buf, u32, size, u64, flags)
1827 {
1828 struct pt_regs *regs = get_bpf_raw_tp_regs();
1829 int ret;
1830
1831 if (IS_ERR(regs))
1832 return PTR_ERR(regs);
1833
1834 perf_fetch_caller_regs(regs);
1835 ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1836 (unsigned long) size, flags, 0);
1837 put_bpf_raw_tp_regs();
1838 return ret;
1839 }
1840
1841 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1842 .func = bpf_get_stack_raw_tp,
1843 .gpl_only = true,
1844 .ret_type = RET_INTEGER,
1845 .arg1_type = ARG_PTR_TO_CTX,
1846 .arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1847 .arg3_type = ARG_CONST_SIZE_OR_ZERO,
1848 .arg4_type = ARG_ANYTHING,
1849 };
1850
1851 static const struct bpf_func_proto *
raw_tp_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1852 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1853 {
1854 switch (func_id) {
1855 case BPF_FUNC_perf_event_output:
1856 return &bpf_perf_event_output_proto_raw_tp;
1857 case BPF_FUNC_get_stackid:
1858 return &bpf_get_stackid_proto_raw_tp;
1859 case BPF_FUNC_get_stack:
1860 return &bpf_get_stack_proto_raw_tp;
1861 case BPF_FUNC_get_attach_cookie:
1862 return &bpf_get_attach_cookie_proto_tracing;
1863 default:
1864 return bpf_tracing_func_proto(func_id, prog);
1865 }
1866 }
1867
1868 const struct bpf_func_proto *
tracing_prog_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1869 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1870 {
1871 const struct bpf_func_proto *fn;
1872
1873 switch (func_id) {
1874 #ifdef CONFIG_NET
1875 case BPF_FUNC_skb_output:
1876 return &bpf_skb_output_proto;
1877 case BPF_FUNC_xdp_output:
1878 return &bpf_xdp_output_proto;
1879 case BPF_FUNC_skc_to_tcp6_sock:
1880 return &bpf_skc_to_tcp6_sock_proto;
1881 case BPF_FUNC_skc_to_tcp_sock:
1882 return &bpf_skc_to_tcp_sock_proto;
1883 case BPF_FUNC_skc_to_tcp_timewait_sock:
1884 return &bpf_skc_to_tcp_timewait_sock_proto;
1885 case BPF_FUNC_skc_to_tcp_request_sock:
1886 return &bpf_skc_to_tcp_request_sock_proto;
1887 case BPF_FUNC_skc_to_udp6_sock:
1888 return &bpf_skc_to_udp6_sock_proto;
1889 case BPF_FUNC_skc_to_unix_sock:
1890 return &bpf_skc_to_unix_sock_proto;
1891 case BPF_FUNC_skc_to_mptcp_sock:
1892 return &bpf_skc_to_mptcp_sock_proto;
1893 case BPF_FUNC_sk_storage_get:
1894 return &bpf_sk_storage_get_tracing_proto;
1895 case BPF_FUNC_sk_storage_delete:
1896 return &bpf_sk_storage_delete_tracing_proto;
1897 case BPF_FUNC_sock_from_file:
1898 return &bpf_sock_from_file_proto;
1899 case BPF_FUNC_get_socket_cookie:
1900 return &bpf_get_socket_ptr_cookie_proto;
1901 case BPF_FUNC_xdp_get_buff_len:
1902 return &bpf_xdp_get_buff_len_trace_proto;
1903 #endif
1904 case BPF_FUNC_seq_printf:
1905 return prog->expected_attach_type == BPF_TRACE_ITER ?
1906 &bpf_seq_printf_proto :
1907 NULL;
1908 case BPF_FUNC_seq_write:
1909 return prog->expected_attach_type == BPF_TRACE_ITER ?
1910 &bpf_seq_write_proto :
1911 NULL;
1912 case BPF_FUNC_seq_printf_btf:
1913 return prog->expected_attach_type == BPF_TRACE_ITER ?
1914 &bpf_seq_printf_btf_proto :
1915 NULL;
1916 case BPF_FUNC_d_path:
1917 return &bpf_d_path_proto;
1918 case BPF_FUNC_get_func_arg:
1919 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
1920 case BPF_FUNC_get_func_ret:
1921 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
1922 case BPF_FUNC_get_func_arg_cnt:
1923 return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
1924 case BPF_FUNC_get_attach_cookie:
1925 if (prog->type == BPF_PROG_TYPE_TRACING &&
1926 prog->expected_attach_type == BPF_TRACE_RAW_TP)
1927 return &bpf_get_attach_cookie_proto_tracing;
1928 return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
1929 default:
1930 fn = raw_tp_prog_func_proto(func_id, prog);
1931 if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
1932 fn = bpf_iter_get_func_proto(func_id, prog);
1933 return fn;
1934 }
1935 }
1936
raw_tp_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1937 static bool raw_tp_prog_is_valid_access(int off, int size,
1938 enum bpf_access_type type,
1939 const struct bpf_prog *prog,
1940 struct bpf_insn_access_aux *info)
1941 {
1942 return bpf_tracing_ctx_access(off, size, type);
1943 }
1944
tracing_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1945 static bool tracing_prog_is_valid_access(int off, int size,
1946 enum bpf_access_type type,
1947 const struct bpf_prog *prog,
1948 struct bpf_insn_access_aux *info)
1949 {
1950 return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
1951 }
1952
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)1953 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
1954 const union bpf_attr *kattr,
1955 union bpf_attr __user *uattr)
1956 {
1957 return -ENOTSUPP;
1958 }
1959
1960 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1961 .get_func_proto = raw_tp_prog_func_proto,
1962 .is_valid_access = raw_tp_prog_is_valid_access,
1963 };
1964
1965 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1966 #ifdef CONFIG_NET
1967 .test_run = bpf_prog_test_run_raw_tp,
1968 #endif
1969 };
1970
1971 const struct bpf_verifier_ops tracing_verifier_ops = {
1972 .get_func_proto = tracing_prog_func_proto,
1973 .is_valid_access = tracing_prog_is_valid_access,
1974 };
1975
1976 const struct bpf_prog_ops tracing_prog_ops = {
1977 .test_run = bpf_prog_test_run_tracing,
1978 };
1979
raw_tp_writable_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1980 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1981 enum bpf_access_type type,
1982 const struct bpf_prog *prog,
1983 struct bpf_insn_access_aux *info)
1984 {
1985 if (off == 0) {
1986 if (size != sizeof(u64) || type != BPF_READ)
1987 return false;
1988 info->reg_type = PTR_TO_TP_BUFFER;
1989 }
1990 return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1991 }
1992
1993 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1994 .get_func_proto = raw_tp_prog_func_proto,
1995 .is_valid_access = raw_tp_writable_prog_is_valid_access,
1996 };
1997
1998 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1999 };
2000
pe_prog_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2001 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2002 const struct bpf_prog *prog,
2003 struct bpf_insn_access_aux *info)
2004 {
2005 const int size_u64 = sizeof(u64);
2006
2007 if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2008 return false;
2009 if (type != BPF_READ)
2010 return false;
2011 if (off % size != 0) {
2012 if (sizeof(unsigned long) != 4)
2013 return false;
2014 if (size != 8)
2015 return false;
2016 if (off % size != 4)
2017 return false;
2018 }
2019
2020 switch (off) {
2021 case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2022 bpf_ctx_record_field_size(info, size_u64);
2023 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2024 return false;
2025 break;
2026 case bpf_ctx_range(struct bpf_perf_event_data, addr):
2027 bpf_ctx_record_field_size(info, size_u64);
2028 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2029 return false;
2030 break;
2031 default:
2032 if (size != sizeof(long))
2033 return false;
2034 }
2035
2036 return true;
2037 }
2038
pe_prog_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)2039 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2040 const struct bpf_insn *si,
2041 struct bpf_insn *insn_buf,
2042 struct bpf_prog *prog, u32 *target_size)
2043 {
2044 struct bpf_insn *insn = insn_buf;
2045
2046 switch (si->off) {
2047 case offsetof(struct bpf_perf_event_data, sample_period):
2048 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2049 data), si->dst_reg, si->src_reg,
2050 offsetof(struct bpf_perf_event_data_kern, data));
2051 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2052 bpf_target_off(struct perf_sample_data, period, 8,
2053 target_size));
2054 break;
2055 case offsetof(struct bpf_perf_event_data, addr):
2056 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2057 data), si->dst_reg, si->src_reg,
2058 offsetof(struct bpf_perf_event_data_kern, data));
2059 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2060 bpf_target_off(struct perf_sample_data, addr, 8,
2061 target_size));
2062 break;
2063 default:
2064 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2065 regs), si->dst_reg, si->src_reg,
2066 offsetof(struct bpf_perf_event_data_kern, regs));
2067 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2068 si->off);
2069 break;
2070 }
2071
2072 return insn - insn_buf;
2073 }
2074
2075 const struct bpf_verifier_ops perf_event_verifier_ops = {
2076 .get_func_proto = pe_prog_func_proto,
2077 .is_valid_access = pe_prog_is_valid_access,
2078 .convert_ctx_access = pe_prog_convert_ctx_access,
2079 };
2080
2081 const struct bpf_prog_ops perf_event_prog_ops = {
2082 };
2083
2084 static DEFINE_MUTEX(bpf_event_mutex);
2085
2086 #define BPF_TRACE_MAX_PROGS 64
2087
perf_event_attach_bpf_prog(struct perf_event * event,struct bpf_prog * prog,u64 bpf_cookie)2088 int perf_event_attach_bpf_prog(struct perf_event *event,
2089 struct bpf_prog *prog,
2090 u64 bpf_cookie)
2091 {
2092 struct bpf_prog_array *old_array;
2093 struct bpf_prog_array *new_array;
2094 int ret = -EEXIST;
2095
2096 /*
2097 * Kprobe override only works if they are on the function entry,
2098 * and only if they are on the opt-in list.
2099 */
2100 if (prog->kprobe_override &&
2101 (!trace_kprobe_on_func_entry(event->tp_event) ||
2102 !trace_kprobe_error_injectable(event->tp_event)))
2103 return -EINVAL;
2104
2105 mutex_lock(&bpf_event_mutex);
2106
2107 if (event->prog)
2108 goto unlock;
2109
2110 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2111 if (old_array &&
2112 bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2113 ret = -E2BIG;
2114 goto unlock;
2115 }
2116
2117 ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2118 if (ret < 0)
2119 goto unlock;
2120
2121 /* set the new array to event->tp_event and set event->prog */
2122 event->prog = prog;
2123 event->bpf_cookie = bpf_cookie;
2124 rcu_assign_pointer(event->tp_event->prog_array, new_array);
2125 bpf_prog_array_free_sleepable(old_array);
2126
2127 unlock:
2128 mutex_unlock(&bpf_event_mutex);
2129 return ret;
2130 }
2131
perf_event_detach_bpf_prog(struct perf_event * event)2132 void perf_event_detach_bpf_prog(struct perf_event *event)
2133 {
2134 struct bpf_prog_array *old_array;
2135 struct bpf_prog_array *new_array;
2136 struct bpf_prog *prog = NULL;
2137 int ret;
2138
2139 mutex_lock(&bpf_event_mutex);
2140
2141 if (!event->prog)
2142 goto unlock;
2143
2144 old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2145 if (!old_array)
2146 goto put;
2147
2148 ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2149 if (ret < 0) {
2150 bpf_prog_array_delete_safe(old_array, event->prog);
2151 } else {
2152 rcu_assign_pointer(event->tp_event->prog_array, new_array);
2153 bpf_prog_array_free_sleepable(old_array);
2154 }
2155
2156 put:
2157 prog = event->prog;
2158 event->prog = NULL;
2159
2160 unlock:
2161 mutex_unlock(&bpf_event_mutex);
2162
2163 if (prog) {
2164 /*
2165 * It could be that the bpf_prog is not sleepable (and will be freed
2166 * via normal RCU), but is called from a point that supports sleepable
2167 * programs and uses tasks-trace-RCU.
2168 */
2169 synchronize_rcu_tasks_trace();
2170
2171 bpf_prog_put(prog);
2172 }
2173 }
2174
perf_event_query_prog_array(struct perf_event * event,void __user * info)2175 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2176 {
2177 struct perf_event_query_bpf __user *uquery = info;
2178 struct perf_event_query_bpf query = {};
2179 struct bpf_prog_array *progs;
2180 u32 *ids, prog_cnt, ids_len;
2181 int ret;
2182
2183 if (!perfmon_capable())
2184 return -EPERM;
2185 if (event->attr.type != PERF_TYPE_TRACEPOINT)
2186 return -EINVAL;
2187 if (copy_from_user(&query, uquery, sizeof(query)))
2188 return -EFAULT;
2189
2190 ids_len = query.ids_len;
2191 if (ids_len > BPF_TRACE_MAX_PROGS)
2192 return -E2BIG;
2193 ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2194 if (!ids)
2195 return -ENOMEM;
2196 /*
2197 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2198 * is required when user only wants to check for uquery->prog_cnt.
2199 * There is no need to check for it since the case is handled
2200 * gracefully in bpf_prog_array_copy_info.
2201 */
2202
2203 mutex_lock(&bpf_event_mutex);
2204 progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2205 ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2206 mutex_unlock(&bpf_event_mutex);
2207
2208 if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2209 copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2210 ret = -EFAULT;
2211
2212 kfree(ids);
2213 return ret;
2214 }
2215
2216 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2217 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2218
bpf_get_raw_tracepoint(const char * name)2219 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2220 {
2221 struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2222
2223 for (; btp < __stop__bpf_raw_tp; btp++) {
2224 if (!strcmp(btp->tp->name, name))
2225 return btp;
2226 }
2227
2228 return bpf_get_raw_tracepoint_module(name);
2229 }
2230
bpf_put_raw_tracepoint(struct bpf_raw_event_map * btp)2231 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2232 {
2233 struct module *mod;
2234
2235 guard(rcu)();
2236 mod = __module_address((unsigned long)btp);
2237 module_put(mod);
2238 }
2239
2240 static __always_inline
__bpf_trace_run(struct bpf_raw_tp_link * link,u64 * args)2241 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2242 {
2243 struct bpf_prog *prog = link->link.prog;
2244 struct bpf_run_ctx *old_run_ctx;
2245 struct bpf_trace_run_ctx run_ctx;
2246
2247 cant_sleep();
2248 if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2249 bpf_prog_inc_misses_counter(prog);
2250 goto out;
2251 }
2252
2253 run_ctx.bpf_cookie = link->cookie;
2254 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2255
2256 rcu_read_lock();
2257 (void) bpf_prog_run(prog, args);
2258 rcu_read_unlock();
2259
2260 bpf_reset_run_ctx(old_run_ctx);
2261 out:
2262 this_cpu_dec(*(prog->active));
2263 }
2264
2265 #define UNPACK(...) __VA_ARGS__
2266 #define REPEAT_1(FN, DL, X, ...) FN(X)
2267 #define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2268 #define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2269 #define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2270 #define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2271 #define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2272 #define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2273 #define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2274 #define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2275 #define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2276 #define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2277 #define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2278 #define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
2279
2280 #define SARG(X) u64 arg##X
2281 #define COPY(X) args[X] = arg##X
2282
2283 #define __DL_COM (,)
2284 #define __DL_SEM (;)
2285
2286 #define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2287
2288 #define BPF_TRACE_DEFN_x(x) \
2289 void bpf_trace_run##x(struct bpf_raw_tp_link *link, \
2290 REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
2291 { \
2292 u64 args[x]; \
2293 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
2294 __bpf_trace_run(link, args); \
2295 } \
2296 EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2297 BPF_TRACE_DEFN_x(1);
2298 BPF_TRACE_DEFN_x(2);
2299 BPF_TRACE_DEFN_x(3);
2300 BPF_TRACE_DEFN_x(4);
2301 BPF_TRACE_DEFN_x(5);
2302 BPF_TRACE_DEFN_x(6);
2303 BPF_TRACE_DEFN_x(7);
2304 BPF_TRACE_DEFN_x(8);
2305 BPF_TRACE_DEFN_x(9);
2306 BPF_TRACE_DEFN_x(10);
2307 BPF_TRACE_DEFN_x(11);
2308 BPF_TRACE_DEFN_x(12);
2309
bpf_probe_register(struct bpf_raw_event_map * btp,struct bpf_raw_tp_link * link)2310 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2311 {
2312 struct tracepoint *tp = btp->tp;
2313 struct bpf_prog *prog = link->link.prog;
2314
2315 /*
2316 * check that program doesn't access arguments beyond what's
2317 * available in this tracepoint
2318 */
2319 if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2320 return -EINVAL;
2321
2322 if (prog->aux->max_tp_access > btp->writable_size)
2323 return -EINVAL;
2324
2325 return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2326 }
2327
bpf_probe_unregister(struct bpf_raw_event_map * btp,struct bpf_raw_tp_link * link)2328 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2329 {
2330 return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2331 }
2332
bpf_get_perf_event_info(const struct perf_event * event,u32 * prog_id,u32 * fd_type,const char ** buf,u64 * probe_offset,u64 * probe_addr,unsigned long * missed)2333 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2334 u32 *fd_type, const char **buf,
2335 u64 *probe_offset, u64 *probe_addr,
2336 unsigned long *missed)
2337 {
2338 bool is_tracepoint, is_syscall_tp;
2339 struct bpf_prog *prog;
2340 int flags, err = 0;
2341
2342 prog = event->prog;
2343 if (!prog)
2344 return -ENOENT;
2345
2346 /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2347 if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2348 return -EOPNOTSUPP;
2349
2350 *prog_id = prog->aux->id;
2351 flags = event->tp_event->flags;
2352 is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2353 is_syscall_tp = is_syscall_trace_event(event->tp_event);
2354
2355 if (is_tracepoint || is_syscall_tp) {
2356 *buf = is_tracepoint ? event->tp_event->tp->name
2357 : event->tp_event->name;
2358 /* We allow NULL pointer for tracepoint */
2359 if (fd_type)
2360 *fd_type = BPF_FD_TYPE_TRACEPOINT;
2361 if (probe_offset)
2362 *probe_offset = 0x0;
2363 if (probe_addr)
2364 *probe_addr = 0x0;
2365 } else {
2366 /* kprobe/uprobe */
2367 err = -EOPNOTSUPP;
2368 #ifdef CONFIG_KPROBE_EVENTS
2369 if (flags & TRACE_EVENT_FL_KPROBE)
2370 err = bpf_get_kprobe_info(event, fd_type, buf,
2371 probe_offset, probe_addr, missed,
2372 event->attr.type == PERF_TYPE_TRACEPOINT);
2373 #endif
2374 #ifdef CONFIG_UPROBE_EVENTS
2375 if (flags & TRACE_EVENT_FL_UPROBE)
2376 err = bpf_get_uprobe_info(event, fd_type, buf,
2377 probe_offset, probe_addr,
2378 event->attr.type == PERF_TYPE_TRACEPOINT);
2379 #endif
2380 }
2381
2382 return err;
2383 }
2384
send_signal_irq_work_init(void)2385 static int __init send_signal_irq_work_init(void)
2386 {
2387 int cpu;
2388 struct send_signal_irq_work *work;
2389
2390 for_each_possible_cpu(cpu) {
2391 work = per_cpu_ptr(&send_signal_work, cpu);
2392 init_irq_work(&work->irq_work, do_bpf_send_signal);
2393 }
2394 return 0;
2395 }
2396
2397 subsys_initcall(send_signal_irq_work_init);
2398
2399 #ifdef CONFIG_MODULES
bpf_event_notify(struct notifier_block * nb,unsigned long op,void * module)2400 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2401 void *module)
2402 {
2403 struct bpf_trace_module *btm, *tmp;
2404 struct module *mod = module;
2405 int ret = 0;
2406
2407 if (mod->num_bpf_raw_events == 0 ||
2408 (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2409 goto out;
2410
2411 mutex_lock(&bpf_module_mutex);
2412
2413 switch (op) {
2414 case MODULE_STATE_COMING:
2415 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2416 if (btm) {
2417 btm->module = module;
2418 list_add(&btm->list, &bpf_trace_modules);
2419 } else {
2420 ret = -ENOMEM;
2421 }
2422 break;
2423 case MODULE_STATE_GOING:
2424 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2425 if (btm->module == module) {
2426 list_del(&btm->list);
2427 kfree(btm);
2428 break;
2429 }
2430 }
2431 break;
2432 }
2433
2434 mutex_unlock(&bpf_module_mutex);
2435
2436 out:
2437 return notifier_from_errno(ret);
2438 }
2439
2440 static struct notifier_block bpf_module_nb = {
2441 .notifier_call = bpf_event_notify,
2442 };
2443
bpf_event_init(void)2444 static int __init bpf_event_init(void)
2445 {
2446 register_module_notifier(&bpf_module_nb);
2447 return 0;
2448 }
2449
2450 fs_initcall(bpf_event_init);
2451 #endif /* CONFIG_MODULES */
2452
2453 struct bpf_session_run_ctx {
2454 struct bpf_run_ctx run_ctx;
2455 bool is_return;
2456 void *data;
2457 };
2458
2459 #ifdef CONFIG_FPROBE
2460 struct bpf_kprobe_multi_link {
2461 struct bpf_link link;
2462 struct fprobe fp;
2463 unsigned long *addrs;
2464 u64 *cookies;
2465 u32 cnt;
2466 u32 mods_cnt;
2467 struct module **mods;
2468 };
2469
2470 struct bpf_kprobe_multi_run_ctx {
2471 struct bpf_session_run_ctx session_ctx;
2472 struct bpf_kprobe_multi_link *link;
2473 unsigned long entry_ip;
2474 };
2475
2476 struct user_syms {
2477 const char **syms;
2478 char *buf;
2479 };
2480
2481 #ifndef CONFIG_HAVE_FTRACE_REGS_HAVING_PT_REGS
2482 static DEFINE_PER_CPU(struct pt_regs, bpf_kprobe_multi_pt_regs);
2483 #define bpf_kprobe_multi_pt_regs_ptr() this_cpu_ptr(&bpf_kprobe_multi_pt_regs)
2484 #else
2485 #define bpf_kprobe_multi_pt_regs_ptr() (NULL)
2486 #endif
2487
ftrace_get_entry_ip(unsigned long fentry_ip)2488 static unsigned long ftrace_get_entry_ip(unsigned long fentry_ip)
2489 {
2490 unsigned long ip = ftrace_get_symaddr(fentry_ip);
2491
2492 return ip ? : fentry_ip;
2493 }
2494
copy_user_syms(struct user_syms * us,unsigned long __user * usyms,u32 cnt)2495 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2496 {
2497 unsigned long __user usymbol;
2498 const char **syms = NULL;
2499 char *buf = NULL, *p;
2500 int err = -ENOMEM;
2501 unsigned int i;
2502
2503 syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2504 if (!syms)
2505 goto error;
2506
2507 buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2508 if (!buf)
2509 goto error;
2510
2511 for (p = buf, i = 0; i < cnt; i++) {
2512 if (__get_user(usymbol, usyms + i)) {
2513 err = -EFAULT;
2514 goto error;
2515 }
2516 err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2517 if (err == KSYM_NAME_LEN)
2518 err = -E2BIG;
2519 if (err < 0)
2520 goto error;
2521 syms[i] = p;
2522 p += err + 1;
2523 }
2524
2525 us->syms = syms;
2526 us->buf = buf;
2527 return 0;
2528
2529 error:
2530 if (err) {
2531 kvfree(syms);
2532 kvfree(buf);
2533 }
2534 return err;
2535 }
2536
kprobe_multi_put_modules(struct module ** mods,u32 cnt)2537 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2538 {
2539 u32 i;
2540
2541 for (i = 0; i < cnt; i++)
2542 module_put(mods[i]);
2543 }
2544
free_user_syms(struct user_syms * us)2545 static void free_user_syms(struct user_syms *us)
2546 {
2547 kvfree(us->syms);
2548 kvfree(us->buf);
2549 }
2550
bpf_kprobe_multi_link_release(struct bpf_link * link)2551 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2552 {
2553 struct bpf_kprobe_multi_link *kmulti_link;
2554
2555 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2556 unregister_fprobe(&kmulti_link->fp);
2557 kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2558 }
2559
bpf_kprobe_multi_link_dealloc(struct bpf_link * link)2560 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2561 {
2562 struct bpf_kprobe_multi_link *kmulti_link;
2563
2564 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2565 kvfree(kmulti_link->addrs);
2566 kvfree(kmulti_link->cookies);
2567 kfree(kmulti_link->mods);
2568 kfree(kmulti_link);
2569 }
2570
bpf_kprobe_multi_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)2571 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2572 struct bpf_link_info *info)
2573 {
2574 u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2575 u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2576 struct bpf_kprobe_multi_link *kmulti_link;
2577 u32 ucount = info->kprobe_multi.count;
2578 int err = 0, i;
2579
2580 if (!uaddrs ^ !ucount)
2581 return -EINVAL;
2582 if (ucookies && !ucount)
2583 return -EINVAL;
2584
2585 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2586 info->kprobe_multi.count = kmulti_link->cnt;
2587 info->kprobe_multi.flags = kmulti_link->link.flags;
2588 info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2589
2590 if (!uaddrs)
2591 return 0;
2592 if (ucount < kmulti_link->cnt)
2593 err = -ENOSPC;
2594 else
2595 ucount = kmulti_link->cnt;
2596
2597 if (ucookies) {
2598 if (kmulti_link->cookies) {
2599 if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2600 return -EFAULT;
2601 } else {
2602 for (i = 0; i < ucount; i++) {
2603 if (put_user(0, ucookies + i))
2604 return -EFAULT;
2605 }
2606 }
2607 }
2608
2609 if (kallsyms_show_value(current_cred())) {
2610 if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2611 return -EFAULT;
2612 } else {
2613 for (i = 0; i < ucount; i++) {
2614 if (put_user(0, uaddrs + i))
2615 return -EFAULT;
2616 }
2617 }
2618 return err;
2619 }
2620
2621 #ifdef CONFIG_PROC_FS
bpf_kprobe_multi_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)2622 static void bpf_kprobe_multi_show_fdinfo(const struct bpf_link *link,
2623 struct seq_file *seq)
2624 {
2625 struct bpf_kprobe_multi_link *kmulti_link;
2626
2627 kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2628
2629 seq_printf(seq,
2630 "kprobe_cnt:\t%u\n"
2631 "missed:\t%lu\n",
2632 kmulti_link->cnt,
2633 kmulti_link->fp.nmissed);
2634
2635 seq_printf(seq, "%s\t %s\n", "cookie", "func");
2636 for (int i = 0; i < kmulti_link->cnt; i++) {
2637 seq_printf(seq,
2638 "%llu\t %pS\n",
2639 kmulti_link->cookies[i],
2640 (void *)kmulti_link->addrs[i]);
2641 }
2642 }
2643 #endif
2644
2645 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2646 .release = bpf_kprobe_multi_link_release,
2647 .dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2648 .fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2649 #ifdef CONFIG_PROC_FS
2650 .show_fdinfo = bpf_kprobe_multi_show_fdinfo,
2651 #endif
2652 };
2653
bpf_kprobe_multi_cookie_swap(void * a,void * b,int size,const void * priv)2654 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2655 {
2656 const struct bpf_kprobe_multi_link *link = priv;
2657 unsigned long *addr_a = a, *addr_b = b;
2658 u64 *cookie_a, *cookie_b;
2659
2660 cookie_a = link->cookies + (addr_a - link->addrs);
2661 cookie_b = link->cookies + (addr_b - link->addrs);
2662
2663 /* swap addr_a/addr_b and cookie_a/cookie_b values */
2664 swap(*addr_a, *addr_b);
2665 swap(*cookie_a, *cookie_b);
2666 }
2667
bpf_kprobe_multi_addrs_cmp(const void * a,const void * b)2668 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2669 {
2670 const unsigned long *addr_a = a, *addr_b = b;
2671
2672 if (*addr_a == *addr_b)
2673 return 0;
2674 return *addr_a < *addr_b ? -1 : 1;
2675 }
2676
bpf_kprobe_multi_cookie_cmp(const void * a,const void * b,const void * priv)2677 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2678 {
2679 return bpf_kprobe_multi_addrs_cmp(a, b);
2680 }
2681
bpf_kprobe_multi_cookie(struct bpf_run_ctx * ctx)2682 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2683 {
2684 struct bpf_kprobe_multi_run_ctx *run_ctx;
2685 struct bpf_kprobe_multi_link *link;
2686 u64 *cookie, entry_ip;
2687 unsigned long *addr;
2688
2689 if (WARN_ON_ONCE(!ctx))
2690 return 0;
2691 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2692 session_ctx.run_ctx);
2693 link = run_ctx->link;
2694 if (!link->cookies)
2695 return 0;
2696 entry_ip = run_ctx->entry_ip;
2697 addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2698 bpf_kprobe_multi_addrs_cmp);
2699 if (!addr)
2700 return 0;
2701 cookie = link->cookies + (addr - link->addrs);
2702 return *cookie;
2703 }
2704
bpf_kprobe_multi_entry_ip(struct bpf_run_ctx * ctx)2705 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2706 {
2707 struct bpf_kprobe_multi_run_ctx *run_ctx;
2708
2709 run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2710 session_ctx.run_ctx);
2711 return run_ctx->entry_ip;
2712 }
2713
2714 static int
kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link * link,unsigned long entry_ip,struct ftrace_regs * fregs,bool is_return,void * data)2715 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2716 unsigned long entry_ip, struct ftrace_regs *fregs,
2717 bool is_return, void *data)
2718 {
2719 struct bpf_kprobe_multi_run_ctx run_ctx = {
2720 .session_ctx = {
2721 .is_return = is_return,
2722 .data = data,
2723 },
2724 .link = link,
2725 .entry_ip = entry_ip,
2726 };
2727 struct bpf_run_ctx *old_run_ctx;
2728 struct pt_regs *regs;
2729 int err;
2730
2731 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2732 bpf_prog_inc_misses_counter(link->link.prog);
2733 err = 1;
2734 goto out;
2735 }
2736
2737 migrate_disable();
2738 rcu_read_lock();
2739 regs = ftrace_partial_regs(fregs, bpf_kprobe_multi_pt_regs_ptr());
2740 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2741 err = bpf_prog_run(link->link.prog, regs);
2742 bpf_reset_run_ctx(old_run_ctx);
2743 rcu_read_unlock();
2744 migrate_enable();
2745
2746 out:
2747 __this_cpu_dec(bpf_prog_active);
2748 return err;
2749 }
2750
2751 static int
kprobe_multi_link_handler(struct fprobe * fp,unsigned long fentry_ip,unsigned long ret_ip,struct ftrace_regs * fregs,void * data)2752 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2753 unsigned long ret_ip, struct ftrace_regs *fregs,
2754 void *data)
2755 {
2756 struct bpf_kprobe_multi_link *link;
2757 int err;
2758
2759 link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2760 err = kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2761 fregs, false, data);
2762 return is_kprobe_session(link->link.prog) ? err : 0;
2763 }
2764
2765 static void
kprobe_multi_link_exit_handler(struct fprobe * fp,unsigned long fentry_ip,unsigned long ret_ip,struct ftrace_regs * fregs,void * data)2766 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2767 unsigned long ret_ip, struct ftrace_regs *fregs,
2768 void *data)
2769 {
2770 struct bpf_kprobe_multi_link *link;
2771
2772 link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2773 kprobe_multi_link_prog_run(link, ftrace_get_entry_ip(fentry_ip),
2774 fregs, true, data);
2775 }
2776
symbols_cmp_r(const void * a,const void * b,const void * priv)2777 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2778 {
2779 const char **str_a = (const char **) a;
2780 const char **str_b = (const char **) b;
2781
2782 return strcmp(*str_a, *str_b);
2783 }
2784
2785 struct multi_symbols_sort {
2786 const char **funcs;
2787 u64 *cookies;
2788 };
2789
symbols_swap_r(void * a,void * b,int size,const void * priv)2790 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2791 {
2792 const struct multi_symbols_sort *data = priv;
2793 const char **name_a = a, **name_b = b;
2794
2795 swap(*name_a, *name_b);
2796
2797 /* If defined, swap also related cookies. */
2798 if (data->cookies) {
2799 u64 *cookie_a, *cookie_b;
2800
2801 cookie_a = data->cookies + (name_a - data->funcs);
2802 cookie_b = data->cookies + (name_b - data->funcs);
2803 swap(*cookie_a, *cookie_b);
2804 }
2805 }
2806
2807 struct modules_array {
2808 struct module **mods;
2809 int mods_cnt;
2810 int mods_cap;
2811 };
2812
add_module(struct modules_array * arr,struct module * mod)2813 static int add_module(struct modules_array *arr, struct module *mod)
2814 {
2815 struct module **mods;
2816
2817 if (arr->mods_cnt == arr->mods_cap) {
2818 arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2819 mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2820 if (!mods)
2821 return -ENOMEM;
2822 arr->mods = mods;
2823 }
2824
2825 arr->mods[arr->mods_cnt] = mod;
2826 arr->mods_cnt++;
2827 return 0;
2828 }
2829
has_module(struct modules_array * arr,struct module * mod)2830 static bool has_module(struct modules_array *arr, struct module *mod)
2831 {
2832 int i;
2833
2834 for (i = arr->mods_cnt - 1; i >= 0; i--) {
2835 if (arr->mods[i] == mod)
2836 return true;
2837 }
2838 return false;
2839 }
2840
get_modules_for_addrs(struct module *** mods,unsigned long * addrs,u32 addrs_cnt)2841 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2842 {
2843 struct modules_array arr = {};
2844 u32 i, err = 0;
2845
2846 for (i = 0; i < addrs_cnt; i++) {
2847 bool skip_add = false;
2848 struct module *mod;
2849
2850 scoped_guard(rcu) {
2851 mod = __module_address(addrs[i]);
2852 /* Either no module or it's already stored */
2853 if (!mod || has_module(&arr, mod)) {
2854 skip_add = true;
2855 break; /* scoped_guard */
2856 }
2857 if (!try_module_get(mod))
2858 err = -EINVAL;
2859 }
2860 if (skip_add)
2861 continue;
2862 if (err)
2863 break;
2864 err = add_module(&arr, mod);
2865 if (err) {
2866 module_put(mod);
2867 break;
2868 }
2869 }
2870
2871 /* We return either err < 0 in case of error, ... */
2872 if (err) {
2873 kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2874 kfree(arr.mods);
2875 return err;
2876 }
2877
2878 /* or number of modules found if everything is ok. */
2879 *mods = arr.mods;
2880 return arr.mods_cnt;
2881 }
2882
addrs_check_error_injection_list(unsigned long * addrs,u32 cnt)2883 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2884 {
2885 u32 i;
2886
2887 for (i = 0; i < cnt; i++) {
2888 if (!within_error_injection_list(addrs[i]))
2889 return -EINVAL;
2890 }
2891 return 0;
2892 }
2893
bpf_kprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)2894 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2895 {
2896 struct bpf_kprobe_multi_link *link = NULL;
2897 struct bpf_link_primer link_primer;
2898 void __user *ucookies;
2899 unsigned long *addrs;
2900 u32 flags, cnt, size;
2901 void __user *uaddrs;
2902 u64 *cookies = NULL;
2903 void __user *usyms;
2904 int err;
2905
2906 /* no support for 32bit archs yet */
2907 if (sizeof(u64) != sizeof(void *))
2908 return -EOPNOTSUPP;
2909
2910 if (attr->link_create.flags)
2911 return -EINVAL;
2912
2913 if (!is_kprobe_multi(prog))
2914 return -EINVAL;
2915
2916 flags = attr->link_create.kprobe_multi.flags;
2917 if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2918 return -EINVAL;
2919
2920 uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2921 usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2922 if (!!uaddrs == !!usyms)
2923 return -EINVAL;
2924
2925 cnt = attr->link_create.kprobe_multi.cnt;
2926 if (!cnt)
2927 return -EINVAL;
2928 if (cnt > MAX_KPROBE_MULTI_CNT)
2929 return -E2BIG;
2930
2931 size = cnt * sizeof(*addrs);
2932 addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2933 if (!addrs)
2934 return -ENOMEM;
2935
2936 ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2937 if (ucookies) {
2938 cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2939 if (!cookies) {
2940 err = -ENOMEM;
2941 goto error;
2942 }
2943 if (copy_from_user(cookies, ucookies, size)) {
2944 err = -EFAULT;
2945 goto error;
2946 }
2947 }
2948
2949 if (uaddrs) {
2950 if (copy_from_user(addrs, uaddrs, size)) {
2951 err = -EFAULT;
2952 goto error;
2953 }
2954 } else {
2955 struct multi_symbols_sort data = {
2956 .cookies = cookies,
2957 };
2958 struct user_syms us;
2959
2960 err = copy_user_syms(&us, usyms, cnt);
2961 if (err)
2962 goto error;
2963
2964 if (cookies)
2965 data.funcs = us.syms;
2966
2967 sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
2968 symbols_swap_r, &data);
2969
2970 err = ftrace_lookup_symbols(us.syms, cnt, addrs);
2971 free_user_syms(&us);
2972 if (err)
2973 goto error;
2974 }
2975
2976 if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
2977 err = -EINVAL;
2978 goto error;
2979 }
2980
2981 link = kzalloc(sizeof(*link), GFP_KERNEL);
2982 if (!link) {
2983 err = -ENOMEM;
2984 goto error;
2985 }
2986
2987 bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
2988 &bpf_kprobe_multi_link_lops, prog, attr->link_create.attach_type);
2989
2990 err = bpf_link_prime(&link->link, &link_primer);
2991 if (err)
2992 goto error;
2993
2994 if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
2995 link->fp.entry_handler = kprobe_multi_link_handler;
2996 if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
2997 link->fp.exit_handler = kprobe_multi_link_exit_handler;
2998 if (is_kprobe_session(prog))
2999 link->fp.entry_data_size = sizeof(u64);
3000
3001 link->addrs = addrs;
3002 link->cookies = cookies;
3003 link->cnt = cnt;
3004 link->link.flags = flags;
3005
3006 if (cookies) {
3007 /*
3008 * Sorting addresses will trigger sorting cookies as well
3009 * (check bpf_kprobe_multi_cookie_swap). This way we can
3010 * find cookie based on the address in bpf_get_attach_cookie
3011 * helper.
3012 */
3013 sort_r(addrs, cnt, sizeof(*addrs),
3014 bpf_kprobe_multi_cookie_cmp,
3015 bpf_kprobe_multi_cookie_swap,
3016 link);
3017 }
3018
3019 err = get_modules_for_addrs(&link->mods, addrs, cnt);
3020 if (err < 0) {
3021 bpf_link_cleanup(&link_primer);
3022 return err;
3023 }
3024 link->mods_cnt = err;
3025
3026 err = register_fprobe_ips(&link->fp, addrs, cnt);
3027 if (err) {
3028 kprobe_multi_put_modules(link->mods, link->mods_cnt);
3029 bpf_link_cleanup(&link_primer);
3030 return err;
3031 }
3032
3033 return bpf_link_settle(&link_primer);
3034
3035 error:
3036 kfree(link);
3037 kvfree(addrs);
3038 kvfree(cookies);
3039 return err;
3040 }
3041 #else /* !CONFIG_FPROBE */
bpf_kprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3042 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3043 {
3044 return -EOPNOTSUPP;
3045 }
bpf_kprobe_multi_cookie(struct bpf_run_ctx * ctx)3046 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3047 {
3048 return 0;
3049 }
bpf_kprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3050 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3051 {
3052 return 0;
3053 }
3054 #endif
3055
3056 #ifdef CONFIG_UPROBES
3057 struct bpf_uprobe_multi_link;
3058
3059 struct bpf_uprobe {
3060 struct bpf_uprobe_multi_link *link;
3061 loff_t offset;
3062 unsigned long ref_ctr_offset;
3063 u64 cookie;
3064 struct uprobe *uprobe;
3065 struct uprobe_consumer consumer;
3066 bool session;
3067 };
3068
3069 struct bpf_uprobe_multi_link {
3070 struct path path;
3071 struct bpf_link link;
3072 u32 cnt;
3073 struct bpf_uprobe *uprobes;
3074 struct task_struct *task;
3075 };
3076
3077 struct bpf_uprobe_multi_run_ctx {
3078 struct bpf_session_run_ctx session_ctx;
3079 unsigned long entry_ip;
3080 struct bpf_uprobe *uprobe;
3081 };
3082
bpf_uprobe_unregister(struct bpf_uprobe * uprobes,u32 cnt)3083 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
3084 {
3085 u32 i;
3086
3087 for (i = 0; i < cnt; i++)
3088 uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
3089
3090 if (cnt)
3091 uprobe_unregister_sync();
3092 }
3093
bpf_uprobe_multi_link_release(struct bpf_link * link)3094 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3095 {
3096 struct bpf_uprobe_multi_link *umulti_link;
3097
3098 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3099 bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
3100 if (umulti_link->task)
3101 put_task_struct(umulti_link->task);
3102 path_put(&umulti_link->path);
3103 }
3104
bpf_uprobe_multi_link_dealloc(struct bpf_link * link)3105 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3106 {
3107 struct bpf_uprobe_multi_link *umulti_link;
3108
3109 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3110 kvfree(umulti_link->uprobes);
3111 kfree(umulti_link);
3112 }
3113
bpf_uprobe_multi_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)3114 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
3115 struct bpf_link_info *info)
3116 {
3117 u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
3118 u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
3119 u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
3120 u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
3121 u32 upath_size = info->uprobe_multi.path_size;
3122 struct bpf_uprobe_multi_link *umulti_link;
3123 u32 ucount = info->uprobe_multi.count;
3124 int err = 0, i;
3125 char *p, *buf;
3126 long left = 0;
3127
3128 if (!upath ^ !upath_size)
3129 return -EINVAL;
3130
3131 if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
3132 return -EINVAL;
3133
3134 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3135 info->uprobe_multi.count = umulti_link->cnt;
3136 info->uprobe_multi.flags = umulti_link->link.flags;
3137 info->uprobe_multi.pid = umulti_link->task ?
3138 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3139
3140 upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
3141 buf = kmalloc(upath_size, GFP_KERNEL);
3142 if (!buf)
3143 return -ENOMEM;
3144 p = d_path(&umulti_link->path, buf, upath_size);
3145 if (IS_ERR(p)) {
3146 kfree(buf);
3147 return PTR_ERR(p);
3148 }
3149 upath_size = buf + upath_size - p;
3150
3151 if (upath)
3152 left = copy_to_user(upath, p, upath_size);
3153 kfree(buf);
3154 if (left)
3155 return -EFAULT;
3156 info->uprobe_multi.path_size = upath_size;
3157
3158 if (!uoffsets && !ucookies && !uref_ctr_offsets)
3159 return 0;
3160
3161 if (ucount < umulti_link->cnt)
3162 err = -ENOSPC;
3163 else
3164 ucount = umulti_link->cnt;
3165
3166 for (i = 0; i < ucount; i++) {
3167 if (uoffsets &&
3168 put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3169 return -EFAULT;
3170 if (uref_ctr_offsets &&
3171 put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3172 return -EFAULT;
3173 if (ucookies &&
3174 put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3175 return -EFAULT;
3176 }
3177
3178 return err;
3179 }
3180
3181 #ifdef CONFIG_PROC_FS
bpf_uprobe_multi_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)3182 static void bpf_uprobe_multi_show_fdinfo(const struct bpf_link *link,
3183 struct seq_file *seq)
3184 {
3185 struct bpf_uprobe_multi_link *umulti_link;
3186 char *p, *buf;
3187 pid_t pid;
3188
3189 umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3190
3191 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3192 if (!buf)
3193 return;
3194
3195 p = d_path(&umulti_link->path, buf, PATH_MAX);
3196 if (IS_ERR(p)) {
3197 kfree(buf);
3198 return;
3199 }
3200
3201 pid = umulti_link->task ?
3202 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3203 seq_printf(seq,
3204 "uprobe_cnt:\t%u\n"
3205 "pid:\t%u\n"
3206 "path:\t%s\n",
3207 umulti_link->cnt, pid, p);
3208
3209 seq_printf(seq, "%s\t %s\t %s\n", "cookie", "offset", "ref_ctr_offset");
3210 for (int i = 0; i < umulti_link->cnt; i++) {
3211 seq_printf(seq,
3212 "%llu\t %#llx\t %#lx\n",
3213 umulti_link->uprobes[i].cookie,
3214 umulti_link->uprobes[i].offset,
3215 umulti_link->uprobes[i].ref_ctr_offset);
3216 }
3217
3218 kfree(buf);
3219 }
3220 #endif
3221
3222 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3223 .release = bpf_uprobe_multi_link_release,
3224 .dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3225 .fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3226 #ifdef CONFIG_PROC_FS
3227 .show_fdinfo = bpf_uprobe_multi_show_fdinfo,
3228 #endif
3229 };
3230
uprobe_prog_run(struct bpf_uprobe * uprobe,unsigned long entry_ip,struct pt_regs * regs,bool is_return,void * data)3231 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3232 unsigned long entry_ip,
3233 struct pt_regs *regs,
3234 bool is_return, void *data)
3235 {
3236 struct bpf_uprobe_multi_link *link = uprobe->link;
3237 struct bpf_uprobe_multi_run_ctx run_ctx = {
3238 .session_ctx = {
3239 .is_return = is_return,
3240 .data = data,
3241 },
3242 .entry_ip = entry_ip,
3243 .uprobe = uprobe,
3244 };
3245 struct bpf_prog *prog = link->link.prog;
3246 bool sleepable = prog->sleepable;
3247 struct bpf_run_ctx *old_run_ctx;
3248 int err;
3249
3250 if (link->task && !same_thread_group(current, link->task))
3251 return 0;
3252
3253 if (sleepable)
3254 rcu_read_lock_trace();
3255 else
3256 rcu_read_lock();
3257
3258 migrate_disable();
3259
3260 old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
3261 err = bpf_prog_run(link->link.prog, regs);
3262 bpf_reset_run_ctx(old_run_ctx);
3263
3264 migrate_enable();
3265
3266 if (sleepable)
3267 rcu_read_unlock_trace();
3268 else
3269 rcu_read_unlock();
3270 return err;
3271 }
3272
3273 static bool
uprobe_multi_link_filter(struct uprobe_consumer * con,struct mm_struct * mm)3274 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3275 {
3276 struct bpf_uprobe *uprobe;
3277
3278 uprobe = container_of(con, struct bpf_uprobe, consumer);
3279 return uprobe->link->task->mm == mm;
3280 }
3281
3282 static int
uprobe_multi_link_handler(struct uprobe_consumer * con,struct pt_regs * regs,__u64 * data)3283 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
3284 __u64 *data)
3285 {
3286 struct bpf_uprobe *uprobe;
3287 int ret;
3288
3289 uprobe = container_of(con, struct bpf_uprobe, consumer);
3290 ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
3291 if (uprobe->session)
3292 return ret ? UPROBE_HANDLER_IGNORE : 0;
3293 return 0;
3294 }
3295
3296 static int
uprobe_multi_link_ret_handler(struct uprobe_consumer * con,unsigned long func,struct pt_regs * regs,__u64 * data)3297 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
3298 __u64 *data)
3299 {
3300 struct bpf_uprobe *uprobe;
3301
3302 uprobe = container_of(con, struct bpf_uprobe, consumer);
3303 uprobe_prog_run(uprobe, func, regs, true, data);
3304 return 0;
3305 }
3306
bpf_uprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3307 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3308 {
3309 struct bpf_uprobe_multi_run_ctx *run_ctx;
3310
3311 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3312 session_ctx.run_ctx);
3313 return run_ctx->entry_ip;
3314 }
3315
bpf_uprobe_multi_cookie(struct bpf_run_ctx * ctx)3316 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3317 {
3318 struct bpf_uprobe_multi_run_ctx *run_ctx;
3319
3320 run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
3321 session_ctx.run_ctx);
3322 return run_ctx->uprobe->cookie;
3323 }
3324
bpf_uprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3325 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3326 {
3327 struct bpf_uprobe_multi_link *link = NULL;
3328 unsigned long __user *uref_ctr_offsets;
3329 struct bpf_link_primer link_primer;
3330 struct bpf_uprobe *uprobes = NULL;
3331 struct task_struct *task = NULL;
3332 unsigned long __user *uoffsets;
3333 u64 __user *ucookies;
3334 void __user *upath;
3335 u32 flags, cnt, i;
3336 struct path path;
3337 char *name;
3338 pid_t pid;
3339 int err;
3340
3341 /* no support for 32bit archs yet */
3342 if (sizeof(u64) != sizeof(void *))
3343 return -EOPNOTSUPP;
3344
3345 if (attr->link_create.flags)
3346 return -EINVAL;
3347
3348 if (!is_uprobe_multi(prog))
3349 return -EINVAL;
3350
3351 flags = attr->link_create.uprobe_multi.flags;
3352 if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3353 return -EINVAL;
3354
3355 /*
3356 * path, offsets and cnt are mandatory,
3357 * ref_ctr_offsets and cookies are optional
3358 */
3359 upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3360 uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3361 cnt = attr->link_create.uprobe_multi.cnt;
3362 pid = attr->link_create.uprobe_multi.pid;
3363
3364 if (!upath || !uoffsets || !cnt || pid < 0)
3365 return -EINVAL;
3366 if (cnt > MAX_UPROBE_MULTI_CNT)
3367 return -E2BIG;
3368
3369 uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3370 ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3371
3372 name = strndup_user(upath, PATH_MAX);
3373 if (IS_ERR(name)) {
3374 err = PTR_ERR(name);
3375 return err;
3376 }
3377
3378 err = kern_path(name, LOOKUP_FOLLOW, &path);
3379 kfree(name);
3380 if (err)
3381 return err;
3382
3383 if (!d_is_reg(path.dentry)) {
3384 err = -EBADF;
3385 goto error_path_put;
3386 }
3387
3388 if (pid) {
3389 rcu_read_lock();
3390 task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3391 rcu_read_unlock();
3392 if (!task) {
3393 err = -ESRCH;
3394 goto error_path_put;
3395 }
3396 }
3397
3398 err = -ENOMEM;
3399
3400 link = kzalloc(sizeof(*link), GFP_KERNEL);
3401 uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3402
3403 if (!uprobes || !link)
3404 goto error_free;
3405
3406 for (i = 0; i < cnt; i++) {
3407 if (__get_user(uprobes[i].offset, uoffsets + i)) {
3408 err = -EFAULT;
3409 goto error_free;
3410 }
3411 if (uprobes[i].offset < 0) {
3412 err = -EINVAL;
3413 goto error_free;
3414 }
3415 if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3416 err = -EFAULT;
3417 goto error_free;
3418 }
3419 if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3420 err = -EFAULT;
3421 goto error_free;
3422 }
3423
3424 uprobes[i].link = link;
3425
3426 if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
3427 uprobes[i].consumer.handler = uprobe_multi_link_handler;
3428 if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
3429 uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3430 if (is_uprobe_session(prog))
3431 uprobes[i].session = true;
3432 if (pid)
3433 uprobes[i].consumer.filter = uprobe_multi_link_filter;
3434 }
3435
3436 link->cnt = cnt;
3437 link->uprobes = uprobes;
3438 link->path = path;
3439 link->task = task;
3440 link->link.flags = flags;
3441
3442 bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3443 &bpf_uprobe_multi_link_lops, prog, attr->link_create.attach_type);
3444
3445 for (i = 0; i < cnt; i++) {
3446 uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3447 uprobes[i].offset,
3448 uprobes[i].ref_ctr_offset,
3449 &uprobes[i].consumer);
3450 if (IS_ERR(uprobes[i].uprobe)) {
3451 err = PTR_ERR(uprobes[i].uprobe);
3452 link->cnt = i;
3453 goto error_unregister;
3454 }
3455 }
3456
3457 err = bpf_link_prime(&link->link, &link_primer);
3458 if (err)
3459 goto error_unregister;
3460
3461 return bpf_link_settle(&link_primer);
3462
3463 error_unregister:
3464 bpf_uprobe_unregister(uprobes, link->cnt);
3465
3466 error_free:
3467 kvfree(uprobes);
3468 kfree(link);
3469 if (task)
3470 put_task_struct(task);
3471 error_path_put:
3472 path_put(&path);
3473 return err;
3474 }
3475 #else /* !CONFIG_UPROBES */
bpf_uprobe_multi_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)3476 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3477 {
3478 return -EOPNOTSUPP;
3479 }
bpf_uprobe_multi_cookie(struct bpf_run_ctx * ctx)3480 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3481 {
3482 return 0;
3483 }
bpf_uprobe_multi_entry_ip(struct bpf_run_ctx * ctx)3484 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3485 {
3486 return 0;
3487 }
3488 #endif /* CONFIG_UPROBES */
3489
3490 __bpf_kfunc_start_defs();
3491
bpf_session_is_return(void)3492 __bpf_kfunc bool bpf_session_is_return(void)
3493 {
3494 struct bpf_session_run_ctx *session_ctx;
3495
3496 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3497 return session_ctx->is_return;
3498 }
3499
bpf_session_cookie(void)3500 __bpf_kfunc __u64 *bpf_session_cookie(void)
3501 {
3502 struct bpf_session_run_ctx *session_ctx;
3503
3504 session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3505 return session_ctx->data;
3506 }
3507
3508 __bpf_kfunc_end_defs();
3509
3510 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
BTF_ID_FLAGS(func,bpf_session_is_return)3511 BTF_ID_FLAGS(func, bpf_session_is_return)
3512 BTF_ID_FLAGS(func, bpf_session_cookie)
3513 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
3514
3515 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
3516 {
3517 if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
3518 return 0;
3519
3520 if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
3521 return -EACCES;
3522
3523 return 0;
3524 }
3525
3526 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
3527 .owner = THIS_MODULE,
3528 .set = &kprobe_multi_kfunc_set_ids,
3529 .filter = bpf_kprobe_multi_filter,
3530 };
3531
bpf_kprobe_multi_kfuncs_init(void)3532 static int __init bpf_kprobe_multi_kfuncs_init(void)
3533 {
3534 return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
3535 }
3536
3537 late_initcall(bpf_kprobe_multi_kfuncs_init);
3538
3539 typedef int (*copy_fn_t)(void *dst, const void *src, u32 size, struct task_struct *tsk);
3540
3541 /*
3542 * The __always_inline is to make sure the compiler doesn't
3543 * generate indirect calls into callbacks, which is expensive,
3544 * on some kernel configurations. This allows compiler to put
3545 * direct calls into all the specific callback implementations
3546 * (copy_user_data_sleepable, copy_user_data_nofault, and so on)
3547 */
__bpf_dynptr_copy_str(struct bpf_dynptr * dptr,u32 doff,u32 size,const void * unsafe_src,copy_fn_t str_copy_fn,struct task_struct * tsk)3548 static __always_inline int __bpf_dynptr_copy_str(struct bpf_dynptr *dptr, u32 doff, u32 size,
3549 const void *unsafe_src,
3550 copy_fn_t str_copy_fn,
3551 struct task_struct *tsk)
3552 {
3553 struct bpf_dynptr_kern *dst;
3554 u32 chunk_sz, off;
3555 void *dst_slice;
3556 int cnt, err;
3557 char buf[256];
3558
3559 dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size);
3560 if (likely(dst_slice))
3561 return str_copy_fn(dst_slice, unsafe_src, size, tsk);
3562
3563 dst = (struct bpf_dynptr_kern *)dptr;
3564 if (bpf_dynptr_check_off_len(dst, doff, size))
3565 return -E2BIG;
3566
3567 for (off = 0; off < size; off += chunk_sz - 1) {
3568 chunk_sz = min_t(u32, sizeof(buf), size - off);
3569 /* Expect str_copy_fn to return count of copied bytes, including
3570 * zero terminator. Next iteration increment off by chunk_sz - 1 to
3571 * overwrite NUL.
3572 */
3573 cnt = str_copy_fn(buf, unsafe_src + off, chunk_sz, tsk);
3574 if (cnt < 0)
3575 return cnt;
3576 err = __bpf_dynptr_write(dst, doff + off, buf, cnt, 0);
3577 if (err)
3578 return err;
3579 if (cnt < chunk_sz || chunk_sz == 1) /* we are done */
3580 return off + cnt;
3581 }
3582 return off;
3583 }
3584
__bpf_dynptr_copy(const struct bpf_dynptr * dptr,u32 doff,u32 size,const void * unsafe_src,copy_fn_t copy_fn,struct task_struct * tsk)3585 static __always_inline int __bpf_dynptr_copy(const struct bpf_dynptr *dptr, u32 doff,
3586 u32 size, const void *unsafe_src,
3587 copy_fn_t copy_fn, struct task_struct *tsk)
3588 {
3589 struct bpf_dynptr_kern *dst;
3590 void *dst_slice;
3591 char buf[256];
3592 u32 off, chunk_sz;
3593 int err;
3594
3595 dst_slice = bpf_dynptr_slice_rdwr(dptr, doff, NULL, size);
3596 if (likely(dst_slice))
3597 return copy_fn(dst_slice, unsafe_src, size, tsk);
3598
3599 dst = (struct bpf_dynptr_kern *)dptr;
3600 if (bpf_dynptr_check_off_len(dst, doff, size))
3601 return -E2BIG;
3602
3603 for (off = 0; off < size; off += chunk_sz) {
3604 chunk_sz = min_t(u32, sizeof(buf), size - off);
3605 err = copy_fn(buf, unsafe_src + off, chunk_sz, tsk);
3606 if (err)
3607 return err;
3608 err = __bpf_dynptr_write(dst, doff + off, buf, chunk_sz, 0);
3609 if (err)
3610 return err;
3611 }
3612 return 0;
3613 }
3614
copy_user_data_nofault(void * dst,const void * unsafe_src,u32 size,struct task_struct * tsk)3615 static __always_inline int copy_user_data_nofault(void *dst, const void *unsafe_src,
3616 u32 size, struct task_struct *tsk)
3617 {
3618 return copy_from_user_nofault(dst, (const void __user *)unsafe_src, size);
3619 }
3620
copy_user_data_sleepable(void * dst,const void * unsafe_src,u32 size,struct task_struct * tsk)3621 static __always_inline int copy_user_data_sleepable(void *dst, const void *unsafe_src,
3622 u32 size, struct task_struct *tsk)
3623 {
3624 int ret;
3625
3626 if (!tsk) { /* Read from the current task */
3627 ret = copy_from_user(dst, (const void __user *)unsafe_src, size);
3628 if (ret)
3629 return -EFAULT;
3630 return 0;
3631 }
3632
3633 ret = access_process_vm(tsk, (unsigned long)unsafe_src, dst, size, 0);
3634 if (ret != size)
3635 return -EFAULT;
3636 return 0;
3637 }
3638
copy_kernel_data_nofault(void * dst,const void * unsafe_src,u32 size,struct task_struct * tsk)3639 static __always_inline int copy_kernel_data_nofault(void *dst, const void *unsafe_src,
3640 u32 size, struct task_struct *tsk)
3641 {
3642 return copy_from_kernel_nofault(dst, unsafe_src, size);
3643 }
3644
copy_user_str_nofault(void * dst,const void * unsafe_src,u32 size,struct task_struct * tsk)3645 static __always_inline int copy_user_str_nofault(void *dst, const void *unsafe_src,
3646 u32 size, struct task_struct *tsk)
3647 {
3648 return strncpy_from_user_nofault(dst, (const void __user *)unsafe_src, size);
3649 }
3650
copy_user_str_sleepable(void * dst,const void * unsafe_src,u32 size,struct task_struct * tsk)3651 static __always_inline int copy_user_str_sleepable(void *dst, const void *unsafe_src,
3652 u32 size, struct task_struct *tsk)
3653 {
3654 int ret;
3655
3656 if (unlikely(size == 0))
3657 return 0;
3658
3659 if (tsk) {
3660 ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_src, dst, size, 0);
3661 } else {
3662 ret = strncpy_from_user(dst, (const void __user *)unsafe_src, size - 1);
3663 /* strncpy_from_user does not guarantee NUL termination */
3664 if (ret >= 0)
3665 ((char *)dst)[ret] = '\0';
3666 }
3667
3668 if (ret < 0)
3669 return ret;
3670 return ret + 1;
3671 }
3672
copy_kernel_str_nofault(void * dst,const void * unsafe_src,u32 size,struct task_struct * tsk)3673 static __always_inline int copy_kernel_str_nofault(void *dst, const void *unsafe_src,
3674 u32 size, struct task_struct *tsk)
3675 {
3676 return strncpy_from_kernel_nofault(dst, unsafe_src, size);
3677 }
3678
3679 __bpf_kfunc_start_defs();
3680
bpf_send_signal_task(struct task_struct * task,int sig,enum pid_type type,u64 value)3681 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3682 u64 value)
3683 {
3684 if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3685 return -EINVAL;
3686
3687 return bpf_send_signal_common(sig, type, task, value);
3688 }
3689
bpf_probe_read_user_dynptr(struct bpf_dynptr * dptr,u32 off,u32 size,const void __user * unsafe_ptr__ign)3690 __bpf_kfunc int bpf_probe_read_user_dynptr(struct bpf_dynptr *dptr, u32 off,
3691 u32 size, const void __user *unsafe_ptr__ign)
3692 {
3693 return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3694 copy_user_data_nofault, NULL);
3695 }
3696
bpf_probe_read_kernel_dynptr(struct bpf_dynptr * dptr,u32 off,u32 size,const void * unsafe_ptr__ign)3697 __bpf_kfunc int bpf_probe_read_kernel_dynptr(struct bpf_dynptr *dptr, u32 off,
3698 u32 size, const void *unsafe_ptr__ign)
3699 {
3700 return __bpf_dynptr_copy(dptr, off, size, unsafe_ptr__ign,
3701 copy_kernel_data_nofault, NULL);
3702 }
3703
bpf_probe_read_user_str_dynptr(struct bpf_dynptr * dptr,u32 off,u32 size,const void __user * unsafe_ptr__ign)3704 __bpf_kfunc int bpf_probe_read_user_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3705 u32 size, const void __user *unsafe_ptr__ign)
3706 {
3707 return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3708 copy_user_str_nofault, NULL);
3709 }
3710
bpf_probe_read_kernel_str_dynptr(struct bpf_dynptr * dptr,u32 off,u32 size,const void * unsafe_ptr__ign)3711 __bpf_kfunc int bpf_probe_read_kernel_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3712 u32 size, const void *unsafe_ptr__ign)
3713 {
3714 return __bpf_dynptr_copy_str(dptr, off, size, unsafe_ptr__ign,
3715 copy_kernel_str_nofault, NULL);
3716 }
3717
bpf_copy_from_user_dynptr(struct bpf_dynptr * dptr,u32 off,u32 size,const void __user * unsafe_ptr__ign)3718 __bpf_kfunc int bpf_copy_from_user_dynptr(struct bpf_dynptr *dptr, u32 off,
3719 u32 size, const void __user *unsafe_ptr__ign)
3720 {
3721 return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3722 copy_user_data_sleepable, NULL);
3723 }
3724
bpf_copy_from_user_str_dynptr(struct bpf_dynptr * dptr,u32 off,u32 size,const void __user * unsafe_ptr__ign)3725 __bpf_kfunc int bpf_copy_from_user_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3726 u32 size, const void __user *unsafe_ptr__ign)
3727 {
3728 return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3729 copy_user_str_sleepable, NULL);
3730 }
3731
bpf_copy_from_user_task_dynptr(struct bpf_dynptr * dptr,u32 off,u32 size,const void __user * unsafe_ptr__ign,struct task_struct * tsk)3732 __bpf_kfunc int bpf_copy_from_user_task_dynptr(struct bpf_dynptr *dptr, u32 off,
3733 u32 size, const void __user *unsafe_ptr__ign,
3734 struct task_struct *tsk)
3735 {
3736 return __bpf_dynptr_copy(dptr, off, size, (const void *)unsafe_ptr__ign,
3737 copy_user_data_sleepable, tsk);
3738 }
3739
bpf_copy_from_user_task_str_dynptr(struct bpf_dynptr * dptr,u32 off,u32 size,const void __user * unsafe_ptr__ign,struct task_struct * tsk)3740 __bpf_kfunc int bpf_copy_from_user_task_str_dynptr(struct bpf_dynptr *dptr, u32 off,
3741 u32 size, const void __user *unsafe_ptr__ign,
3742 struct task_struct *tsk)
3743 {
3744 return __bpf_dynptr_copy_str(dptr, off, size, (const void *)unsafe_ptr__ign,
3745 copy_user_str_sleepable, tsk);
3746 }
3747
3748 __bpf_kfunc_end_defs();
3749