1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/numa_balancing.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/backing-dev.h>
21 #include <linux/dax.h>
22 #include <linux/mm_types.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/oom.h>
35 #include <linux/numa.h>
36 #include <linux/page_owner.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/memory-tiers.h>
39 #include <linux/compat.h>
40 #include <linux/pgalloc_tag.h>
41 #include <linux/pagewalk.h>
42
43 #include <asm/tlb.h>
44 #include <asm/pgalloc.h>
45 #include "internal.h"
46 #include "swap.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/thp.h>
50
51 /*
52 * By default, transparent hugepage support is disabled in order to avoid
53 * risking an increased memory footprint for applications that are not
54 * guaranteed to benefit from it. When transparent hugepage support is
55 * enabled, it is for all mappings, and khugepaged scans all mappings.
56 * Defrag is invoked by khugepaged hugepage allocations and by page faults
57 * for all hugepage allocations.
58 */
59 unsigned long transparent_hugepage_flags __read_mostly =
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
61 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
62 #endif
63 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
64 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
65 #endif
66 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
67 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
68 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
69
70 static struct shrinker *deferred_split_shrinker;
71 static unsigned long deferred_split_count(struct shrinker *shrink,
72 struct shrink_control *sc);
73 static unsigned long deferred_split_scan(struct shrinker *shrink,
74 struct shrink_control *sc);
75 static bool split_underused_thp = true;
76
77 static atomic_t huge_zero_refcount;
78 struct folio *huge_zero_folio __read_mostly;
79 unsigned long huge_zero_pfn __read_mostly = ~0UL;
80 unsigned long huge_anon_orders_always __read_mostly;
81 unsigned long huge_anon_orders_madvise __read_mostly;
82 unsigned long huge_anon_orders_inherit __read_mostly;
83 static bool anon_orders_configured __initdata;
84
file_thp_enabled(struct vm_area_struct * vma)85 static inline bool file_thp_enabled(struct vm_area_struct *vma)
86 {
87 struct inode *inode;
88
89 if (!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
90 return false;
91
92 if (!vma->vm_file)
93 return false;
94
95 inode = file_inode(vma->vm_file);
96
97 return !inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
98 }
99
__thp_vma_allowable_orders(struct vm_area_struct * vma,vm_flags_t vm_flags,unsigned long tva_flags,unsigned long orders)100 unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
101 vm_flags_t vm_flags,
102 unsigned long tva_flags,
103 unsigned long orders)
104 {
105 bool smaps = tva_flags & TVA_SMAPS;
106 bool in_pf = tva_flags & TVA_IN_PF;
107 bool enforce_sysfs = tva_flags & TVA_ENFORCE_SYSFS;
108 unsigned long supported_orders;
109
110 /* Check the intersection of requested and supported orders. */
111 if (vma_is_anonymous(vma))
112 supported_orders = THP_ORDERS_ALL_ANON;
113 else if (vma_is_special_huge(vma))
114 supported_orders = THP_ORDERS_ALL_SPECIAL;
115 else
116 supported_orders = THP_ORDERS_ALL_FILE_DEFAULT;
117
118 orders &= supported_orders;
119 if (!orders)
120 return 0;
121
122 if (!vma->vm_mm) /* vdso */
123 return 0;
124
125 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vm_flags))
126 return 0;
127
128 /* khugepaged doesn't collapse DAX vma, but page fault is fine. */
129 if (vma_is_dax(vma))
130 return in_pf ? orders : 0;
131
132 /*
133 * khugepaged special VMA and hugetlb VMA.
134 * Must be checked after dax since some dax mappings may have
135 * VM_MIXEDMAP set.
136 */
137 if (!in_pf && !smaps && (vm_flags & VM_NO_KHUGEPAGED))
138 return 0;
139
140 /*
141 * Check alignment for file vma and size for both file and anon vma by
142 * filtering out the unsuitable orders.
143 *
144 * Skip the check for page fault. Huge fault does the check in fault
145 * handlers.
146 */
147 if (!in_pf) {
148 int order = highest_order(orders);
149 unsigned long addr;
150
151 while (orders) {
152 addr = vma->vm_end - (PAGE_SIZE << order);
153 if (thp_vma_suitable_order(vma, addr, order))
154 break;
155 order = next_order(&orders, order);
156 }
157
158 if (!orders)
159 return 0;
160 }
161
162 /*
163 * Enabled via shmem mount options or sysfs settings.
164 * Must be done before hugepage flags check since shmem has its
165 * own flags.
166 */
167 if (!in_pf && shmem_file(vma->vm_file))
168 return orders & shmem_allowable_huge_orders(file_inode(vma->vm_file),
169 vma, vma->vm_pgoff, 0,
170 !enforce_sysfs);
171
172 if (!vma_is_anonymous(vma)) {
173 /*
174 * Enforce sysfs THP requirements as necessary. Anonymous vmas
175 * were already handled in thp_vma_allowable_orders().
176 */
177 if (enforce_sysfs &&
178 (!hugepage_global_enabled() || (!(vm_flags & VM_HUGEPAGE) &&
179 !hugepage_global_always())))
180 return 0;
181
182 /*
183 * Trust that ->huge_fault() handlers know what they are doing
184 * in fault path.
185 */
186 if (((in_pf || smaps)) && vma->vm_ops->huge_fault)
187 return orders;
188 /* Only regular file is valid in collapse path */
189 if (((!in_pf || smaps)) && file_thp_enabled(vma))
190 return orders;
191 return 0;
192 }
193
194 if (vma_is_temporary_stack(vma))
195 return 0;
196
197 /*
198 * THPeligible bit of smaps should show 1 for proper VMAs even
199 * though anon_vma is not initialized yet.
200 *
201 * Allow page fault since anon_vma may be not initialized until
202 * the first page fault.
203 */
204 if (!vma->anon_vma)
205 return (smaps || in_pf) ? orders : 0;
206
207 return orders;
208 }
209
get_huge_zero_page(void)210 static bool get_huge_zero_page(void)
211 {
212 struct folio *zero_folio;
213 retry:
214 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
215 return true;
216
217 zero_folio = folio_alloc((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
218 HPAGE_PMD_ORDER);
219 if (!zero_folio) {
220 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
221 return false;
222 }
223 /* Ensure zero folio won't have large_rmappable flag set. */
224 folio_clear_large_rmappable(zero_folio);
225 preempt_disable();
226 if (cmpxchg(&huge_zero_folio, NULL, zero_folio)) {
227 preempt_enable();
228 folio_put(zero_folio);
229 goto retry;
230 }
231 WRITE_ONCE(huge_zero_pfn, folio_pfn(zero_folio));
232
233 /* We take additional reference here. It will be put back by shrinker */
234 atomic_set(&huge_zero_refcount, 2);
235 preempt_enable();
236 count_vm_event(THP_ZERO_PAGE_ALLOC);
237 return true;
238 }
239
put_huge_zero_page(void)240 static void put_huge_zero_page(void)
241 {
242 /*
243 * Counter should never go to zero here. Only shrinker can put
244 * last reference.
245 */
246 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
247 }
248
mm_get_huge_zero_folio(struct mm_struct * mm)249 struct folio *mm_get_huge_zero_folio(struct mm_struct *mm)
250 {
251 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
252 return READ_ONCE(huge_zero_folio);
253
254 if (!get_huge_zero_page())
255 return NULL;
256
257 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
258 put_huge_zero_page();
259
260 return READ_ONCE(huge_zero_folio);
261 }
262
mm_put_huge_zero_folio(struct mm_struct * mm)263 void mm_put_huge_zero_folio(struct mm_struct *mm)
264 {
265 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
266 put_huge_zero_page();
267 }
268
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)269 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
270 struct shrink_control *sc)
271 {
272 /* we can free zero page only if last reference remains */
273 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
274 }
275
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)276 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
277 struct shrink_control *sc)
278 {
279 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
280 struct folio *zero_folio = xchg(&huge_zero_folio, NULL);
281 BUG_ON(zero_folio == NULL);
282 WRITE_ONCE(huge_zero_pfn, ~0UL);
283 folio_put(zero_folio);
284 return HPAGE_PMD_NR;
285 }
286
287 return 0;
288 }
289
290 static struct shrinker *huge_zero_page_shrinker;
291
292 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)293 static ssize_t enabled_show(struct kobject *kobj,
294 struct kobj_attribute *attr, char *buf)
295 {
296 const char *output;
297
298 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
299 output = "[always] madvise never";
300 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
301 &transparent_hugepage_flags))
302 output = "always [madvise] never";
303 else
304 output = "always madvise [never]";
305
306 return sysfs_emit(buf, "%s\n", output);
307 }
308
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)309 static ssize_t enabled_store(struct kobject *kobj,
310 struct kobj_attribute *attr,
311 const char *buf, size_t count)
312 {
313 ssize_t ret = count;
314
315 if (sysfs_streq(buf, "always")) {
316 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
317 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
318 } else if (sysfs_streq(buf, "madvise")) {
319 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
320 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
321 } else if (sysfs_streq(buf, "never")) {
322 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
323 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
324 } else
325 ret = -EINVAL;
326
327 if (ret > 0) {
328 int err = start_stop_khugepaged();
329 if (err)
330 ret = err;
331 }
332 return ret;
333 }
334
335 static struct kobj_attribute enabled_attr = __ATTR_RW(enabled);
336
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)337 ssize_t single_hugepage_flag_show(struct kobject *kobj,
338 struct kobj_attribute *attr, char *buf,
339 enum transparent_hugepage_flag flag)
340 {
341 return sysfs_emit(buf, "%d\n",
342 !!test_bit(flag, &transparent_hugepage_flags));
343 }
344
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)345 ssize_t single_hugepage_flag_store(struct kobject *kobj,
346 struct kobj_attribute *attr,
347 const char *buf, size_t count,
348 enum transparent_hugepage_flag flag)
349 {
350 unsigned long value;
351 int ret;
352
353 ret = kstrtoul(buf, 10, &value);
354 if (ret < 0)
355 return ret;
356 if (value > 1)
357 return -EINVAL;
358
359 if (value)
360 set_bit(flag, &transparent_hugepage_flags);
361 else
362 clear_bit(flag, &transparent_hugepage_flags);
363
364 return count;
365 }
366
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)367 static ssize_t defrag_show(struct kobject *kobj,
368 struct kobj_attribute *attr, char *buf)
369 {
370 const char *output;
371
372 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
373 &transparent_hugepage_flags))
374 output = "[always] defer defer+madvise madvise never";
375 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
376 &transparent_hugepage_flags))
377 output = "always [defer] defer+madvise madvise never";
378 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
379 &transparent_hugepage_flags))
380 output = "always defer [defer+madvise] madvise never";
381 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
382 &transparent_hugepage_flags))
383 output = "always defer defer+madvise [madvise] never";
384 else
385 output = "always defer defer+madvise madvise [never]";
386
387 return sysfs_emit(buf, "%s\n", output);
388 }
389
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)390 static ssize_t defrag_store(struct kobject *kobj,
391 struct kobj_attribute *attr,
392 const char *buf, size_t count)
393 {
394 if (sysfs_streq(buf, "always")) {
395 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
396 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
397 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
398 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
399 } else if (sysfs_streq(buf, "defer+madvise")) {
400 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
401 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
402 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
403 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
404 } else if (sysfs_streq(buf, "defer")) {
405 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
406 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
407 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
408 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
409 } else if (sysfs_streq(buf, "madvise")) {
410 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
411 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
412 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
413 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
414 } else if (sysfs_streq(buf, "never")) {
415 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
416 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
417 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
418 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
419 } else
420 return -EINVAL;
421
422 return count;
423 }
424 static struct kobj_attribute defrag_attr = __ATTR_RW(defrag);
425
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)426 static ssize_t use_zero_page_show(struct kobject *kobj,
427 struct kobj_attribute *attr, char *buf)
428 {
429 return single_hugepage_flag_show(kobj, attr, buf,
430 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
431 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)432 static ssize_t use_zero_page_store(struct kobject *kobj,
433 struct kobj_attribute *attr, const char *buf, size_t count)
434 {
435 return single_hugepage_flag_store(kobj, attr, buf, count,
436 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
437 }
438 static struct kobj_attribute use_zero_page_attr = __ATTR_RW(use_zero_page);
439
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)440 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
441 struct kobj_attribute *attr, char *buf)
442 {
443 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
444 }
445 static struct kobj_attribute hpage_pmd_size_attr =
446 __ATTR_RO(hpage_pmd_size);
447
split_underused_thp_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)448 static ssize_t split_underused_thp_show(struct kobject *kobj,
449 struct kobj_attribute *attr, char *buf)
450 {
451 return sysfs_emit(buf, "%d\n", split_underused_thp);
452 }
453
split_underused_thp_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)454 static ssize_t split_underused_thp_store(struct kobject *kobj,
455 struct kobj_attribute *attr,
456 const char *buf, size_t count)
457 {
458 int err = kstrtobool(buf, &split_underused_thp);
459
460 if (err < 0)
461 return err;
462
463 return count;
464 }
465
466 static struct kobj_attribute split_underused_thp_attr = __ATTR(
467 shrink_underused, 0644, split_underused_thp_show, split_underused_thp_store);
468
469 static struct attribute *hugepage_attr[] = {
470 &enabled_attr.attr,
471 &defrag_attr.attr,
472 &use_zero_page_attr.attr,
473 &hpage_pmd_size_attr.attr,
474 #ifdef CONFIG_SHMEM
475 &shmem_enabled_attr.attr,
476 #endif
477 &split_underused_thp_attr.attr,
478 NULL,
479 };
480
481 static const struct attribute_group hugepage_attr_group = {
482 .attrs = hugepage_attr,
483 };
484
485 static void hugepage_exit_sysfs(struct kobject *hugepage_kobj);
486 static void thpsize_release(struct kobject *kobj);
487 static DEFINE_SPINLOCK(huge_anon_orders_lock);
488 static LIST_HEAD(thpsize_list);
489
anon_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)490 static ssize_t anon_enabled_show(struct kobject *kobj,
491 struct kobj_attribute *attr, char *buf)
492 {
493 int order = to_thpsize(kobj)->order;
494 const char *output;
495
496 if (test_bit(order, &huge_anon_orders_always))
497 output = "[always] inherit madvise never";
498 else if (test_bit(order, &huge_anon_orders_inherit))
499 output = "always [inherit] madvise never";
500 else if (test_bit(order, &huge_anon_orders_madvise))
501 output = "always inherit [madvise] never";
502 else
503 output = "always inherit madvise [never]";
504
505 return sysfs_emit(buf, "%s\n", output);
506 }
507
anon_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)508 static ssize_t anon_enabled_store(struct kobject *kobj,
509 struct kobj_attribute *attr,
510 const char *buf, size_t count)
511 {
512 int order = to_thpsize(kobj)->order;
513 ssize_t ret = count;
514
515 if (sysfs_streq(buf, "always")) {
516 spin_lock(&huge_anon_orders_lock);
517 clear_bit(order, &huge_anon_orders_inherit);
518 clear_bit(order, &huge_anon_orders_madvise);
519 set_bit(order, &huge_anon_orders_always);
520 spin_unlock(&huge_anon_orders_lock);
521 } else if (sysfs_streq(buf, "inherit")) {
522 spin_lock(&huge_anon_orders_lock);
523 clear_bit(order, &huge_anon_orders_always);
524 clear_bit(order, &huge_anon_orders_madvise);
525 set_bit(order, &huge_anon_orders_inherit);
526 spin_unlock(&huge_anon_orders_lock);
527 } else if (sysfs_streq(buf, "madvise")) {
528 spin_lock(&huge_anon_orders_lock);
529 clear_bit(order, &huge_anon_orders_always);
530 clear_bit(order, &huge_anon_orders_inherit);
531 set_bit(order, &huge_anon_orders_madvise);
532 spin_unlock(&huge_anon_orders_lock);
533 } else if (sysfs_streq(buf, "never")) {
534 spin_lock(&huge_anon_orders_lock);
535 clear_bit(order, &huge_anon_orders_always);
536 clear_bit(order, &huge_anon_orders_inherit);
537 clear_bit(order, &huge_anon_orders_madvise);
538 spin_unlock(&huge_anon_orders_lock);
539 } else
540 ret = -EINVAL;
541
542 if (ret > 0) {
543 int err;
544
545 err = start_stop_khugepaged();
546 if (err)
547 ret = err;
548 }
549 return ret;
550 }
551
552 static struct kobj_attribute anon_enabled_attr =
553 __ATTR(enabled, 0644, anon_enabled_show, anon_enabled_store);
554
555 static struct attribute *anon_ctrl_attrs[] = {
556 &anon_enabled_attr.attr,
557 NULL,
558 };
559
560 static const struct attribute_group anon_ctrl_attr_grp = {
561 .attrs = anon_ctrl_attrs,
562 };
563
564 static struct attribute *file_ctrl_attrs[] = {
565 #ifdef CONFIG_SHMEM
566 &thpsize_shmem_enabled_attr.attr,
567 #endif
568 NULL,
569 };
570
571 static const struct attribute_group file_ctrl_attr_grp = {
572 .attrs = file_ctrl_attrs,
573 };
574
575 static struct attribute *any_ctrl_attrs[] = {
576 NULL,
577 };
578
579 static const struct attribute_group any_ctrl_attr_grp = {
580 .attrs = any_ctrl_attrs,
581 };
582
583 static const struct kobj_type thpsize_ktype = {
584 .release = &thpsize_release,
585 .sysfs_ops = &kobj_sysfs_ops,
586 };
587
588 DEFINE_PER_CPU(struct mthp_stat, mthp_stats) = {{{0}}};
589
sum_mthp_stat(int order,enum mthp_stat_item item)590 static unsigned long sum_mthp_stat(int order, enum mthp_stat_item item)
591 {
592 unsigned long sum = 0;
593 int cpu;
594
595 for_each_possible_cpu(cpu) {
596 struct mthp_stat *this = &per_cpu(mthp_stats, cpu);
597
598 sum += this->stats[order][item];
599 }
600
601 return sum;
602 }
603
604 #define DEFINE_MTHP_STAT_ATTR(_name, _index) \
605 static ssize_t _name##_show(struct kobject *kobj, \
606 struct kobj_attribute *attr, char *buf) \
607 { \
608 int order = to_thpsize(kobj)->order; \
609 \
610 return sysfs_emit(buf, "%lu\n", sum_mthp_stat(order, _index)); \
611 } \
612 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
613
614 DEFINE_MTHP_STAT_ATTR(anon_fault_alloc, MTHP_STAT_ANON_FAULT_ALLOC);
615 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback, MTHP_STAT_ANON_FAULT_FALLBACK);
616 DEFINE_MTHP_STAT_ATTR(anon_fault_fallback_charge, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
617 DEFINE_MTHP_STAT_ATTR(zswpout, MTHP_STAT_ZSWPOUT);
618 DEFINE_MTHP_STAT_ATTR(swpin, MTHP_STAT_SWPIN);
619 DEFINE_MTHP_STAT_ATTR(swpin_fallback, MTHP_STAT_SWPIN_FALLBACK);
620 DEFINE_MTHP_STAT_ATTR(swpin_fallback_charge, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
621 DEFINE_MTHP_STAT_ATTR(swpout, MTHP_STAT_SWPOUT);
622 DEFINE_MTHP_STAT_ATTR(swpout_fallback, MTHP_STAT_SWPOUT_FALLBACK);
623 #ifdef CONFIG_SHMEM
624 DEFINE_MTHP_STAT_ATTR(shmem_alloc, MTHP_STAT_SHMEM_ALLOC);
625 DEFINE_MTHP_STAT_ATTR(shmem_fallback, MTHP_STAT_SHMEM_FALLBACK);
626 DEFINE_MTHP_STAT_ATTR(shmem_fallback_charge, MTHP_STAT_SHMEM_FALLBACK_CHARGE);
627 #endif
628 DEFINE_MTHP_STAT_ATTR(split, MTHP_STAT_SPLIT);
629 DEFINE_MTHP_STAT_ATTR(split_failed, MTHP_STAT_SPLIT_FAILED);
630 DEFINE_MTHP_STAT_ATTR(split_deferred, MTHP_STAT_SPLIT_DEFERRED);
631 DEFINE_MTHP_STAT_ATTR(nr_anon, MTHP_STAT_NR_ANON);
632 DEFINE_MTHP_STAT_ATTR(nr_anon_partially_mapped, MTHP_STAT_NR_ANON_PARTIALLY_MAPPED);
633
634 static struct attribute *anon_stats_attrs[] = {
635 &anon_fault_alloc_attr.attr,
636 &anon_fault_fallback_attr.attr,
637 &anon_fault_fallback_charge_attr.attr,
638 #ifndef CONFIG_SHMEM
639 &zswpout_attr.attr,
640 &swpin_attr.attr,
641 &swpin_fallback_attr.attr,
642 &swpin_fallback_charge_attr.attr,
643 &swpout_attr.attr,
644 &swpout_fallback_attr.attr,
645 #endif
646 &split_deferred_attr.attr,
647 &nr_anon_attr.attr,
648 &nr_anon_partially_mapped_attr.attr,
649 NULL,
650 };
651
652 static struct attribute_group anon_stats_attr_grp = {
653 .name = "stats",
654 .attrs = anon_stats_attrs,
655 };
656
657 static struct attribute *file_stats_attrs[] = {
658 #ifdef CONFIG_SHMEM
659 &shmem_alloc_attr.attr,
660 &shmem_fallback_attr.attr,
661 &shmem_fallback_charge_attr.attr,
662 #endif
663 NULL,
664 };
665
666 static struct attribute_group file_stats_attr_grp = {
667 .name = "stats",
668 .attrs = file_stats_attrs,
669 };
670
671 static struct attribute *any_stats_attrs[] = {
672 #ifdef CONFIG_SHMEM
673 &zswpout_attr.attr,
674 &swpin_attr.attr,
675 &swpin_fallback_attr.attr,
676 &swpin_fallback_charge_attr.attr,
677 &swpout_attr.attr,
678 &swpout_fallback_attr.attr,
679 #endif
680 &split_attr.attr,
681 &split_failed_attr.attr,
682 NULL,
683 };
684
685 static struct attribute_group any_stats_attr_grp = {
686 .name = "stats",
687 .attrs = any_stats_attrs,
688 };
689
sysfs_add_group(struct kobject * kobj,const struct attribute_group * grp)690 static int sysfs_add_group(struct kobject *kobj,
691 const struct attribute_group *grp)
692 {
693 int ret = -ENOENT;
694
695 /*
696 * If the group is named, try to merge first, assuming the subdirectory
697 * was already created. This avoids the warning emitted by
698 * sysfs_create_group() if the directory already exists.
699 */
700 if (grp->name)
701 ret = sysfs_merge_group(kobj, grp);
702 if (ret)
703 ret = sysfs_create_group(kobj, grp);
704
705 return ret;
706 }
707
thpsize_create(int order,struct kobject * parent)708 static struct thpsize *thpsize_create(int order, struct kobject *parent)
709 {
710 unsigned long size = (PAGE_SIZE << order) / SZ_1K;
711 struct thpsize *thpsize;
712 int ret = -ENOMEM;
713
714 thpsize = kzalloc(sizeof(*thpsize), GFP_KERNEL);
715 if (!thpsize)
716 goto err;
717
718 thpsize->order = order;
719
720 ret = kobject_init_and_add(&thpsize->kobj, &thpsize_ktype, parent,
721 "hugepages-%lukB", size);
722 if (ret) {
723 kfree(thpsize);
724 goto err;
725 }
726
727
728 ret = sysfs_add_group(&thpsize->kobj, &any_ctrl_attr_grp);
729 if (ret)
730 goto err_put;
731
732 ret = sysfs_add_group(&thpsize->kobj, &any_stats_attr_grp);
733 if (ret)
734 goto err_put;
735
736 if (BIT(order) & THP_ORDERS_ALL_ANON) {
737 ret = sysfs_add_group(&thpsize->kobj, &anon_ctrl_attr_grp);
738 if (ret)
739 goto err_put;
740
741 ret = sysfs_add_group(&thpsize->kobj, &anon_stats_attr_grp);
742 if (ret)
743 goto err_put;
744 }
745
746 if (BIT(order) & THP_ORDERS_ALL_FILE_DEFAULT) {
747 ret = sysfs_add_group(&thpsize->kobj, &file_ctrl_attr_grp);
748 if (ret)
749 goto err_put;
750
751 ret = sysfs_add_group(&thpsize->kobj, &file_stats_attr_grp);
752 if (ret)
753 goto err_put;
754 }
755
756 return thpsize;
757 err_put:
758 kobject_put(&thpsize->kobj);
759 err:
760 return ERR_PTR(ret);
761 }
762
thpsize_release(struct kobject * kobj)763 static void thpsize_release(struct kobject *kobj)
764 {
765 kfree(to_thpsize(kobj));
766 }
767
hugepage_init_sysfs(struct kobject ** hugepage_kobj)768 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
769 {
770 int err;
771 struct thpsize *thpsize;
772 unsigned long orders;
773 int order;
774
775 /*
776 * Default to setting PMD-sized THP to inherit the global setting and
777 * disable all other sizes. powerpc's PMD_ORDER isn't a compile-time
778 * constant so we have to do this here.
779 */
780 if (!anon_orders_configured)
781 huge_anon_orders_inherit = BIT(PMD_ORDER);
782
783 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
784 if (unlikely(!*hugepage_kobj)) {
785 pr_err("failed to create transparent hugepage kobject\n");
786 return -ENOMEM;
787 }
788
789 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
790 if (err) {
791 pr_err("failed to register transparent hugepage group\n");
792 goto delete_obj;
793 }
794
795 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
796 if (err) {
797 pr_err("failed to register transparent hugepage group\n");
798 goto remove_hp_group;
799 }
800
801 orders = THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_FILE_DEFAULT;
802 order = highest_order(orders);
803 while (orders) {
804 thpsize = thpsize_create(order, *hugepage_kobj);
805 if (IS_ERR(thpsize)) {
806 pr_err("failed to create thpsize for order %d\n", order);
807 err = PTR_ERR(thpsize);
808 goto remove_all;
809 }
810 list_add(&thpsize->node, &thpsize_list);
811 order = next_order(&orders, order);
812 }
813
814 return 0;
815
816 remove_all:
817 hugepage_exit_sysfs(*hugepage_kobj);
818 return err;
819 remove_hp_group:
820 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
821 delete_obj:
822 kobject_put(*hugepage_kobj);
823 return err;
824 }
825
hugepage_exit_sysfs(struct kobject * hugepage_kobj)826 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
827 {
828 struct thpsize *thpsize, *tmp;
829
830 list_for_each_entry_safe(thpsize, tmp, &thpsize_list, node) {
831 list_del(&thpsize->node);
832 kobject_put(&thpsize->kobj);
833 }
834
835 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
836 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
837 kobject_put(hugepage_kobj);
838 }
839 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)840 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
841 {
842 return 0;
843 }
844
hugepage_exit_sysfs(struct kobject * hugepage_kobj)845 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
846 {
847 }
848 #endif /* CONFIG_SYSFS */
849
thp_shrinker_init(void)850 static int __init thp_shrinker_init(void)
851 {
852 huge_zero_page_shrinker = shrinker_alloc(0, "thp-zero");
853 if (!huge_zero_page_shrinker)
854 return -ENOMEM;
855
856 deferred_split_shrinker = shrinker_alloc(SHRINKER_NUMA_AWARE |
857 SHRINKER_MEMCG_AWARE |
858 SHRINKER_NONSLAB,
859 "thp-deferred_split");
860 if (!deferred_split_shrinker) {
861 shrinker_free(huge_zero_page_shrinker);
862 return -ENOMEM;
863 }
864
865 huge_zero_page_shrinker->count_objects = shrink_huge_zero_page_count;
866 huge_zero_page_shrinker->scan_objects = shrink_huge_zero_page_scan;
867 shrinker_register(huge_zero_page_shrinker);
868
869 deferred_split_shrinker->count_objects = deferred_split_count;
870 deferred_split_shrinker->scan_objects = deferred_split_scan;
871 shrinker_register(deferred_split_shrinker);
872
873 return 0;
874 }
875
thp_shrinker_exit(void)876 static void __init thp_shrinker_exit(void)
877 {
878 shrinker_free(huge_zero_page_shrinker);
879 shrinker_free(deferred_split_shrinker);
880 }
881
hugepage_init(void)882 static int __init hugepage_init(void)
883 {
884 int err;
885 struct kobject *hugepage_kobj;
886
887 if (!has_transparent_hugepage()) {
888 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED;
889 return -EINVAL;
890 }
891
892 /*
893 * hugepages can't be allocated by the buddy allocator
894 */
895 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER > MAX_PAGE_ORDER);
896
897 err = hugepage_init_sysfs(&hugepage_kobj);
898 if (err)
899 goto err_sysfs;
900
901 err = khugepaged_init();
902 if (err)
903 goto err_slab;
904
905 err = thp_shrinker_init();
906 if (err)
907 goto err_shrinker;
908
909 /*
910 * By default disable transparent hugepages on smaller systems,
911 * where the extra memory used could hurt more than TLB overhead
912 * is likely to save. The admin can still enable it through /sys.
913 */
914 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
915 transparent_hugepage_flags = 0;
916 return 0;
917 }
918
919 err = start_stop_khugepaged();
920 if (err)
921 goto err_khugepaged;
922
923 return 0;
924 err_khugepaged:
925 thp_shrinker_exit();
926 err_shrinker:
927 khugepaged_destroy();
928 err_slab:
929 hugepage_exit_sysfs(hugepage_kobj);
930 err_sysfs:
931 return err;
932 }
933 subsys_initcall(hugepage_init);
934
setup_transparent_hugepage(char * str)935 static int __init setup_transparent_hugepage(char *str)
936 {
937 int ret = 0;
938 if (!str)
939 goto out;
940 if (!strcmp(str, "always")) {
941 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
942 &transparent_hugepage_flags);
943 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
944 &transparent_hugepage_flags);
945 ret = 1;
946 } else if (!strcmp(str, "madvise")) {
947 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
948 &transparent_hugepage_flags);
949 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
950 &transparent_hugepage_flags);
951 ret = 1;
952 } else if (!strcmp(str, "never")) {
953 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
954 &transparent_hugepage_flags);
955 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
956 &transparent_hugepage_flags);
957 ret = 1;
958 }
959 out:
960 if (!ret)
961 pr_warn("transparent_hugepage= cannot parse, ignored\n");
962 return ret;
963 }
964 __setup("transparent_hugepage=", setup_transparent_hugepage);
965
966 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_anon(char * str)967 static int __init setup_thp_anon(char *str)
968 {
969 char *token, *range, *policy, *subtoken;
970 unsigned long always, inherit, madvise;
971 char *start_size, *end_size;
972 int start, end, nr;
973 char *p;
974
975 if (!str || strlen(str) + 1 > PAGE_SIZE)
976 goto err;
977 strscpy(str_dup, str);
978
979 always = huge_anon_orders_always;
980 madvise = huge_anon_orders_madvise;
981 inherit = huge_anon_orders_inherit;
982 p = str_dup;
983 while ((token = strsep(&p, ";")) != NULL) {
984 range = strsep(&token, ":");
985 policy = token;
986
987 if (!policy)
988 goto err;
989
990 while ((subtoken = strsep(&range, ",")) != NULL) {
991 if (strchr(subtoken, '-')) {
992 start_size = strsep(&subtoken, "-");
993 end_size = subtoken;
994
995 start = get_order_from_str(start_size, THP_ORDERS_ALL_ANON);
996 end = get_order_from_str(end_size, THP_ORDERS_ALL_ANON);
997 } else {
998 start_size = end_size = subtoken;
999 start = end = get_order_from_str(subtoken,
1000 THP_ORDERS_ALL_ANON);
1001 }
1002
1003 if (start == -EINVAL) {
1004 pr_err("invalid size %s in thp_anon boot parameter\n", start_size);
1005 goto err;
1006 }
1007
1008 if (end == -EINVAL) {
1009 pr_err("invalid size %s in thp_anon boot parameter\n", end_size);
1010 goto err;
1011 }
1012
1013 if (start < 0 || end < 0 || start > end)
1014 goto err;
1015
1016 nr = end - start + 1;
1017 if (!strcmp(policy, "always")) {
1018 bitmap_set(&always, start, nr);
1019 bitmap_clear(&inherit, start, nr);
1020 bitmap_clear(&madvise, start, nr);
1021 } else if (!strcmp(policy, "madvise")) {
1022 bitmap_set(&madvise, start, nr);
1023 bitmap_clear(&inherit, start, nr);
1024 bitmap_clear(&always, start, nr);
1025 } else if (!strcmp(policy, "inherit")) {
1026 bitmap_set(&inherit, start, nr);
1027 bitmap_clear(&madvise, start, nr);
1028 bitmap_clear(&always, start, nr);
1029 } else if (!strcmp(policy, "never")) {
1030 bitmap_clear(&inherit, start, nr);
1031 bitmap_clear(&madvise, start, nr);
1032 bitmap_clear(&always, start, nr);
1033 } else {
1034 pr_err("invalid policy %s in thp_anon boot parameter\n", policy);
1035 goto err;
1036 }
1037 }
1038 }
1039
1040 huge_anon_orders_always = always;
1041 huge_anon_orders_madvise = madvise;
1042 huge_anon_orders_inherit = inherit;
1043 anon_orders_configured = true;
1044 return 1;
1045
1046 err:
1047 pr_warn("thp_anon=%s: error parsing string, ignoring setting\n", str);
1048 return 0;
1049 }
1050 __setup("thp_anon=", setup_thp_anon);
1051
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)1052 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
1053 {
1054 if (likely(vma->vm_flags & VM_WRITE))
1055 pmd = pmd_mkwrite(pmd, vma);
1056 return pmd;
1057 }
1058
1059 #ifdef CONFIG_MEMCG
1060 static inline
get_deferred_split_queue(struct folio * folio)1061 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1062 {
1063 struct mem_cgroup *memcg = folio_memcg(folio);
1064 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1065
1066 if (memcg)
1067 return &memcg->deferred_split_queue;
1068 else
1069 return &pgdat->deferred_split_queue;
1070 }
1071 #else
1072 static inline
get_deferred_split_queue(struct folio * folio)1073 struct deferred_split *get_deferred_split_queue(struct folio *folio)
1074 {
1075 struct pglist_data *pgdat = NODE_DATA(folio_nid(folio));
1076
1077 return &pgdat->deferred_split_queue;
1078 }
1079 #endif
1080
is_transparent_hugepage(const struct folio * folio)1081 static inline bool is_transparent_hugepage(const struct folio *folio)
1082 {
1083 if (!folio_test_large(folio))
1084 return false;
1085
1086 return is_huge_zero_folio(folio) ||
1087 folio_test_large_rmappable(folio);
1088 }
1089
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size,vm_flags_t vm_flags)1090 static unsigned long __thp_get_unmapped_area(struct file *filp,
1091 unsigned long addr, unsigned long len,
1092 loff_t off, unsigned long flags, unsigned long size,
1093 vm_flags_t vm_flags)
1094 {
1095 loff_t off_end = off + len;
1096 loff_t off_align = round_up(off, size);
1097 unsigned long len_pad, ret, off_sub;
1098
1099 if (!IS_ENABLED(CONFIG_64BIT) || in_compat_syscall())
1100 return 0;
1101
1102 if (off_end <= off_align || (off_end - off_align) < size)
1103 return 0;
1104
1105 len_pad = len + size;
1106 if (len_pad < len || (off + len_pad) < off)
1107 return 0;
1108
1109 ret = mm_get_unmapped_area_vmflags(current->mm, filp, addr, len_pad,
1110 off >> PAGE_SHIFT, flags, vm_flags);
1111
1112 /*
1113 * The failure might be due to length padding. The caller will retry
1114 * without the padding.
1115 */
1116 if (IS_ERR_VALUE(ret))
1117 return 0;
1118
1119 /*
1120 * Do not try to align to THP boundary if allocation at the address
1121 * hint succeeds.
1122 */
1123 if (ret == addr)
1124 return addr;
1125
1126 off_sub = (off - ret) & (size - 1);
1127
1128 if (test_bit(MMF_TOPDOWN, ¤t->mm->flags) && !off_sub)
1129 return ret + size;
1130
1131 ret += off_sub;
1132 return ret;
1133 }
1134
thp_get_unmapped_area_vmflags(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags,vm_flags_t vm_flags)1135 unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
1136 unsigned long len, unsigned long pgoff, unsigned long flags,
1137 vm_flags_t vm_flags)
1138 {
1139 unsigned long ret;
1140 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
1141
1142 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE, vm_flags);
1143 if (ret)
1144 return ret;
1145
1146 return mm_get_unmapped_area_vmflags(current->mm, filp, addr, len, pgoff, flags,
1147 vm_flags);
1148 }
1149
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1150 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
1151 unsigned long len, unsigned long pgoff, unsigned long flags)
1152 {
1153 return thp_get_unmapped_area_vmflags(filp, addr, len, pgoff, flags, 0);
1154 }
1155 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
1156
vma_alloc_anon_folio_pmd(struct vm_area_struct * vma,unsigned long addr)1157 static struct folio *vma_alloc_anon_folio_pmd(struct vm_area_struct *vma,
1158 unsigned long addr)
1159 {
1160 gfp_t gfp = vma_thp_gfp_mask(vma);
1161 const int order = HPAGE_PMD_ORDER;
1162 struct folio *folio;
1163
1164 folio = vma_alloc_folio(gfp, order, vma, addr & HPAGE_PMD_MASK);
1165
1166 if (unlikely(!folio)) {
1167 count_vm_event(THP_FAULT_FALLBACK);
1168 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1169 return NULL;
1170 }
1171
1172 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1173 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
1174 folio_put(folio);
1175 count_vm_event(THP_FAULT_FALLBACK);
1176 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
1177 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
1178 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
1179 return NULL;
1180 }
1181 folio_throttle_swaprate(folio, gfp);
1182
1183 /*
1184 * When a folio is not zeroed during allocation (__GFP_ZERO not used)
1185 * or user folios require special handling, folio_zero_user() is used to
1186 * make sure that the page corresponding to the faulting address will be
1187 * hot in the cache after zeroing.
1188 */
1189 if (user_alloc_needs_zeroing())
1190 folio_zero_user(folio, addr);
1191 /*
1192 * The memory barrier inside __folio_mark_uptodate makes sure that
1193 * folio_zero_user writes become visible before the set_pmd_at()
1194 * write.
1195 */
1196 __folio_mark_uptodate(folio);
1197 return folio;
1198 }
1199
map_anon_folio_pmd(struct folio * folio,pmd_t * pmd,struct vm_area_struct * vma,unsigned long haddr)1200 static void map_anon_folio_pmd(struct folio *folio, pmd_t *pmd,
1201 struct vm_area_struct *vma, unsigned long haddr)
1202 {
1203 pmd_t entry;
1204
1205 entry = folio_mk_pmd(folio, vma->vm_page_prot);
1206 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1207 folio_add_new_anon_rmap(folio, vma, haddr, RMAP_EXCLUSIVE);
1208 folio_add_lru_vma(folio, vma);
1209 set_pmd_at(vma->vm_mm, haddr, pmd, entry);
1210 update_mmu_cache_pmd(vma, haddr, pmd);
1211 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1212 count_vm_event(THP_FAULT_ALLOC);
1213 count_mthp_stat(HPAGE_PMD_ORDER, MTHP_STAT_ANON_FAULT_ALLOC);
1214 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
1215 }
1216
__do_huge_pmd_anonymous_page(struct vm_fault * vmf)1217 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1218 {
1219 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1220 struct vm_area_struct *vma = vmf->vma;
1221 struct folio *folio;
1222 pgtable_t pgtable;
1223 vm_fault_t ret = 0;
1224
1225 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1226 if (unlikely(!folio))
1227 return VM_FAULT_FALLBACK;
1228
1229 pgtable = pte_alloc_one(vma->vm_mm);
1230 if (unlikely(!pgtable)) {
1231 ret = VM_FAULT_OOM;
1232 goto release;
1233 }
1234
1235 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1236 if (unlikely(!pmd_none(*vmf->pmd))) {
1237 goto unlock_release;
1238 } else {
1239 ret = check_stable_address_space(vma->vm_mm);
1240 if (ret)
1241 goto unlock_release;
1242
1243 /* Deliver the page fault to userland */
1244 if (userfaultfd_missing(vma)) {
1245 spin_unlock(vmf->ptl);
1246 folio_put(folio);
1247 pte_free(vma->vm_mm, pgtable);
1248 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1249 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1250 return ret;
1251 }
1252 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1253 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1254 mm_inc_nr_ptes(vma->vm_mm);
1255 deferred_split_folio(folio, false);
1256 spin_unlock(vmf->ptl);
1257 }
1258
1259 return 0;
1260 unlock_release:
1261 spin_unlock(vmf->ptl);
1262 release:
1263 if (pgtable)
1264 pte_free(vma->vm_mm, pgtable);
1265 folio_put(folio);
1266 return ret;
1267
1268 }
1269
1270 /*
1271 * always: directly stall for all thp allocations
1272 * defer: wake kswapd and fail if not immediately available
1273 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
1274 * fail if not immediately available
1275 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
1276 * available
1277 * never: never stall for any thp allocation
1278 */
vma_thp_gfp_mask(struct vm_area_struct * vma)1279 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
1280 {
1281 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
1282
1283 /* Always do synchronous compaction */
1284 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
1285 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
1286
1287 /* Kick kcompactd and fail quickly */
1288 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
1289 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
1290
1291 /* Synchronous compaction if madvised, otherwise kick kcompactd */
1292 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
1293 return GFP_TRANSHUGE_LIGHT |
1294 (vma_madvised ? __GFP_DIRECT_RECLAIM :
1295 __GFP_KSWAPD_RECLAIM);
1296
1297 /* Only do synchronous compaction if madvised */
1298 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
1299 return GFP_TRANSHUGE_LIGHT |
1300 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
1301
1302 return GFP_TRANSHUGE_LIGHT;
1303 }
1304
1305 /* Caller must hold page table lock. */
set_huge_zero_folio(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct folio * zero_folio)1306 static void set_huge_zero_folio(pgtable_t pgtable, struct mm_struct *mm,
1307 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
1308 struct folio *zero_folio)
1309 {
1310 pmd_t entry;
1311 entry = folio_mk_pmd(zero_folio, vma->vm_page_prot);
1312 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1313 set_pmd_at(mm, haddr, pmd, entry);
1314 mm_inc_nr_ptes(mm);
1315 }
1316
do_huge_pmd_anonymous_page(struct vm_fault * vmf)1317 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
1318 {
1319 struct vm_area_struct *vma = vmf->vma;
1320 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1321 vm_fault_t ret;
1322
1323 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
1324 return VM_FAULT_FALLBACK;
1325 ret = vmf_anon_prepare(vmf);
1326 if (ret)
1327 return ret;
1328 khugepaged_enter_vma(vma, vma->vm_flags);
1329
1330 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
1331 !mm_forbids_zeropage(vma->vm_mm) &&
1332 transparent_hugepage_use_zero_page()) {
1333 pgtable_t pgtable;
1334 struct folio *zero_folio;
1335 vm_fault_t ret;
1336
1337 pgtable = pte_alloc_one(vma->vm_mm);
1338 if (unlikely(!pgtable))
1339 return VM_FAULT_OOM;
1340 zero_folio = mm_get_huge_zero_folio(vma->vm_mm);
1341 if (unlikely(!zero_folio)) {
1342 pte_free(vma->vm_mm, pgtable);
1343 count_vm_event(THP_FAULT_FALLBACK);
1344 return VM_FAULT_FALLBACK;
1345 }
1346 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1347 ret = 0;
1348 if (pmd_none(*vmf->pmd)) {
1349 ret = check_stable_address_space(vma->vm_mm);
1350 if (ret) {
1351 spin_unlock(vmf->ptl);
1352 pte_free(vma->vm_mm, pgtable);
1353 } else if (userfaultfd_missing(vma)) {
1354 spin_unlock(vmf->ptl);
1355 pte_free(vma->vm_mm, pgtable);
1356 ret = handle_userfault(vmf, VM_UFFD_MISSING);
1357 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
1358 } else {
1359 set_huge_zero_folio(pgtable, vma->vm_mm, vma,
1360 haddr, vmf->pmd, zero_folio);
1361 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1362 spin_unlock(vmf->ptl);
1363 }
1364 } else {
1365 spin_unlock(vmf->ptl);
1366 pte_free(vma->vm_mm, pgtable);
1367 }
1368 return ret;
1369 }
1370
1371 return __do_huge_pmd_anonymous_page(vmf);
1372 }
1373
1374 struct folio_or_pfn {
1375 union {
1376 struct folio *folio;
1377 unsigned long pfn;
1378 };
1379 bool is_folio;
1380 };
1381
insert_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,struct folio_or_pfn fop,pgprot_t prot,bool write,pgtable_t pgtable)1382 static int insert_pmd(struct vm_area_struct *vma, unsigned long addr,
1383 pmd_t *pmd, struct folio_or_pfn fop, pgprot_t prot,
1384 bool write, pgtable_t pgtable)
1385 {
1386 struct mm_struct *mm = vma->vm_mm;
1387 pmd_t entry;
1388
1389 lockdep_assert_held(pmd_lockptr(mm, pmd));
1390
1391 if (!pmd_none(*pmd)) {
1392 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1393 fop.pfn;
1394
1395 if (write) {
1396 if (pmd_pfn(*pmd) != pfn) {
1397 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
1398 return -EEXIST;
1399 }
1400 entry = pmd_mkyoung(*pmd);
1401 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1402 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
1403 update_mmu_cache_pmd(vma, addr, pmd);
1404 }
1405
1406 return -EEXIST;
1407 }
1408
1409 if (fop.is_folio) {
1410 entry = folio_mk_pmd(fop.folio, vma->vm_page_prot);
1411
1412 folio_get(fop.folio);
1413 folio_add_file_rmap_pmd(fop.folio, &fop.folio->page, vma);
1414 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PMD_NR);
1415 } else {
1416 entry = pmd_mkhuge(pfn_pmd(fop.pfn, prot));
1417 entry = pmd_mkspecial(entry);
1418 }
1419 if (write) {
1420 entry = pmd_mkyoung(pmd_mkdirty(entry));
1421 entry = maybe_pmd_mkwrite(entry, vma);
1422 }
1423
1424 if (pgtable) {
1425 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1426 mm_inc_nr_ptes(mm);
1427 }
1428
1429 set_pmd_at(mm, addr, pmd, entry);
1430 update_mmu_cache_pmd(vma, addr, pmd);
1431 return 0;
1432 }
1433
1434 /**
1435 * vmf_insert_pfn_pmd - insert a pmd size pfn
1436 * @vmf: Structure describing the fault
1437 * @pfn: pfn to insert
1438 * @write: whether it's a write fault
1439 *
1440 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info.
1441 *
1442 * Return: vm_fault_t value.
1443 */
vmf_insert_pfn_pmd(struct vm_fault * vmf,unsigned long pfn,bool write)1444 vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, unsigned long pfn,
1445 bool write)
1446 {
1447 unsigned long addr = vmf->address & PMD_MASK;
1448 struct vm_area_struct *vma = vmf->vma;
1449 pgprot_t pgprot = vma->vm_page_prot;
1450 struct folio_or_pfn fop = {
1451 .pfn = pfn,
1452 };
1453 pgtable_t pgtable = NULL;
1454 spinlock_t *ptl;
1455 int error;
1456
1457 /*
1458 * If we had pmd_special, we could avoid all these restrictions,
1459 * but we need to be consistent with PTEs and architectures that
1460 * can't support a 'special' bit.
1461 */
1462 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1463 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1464 (VM_PFNMAP|VM_MIXEDMAP));
1465 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1466
1467 if (addr < vma->vm_start || addr >= vma->vm_end)
1468 return VM_FAULT_SIGBUS;
1469
1470 if (arch_needs_pgtable_deposit()) {
1471 pgtable = pte_alloc_one(vma->vm_mm);
1472 if (!pgtable)
1473 return VM_FAULT_OOM;
1474 }
1475
1476 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1477
1478 ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1479 error = insert_pmd(vma, addr, vmf->pmd, fop, pgprot, write,
1480 pgtable);
1481 spin_unlock(ptl);
1482 if (error && pgtable)
1483 pte_free(vma->vm_mm, pgtable);
1484
1485 return VM_FAULT_NOPAGE;
1486 }
1487 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1488
vmf_insert_folio_pmd(struct vm_fault * vmf,struct folio * folio,bool write)1489 vm_fault_t vmf_insert_folio_pmd(struct vm_fault *vmf, struct folio *folio,
1490 bool write)
1491 {
1492 struct vm_area_struct *vma = vmf->vma;
1493 unsigned long addr = vmf->address & PMD_MASK;
1494 struct mm_struct *mm = vma->vm_mm;
1495 struct folio_or_pfn fop = {
1496 .folio = folio,
1497 .is_folio = true,
1498 };
1499 spinlock_t *ptl;
1500 pgtable_t pgtable = NULL;
1501 int error;
1502
1503 if (addr < vma->vm_start || addr >= vma->vm_end)
1504 return VM_FAULT_SIGBUS;
1505
1506 if (WARN_ON_ONCE(folio_order(folio) != PMD_ORDER))
1507 return VM_FAULT_SIGBUS;
1508
1509 if (arch_needs_pgtable_deposit()) {
1510 pgtable = pte_alloc_one(vma->vm_mm);
1511 if (!pgtable)
1512 return VM_FAULT_OOM;
1513 }
1514
1515 ptl = pmd_lock(mm, vmf->pmd);
1516 error = insert_pmd(vma, addr, vmf->pmd, fop, vma->vm_page_prot,
1517 write, pgtable);
1518 spin_unlock(ptl);
1519 if (error && pgtable)
1520 pte_free(mm, pgtable);
1521
1522 return VM_FAULT_NOPAGE;
1523 }
1524 EXPORT_SYMBOL_GPL(vmf_insert_folio_pmd);
1525
1526 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)1527 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
1528 {
1529 if (likely(vma->vm_flags & VM_WRITE))
1530 pud = pud_mkwrite(pud);
1531 return pud;
1532 }
1533
insert_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,struct folio_or_pfn fop,pgprot_t prot,bool write)1534 static void insert_pud(struct vm_area_struct *vma, unsigned long addr,
1535 pud_t *pud, struct folio_or_pfn fop, pgprot_t prot, bool write)
1536 {
1537 struct mm_struct *mm = vma->vm_mm;
1538 pud_t entry;
1539
1540 if (!pud_none(*pud)) {
1541 const unsigned long pfn = fop.is_folio ? folio_pfn(fop.folio) :
1542 fop.pfn;
1543
1544 if (write) {
1545 if (WARN_ON_ONCE(pud_pfn(*pud) != pfn))
1546 return;
1547 entry = pud_mkyoung(*pud);
1548 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
1549 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
1550 update_mmu_cache_pud(vma, addr, pud);
1551 }
1552 return;
1553 }
1554
1555 if (fop.is_folio) {
1556 entry = folio_mk_pud(fop.folio, vma->vm_page_prot);
1557
1558 folio_get(fop.folio);
1559 folio_add_file_rmap_pud(fop.folio, &fop.folio->page, vma);
1560 add_mm_counter(mm, mm_counter_file(fop.folio), HPAGE_PUD_NR);
1561 } else {
1562 entry = pud_mkhuge(pfn_pud(fop.pfn, prot));
1563 entry = pud_mkspecial(entry);
1564 }
1565 if (write) {
1566 entry = pud_mkyoung(pud_mkdirty(entry));
1567 entry = maybe_pud_mkwrite(entry, vma);
1568 }
1569 set_pud_at(mm, addr, pud, entry);
1570 update_mmu_cache_pud(vma, addr, pud);
1571 }
1572
1573 /**
1574 * vmf_insert_pfn_pud - insert a pud size pfn
1575 * @vmf: Structure describing the fault
1576 * @pfn: pfn to insert
1577 * @write: whether it's a write fault
1578 *
1579 * Insert a pud size pfn. See vmf_insert_pfn() for additional info.
1580 *
1581 * Return: vm_fault_t value.
1582 */
vmf_insert_pfn_pud(struct vm_fault * vmf,unsigned long pfn,bool write)1583 vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, unsigned long pfn,
1584 bool write)
1585 {
1586 unsigned long addr = vmf->address & PUD_MASK;
1587 struct vm_area_struct *vma = vmf->vma;
1588 pgprot_t pgprot = vma->vm_page_prot;
1589 struct folio_or_pfn fop = {
1590 .pfn = pfn,
1591 };
1592 spinlock_t *ptl;
1593
1594 /*
1595 * If we had pud_special, we could avoid all these restrictions,
1596 * but we need to be consistent with PTEs and architectures that
1597 * can't support a 'special' bit.
1598 */
1599 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1600 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1601 (VM_PFNMAP|VM_MIXEDMAP));
1602 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1603
1604 if (addr < vma->vm_start || addr >= vma->vm_end)
1605 return VM_FAULT_SIGBUS;
1606
1607 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
1608
1609 ptl = pud_lock(vma->vm_mm, vmf->pud);
1610 insert_pud(vma, addr, vmf->pud, fop, pgprot, write);
1611 spin_unlock(ptl);
1612
1613 return VM_FAULT_NOPAGE;
1614 }
1615 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
1616
1617 /**
1618 * vmf_insert_folio_pud - insert a pud size folio mapped by a pud entry
1619 * @vmf: Structure describing the fault
1620 * @folio: folio to insert
1621 * @write: whether it's a write fault
1622 *
1623 * Return: vm_fault_t value.
1624 */
vmf_insert_folio_pud(struct vm_fault * vmf,struct folio * folio,bool write)1625 vm_fault_t vmf_insert_folio_pud(struct vm_fault *vmf, struct folio *folio,
1626 bool write)
1627 {
1628 struct vm_area_struct *vma = vmf->vma;
1629 unsigned long addr = vmf->address & PUD_MASK;
1630 pud_t *pud = vmf->pud;
1631 struct mm_struct *mm = vma->vm_mm;
1632 struct folio_or_pfn fop = {
1633 .folio = folio,
1634 .is_folio = true,
1635 };
1636 spinlock_t *ptl;
1637
1638 if (addr < vma->vm_start || addr >= vma->vm_end)
1639 return VM_FAULT_SIGBUS;
1640
1641 if (WARN_ON_ONCE(folio_order(folio) != PUD_ORDER))
1642 return VM_FAULT_SIGBUS;
1643
1644 ptl = pud_lock(mm, pud);
1645 insert_pud(vma, addr, vmf->pud, fop, vma->vm_page_prot, write);
1646 spin_unlock(ptl);
1647
1648 return VM_FAULT_NOPAGE;
1649 }
1650 EXPORT_SYMBOL_GPL(vmf_insert_folio_pud);
1651 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1652
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,bool write)1653 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1654 pmd_t *pmd, bool write)
1655 {
1656 pmd_t _pmd;
1657
1658 _pmd = pmd_mkyoung(*pmd);
1659 if (write)
1660 _pmd = pmd_mkdirty(_pmd);
1661 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1662 pmd, _pmd, write))
1663 update_mmu_cache_pmd(vma, addr, pmd);
1664 }
1665
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1666 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1667 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1668 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1669 {
1670 spinlock_t *dst_ptl, *src_ptl;
1671 struct page *src_page;
1672 struct folio *src_folio;
1673 pmd_t pmd;
1674 pgtable_t pgtable = NULL;
1675 int ret = -ENOMEM;
1676
1677 pmd = pmdp_get_lockless(src_pmd);
1678 if (unlikely(pmd_present(pmd) && pmd_special(pmd))) {
1679 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1680 src_ptl = pmd_lockptr(src_mm, src_pmd);
1681 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1682 /*
1683 * No need to recheck the pmd, it can't change with write
1684 * mmap lock held here.
1685 *
1686 * Meanwhile, making sure it's not a CoW VMA with writable
1687 * mapping, otherwise it means either the anon page wrongly
1688 * applied special bit, or we made the PRIVATE mapping be
1689 * able to wrongly write to the backend MMIO.
1690 */
1691 VM_WARN_ON_ONCE(is_cow_mapping(src_vma->vm_flags) && pmd_write(pmd));
1692 goto set_pmd;
1693 }
1694
1695 /* Skip if can be re-fill on fault */
1696 if (!vma_is_anonymous(dst_vma))
1697 return 0;
1698
1699 pgtable = pte_alloc_one(dst_mm);
1700 if (unlikely(!pgtable))
1701 goto out;
1702
1703 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1704 src_ptl = pmd_lockptr(src_mm, src_pmd);
1705 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1706
1707 ret = -EAGAIN;
1708 pmd = *src_pmd;
1709
1710 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1711 if (unlikely(is_swap_pmd(pmd))) {
1712 swp_entry_t entry = pmd_to_swp_entry(pmd);
1713
1714 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1715 if (!is_readable_migration_entry(entry)) {
1716 entry = make_readable_migration_entry(
1717 swp_offset(entry));
1718 pmd = swp_entry_to_pmd(entry);
1719 if (pmd_swp_soft_dirty(*src_pmd))
1720 pmd = pmd_swp_mksoft_dirty(pmd);
1721 if (pmd_swp_uffd_wp(*src_pmd))
1722 pmd = pmd_swp_mkuffd_wp(pmd);
1723 set_pmd_at(src_mm, addr, src_pmd, pmd);
1724 }
1725 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1726 mm_inc_nr_ptes(dst_mm);
1727 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1728 if (!userfaultfd_wp(dst_vma))
1729 pmd = pmd_swp_clear_uffd_wp(pmd);
1730 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1731 ret = 0;
1732 goto out_unlock;
1733 }
1734 #endif
1735
1736 if (unlikely(!pmd_trans_huge(pmd))) {
1737 pte_free(dst_mm, pgtable);
1738 goto out_unlock;
1739 }
1740 /*
1741 * When page table lock is held, the huge zero pmd should not be
1742 * under splitting since we don't split the page itself, only pmd to
1743 * a page table.
1744 */
1745 if (is_huge_zero_pmd(pmd)) {
1746 /*
1747 * mm_get_huge_zero_folio() will never allocate a new
1748 * folio here, since we already have a zero page to
1749 * copy. It just takes a reference.
1750 */
1751 mm_get_huge_zero_folio(dst_mm);
1752 goto out_zero_page;
1753 }
1754
1755 src_page = pmd_page(pmd);
1756 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1757 src_folio = page_folio(src_page);
1758
1759 folio_get(src_folio);
1760 if (unlikely(folio_try_dup_anon_rmap_pmd(src_folio, src_page, dst_vma, src_vma))) {
1761 /* Page maybe pinned: split and retry the fault on PTEs. */
1762 folio_put(src_folio);
1763 pte_free(dst_mm, pgtable);
1764 spin_unlock(src_ptl);
1765 spin_unlock(dst_ptl);
1766 __split_huge_pmd(src_vma, src_pmd, addr, false);
1767 return -EAGAIN;
1768 }
1769 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1770 out_zero_page:
1771 mm_inc_nr_ptes(dst_mm);
1772 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1773 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1774 if (!userfaultfd_wp(dst_vma))
1775 pmd = pmd_clear_uffd_wp(pmd);
1776 pmd = pmd_wrprotect(pmd);
1777 set_pmd:
1778 pmd = pmd_mkold(pmd);
1779 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1780
1781 ret = 0;
1782 out_unlock:
1783 spin_unlock(src_ptl);
1784 spin_unlock(dst_ptl);
1785 out:
1786 return ret;
1787 }
1788
1789 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,bool write)1790 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1791 pud_t *pud, bool write)
1792 {
1793 pud_t _pud;
1794
1795 _pud = pud_mkyoung(*pud);
1796 if (write)
1797 _pud = pud_mkdirty(_pud);
1798 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1799 pud, _pud, write))
1800 update_mmu_cache_pud(vma, addr, pud);
1801 }
1802
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1803 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1804 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1805 struct vm_area_struct *vma)
1806 {
1807 spinlock_t *dst_ptl, *src_ptl;
1808 pud_t pud;
1809 int ret;
1810
1811 dst_ptl = pud_lock(dst_mm, dst_pud);
1812 src_ptl = pud_lockptr(src_mm, src_pud);
1813 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1814
1815 ret = -EAGAIN;
1816 pud = *src_pud;
1817 if (unlikely(!pud_trans_huge(pud)))
1818 goto out_unlock;
1819
1820 /*
1821 * TODO: once we support anonymous pages, use
1822 * folio_try_dup_anon_rmap_*() and split if duplicating fails.
1823 */
1824 if (is_cow_mapping(vma->vm_flags) && pud_write(pud)) {
1825 pudp_set_wrprotect(src_mm, addr, src_pud);
1826 pud = pud_wrprotect(pud);
1827 }
1828 pud = pud_mkold(pud);
1829 set_pud_at(dst_mm, addr, dst_pud, pud);
1830
1831 ret = 0;
1832 out_unlock:
1833 spin_unlock(src_ptl);
1834 spin_unlock(dst_ptl);
1835 return ret;
1836 }
1837
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1838 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1839 {
1840 bool write = vmf->flags & FAULT_FLAG_WRITE;
1841
1842 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1843 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1844 goto unlock;
1845
1846 touch_pud(vmf->vma, vmf->address, vmf->pud, write);
1847 unlock:
1848 spin_unlock(vmf->ptl);
1849 }
1850 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1851
huge_pmd_set_accessed(struct vm_fault * vmf)1852 void huge_pmd_set_accessed(struct vm_fault *vmf)
1853 {
1854 bool write = vmf->flags & FAULT_FLAG_WRITE;
1855
1856 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1857 if (unlikely(!pmd_same(*vmf->pmd, vmf->orig_pmd)))
1858 goto unlock;
1859
1860 touch_pmd(vmf->vma, vmf->address, vmf->pmd, write);
1861
1862 unlock:
1863 spin_unlock(vmf->ptl);
1864 }
1865
do_huge_zero_wp_pmd(struct vm_fault * vmf)1866 static vm_fault_t do_huge_zero_wp_pmd(struct vm_fault *vmf)
1867 {
1868 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1869 struct vm_area_struct *vma = vmf->vma;
1870 struct mmu_notifier_range range;
1871 struct folio *folio;
1872 vm_fault_t ret = 0;
1873
1874 folio = vma_alloc_anon_folio_pmd(vma, vmf->address);
1875 if (unlikely(!folio))
1876 return VM_FAULT_FALLBACK;
1877
1878 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, haddr,
1879 haddr + HPAGE_PMD_SIZE);
1880 mmu_notifier_invalidate_range_start(&range);
1881 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1882 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd)))
1883 goto release;
1884 ret = check_stable_address_space(vma->vm_mm);
1885 if (ret)
1886 goto release;
1887 (void)pmdp_huge_clear_flush(vma, haddr, vmf->pmd);
1888 map_anon_folio_pmd(folio, vmf->pmd, vma, haddr);
1889 goto unlock;
1890 release:
1891 folio_put(folio);
1892 unlock:
1893 spin_unlock(vmf->ptl);
1894 mmu_notifier_invalidate_range_end(&range);
1895 return ret;
1896 }
1897
do_huge_pmd_wp_page(struct vm_fault * vmf)1898 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1899 {
1900 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1901 struct vm_area_struct *vma = vmf->vma;
1902 struct folio *folio;
1903 struct page *page;
1904 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1905 pmd_t orig_pmd = vmf->orig_pmd;
1906
1907 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1908 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1909
1910 if (is_huge_zero_pmd(orig_pmd)) {
1911 vm_fault_t ret = do_huge_zero_wp_pmd(vmf);
1912
1913 if (!(ret & VM_FAULT_FALLBACK))
1914 return ret;
1915
1916 /* Fallback to splitting PMD if THP cannot be allocated */
1917 goto fallback;
1918 }
1919
1920 spin_lock(vmf->ptl);
1921
1922 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1923 spin_unlock(vmf->ptl);
1924 return 0;
1925 }
1926
1927 page = pmd_page(orig_pmd);
1928 folio = page_folio(page);
1929 VM_BUG_ON_PAGE(!PageHead(page), page);
1930
1931 /* Early check when only holding the PT lock. */
1932 if (PageAnonExclusive(page))
1933 goto reuse;
1934
1935 if (!folio_trylock(folio)) {
1936 folio_get(folio);
1937 spin_unlock(vmf->ptl);
1938 folio_lock(folio);
1939 spin_lock(vmf->ptl);
1940 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1941 spin_unlock(vmf->ptl);
1942 folio_unlock(folio);
1943 folio_put(folio);
1944 return 0;
1945 }
1946 folio_put(folio);
1947 }
1948
1949 /* Recheck after temporarily dropping the PT lock. */
1950 if (PageAnonExclusive(page)) {
1951 folio_unlock(folio);
1952 goto reuse;
1953 }
1954
1955 /*
1956 * See do_wp_page(): we can only reuse the folio exclusively if
1957 * there are no additional references. Note that we always drain
1958 * the LRU cache immediately after adding a THP.
1959 */
1960 if (folio_ref_count(folio) >
1961 1 + folio_test_swapcache(folio) * folio_nr_pages(folio))
1962 goto unlock_fallback;
1963 if (folio_test_swapcache(folio))
1964 folio_free_swap(folio);
1965 if (folio_ref_count(folio) == 1) {
1966 pmd_t entry;
1967
1968 folio_move_anon_rmap(folio, vma);
1969 SetPageAnonExclusive(page);
1970 folio_unlock(folio);
1971 reuse:
1972 if (unlikely(unshare)) {
1973 spin_unlock(vmf->ptl);
1974 return 0;
1975 }
1976 entry = pmd_mkyoung(orig_pmd);
1977 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1978 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1979 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1980 spin_unlock(vmf->ptl);
1981 return 0;
1982 }
1983
1984 unlock_fallback:
1985 folio_unlock(folio);
1986 spin_unlock(vmf->ptl);
1987 fallback:
1988 __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
1989 return VM_FAULT_FALLBACK;
1990 }
1991
can_change_pmd_writable(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)1992 static inline bool can_change_pmd_writable(struct vm_area_struct *vma,
1993 unsigned long addr, pmd_t pmd)
1994 {
1995 struct page *page;
1996
1997 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE)))
1998 return false;
1999
2000 /* Don't touch entries that are not even readable (NUMA hinting). */
2001 if (pmd_protnone(pmd))
2002 return false;
2003
2004 /* Do we need write faults for softdirty tracking? */
2005 if (pmd_needs_soft_dirty_wp(vma, pmd))
2006 return false;
2007
2008 /* Do we need write faults for uffd-wp tracking? */
2009 if (userfaultfd_huge_pmd_wp(vma, pmd))
2010 return false;
2011
2012 if (!(vma->vm_flags & VM_SHARED)) {
2013 /* See can_change_pte_writable(). */
2014 page = vm_normal_page_pmd(vma, addr, pmd);
2015 return page && PageAnon(page) && PageAnonExclusive(page);
2016 }
2017
2018 /* See can_change_pte_writable(). */
2019 return pmd_dirty(pmd);
2020 }
2021
2022 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)2023 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
2024 {
2025 struct vm_area_struct *vma = vmf->vma;
2026 struct folio *folio;
2027 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2028 int nid = NUMA_NO_NODE;
2029 int target_nid, last_cpupid;
2030 pmd_t pmd, old_pmd;
2031 bool writable = false;
2032 int flags = 0;
2033
2034 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2035 old_pmd = pmdp_get(vmf->pmd);
2036
2037 if (unlikely(!pmd_same(old_pmd, vmf->orig_pmd))) {
2038 spin_unlock(vmf->ptl);
2039 return 0;
2040 }
2041
2042 pmd = pmd_modify(old_pmd, vma->vm_page_prot);
2043
2044 /*
2045 * Detect now whether the PMD could be writable; this information
2046 * is only valid while holding the PT lock.
2047 */
2048 writable = pmd_write(pmd);
2049 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
2050 can_change_pmd_writable(vma, vmf->address, pmd))
2051 writable = true;
2052
2053 folio = vm_normal_folio_pmd(vma, haddr, pmd);
2054 if (!folio)
2055 goto out_map;
2056
2057 nid = folio_nid(folio);
2058
2059 target_nid = numa_migrate_check(folio, vmf, haddr, &flags, writable,
2060 &last_cpupid);
2061 if (target_nid == NUMA_NO_NODE)
2062 goto out_map;
2063 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
2064 flags |= TNF_MIGRATE_FAIL;
2065 goto out_map;
2066 }
2067 /* The folio is isolated and isolation code holds a folio reference. */
2068 spin_unlock(vmf->ptl);
2069 writable = false;
2070
2071 if (!migrate_misplaced_folio(folio, target_nid)) {
2072 flags |= TNF_MIGRATED;
2073 nid = target_nid;
2074 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2075 return 0;
2076 }
2077
2078 flags |= TNF_MIGRATE_FAIL;
2079 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2080 if (unlikely(!pmd_same(pmdp_get(vmf->pmd), vmf->orig_pmd))) {
2081 spin_unlock(vmf->ptl);
2082 return 0;
2083 }
2084 out_map:
2085 /* Restore the PMD */
2086 pmd = pmd_modify(pmdp_get(vmf->pmd), vma->vm_page_prot);
2087 pmd = pmd_mkyoung(pmd);
2088 if (writable)
2089 pmd = pmd_mkwrite(pmd, vma);
2090 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
2091 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
2092 spin_unlock(vmf->ptl);
2093
2094 if (nid != NUMA_NO_NODE)
2095 task_numa_fault(last_cpupid, nid, HPAGE_PMD_NR, flags);
2096 return 0;
2097 }
2098
2099 /*
2100 * Return true if we do MADV_FREE successfully on entire pmd page.
2101 * Otherwise, return false.
2102 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)2103 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2104 pmd_t *pmd, unsigned long addr, unsigned long next)
2105 {
2106 spinlock_t *ptl;
2107 pmd_t orig_pmd;
2108 struct folio *folio;
2109 struct mm_struct *mm = tlb->mm;
2110 bool ret = false;
2111
2112 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2113
2114 ptl = pmd_trans_huge_lock(pmd, vma);
2115 if (!ptl)
2116 goto out_unlocked;
2117
2118 orig_pmd = *pmd;
2119 if (is_huge_zero_pmd(orig_pmd))
2120 goto out;
2121
2122 if (unlikely(!pmd_present(orig_pmd))) {
2123 VM_BUG_ON(thp_migration_supported() &&
2124 !is_pmd_migration_entry(orig_pmd));
2125 goto out;
2126 }
2127
2128 folio = pmd_folio(orig_pmd);
2129 /*
2130 * If other processes are mapping this folio, we couldn't discard
2131 * the folio unless they all do MADV_FREE so let's skip the folio.
2132 */
2133 if (folio_maybe_mapped_shared(folio))
2134 goto out;
2135
2136 if (!folio_trylock(folio))
2137 goto out;
2138
2139 /*
2140 * If user want to discard part-pages of THP, split it so MADV_FREE
2141 * will deactivate only them.
2142 */
2143 if (next - addr != HPAGE_PMD_SIZE) {
2144 folio_get(folio);
2145 spin_unlock(ptl);
2146 split_folio(folio);
2147 folio_unlock(folio);
2148 folio_put(folio);
2149 goto out_unlocked;
2150 }
2151
2152 if (folio_test_dirty(folio))
2153 folio_clear_dirty(folio);
2154 folio_unlock(folio);
2155
2156 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
2157 pmdp_invalidate(vma, addr, pmd);
2158 orig_pmd = pmd_mkold(orig_pmd);
2159 orig_pmd = pmd_mkclean(orig_pmd);
2160
2161 set_pmd_at(mm, addr, pmd, orig_pmd);
2162 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2163 }
2164
2165 folio_mark_lazyfree(folio);
2166 ret = true;
2167 out:
2168 spin_unlock(ptl);
2169 out_unlocked:
2170 return ret;
2171 }
2172
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)2173 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
2174 {
2175 pgtable_t pgtable;
2176
2177 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2178 pte_free(mm, pgtable);
2179 mm_dec_nr_ptes(mm);
2180 }
2181
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)2182 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2183 pmd_t *pmd, unsigned long addr)
2184 {
2185 pmd_t orig_pmd;
2186 spinlock_t *ptl;
2187
2188 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2189
2190 ptl = __pmd_trans_huge_lock(pmd, vma);
2191 if (!ptl)
2192 return 0;
2193 /*
2194 * For architectures like ppc64 we look at deposited pgtable
2195 * when calling pmdp_huge_get_and_clear. So do the
2196 * pgtable_trans_huge_withdraw after finishing pmdp related
2197 * operations.
2198 */
2199 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
2200 tlb->fullmm);
2201 arch_check_zapped_pmd(vma, orig_pmd);
2202 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2203 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2204 if (arch_needs_pgtable_deposit())
2205 zap_deposited_table(tlb->mm, pmd);
2206 spin_unlock(ptl);
2207 } else if (is_huge_zero_pmd(orig_pmd)) {
2208 if (!vma_is_dax(vma) || arch_needs_pgtable_deposit())
2209 zap_deposited_table(tlb->mm, pmd);
2210 spin_unlock(ptl);
2211 } else {
2212 struct folio *folio = NULL;
2213 int flush_needed = 1;
2214
2215 if (pmd_present(orig_pmd)) {
2216 struct page *page = pmd_page(orig_pmd);
2217
2218 folio = page_folio(page);
2219 folio_remove_rmap_pmd(folio, page, vma);
2220 WARN_ON_ONCE(folio_mapcount(folio) < 0);
2221 VM_BUG_ON_PAGE(!PageHead(page), page);
2222 } else if (thp_migration_supported()) {
2223 swp_entry_t entry;
2224
2225 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
2226 entry = pmd_to_swp_entry(orig_pmd);
2227 folio = pfn_swap_entry_folio(entry);
2228 flush_needed = 0;
2229 } else
2230 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
2231
2232 if (folio_test_anon(folio)) {
2233 zap_deposited_table(tlb->mm, pmd);
2234 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
2235 } else {
2236 if (arch_needs_pgtable_deposit())
2237 zap_deposited_table(tlb->mm, pmd);
2238 add_mm_counter(tlb->mm, mm_counter_file(folio),
2239 -HPAGE_PMD_NR);
2240
2241 /*
2242 * Use flush_needed to indicate whether the PMD entry
2243 * is present, instead of checking pmd_present() again.
2244 */
2245 if (flush_needed && pmd_young(orig_pmd) &&
2246 likely(vma_has_recency(vma)))
2247 folio_mark_accessed(folio);
2248 }
2249
2250 spin_unlock(ptl);
2251 if (flush_needed)
2252 tlb_remove_page_size(tlb, &folio->page, HPAGE_PMD_SIZE);
2253 }
2254 return 1;
2255 }
2256
2257 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)2258 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
2259 spinlock_t *old_pmd_ptl,
2260 struct vm_area_struct *vma)
2261 {
2262 /*
2263 * With split pmd lock we also need to move preallocated
2264 * PTE page table if new_pmd is on different PMD page table.
2265 *
2266 * We also don't deposit and withdraw tables for file pages.
2267 */
2268 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
2269 }
2270 #endif
2271
move_soft_dirty_pmd(pmd_t pmd)2272 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
2273 {
2274 #ifdef CONFIG_MEM_SOFT_DIRTY
2275 if (unlikely(is_pmd_migration_entry(pmd)))
2276 pmd = pmd_swp_mksoft_dirty(pmd);
2277 else if (pmd_present(pmd))
2278 pmd = pmd_mksoft_dirty(pmd);
2279 #endif
2280 return pmd;
2281 }
2282
clear_uffd_wp_pmd(pmd_t pmd)2283 static pmd_t clear_uffd_wp_pmd(pmd_t pmd)
2284 {
2285 if (pmd_present(pmd))
2286 pmd = pmd_clear_uffd_wp(pmd);
2287 else if (is_swap_pmd(pmd))
2288 pmd = pmd_swp_clear_uffd_wp(pmd);
2289
2290 return pmd;
2291 }
2292
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)2293 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
2294 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
2295 {
2296 spinlock_t *old_ptl, *new_ptl;
2297 pmd_t pmd;
2298 struct mm_struct *mm = vma->vm_mm;
2299 bool force_flush = false;
2300
2301 /*
2302 * The destination pmd shouldn't be established, free_pgtables()
2303 * should have released it; but move_page_tables() might have already
2304 * inserted a page table, if racing against shmem/file collapse.
2305 */
2306 if (!pmd_none(*new_pmd)) {
2307 VM_BUG_ON(pmd_trans_huge(*new_pmd));
2308 return false;
2309 }
2310
2311 /*
2312 * We don't have to worry about the ordering of src and dst
2313 * ptlocks because exclusive mmap_lock prevents deadlock.
2314 */
2315 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
2316 if (old_ptl) {
2317 new_ptl = pmd_lockptr(mm, new_pmd);
2318 if (new_ptl != old_ptl)
2319 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
2320 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
2321 if (pmd_present(pmd))
2322 force_flush = true;
2323 VM_BUG_ON(!pmd_none(*new_pmd));
2324
2325 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
2326 pgtable_t pgtable;
2327 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
2328 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
2329 }
2330 pmd = move_soft_dirty_pmd(pmd);
2331 if (vma_has_uffd_without_event_remap(vma))
2332 pmd = clear_uffd_wp_pmd(pmd);
2333 set_pmd_at(mm, new_addr, new_pmd, pmd);
2334 if (force_flush)
2335 flush_pmd_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
2336 if (new_ptl != old_ptl)
2337 spin_unlock(new_ptl);
2338 spin_unlock(old_ptl);
2339 return true;
2340 }
2341 return false;
2342 }
2343
2344 /*
2345 * Returns
2346 * - 0 if PMD could not be locked
2347 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
2348 * or if prot_numa but THP migration is not supported
2349 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
2350 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2351 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
2352 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
2353 unsigned long cp_flags)
2354 {
2355 struct mm_struct *mm = vma->vm_mm;
2356 spinlock_t *ptl;
2357 pmd_t oldpmd, entry;
2358 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
2359 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
2360 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
2361 int ret = 1;
2362
2363 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
2364
2365 if (prot_numa && !thp_migration_supported())
2366 return 1;
2367
2368 ptl = __pmd_trans_huge_lock(pmd, vma);
2369 if (!ptl)
2370 return 0;
2371
2372 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2373 if (is_swap_pmd(*pmd)) {
2374 swp_entry_t entry = pmd_to_swp_entry(*pmd);
2375 struct folio *folio = pfn_swap_entry_folio(entry);
2376 pmd_t newpmd;
2377
2378 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
2379 if (is_writable_migration_entry(entry)) {
2380 /*
2381 * A protection check is difficult so
2382 * just be safe and disable write
2383 */
2384 if (folio_test_anon(folio))
2385 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
2386 else
2387 entry = make_readable_migration_entry(swp_offset(entry));
2388 newpmd = swp_entry_to_pmd(entry);
2389 if (pmd_swp_soft_dirty(*pmd))
2390 newpmd = pmd_swp_mksoft_dirty(newpmd);
2391 } else {
2392 newpmd = *pmd;
2393 }
2394
2395 if (uffd_wp)
2396 newpmd = pmd_swp_mkuffd_wp(newpmd);
2397 else if (uffd_wp_resolve)
2398 newpmd = pmd_swp_clear_uffd_wp(newpmd);
2399 if (!pmd_same(*pmd, newpmd))
2400 set_pmd_at(mm, addr, pmd, newpmd);
2401 goto unlock;
2402 }
2403 #endif
2404
2405 if (prot_numa) {
2406 struct folio *folio;
2407 bool toptier;
2408 /*
2409 * Avoid trapping faults against the zero page. The read-only
2410 * data is likely to be read-cached on the local CPU and
2411 * local/remote hits to the zero page are not interesting.
2412 */
2413 if (is_huge_zero_pmd(*pmd))
2414 goto unlock;
2415
2416 if (pmd_protnone(*pmd))
2417 goto unlock;
2418
2419 folio = pmd_folio(*pmd);
2420 toptier = node_is_toptier(folio_nid(folio));
2421 /*
2422 * Skip scanning top tier node if normal numa
2423 * balancing is disabled
2424 */
2425 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
2426 toptier)
2427 goto unlock;
2428
2429 if (folio_use_access_time(folio))
2430 folio_xchg_access_time(folio,
2431 jiffies_to_msecs(jiffies));
2432 }
2433 /*
2434 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
2435 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
2436 * which is also under mmap_read_lock(mm):
2437 *
2438 * CPU0: CPU1:
2439 * change_huge_pmd(prot_numa=1)
2440 * pmdp_huge_get_and_clear_notify()
2441 * madvise_dontneed()
2442 * zap_pmd_range()
2443 * pmd_trans_huge(*pmd) == 0 (without ptl)
2444 * // skip the pmd
2445 * set_pmd_at();
2446 * // pmd is re-established
2447 *
2448 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
2449 * which may break userspace.
2450 *
2451 * pmdp_invalidate_ad() is required to make sure we don't miss
2452 * dirty/young flags set by hardware.
2453 */
2454 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
2455
2456 entry = pmd_modify(oldpmd, newprot);
2457 if (uffd_wp)
2458 entry = pmd_mkuffd_wp(entry);
2459 else if (uffd_wp_resolve)
2460 /*
2461 * Leave the write bit to be handled by PF interrupt
2462 * handler, then things like COW could be properly
2463 * handled.
2464 */
2465 entry = pmd_clear_uffd_wp(entry);
2466
2467 /* See change_pte_range(). */
2468 if ((cp_flags & MM_CP_TRY_CHANGE_WRITABLE) && !pmd_write(entry) &&
2469 can_change_pmd_writable(vma, addr, entry))
2470 entry = pmd_mkwrite(entry, vma);
2471
2472 ret = HPAGE_PMD_NR;
2473 set_pmd_at(mm, addr, pmd, entry);
2474
2475 if (huge_pmd_needs_flush(oldpmd, entry))
2476 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
2477 unlock:
2478 spin_unlock(ptl);
2479 return ret;
2480 }
2481
2482 /*
2483 * Returns:
2484 *
2485 * - 0: if pud leaf changed from under us
2486 * - 1: if pud can be skipped
2487 * - HPAGE_PUD_NR: if pud was successfully processed
2488 */
2489 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
change_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pudp,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)2490 int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2491 pud_t *pudp, unsigned long addr, pgprot_t newprot,
2492 unsigned long cp_flags)
2493 {
2494 struct mm_struct *mm = vma->vm_mm;
2495 pud_t oldpud, entry;
2496 spinlock_t *ptl;
2497
2498 tlb_change_page_size(tlb, HPAGE_PUD_SIZE);
2499
2500 /* NUMA balancing doesn't apply to dax */
2501 if (cp_flags & MM_CP_PROT_NUMA)
2502 return 1;
2503
2504 /*
2505 * Huge entries on userfault-wp only works with anonymous, while we
2506 * don't have anonymous PUDs yet.
2507 */
2508 if (WARN_ON_ONCE(cp_flags & MM_CP_UFFD_WP_ALL))
2509 return 1;
2510
2511 ptl = __pud_trans_huge_lock(pudp, vma);
2512 if (!ptl)
2513 return 0;
2514
2515 /*
2516 * Can't clear PUD or it can race with concurrent zapping. See
2517 * change_huge_pmd().
2518 */
2519 oldpud = pudp_invalidate(vma, addr, pudp);
2520 entry = pud_modify(oldpud, newprot);
2521 set_pud_at(mm, addr, pudp, entry);
2522 tlb_flush_pud_range(tlb, addr, HPAGE_PUD_SIZE);
2523
2524 spin_unlock(ptl);
2525 return HPAGE_PUD_NR;
2526 }
2527 #endif
2528
2529 #ifdef CONFIG_USERFAULTFD
2530 /*
2531 * The PT lock for src_pmd and dst_vma/src_vma (for reading) are locked by
2532 * the caller, but it must return after releasing the page_table_lock.
2533 * Just move the page from src_pmd to dst_pmd if possible.
2534 * Return zero if succeeded in moving the page, -EAGAIN if it needs to be
2535 * repeated by the caller, or other errors in case of failure.
2536 */
move_pages_huge_pmd(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,pmd_t dst_pmdval,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr)2537 int move_pages_huge_pmd(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd, pmd_t dst_pmdval,
2538 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
2539 unsigned long dst_addr, unsigned long src_addr)
2540 {
2541 pmd_t _dst_pmd, src_pmdval;
2542 struct page *src_page;
2543 struct folio *src_folio;
2544 struct anon_vma *src_anon_vma;
2545 spinlock_t *src_ptl, *dst_ptl;
2546 pgtable_t src_pgtable;
2547 struct mmu_notifier_range range;
2548 int err = 0;
2549
2550 src_pmdval = *src_pmd;
2551 src_ptl = pmd_lockptr(mm, src_pmd);
2552
2553 lockdep_assert_held(src_ptl);
2554 vma_assert_locked(src_vma);
2555 vma_assert_locked(dst_vma);
2556
2557 /* Sanity checks before the operation */
2558 if (WARN_ON_ONCE(!pmd_none(dst_pmdval)) || WARN_ON_ONCE(src_addr & ~HPAGE_PMD_MASK) ||
2559 WARN_ON_ONCE(dst_addr & ~HPAGE_PMD_MASK)) {
2560 spin_unlock(src_ptl);
2561 return -EINVAL;
2562 }
2563
2564 if (!pmd_trans_huge(src_pmdval)) {
2565 spin_unlock(src_ptl);
2566 if (is_pmd_migration_entry(src_pmdval)) {
2567 pmd_migration_entry_wait(mm, &src_pmdval);
2568 return -EAGAIN;
2569 }
2570 return -ENOENT;
2571 }
2572
2573 src_page = pmd_page(src_pmdval);
2574
2575 if (!is_huge_zero_pmd(src_pmdval)) {
2576 if (unlikely(!PageAnonExclusive(src_page))) {
2577 spin_unlock(src_ptl);
2578 return -EBUSY;
2579 }
2580
2581 src_folio = page_folio(src_page);
2582 folio_get(src_folio);
2583 } else
2584 src_folio = NULL;
2585
2586 spin_unlock(src_ptl);
2587
2588 flush_cache_range(src_vma, src_addr, src_addr + HPAGE_PMD_SIZE);
2589 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, src_addr,
2590 src_addr + HPAGE_PMD_SIZE);
2591 mmu_notifier_invalidate_range_start(&range);
2592
2593 if (src_folio) {
2594 folio_lock(src_folio);
2595
2596 /*
2597 * split_huge_page walks the anon_vma chain without the page
2598 * lock. Serialize against it with the anon_vma lock, the page
2599 * lock is not enough.
2600 */
2601 src_anon_vma = folio_get_anon_vma(src_folio);
2602 if (!src_anon_vma) {
2603 err = -EAGAIN;
2604 goto unlock_folio;
2605 }
2606 anon_vma_lock_write(src_anon_vma);
2607 } else
2608 src_anon_vma = NULL;
2609
2610 dst_ptl = pmd_lockptr(mm, dst_pmd);
2611 double_pt_lock(src_ptl, dst_ptl);
2612 if (unlikely(!pmd_same(*src_pmd, src_pmdval) ||
2613 !pmd_same(*dst_pmd, dst_pmdval))) {
2614 err = -EAGAIN;
2615 goto unlock_ptls;
2616 }
2617 if (src_folio) {
2618 if (folio_maybe_dma_pinned(src_folio) ||
2619 !PageAnonExclusive(&src_folio->page)) {
2620 err = -EBUSY;
2621 goto unlock_ptls;
2622 }
2623
2624 if (WARN_ON_ONCE(!folio_test_head(src_folio)) ||
2625 WARN_ON_ONCE(!folio_test_anon(src_folio))) {
2626 err = -EBUSY;
2627 goto unlock_ptls;
2628 }
2629
2630 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2631 /* Folio got pinned from under us. Put it back and fail the move. */
2632 if (folio_maybe_dma_pinned(src_folio)) {
2633 set_pmd_at(mm, src_addr, src_pmd, src_pmdval);
2634 err = -EBUSY;
2635 goto unlock_ptls;
2636 }
2637
2638 folio_move_anon_rmap(src_folio, dst_vma);
2639 src_folio->index = linear_page_index(dst_vma, dst_addr);
2640
2641 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2642 /* Follow mremap() behavior and treat the entry dirty after the move */
2643 _dst_pmd = pmd_mkwrite(pmd_mkdirty(_dst_pmd), dst_vma);
2644 } else {
2645 src_pmdval = pmdp_huge_clear_flush(src_vma, src_addr, src_pmd);
2646 _dst_pmd = folio_mk_pmd(src_folio, dst_vma->vm_page_prot);
2647 }
2648 set_pmd_at(mm, dst_addr, dst_pmd, _dst_pmd);
2649
2650 src_pgtable = pgtable_trans_huge_withdraw(mm, src_pmd);
2651 pgtable_trans_huge_deposit(mm, dst_pmd, src_pgtable);
2652 unlock_ptls:
2653 double_pt_unlock(src_ptl, dst_ptl);
2654 if (src_anon_vma) {
2655 anon_vma_unlock_write(src_anon_vma);
2656 put_anon_vma(src_anon_vma);
2657 }
2658 unlock_folio:
2659 /* unblock rmap walks */
2660 if (src_folio)
2661 folio_unlock(src_folio);
2662 mmu_notifier_invalidate_range_end(&range);
2663 if (src_folio)
2664 folio_put(src_folio);
2665 return err;
2666 }
2667 #endif /* CONFIG_USERFAULTFD */
2668
2669 /*
2670 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2671 *
2672 * Note that if it returns page table lock pointer, this routine returns without
2673 * unlocking page table lock. So callers must unlock it.
2674 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)2675 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2676 {
2677 spinlock_t *ptl;
2678 ptl = pmd_lock(vma->vm_mm, pmd);
2679 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)))
2680 return ptl;
2681 spin_unlock(ptl);
2682 return NULL;
2683 }
2684
2685 /*
2686 * Returns page table lock pointer if a given pud maps a thp, NULL otherwise.
2687 *
2688 * Note that if it returns page table lock pointer, this routine returns without
2689 * unlocking page table lock. So callers must unlock it.
2690 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)2691 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2692 {
2693 spinlock_t *ptl;
2694
2695 ptl = pud_lock(vma->vm_mm, pud);
2696 if (likely(pud_trans_huge(*pud)))
2697 return ptl;
2698 spin_unlock(ptl);
2699 return NULL;
2700 }
2701
2702 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)2703 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2704 pud_t *pud, unsigned long addr)
2705 {
2706 spinlock_t *ptl;
2707 pud_t orig_pud;
2708
2709 ptl = __pud_trans_huge_lock(pud, vma);
2710 if (!ptl)
2711 return 0;
2712
2713 orig_pud = pudp_huge_get_and_clear_full(vma, addr, pud, tlb->fullmm);
2714 arch_check_zapped_pud(vma, orig_pud);
2715 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2716 if (!vma_is_dax(vma) && vma_is_special_huge(vma)) {
2717 spin_unlock(ptl);
2718 /* No zero page support yet */
2719 } else {
2720 struct page *page = NULL;
2721 struct folio *folio;
2722
2723 /* No support for anonymous PUD pages or migration yet */
2724 VM_WARN_ON_ONCE(vma_is_anonymous(vma) ||
2725 !pud_present(orig_pud));
2726
2727 page = pud_page(orig_pud);
2728 folio = page_folio(page);
2729 folio_remove_rmap_pud(folio, page, vma);
2730 add_mm_counter(tlb->mm, mm_counter_file(folio), -HPAGE_PUD_NR);
2731
2732 spin_unlock(ptl);
2733 tlb_remove_page_size(tlb, page, HPAGE_PUD_SIZE);
2734 }
2735 return 1;
2736 }
2737
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)2738 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2739 unsigned long haddr)
2740 {
2741 struct folio *folio;
2742 struct page *page;
2743 pud_t old_pud;
2744
2745 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2746 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2747 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2748 VM_BUG_ON(!pud_trans_huge(*pud));
2749
2750 count_vm_event(THP_SPLIT_PUD);
2751
2752 old_pud = pudp_huge_clear_flush(vma, haddr, pud);
2753
2754 if (!vma_is_dax(vma))
2755 return;
2756
2757 page = pud_page(old_pud);
2758 folio = page_folio(page);
2759
2760 if (!folio_test_dirty(folio) && pud_dirty(old_pud))
2761 folio_mark_dirty(folio);
2762 if (!folio_test_referenced(folio) && pud_young(old_pud))
2763 folio_set_referenced(folio);
2764 folio_remove_rmap_pud(folio, page, vma);
2765 folio_put(folio);
2766 add_mm_counter(vma->vm_mm, mm_counter_file(folio),
2767 -HPAGE_PUD_NR);
2768 }
2769
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2770 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2771 unsigned long address)
2772 {
2773 spinlock_t *ptl;
2774 struct mmu_notifier_range range;
2775
2776 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2777 address & HPAGE_PUD_MASK,
2778 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2779 mmu_notifier_invalidate_range_start(&range);
2780 ptl = pud_lock(vma->vm_mm, pud);
2781 if (unlikely(!pud_trans_huge(*pud)))
2782 goto out;
2783 __split_huge_pud_locked(vma, pud, range.start);
2784
2785 out:
2786 spin_unlock(ptl);
2787 mmu_notifier_invalidate_range_end(&range);
2788 }
2789 #else
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)2790 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2791 unsigned long address)
2792 {
2793 }
2794 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2795
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)2796 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2797 unsigned long haddr, pmd_t *pmd)
2798 {
2799 struct mm_struct *mm = vma->vm_mm;
2800 pgtable_t pgtable;
2801 pmd_t _pmd, old_pmd;
2802 unsigned long addr;
2803 pte_t *pte;
2804 int i;
2805
2806 /*
2807 * Leave pmd empty until pte is filled note that it is fine to delay
2808 * notification until mmu_notifier_invalidate_range_end() as we are
2809 * replacing a zero pmd write protected page with a zero pte write
2810 * protected page.
2811 *
2812 * See Documentation/mm/mmu_notifier.rst
2813 */
2814 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2815
2816 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2817 pmd_populate(mm, &_pmd, pgtable);
2818
2819 pte = pte_offset_map(&_pmd, haddr);
2820 VM_BUG_ON(!pte);
2821 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2822 pte_t entry;
2823
2824 entry = pfn_pte(my_zero_pfn(addr), vma->vm_page_prot);
2825 entry = pte_mkspecial(entry);
2826 if (pmd_uffd_wp(old_pmd))
2827 entry = pte_mkuffd_wp(entry);
2828 VM_BUG_ON(!pte_none(ptep_get(pte)));
2829 set_pte_at(mm, addr, pte, entry);
2830 pte++;
2831 }
2832 pte_unmap(pte - 1);
2833 smp_wmb(); /* make pte visible before pmd */
2834 pmd_populate(mm, pmd, pgtable);
2835 }
2836
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)2837 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2838 unsigned long haddr, bool freeze)
2839 {
2840 struct mm_struct *mm = vma->vm_mm;
2841 struct folio *folio;
2842 struct page *page;
2843 pgtable_t pgtable;
2844 pmd_t old_pmd, _pmd;
2845 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2846 bool anon_exclusive = false, dirty = false;
2847 unsigned long addr;
2848 pte_t *pte;
2849 int i;
2850
2851 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2852 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2853 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2854 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd));
2855
2856 count_vm_event(THP_SPLIT_PMD);
2857
2858 if (!vma_is_anonymous(vma)) {
2859 old_pmd = pmdp_huge_clear_flush(vma, haddr, pmd);
2860 /*
2861 * We are going to unmap this huge page. So
2862 * just go ahead and zap it
2863 */
2864 if (arch_needs_pgtable_deposit())
2865 zap_deposited_table(mm, pmd);
2866 if (!vma_is_dax(vma) && vma_is_special_huge(vma))
2867 return;
2868 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2869 swp_entry_t entry;
2870
2871 entry = pmd_to_swp_entry(old_pmd);
2872 folio = pfn_swap_entry_folio(entry);
2873 } else if (is_huge_zero_pmd(old_pmd)) {
2874 return;
2875 } else {
2876 page = pmd_page(old_pmd);
2877 folio = page_folio(page);
2878 if (!folio_test_dirty(folio) && pmd_dirty(old_pmd))
2879 folio_mark_dirty(folio);
2880 if (!folio_test_referenced(folio) && pmd_young(old_pmd))
2881 folio_set_referenced(folio);
2882 folio_remove_rmap_pmd(folio, page, vma);
2883 folio_put(folio);
2884 }
2885 add_mm_counter(mm, mm_counter_file(folio), -HPAGE_PMD_NR);
2886 return;
2887 }
2888
2889 if (is_huge_zero_pmd(*pmd)) {
2890 /*
2891 * FIXME: Do we want to invalidate secondary mmu by calling
2892 * mmu_notifier_arch_invalidate_secondary_tlbs() see comments below
2893 * inside __split_huge_pmd() ?
2894 *
2895 * We are going from a zero huge page write protected to zero
2896 * small page also write protected so it does not seems useful
2897 * to invalidate secondary mmu at this time.
2898 */
2899 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2900 }
2901
2902 pmd_migration = is_pmd_migration_entry(*pmd);
2903 if (unlikely(pmd_migration)) {
2904 swp_entry_t entry;
2905
2906 old_pmd = *pmd;
2907 entry = pmd_to_swp_entry(old_pmd);
2908 page = pfn_swap_entry_to_page(entry);
2909 write = is_writable_migration_entry(entry);
2910 if (PageAnon(page))
2911 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2912 young = is_migration_entry_young(entry);
2913 dirty = is_migration_entry_dirty(entry);
2914 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2915 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2916 } else {
2917 /*
2918 * Up to this point the pmd is present and huge and userland has
2919 * the whole access to the hugepage during the split (which
2920 * happens in place). If we overwrite the pmd with the not-huge
2921 * version pointing to the pte here (which of course we could if
2922 * all CPUs were bug free), userland could trigger a small page
2923 * size TLB miss on the small sized TLB while the hugepage TLB
2924 * entry is still established in the huge TLB. Some CPU doesn't
2925 * like that. See
2926 * http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2927 * 383 on page 105. Intel should be safe but is also warns that
2928 * it's only safe if the permission and cache attributes of the
2929 * two entries loaded in the two TLB is identical (which should
2930 * be the case here). But it is generally safer to never allow
2931 * small and huge TLB entries for the same virtual address to be
2932 * loaded simultaneously. So instead of doing "pmd_populate();
2933 * flush_pmd_tlb_range();" we first mark the current pmd
2934 * notpresent (atomically because here the pmd_trans_huge must
2935 * remain set at all times on the pmd until the split is
2936 * complete for this pmd), then we flush the SMP TLB and finally
2937 * we write the non-huge version of the pmd entry with
2938 * pmd_populate.
2939 */
2940 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2941 page = pmd_page(old_pmd);
2942 folio = page_folio(page);
2943 if (pmd_dirty(old_pmd)) {
2944 dirty = true;
2945 folio_set_dirty(folio);
2946 }
2947 write = pmd_write(old_pmd);
2948 young = pmd_young(old_pmd);
2949 soft_dirty = pmd_soft_dirty(old_pmd);
2950 uffd_wp = pmd_uffd_wp(old_pmd);
2951
2952 VM_WARN_ON_FOLIO(!folio_ref_count(folio), folio);
2953 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
2954
2955 /*
2956 * Without "freeze", we'll simply split the PMD, propagating the
2957 * PageAnonExclusive() flag for each PTE by setting it for
2958 * each subpage -- no need to (temporarily) clear.
2959 *
2960 * With "freeze" we want to replace mapped pages by
2961 * migration entries right away. This is only possible if we
2962 * managed to clear PageAnonExclusive() -- see
2963 * set_pmd_migration_entry().
2964 *
2965 * In case we cannot clear PageAnonExclusive(), split the PMD
2966 * only and let try_to_migrate_one() fail later.
2967 *
2968 * See folio_try_share_anon_rmap_pmd(): invalidate PMD first.
2969 */
2970 anon_exclusive = PageAnonExclusive(page);
2971 if (freeze && anon_exclusive &&
2972 folio_try_share_anon_rmap_pmd(folio, page))
2973 freeze = false;
2974 if (!freeze) {
2975 rmap_t rmap_flags = RMAP_NONE;
2976
2977 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2978 if (anon_exclusive)
2979 rmap_flags |= RMAP_EXCLUSIVE;
2980 folio_add_anon_rmap_ptes(folio, page, HPAGE_PMD_NR,
2981 vma, haddr, rmap_flags);
2982 }
2983 }
2984
2985 /*
2986 * Withdraw the table only after we mark the pmd entry invalid.
2987 * This's critical for some architectures (Power).
2988 */
2989 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2990 pmd_populate(mm, &_pmd, pgtable);
2991
2992 pte = pte_offset_map(&_pmd, haddr);
2993 VM_BUG_ON(!pte);
2994
2995 /*
2996 * Note that NUMA hinting access restrictions are not transferred to
2997 * avoid any possibility of altering permissions across VMAs.
2998 */
2999 if (freeze || pmd_migration) {
3000 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3001 pte_t entry;
3002 swp_entry_t swp_entry;
3003
3004 if (write)
3005 swp_entry = make_writable_migration_entry(
3006 page_to_pfn(page + i));
3007 else if (anon_exclusive)
3008 swp_entry = make_readable_exclusive_migration_entry(
3009 page_to_pfn(page + i));
3010 else
3011 swp_entry = make_readable_migration_entry(
3012 page_to_pfn(page + i));
3013 if (young)
3014 swp_entry = make_migration_entry_young(swp_entry);
3015 if (dirty)
3016 swp_entry = make_migration_entry_dirty(swp_entry);
3017 entry = swp_entry_to_pte(swp_entry);
3018 if (soft_dirty)
3019 entry = pte_swp_mksoft_dirty(entry);
3020 if (uffd_wp)
3021 entry = pte_swp_mkuffd_wp(entry);
3022
3023 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3024 set_pte_at(mm, addr, pte + i, entry);
3025 }
3026 } else {
3027 pte_t entry;
3028
3029 entry = mk_pte(page, READ_ONCE(vma->vm_page_prot));
3030 if (write)
3031 entry = pte_mkwrite(entry, vma);
3032 if (!young)
3033 entry = pte_mkold(entry);
3034 /* NOTE: this may set soft-dirty too on some archs */
3035 if (dirty)
3036 entry = pte_mkdirty(entry);
3037 if (soft_dirty)
3038 entry = pte_mksoft_dirty(entry);
3039 if (uffd_wp)
3040 entry = pte_mkuffd_wp(entry);
3041
3042 for (i = 0; i < HPAGE_PMD_NR; i++)
3043 VM_WARN_ON(!pte_none(ptep_get(pte + i)));
3044
3045 set_ptes(mm, haddr, pte, entry, HPAGE_PMD_NR);
3046 }
3047 pte_unmap(pte);
3048
3049 if (!pmd_migration)
3050 folio_remove_rmap_pmd(folio, page, vma);
3051 if (freeze)
3052 put_page(page);
3053
3054 smp_wmb(); /* make pte visible before pmd */
3055 pmd_populate(mm, pmd, pgtable);
3056 }
3057
split_huge_pmd_locked(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,bool freeze)3058 void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
3059 pmd_t *pmd, bool freeze)
3060 {
3061 VM_WARN_ON_ONCE(!IS_ALIGNED(address, HPAGE_PMD_SIZE));
3062 if (pmd_trans_huge(*pmd) || is_pmd_migration_entry(*pmd))
3063 __split_huge_pmd_locked(vma, pmd, address, freeze);
3064 }
3065
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze)3066 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3067 unsigned long address, bool freeze)
3068 {
3069 spinlock_t *ptl;
3070 struct mmu_notifier_range range;
3071
3072 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
3073 address & HPAGE_PMD_MASK,
3074 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
3075 mmu_notifier_invalidate_range_start(&range);
3076 ptl = pmd_lock(vma->vm_mm, pmd);
3077 split_huge_pmd_locked(vma, range.start, pmd, freeze);
3078 spin_unlock(ptl);
3079 mmu_notifier_invalidate_range_end(&range);
3080 }
3081
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze)3082 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3083 bool freeze)
3084 {
3085 pmd_t *pmd = mm_find_pmd(vma->vm_mm, address);
3086
3087 if (!pmd)
3088 return;
3089
3090 __split_huge_pmd(vma, pmd, address, freeze);
3091 }
3092
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)3093 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
3094 {
3095 /*
3096 * If the new address isn't hpage aligned and it could previously
3097 * contain an hugepage: check if we need to split an huge pmd.
3098 */
3099 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
3100 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
3101 ALIGN(address, HPAGE_PMD_SIZE)))
3102 split_huge_pmd_address(vma, address, false);
3103 }
3104
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct vm_area_struct * next)3105 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3106 unsigned long start,
3107 unsigned long end,
3108 struct vm_area_struct *next)
3109 {
3110 /* Check if we need to split start first. */
3111 split_huge_pmd_if_needed(vma, start);
3112
3113 /* Check if we need to split end next. */
3114 split_huge_pmd_if_needed(vma, end);
3115
3116 /* If we're incrementing next->vm_start, we might need to split it. */
3117 if (next)
3118 split_huge_pmd_if_needed(next, end);
3119 }
3120
unmap_folio(struct folio * folio)3121 static void unmap_folio(struct folio *folio)
3122 {
3123 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SYNC |
3124 TTU_BATCH_FLUSH;
3125
3126 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
3127
3128 if (folio_test_pmd_mappable(folio))
3129 ttu_flags |= TTU_SPLIT_HUGE_PMD;
3130
3131 /*
3132 * Anon pages need migration entries to preserve them, but file
3133 * pages can simply be left unmapped, then faulted back on demand.
3134 * If that is ever changed (perhaps for mlock), update remap_page().
3135 */
3136 if (folio_test_anon(folio))
3137 try_to_migrate(folio, ttu_flags);
3138 else
3139 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
3140
3141 try_to_unmap_flush();
3142 }
3143
__discard_anon_folio_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3144 static bool __discard_anon_folio_pmd_locked(struct vm_area_struct *vma,
3145 unsigned long addr, pmd_t *pmdp,
3146 struct folio *folio)
3147 {
3148 struct mm_struct *mm = vma->vm_mm;
3149 int ref_count, map_count;
3150 pmd_t orig_pmd = *pmdp;
3151
3152 if (pmd_dirty(orig_pmd))
3153 folio_set_dirty(folio);
3154 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3155 folio_set_swapbacked(folio);
3156 return false;
3157 }
3158
3159 orig_pmd = pmdp_huge_clear_flush(vma, addr, pmdp);
3160
3161 /*
3162 * Syncing against concurrent GUP-fast:
3163 * - clear PMD; barrier; read refcount
3164 * - inc refcount; barrier; read PMD
3165 */
3166 smp_mb();
3167
3168 ref_count = folio_ref_count(folio);
3169 map_count = folio_mapcount(folio);
3170
3171 /*
3172 * Order reads for folio refcount and dirty flag
3173 * (see comments in __remove_mapping()).
3174 */
3175 smp_rmb();
3176
3177 /*
3178 * If the folio or its PMD is redirtied at this point, or if there
3179 * are unexpected references, we will give up to discard this folio
3180 * and remap it.
3181 *
3182 * The only folio refs must be one from isolation plus the rmap(s).
3183 */
3184 if (pmd_dirty(orig_pmd))
3185 folio_set_dirty(folio);
3186 if (folio_test_dirty(folio) && !(vma->vm_flags & VM_DROPPABLE)) {
3187 folio_set_swapbacked(folio);
3188 set_pmd_at(mm, addr, pmdp, orig_pmd);
3189 return false;
3190 }
3191
3192 if (ref_count != map_count + 1) {
3193 set_pmd_at(mm, addr, pmdp, orig_pmd);
3194 return false;
3195 }
3196
3197 folio_remove_rmap_pmd(folio, pmd_page(orig_pmd), vma);
3198 zap_deposited_table(mm, pmdp);
3199 add_mm_counter(mm, MM_ANONPAGES, -HPAGE_PMD_NR);
3200 if (vma->vm_flags & VM_LOCKED)
3201 mlock_drain_local();
3202 folio_put(folio);
3203
3204 return true;
3205 }
3206
unmap_huge_pmd_locked(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,struct folio * folio)3207 bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
3208 pmd_t *pmdp, struct folio *folio)
3209 {
3210 VM_WARN_ON_FOLIO(!folio_test_pmd_mappable(folio), folio);
3211 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
3212 VM_WARN_ON_FOLIO(!folio_test_anon(folio), folio);
3213 VM_WARN_ON_FOLIO(folio_test_swapbacked(folio), folio);
3214 VM_WARN_ON_ONCE(!IS_ALIGNED(addr, HPAGE_PMD_SIZE));
3215
3216 return __discard_anon_folio_pmd_locked(vma, addr, pmdp, folio);
3217 }
3218
remap_page(struct folio * folio,unsigned long nr,int flags)3219 static void remap_page(struct folio *folio, unsigned long nr, int flags)
3220 {
3221 int i = 0;
3222
3223 /* If unmap_folio() uses try_to_migrate() on file, remove this check */
3224 if (!folio_test_anon(folio))
3225 return;
3226 for (;;) {
3227 remove_migration_ptes(folio, folio, RMP_LOCKED | flags);
3228 i += folio_nr_pages(folio);
3229 if (i >= nr)
3230 break;
3231 folio = folio_next(folio);
3232 }
3233 }
3234
lru_add_split_folio(struct folio * folio,struct folio * new_folio,struct lruvec * lruvec,struct list_head * list)3235 static void lru_add_split_folio(struct folio *folio, struct folio *new_folio,
3236 struct lruvec *lruvec, struct list_head *list)
3237 {
3238 VM_BUG_ON_FOLIO(folio_test_lru(new_folio), folio);
3239 lockdep_assert_held(&lruvec->lru_lock);
3240
3241 if (list) {
3242 /* page reclaim is reclaiming a huge page */
3243 VM_WARN_ON(folio_test_lru(folio));
3244 folio_get(new_folio);
3245 list_add_tail(&new_folio->lru, list);
3246 } else {
3247 /* head is still on lru (and we have it frozen) */
3248 VM_WARN_ON(!folio_test_lru(folio));
3249 if (folio_test_unevictable(folio))
3250 new_folio->mlock_count = 0;
3251 else
3252 list_add_tail(&new_folio->lru, &folio->lru);
3253 folio_set_lru(new_folio);
3254 }
3255 }
3256
3257 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int caller_pins,int * pextra_pins)3258 bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
3259 {
3260 int extra_pins;
3261
3262 /* Additional pins from page cache */
3263 if (folio_test_anon(folio))
3264 extra_pins = folio_test_swapcache(folio) ?
3265 folio_nr_pages(folio) : 0;
3266 else
3267 extra_pins = folio_nr_pages(folio);
3268 if (pextra_pins)
3269 *pextra_pins = extra_pins;
3270 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins -
3271 caller_pins;
3272 }
3273
3274 /*
3275 * It splits @folio into @new_order folios and copies the @folio metadata to
3276 * all the resulting folios.
3277 */
__split_folio_to_order(struct folio * folio,int old_order,int new_order)3278 static void __split_folio_to_order(struct folio *folio, int old_order,
3279 int new_order)
3280 {
3281 long new_nr_pages = 1 << new_order;
3282 long nr_pages = 1 << old_order;
3283 long i;
3284
3285 /*
3286 * Skip the first new_nr_pages, since the new folio from them have all
3287 * the flags from the original folio.
3288 */
3289 for (i = new_nr_pages; i < nr_pages; i += new_nr_pages) {
3290 struct page *new_head = &folio->page + i;
3291
3292 /*
3293 * Careful: new_folio is not a "real" folio before we cleared PageTail.
3294 * Don't pass it around before clear_compound_head().
3295 */
3296 struct folio *new_folio = (struct folio *)new_head;
3297
3298 VM_BUG_ON_PAGE(atomic_read(&new_folio->_mapcount) != -1, new_head);
3299
3300 /*
3301 * Clone page flags before unfreezing refcount.
3302 *
3303 * After successful get_page_unless_zero() might follow flags change,
3304 * for example lock_page() which set PG_waiters.
3305 *
3306 * Note that for mapped sub-pages of an anonymous THP,
3307 * PG_anon_exclusive has been cleared in unmap_folio() and is stored in
3308 * the migration entry instead from where remap_page() will restore it.
3309 * We can still have PG_anon_exclusive set on effectively unmapped and
3310 * unreferenced sub-pages of an anonymous THP: we can simply drop
3311 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
3312 */
3313 new_folio->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3314 new_folio->flags |= (folio->flags &
3315 ((1L << PG_referenced) |
3316 (1L << PG_swapbacked) |
3317 (1L << PG_swapcache) |
3318 (1L << PG_mlocked) |
3319 (1L << PG_uptodate) |
3320 (1L << PG_active) |
3321 (1L << PG_workingset) |
3322 (1L << PG_locked) |
3323 (1L << PG_unevictable) |
3324 #ifdef CONFIG_ARCH_USES_PG_ARCH_2
3325 (1L << PG_arch_2) |
3326 #endif
3327 #ifdef CONFIG_ARCH_USES_PG_ARCH_3
3328 (1L << PG_arch_3) |
3329 #endif
3330 (1L << PG_dirty) |
3331 LRU_GEN_MASK | LRU_REFS_MASK));
3332
3333 new_folio->mapping = folio->mapping;
3334 new_folio->index = folio->index + i;
3335
3336 /*
3337 * page->private should not be set in tail pages. Fix up and warn once
3338 * if private is unexpectedly set.
3339 */
3340 if (unlikely(new_folio->private)) {
3341 VM_WARN_ON_ONCE_PAGE(true, new_head);
3342 new_folio->private = NULL;
3343 }
3344
3345 if (folio_test_swapcache(folio))
3346 new_folio->swap.val = folio->swap.val + i;
3347
3348 /* Page flags must be visible before we make the page non-compound. */
3349 smp_wmb();
3350
3351 /*
3352 * Clear PageTail before unfreezing page refcount.
3353 *
3354 * After successful get_page_unless_zero() might follow put_page()
3355 * which needs correct compound_head().
3356 */
3357 clear_compound_head(new_head);
3358 if (new_order) {
3359 prep_compound_page(new_head, new_order);
3360 folio_set_large_rmappable(new_folio);
3361 }
3362
3363 if (folio_test_young(folio))
3364 folio_set_young(new_folio);
3365 if (folio_test_idle(folio))
3366 folio_set_idle(new_folio);
3367 #ifdef CONFIG_MEMCG
3368 new_folio->memcg_data = folio->memcg_data;
3369 #endif
3370
3371 folio_xchg_last_cpupid(new_folio, folio_last_cpupid(folio));
3372 }
3373
3374 if (new_order)
3375 folio_set_order(folio, new_order);
3376 else
3377 ClearPageCompound(&folio->page);
3378 }
3379
3380 /*
3381 * It splits an unmapped @folio to lower order smaller folios in two ways.
3382 * @folio: the to-be-split folio
3383 * @new_order: the smallest order of the after split folios (since buddy
3384 * allocator like split generates folios with orders from @folio's
3385 * order - 1 to new_order).
3386 * @split_at: in buddy allocator like split, the folio containing @split_at
3387 * will be split until its order becomes @new_order.
3388 * @xas: xa_state pointing to folio->mapping->i_pages and locked by caller
3389 * @mapping: @folio->mapping
3390 * @uniform_split: if the split is uniform or not (buddy allocator like split)
3391 *
3392 *
3393 * 1. uniform split: the given @folio into multiple @new_order small folios,
3394 * where all small folios have the same order. This is done when
3395 * uniform_split is true.
3396 * 2. buddy allocator like (non-uniform) split: the given @folio is split into
3397 * half and one of the half (containing the given page) is split into half
3398 * until the given @page's order becomes @new_order. This is done when
3399 * uniform_split is false.
3400 *
3401 * The high level flow for these two methods are:
3402 * 1. uniform split: a single __split_folio_to_order() is called to split the
3403 * @folio into @new_order, then we traverse all the resulting folios one by
3404 * one in PFN ascending order and perform stats, unfreeze, adding to list,
3405 * and file mapping index operations.
3406 * 2. non-uniform split: in general, folio_order - @new_order calls to
3407 * __split_folio_to_order() are made in a for loop to split the @folio
3408 * to one lower order at a time. The resulting small folios are processed
3409 * like what is done during the traversal in 1, except the one containing
3410 * @page, which is split in next for loop.
3411 *
3412 * After splitting, the caller's folio reference will be transferred to the
3413 * folio containing @page. The caller needs to unlock and/or free after-split
3414 * folios if necessary.
3415 *
3416 * For !uniform_split, when -ENOMEM is returned, the original folio might be
3417 * split. The caller needs to check the input folio.
3418 */
__split_unmapped_folio(struct folio * folio,int new_order,struct page * split_at,struct xa_state * xas,struct address_space * mapping,bool uniform_split)3419 static int __split_unmapped_folio(struct folio *folio, int new_order,
3420 struct page *split_at, struct xa_state *xas,
3421 struct address_space *mapping, bool uniform_split)
3422 {
3423 int order = folio_order(folio);
3424 int start_order = uniform_split ? new_order : order - 1;
3425 bool stop_split = false;
3426 struct folio *next;
3427 int split_order;
3428 int ret = 0;
3429
3430 if (folio_test_anon(folio))
3431 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
3432
3433 folio_clear_has_hwpoisoned(folio);
3434
3435 /*
3436 * split to new_order one order at a time. For uniform split,
3437 * folio is split to new_order directly.
3438 */
3439 for (split_order = start_order;
3440 split_order >= new_order && !stop_split;
3441 split_order--) {
3442 struct folio *end_folio = folio_next(folio);
3443 int old_order = folio_order(folio);
3444 struct folio *new_folio;
3445
3446 /* order-1 anonymous folio is not supported */
3447 if (folio_test_anon(folio) && split_order == 1)
3448 continue;
3449 if (uniform_split && split_order != new_order)
3450 continue;
3451
3452 if (mapping) {
3453 /*
3454 * uniform split has xas_split_alloc() called before
3455 * irq is disabled to allocate enough memory, whereas
3456 * non-uniform split can handle ENOMEM.
3457 */
3458 if (uniform_split)
3459 xas_split(xas, folio, old_order);
3460 else {
3461 xas_set_order(xas, folio->index, split_order);
3462 xas_try_split(xas, folio, old_order);
3463 if (xas_error(xas)) {
3464 ret = xas_error(xas);
3465 stop_split = true;
3466 }
3467 }
3468 }
3469
3470 if (!stop_split) {
3471 folio_split_memcg_refs(folio, old_order, split_order);
3472 split_page_owner(&folio->page, old_order, split_order);
3473 pgalloc_tag_split(folio, old_order, split_order);
3474
3475 __split_folio_to_order(folio, old_order, split_order);
3476 }
3477
3478 /*
3479 * Iterate through after-split folios and update folio stats.
3480 * But in buddy allocator like split, the folio
3481 * containing the specified page is skipped until its order
3482 * is new_order, since the folio will be worked on in next
3483 * iteration.
3484 */
3485 for (new_folio = folio; new_folio != end_folio; new_folio = next) {
3486 next = folio_next(new_folio);
3487 /*
3488 * for buddy allocator like split, new_folio containing
3489 * @split_at page could be split again, thus do not
3490 * change stats yet. Wait until new_folio's order is
3491 * @new_order or stop_split is set to true by the above
3492 * xas_split() failure.
3493 */
3494 if (new_folio == page_folio(split_at)) {
3495 folio = new_folio;
3496 if (split_order != new_order && !stop_split)
3497 continue;
3498 }
3499 if (folio_test_anon(new_folio))
3500 mod_mthp_stat(folio_order(new_folio),
3501 MTHP_STAT_NR_ANON, 1);
3502 }
3503 }
3504
3505 return ret;
3506 }
3507
non_uniform_split_supported(struct folio * folio,unsigned int new_order,bool warns)3508 bool non_uniform_split_supported(struct folio *folio, unsigned int new_order,
3509 bool warns)
3510 {
3511 if (folio_test_anon(folio)) {
3512 /* order-1 is not supported for anonymous THP. */
3513 VM_WARN_ONCE(warns && new_order == 1,
3514 "Cannot split to order-1 folio");
3515 return new_order != 1;
3516 } else if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3517 !mapping_large_folio_support(folio->mapping)) {
3518 /*
3519 * No split if the file system does not support large folio.
3520 * Note that we might still have THPs in such mappings due to
3521 * CONFIG_READ_ONLY_THP_FOR_FS. But in that case, the mapping
3522 * does not actually support large folios properly.
3523 */
3524 VM_WARN_ONCE(warns,
3525 "Cannot split file folio to non-0 order");
3526 return false;
3527 }
3528
3529 /* Only swapping a whole PMD-mapped folio is supported */
3530 if (folio_test_swapcache(folio)) {
3531 VM_WARN_ONCE(warns,
3532 "Cannot split swapcache folio to non-0 order");
3533 return false;
3534 }
3535
3536 return true;
3537 }
3538
3539 /* See comments in non_uniform_split_supported() */
uniform_split_supported(struct folio * folio,unsigned int new_order,bool warns)3540 bool uniform_split_supported(struct folio *folio, unsigned int new_order,
3541 bool warns)
3542 {
3543 if (folio_test_anon(folio)) {
3544 VM_WARN_ONCE(warns && new_order == 1,
3545 "Cannot split to order-1 folio");
3546 return new_order != 1;
3547 } else if (new_order) {
3548 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
3549 !mapping_large_folio_support(folio->mapping)) {
3550 VM_WARN_ONCE(warns,
3551 "Cannot split file folio to non-0 order");
3552 return false;
3553 }
3554 }
3555
3556 if (new_order && folio_test_swapcache(folio)) {
3557 VM_WARN_ONCE(warns,
3558 "Cannot split swapcache folio to non-0 order");
3559 return false;
3560 }
3561
3562 return true;
3563 }
3564
3565 /*
3566 * __folio_split: split a folio at @split_at to a @new_order folio
3567 * @folio: folio to split
3568 * @new_order: the order of the new folio
3569 * @split_at: a page within the new folio
3570 * @lock_at: a page within @folio to be left locked to caller
3571 * @list: after-split folios will be put on it if non NULL
3572 * @uniform_split: perform uniform split or not (non-uniform split)
3573 *
3574 * It calls __split_unmapped_folio() to perform uniform and non-uniform split.
3575 * It is in charge of checking whether the split is supported or not and
3576 * preparing @folio for __split_unmapped_folio().
3577 *
3578 * After splitting, the after-split folio containing @lock_at remains locked
3579 * and others are unlocked:
3580 * 1. for uniform split, @lock_at points to one of @folio's subpages;
3581 * 2. for buddy allocator like (non-uniform) split, @lock_at points to @folio.
3582 *
3583 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3584 * split but not to @new_order, the caller needs to check)
3585 */
__folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct page * lock_at,struct list_head * list,bool uniform_split)3586 static int __folio_split(struct folio *folio, unsigned int new_order,
3587 struct page *split_at, struct page *lock_at,
3588 struct list_head *list, bool uniform_split)
3589 {
3590 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
3591 XA_STATE(xas, &folio->mapping->i_pages, folio->index);
3592 struct folio *end_folio = folio_next(folio);
3593 bool is_anon = folio_test_anon(folio);
3594 struct address_space *mapping = NULL;
3595 struct anon_vma *anon_vma = NULL;
3596 int order = folio_order(folio);
3597 struct folio *new_folio, *next;
3598 int nr_shmem_dropped = 0;
3599 int remap_flags = 0;
3600 int extra_pins, ret;
3601 pgoff_t end;
3602 bool is_hzp;
3603
3604 VM_WARN_ON_ONCE_FOLIO(!folio_test_locked(folio), folio);
3605 VM_WARN_ON_ONCE_FOLIO(!folio_test_large(folio), folio);
3606
3607 if (folio != page_folio(split_at) || folio != page_folio(lock_at))
3608 return -EINVAL;
3609
3610 if (new_order >= folio_order(folio))
3611 return -EINVAL;
3612
3613 if (uniform_split && !uniform_split_supported(folio, new_order, true))
3614 return -EINVAL;
3615
3616 if (!uniform_split &&
3617 !non_uniform_split_supported(folio, new_order, true))
3618 return -EINVAL;
3619
3620 is_hzp = is_huge_zero_folio(folio);
3621 if (is_hzp) {
3622 pr_warn_ratelimited("Called split_huge_page for huge zero page\n");
3623 return -EBUSY;
3624 }
3625
3626 if (folio_test_writeback(folio))
3627 return -EBUSY;
3628
3629 if (is_anon) {
3630 /*
3631 * The caller does not necessarily hold an mmap_lock that would
3632 * prevent the anon_vma disappearing so we first we take a
3633 * reference to it and then lock the anon_vma for write. This
3634 * is similar to folio_lock_anon_vma_read except the write lock
3635 * is taken to serialise against parallel split or collapse
3636 * operations.
3637 */
3638 anon_vma = folio_get_anon_vma(folio);
3639 if (!anon_vma) {
3640 ret = -EBUSY;
3641 goto out;
3642 }
3643 mapping = NULL;
3644 anon_vma_lock_write(anon_vma);
3645 } else {
3646 unsigned int min_order;
3647 gfp_t gfp;
3648
3649 mapping = folio->mapping;
3650
3651 /* Truncated ? */
3652 /*
3653 * TODO: add support for large shmem folio in swap cache.
3654 * When shmem is in swap cache, mapping is NULL and
3655 * folio_test_swapcache() is true.
3656 */
3657 if (!mapping) {
3658 ret = -EBUSY;
3659 goto out;
3660 }
3661
3662 min_order = mapping_min_folio_order(folio->mapping);
3663 if (new_order < min_order) {
3664 VM_WARN_ONCE(1, "Cannot split mapped folio below min-order: %u",
3665 min_order);
3666 ret = -EINVAL;
3667 goto out;
3668 }
3669
3670 gfp = current_gfp_context(mapping_gfp_mask(mapping) &
3671 GFP_RECLAIM_MASK);
3672
3673 if (!filemap_release_folio(folio, gfp)) {
3674 ret = -EBUSY;
3675 goto out;
3676 }
3677
3678 if (uniform_split) {
3679 xas_set_order(&xas, folio->index, new_order);
3680 xas_split_alloc(&xas, folio, folio_order(folio), gfp);
3681 if (xas_error(&xas)) {
3682 ret = xas_error(&xas);
3683 goto out;
3684 }
3685 }
3686
3687 anon_vma = NULL;
3688 i_mmap_lock_read(mapping);
3689
3690 /*
3691 *__split_unmapped_folio() may need to trim off pages beyond
3692 * EOF: but on 32-bit, i_size_read() takes an irq-unsafe
3693 * seqlock, which cannot be nested inside the page tree lock.
3694 * So note end now: i_size itself may be changed at any moment,
3695 * but folio lock is good enough to serialize the trimming.
3696 */
3697 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3698 if (shmem_mapping(mapping))
3699 end = shmem_fallocend(mapping->host, end);
3700 }
3701
3702 /*
3703 * Racy check if we can split the page, before unmap_folio() will
3704 * split PMDs
3705 */
3706 if (!can_split_folio(folio, 1, &extra_pins)) {
3707 ret = -EAGAIN;
3708 goto out_unlock;
3709 }
3710
3711 unmap_folio(folio);
3712
3713 /* block interrupt reentry in xa_lock and spinlock */
3714 local_irq_disable();
3715 if (mapping) {
3716 /*
3717 * Check if the folio is present in page cache.
3718 * We assume all tail are present too, if folio is there.
3719 */
3720 xas_lock(&xas);
3721 xas_reset(&xas);
3722 if (xas_load(&xas) != folio) {
3723 ret = -EAGAIN;
3724 goto fail;
3725 }
3726 }
3727
3728 /* Prevent deferred_split_scan() touching ->_refcount */
3729 spin_lock(&ds_queue->split_queue_lock);
3730 if (folio_ref_freeze(folio, 1 + extra_pins)) {
3731 struct address_space *swap_cache = NULL;
3732 struct lruvec *lruvec;
3733 int expected_refs;
3734
3735 if (folio_order(folio) > 1 &&
3736 !list_empty(&folio->_deferred_list)) {
3737 ds_queue->split_queue_len--;
3738 if (folio_test_partially_mapped(folio)) {
3739 folio_clear_partially_mapped(folio);
3740 mod_mthp_stat(folio_order(folio),
3741 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
3742 }
3743 /*
3744 * Reinitialize page_deferred_list after removing the
3745 * page from the split_queue, otherwise a subsequent
3746 * split will see list corruption when checking the
3747 * page_deferred_list.
3748 */
3749 list_del_init(&folio->_deferred_list);
3750 }
3751 spin_unlock(&ds_queue->split_queue_lock);
3752 if (mapping) {
3753 int nr = folio_nr_pages(folio);
3754
3755 if (folio_test_pmd_mappable(folio) &&
3756 new_order < HPAGE_PMD_ORDER) {
3757 if (folio_test_swapbacked(folio)) {
3758 __lruvec_stat_mod_folio(folio,
3759 NR_SHMEM_THPS, -nr);
3760 } else {
3761 __lruvec_stat_mod_folio(folio,
3762 NR_FILE_THPS, -nr);
3763 filemap_nr_thps_dec(mapping);
3764 }
3765 }
3766 }
3767
3768 if (folio_test_swapcache(folio)) {
3769 if (mapping) {
3770 VM_WARN_ON_ONCE_FOLIO(mapping, folio);
3771 ret = -EINVAL;
3772 goto fail;
3773 }
3774
3775 swap_cache = swap_address_space(folio->swap);
3776 xa_lock(&swap_cache->i_pages);
3777 }
3778
3779 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
3780 lruvec = folio_lruvec_lock(folio);
3781
3782 ret = __split_unmapped_folio(folio, new_order, split_at, &xas,
3783 mapping, uniform_split);
3784
3785 /*
3786 * Unfreeze after-split folios and put them back to the right
3787 * list. @folio should be kept frozon until page cache
3788 * entries are updated with all the other after-split folios
3789 * to prevent others seeing stale page cache entries.
3790 * As a result, new_folio starts from the next folio of
3791 * @folio.
3792 */
3793 for (new_folio = folio_next(folio); new_folio != end_folio;
3794 new_folio = next) {
3795 unsigned long nr_pages = folio_nr_pages(new_folio);
3796
3797 next = folio_next(new_folio);
3798
3799 expected_refs = folio_expected_ref_count(new_folio) + 1;
3800 folio_ref_unfreeze(new_folio, expected_refs);
3801
3802 lru_add_split_folio(folio, new_folio, lruvec, list);
3803
3804 /*
3805 * Anonymous folio with swap cache.
3806 * NOTE: shmem in swap cache is not supported yet.
3807 */
3808 if (swap_cache) {
3809 __xa_store(&swap_cache->i_pages,
3810 swap_cache_index(new_folio->swap),
3811 new_folio, 0);
3812 continue;
3813 }
3814
3815 /* Anonymous folio without swap cache */
3816 if (!mapping)
3817 continue;
3818
3819 /* Add the new folio to the page cache. */
3820 if (new_folio->index < end) {
3821 __xa_store(&mapping->i_pages, new_folio->index,
3822 new_folio, 0);
3823 continue;
3824 }
3825
3826 /* Drop folio beyond EOF: ->index >= end */
3827 if (shmem_mapping(mapping))
3828 nr_shmem_dropped += nr_pages;
3829 else if (folio_test_clear_dirty(new_folio))
3830 folio_account_cleaned(
3831 new_folio, inode_to_wb(mapping->host));
3832 __filemap_remove_folio(new_folio, NULL);
3833 folio_put_refs(new_folio, nr_pages);
3834 }
3835 /*
3836 * Unfreeze @folio only after all page cache entries, which
3837 * used to point to it, have been updated with new folios.
3838 * Otherwise, a parallel folio_try_get() can grab @folio
3839 * and its caller can see stale page cache entries.
3840 */
3841 expected_refs = folio_expected_ref_count(folio) + 1;
3842 folio_ref_unfreeze(folio, expected_refs);
3843
3844 unlock_page_lruvec(lruvec);
3845
3846 if (swap_cache)
3847 xa_unlock(&swap_cache->i_pages);
3848 } else {
3849 spin_unlock(&ds_queue->split_queue_lock);
3850 ret = -EAGAIN;
3851 }
3852 fail:
3853 if (mapping)
3854 xas_unlock(&xas);
3855
3856 local_irq_enable();
3857
3858 if (nr_shmem_dropped)
3859 shmem_uncharge(mapping->host, nr_shmem_dropped);
3860
3861 if (!ret && is_anon)
3862 remap_flags = RMP_USE_SHARED_ZEROPAGE;
3863 remap_page(folio, 1 << order, remap_flags);
3864
3865 /*
3866 * Unlock all after-split folios except the one containing
3867 * @lock_at page. If @folio is not split, it will be kept locked.
3868 */
3869 for (new_folio = folio; new_folio != end_folio; new_folio = next) {
3870 next = folio_next(new_folio);
3871 if (new_folio == page_folio(lock_at))
3872 continue;
3873
3874 folio_unlock(new_folio);
3875 /*
3876 * Subpages may be freed if there wasn't any mapping
3877 * like if add_to_swap() is running on a lru page that
3878 * had its mapping zapped. And freeing these pages
3879 * requires taking the lru_lock so we do the put_page
3880 * of the tail pages after the split is complete.
3881 */
3882 free_folio_and_swap_cache(new_folio);
3883 }
3884
3885 out_unlock:
3886 if (anon_vma) {
3887 anon_vma_unlock_write(anon_vma);
3888 put_anon_vma(anon_vma);
3889 }
3890 if (mapping)
3891 i_mmap_unlock_read(mapping);
3892 out:
3893 xas_destroy(&xas);
3894 if (order == HPAGE_PMD_ORDER)
3895 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3896 count_mthp_stat(order, !ret ? MTHP_STAT_SPLIT : MTHP_STAT_SPLIT_FAILED);
3897 return ret;
3898 }
3899
3900 /*
3901 * This function splits a large folio into smaller folios of order @new_order.
3902 * @page can point to any page of the large folio to split. The split operation
3903 * does not change the position of @page.
3904 *
3905 * Prerequisites:
3906 *
3907 * 1) The caller must hold a reference on the @page's owning folio, also known
3908 * as the large folio.
3909 *
3910 * 2) The large folio must be locked.
3911 *
3912 * 3) The folio must not be pinned. Any unexpected folio references, including
3913 * GUP pins, will result in the folio not getting split; instead, the caller
3914 * will receive an -EAGAIN.
3915 *
3916 * 4) @new_order > 1, usually. Splitting to order-1 anonymous folios is not
3917 * supported for non-file-backed folios, because folio->_deferred_list, which
3918 * is used by partially mapped folios, is stored in subpage 2, but an order-1
3919 * folio only has subpages 0 and 1. File-backed order-1 folios are supported,
3920 * since they do not use _deferred_list.
3921 *
3922 * After splitting, the caller's folio reference will be transferred to @page,
3923 * resulting in a raised refcount of @page after this call. The other pages may
3924 * be freed if they are not mapped.
3925 *
3926 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3927 *
3928 * Pages in @new_order will inherit the mapping, flags, and so on from the
3929 * huge page.
3930 *
3931 * Returns 0 if the huge page was split successfully.
3932 *
3933 * Returns -EAGAIN if the folio has unexpected reference (e.g., GUP) or if
3934 * the folio was concurrently removed from the page cache.
3935 *
3936 * Returns -EBUSY when trying to split the huge zeropage, if the folio is
3937 * under writeback, if fs-specific folio metadata cannot currently be
3938 * released, or if some unexpected race happened (e.g., anon VMA disappeared,
3939 * truncation).
3940 *
3941 * Callers should ensure that the order respects the address space mapping
3942 * min-order if one is set for non-anonymous folios.
3943 *
3944 * Returns -EINVAL when trying to split to an order that is incompatible
3945 * with the folio. Splitting to order 0 is compatible with all folios.
3946 */
split_huge_page_to_list_to_order(struct page * page,struct list_head * list,unsigned int new_order)3947 int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
3948 unsigned int new_order)
3949 {
3950 struct folio *folio = page_folio(page);
3951
3952 return __folio_split(folio, new_order, &folio->page, page, list, true);
3953 }
3954
3955 /*
3956 * folio_split: split a folio at @split_at to a @new_order folio
3957 * @folio: folio to split
3958 * @new_order: the order of the new folio
3959 * @split_at: a page within the new folio
3960 *
3961 * return: 0: successful, <0 failed (if -ENOMEM is returned, @folio might be
3962 * split but not to @new_order, the caller needs to check)
3963 *
3964 * It has the same prerequisites and returns as
3965 * split_huge_page_to_list_to_order().
3966 *
3967 * Split a folio at @split_at to a new_order folio, leave the
3968 * remaining subpages of the original folio as large as possible. For example,
3969 * in the case of splitting an order-9 folio at its third order-3 subpages to
3970 * an order-3 folio, there are 2^(9-3)=64 order-3 subpages in the order-9 folio.
3971 * After the split, there will be a group of folios with different orders and
3972 * the new folio containing @split_at is marked in bracket:
3973 * [order-4, {order-3}, order-3, order-5, order-6, order-7, order-8].
3974 *
3975 * After split, folio is left locked for caller.
3976 */
folio_split(struct folio * folio,unsigned int new_order,struct page * split_at,struct list_head * list)3977 int folio_split(struct folio *folio, unsigned int new_order,
3978 struct page *split_at, struct list_head *list)
3979 {
3980 return __folio_split(folio, new_order, split_at, &folio->page, list,
3981 false);
3982 }
3983
min_order_for_split(struct folio * folio)3984 int min_order_for_split(struct folio *folio)
3985 {
3986 if (folio_test_anon(folio))
3987 return 0;
3988
3989 if (!folio->mapping) {
3990 if (folio_test_pmd_mappable(folio))
3991 count_vm_event(THP_SPLIT_PAGE_FAILED);
3992 return -EBUSY;
3993 }
3994
3995 return mapping_min_folio_order(folio->mapping);
3996 }
3997
split_folio_to_list(struct folio * folio,struct list_head * list)3998 int split_folio_to_list(struct folio *folio, struct list_head *list)
3999 {
4000 int ret = min_order_for_split(folio);
4001
4002 if (ret < 0)
4003 return ret;
4004
4005 return split_huge_page_to_list_to_order(&folio->page, list, ret);
4006 }
4007
4008 /*
4009 * __folio_unqueue_deferred_split() is not to be called directly:
4010 * the folio_unqueue_deferred_split() inline wrapper in mm/internal.h
4011 * limits its calls to those folios which may have a _deferred_list for
4012 * queueing THP splits, and that list is (racily observed to be) non-empty.
4013 *
4014 * It is unsafe to call folio_unqueue_deferred_split() until folio refcount is
4015 * zero: because even when split_queue_lock is held, a non-empty _deferred_list
4016 * might be in use on deferred_split_scan()'s unlocked on-stack list.
4017 *
4018 * If memory cgroups are enabled, split_queue_lock is in the mem_cgroup: it is
4019 * therefore important to unqueue deferred split before changing folio memcg.
4020 */
__folio_unqueue_deferred_split(struct folio * folio)4021 bool __folio_unqueue_deferred_split(struct folio *folio)
4022 {
4023 struct deferred_split *ds_queue;
4024 unsigned long flags;
4025 bool unqueued = false;
4026
4027 WARN_ON_ONCE(folio_ref_count(folio));
4028 WARN_ON_ONCE(!mem_cgroup_disabled() && !folio_memcg(folio));
4029
4030 ds_queue = get_deferred_split_queue(folio);
4031 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4032 if (!list_empty(&folio->_deferred_list)) {
4033 ds_queue->split_queue_len--;
4034 if (folio_test_partially_mapped(folio)) {
4035 folio_clear_partially_mapped(folio);
4036 mod_mthp_stat(folio_order(folio),
4037 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4038 }
4039 list_del_init(&folio->_deferred_list);
4040 unqueued = true;
4041 }
4042 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4043
4044 return unqueued; /* useful for debug warnings */
4045 }
4046
4047 /* partially_mapped=false won't clear PG_partially_mapped folio flag */
deferred_split_folio(struct folio * folio,bool partially_mapped)4048 void deferred_split_folio(struct folio *folio, bool partially_mapped)
4049 {
4050 struct deferred_split *ds_queue = get_deferred_split_queue(folio);
4051 #ifdef CONFIG_MEMCG
4052 struct mem_cgroup *memcg = folio_memcg(folio);
4053 #endif
4054 unsigned long flags;
4055
4056 /*
4057 * Order 1 folios have no space for a deferred list, but we also
4058 * won't waste much memory by not adding them to the deferred list.
4059 */
4060 if (folio_order(folio) <= 1)
4061 return;
4062
4063 if (!partially_mapped && !split_underused_thp)
4064 return;
4065
4066 /*
4067 * Exclude swapcache: originally to avoid a corrupt deferred split
4068 * queue. Nowadays that is fully prevented by memcg1_swapout();
4069 * but if page reclaim is already handling the same folio, it is
4070 * unnecessary to handle it again in the shrinker, so excluding
4071 * swapcache here may still be a useful optimization.
4072 */
4073 if (folio_test_swapcache(folio))
4074 return;
4075
4076 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4077 if (partially_mapped) {
4078 if (!folio_test_partially_mapped(folio)) {
4079 folio_set_partially_mapped(folio);
4080 if (folio_test_pmd_mappable(folio))
4081 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
4082 count_mthp_stat(folio_order(folio), MTHP_STAT_SPLIT_DEFERRED);
4083 mod_mthp_stat(folio_order(folio), MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, 1);
4084
4085 }
4086 } else {
4087 /* partially mapped folios cannot become non-partially mapped */
4088 VM_WARN_ON_FOLIO(folio_test_partially_mapped(folio), folio);
4089 }
4090 if (list_empty(&folio->_deferred_list)) {
4091 list_add_tail(&folio->_deferred_list, &ds_queue->split_queue);
4092 ds_queue->split_queue_len++;
4093 #ifdef CONFIG_MEMCG
4094 if (memcg)
4095 set_shrinker_bit(memcg, folio_nid(folio),
4096 deferred_split_shrinker->id);
4097 #endif
4098 }
4099 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4100 }
4101
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)4102 static unsigned long deferred_split_count(struct shrinker *shrink,
4103 struct shrink_control *sc)
4104 {
4105 struct pglist_data *pgdata = NODE_DATA(sc->nid);
4106 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4107
4108 #ifdef CONFIG_MEMCG
4109 if (sc->memcg)
4110 ds_queue = &sc->memcg->deferred_split_queue;
4111 #endif
4112 return READ_ONCE(ds_queue->split_queue_len);
4113 }
4114
thp_underused(struct folio * folio)4115 static bool thp_underused(struct folio *folio)
4116 {
4117 int num_zero_pages = 0, num_filled_pages = 0;
4118 void *kaddr;
4119 int i;
4120
4121 if (khugepaged_max_ptes_none == HPAGE_PMD_NR - 1)
4122 return false;
4123
4124 for (i = 0; i < folio_nr_pages(folio); i++) {
4125 kaddr = kmap_local_folio(folio, i * PAGE_SIZE);
4126 if (!memchr_inv(kaddr, 0, PAGE_SIZE)) {
4127 num_zero_pages++;
4128 if (num_zero_pages > khugepaged_max_ptes_none) {
4129 kunmap_local(kaddr);
4130 return true;
4131 }
4132 } else {
4133 /*
4134 * Another path for early exit once the number
4135 * of non-zero filled pages exceeds threshold.
4136 */
4137 num_filled_pages++;
4138 if (num_filled_pages >= HPAGE_PMD_NR - khugepaged_max_ptes_none) {
4139 kunmap_local(kaddr);
4140 return false;
4141 }
4142 }
4143 kunmap_local(kaddr);
4144 }
4145 return false;
4146 }
4147
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)4148 static unsigned long deferred_split_scan(struct shrinker *shrink,
4149 struct shrink_control *sc)
4150 {
4151 struct pglist_data *pgdata = NODE_DATA(sc->nid);
4152 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
4153 unsigned long flags;
4154 LIST_HEAD(list);
4155 struct folio *folio, *next, *prev = NULL;
4156 int split = 0, removed = 0;
4157
4158 #ifdef CONFIG_MEMCG
4159 if (sc->memcg)
4160 ds_queue = &sc->memcg->deferred_split_queue;
4161 #endif
4162
4163 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4164 /* Take pin on all head pages to avoid freeing them under us */
4165 list_for_each_entry_safe(folio, next, &ds_queue->split_queue,
4166 _deferred_list) {
4167 if (folio_try_get(folio)) {
4168 list_move(&folio->_deferred_list, &list);
4169 } else {
4170 /* We lost race with folio_put() */
4171 if (folio_test_partially_mapped(folio)) {
4172 folio_clear_partially_mapped(folio);
4173 mod_mthp_stat(folio_order(folio),
4174 MTHP_STAT_NR_ANON_PARTIALLY_MAPPED, -1);
4175 }
4176 list_del_init(&folio->_deferred_list);
4177 ds_queue->split_queue_len--;
4178 }
4179 if (!--sc->nr_to_scan)
4180 break;
4181 }
4182 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4183
4184 list_for_each_entry_safe(folio, next, &list, _deferred_list) {
4185 bool did_split = false;
4186 bool underused = false;
4187
4188 if (!folio_test_partially_mapped(folio)) {
4189 underused = thp_underused(folio);
4190 if (!underused)
4191 goto next;
4192 }
4193 if (!folio_trylock(folio))
4194 goto next;
4195 if (!split_folio(folio)) {
4196 did_split = true;
4197 if (underused)
4198 count_vm_event(THP_UNDERUSED_SPLIT_PAGE);
4199 split++;
4200 }
4201 folio_unlock(folio);
4202 next:
4203 /*
4204 * split_folio() removes folio from list on success.
4205 * Only add back to the queue if folio is partially mapped.
4206 * If thp_underused returns false, or if split_folio fails
4207 * in the case it was underused, then consider it used and
4208 * don't add it back to split_queue.
4209 */
4210 if (did_split) {
4211 ; /* folio already removed from list */
4212 } else if (!folio_test_partially_mapped(folio)) {
4213 list_del_init(&folio->_deferred_list);
4214 removed++;
4215 } else {
4216 /*
4217 * That unlocked list_del_init() above would be unsafe,
4218 * unless its folio is separated from any earlier folios
4219 * left on the list (which may be concurrently unqueued)
4220 * by one safe folio with refcount still raised.
4221 */
4222 swap(folio, prev);
4223 }
4224 if (folio)
4225 folio_put(folio);
4226 }
4227
4228 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
4229 list_splice_tail(&list, &ds_queue->split_queue);
4230 ds_queue->split_queue_len -= removed;
4231 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
4232
4233 if (prev)
4234 folio_put(prev);
4235
4236 /*
4237 * Stop shrinker if we didn't split any page, but the queue is empty.
4238 * This can happen if pages were freed under us.
4239 */
4240 if (!split && list_empty(&ds_queue->split_queue))
4241 return SHRINK_STOP;
4242 return split;
4243 }
4244
4245 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)4246 static void split_huge_pages_all(void)
4247 {
4248 struct zone *zone;
4249 struct page *page;
4250 struct folio *folio;
4251 unsigned long pfn, max_zone_pfn;
4252 unsigned long total = 0, split = 0;
4253
4254 pr_debug("Split all THPs\n");
4255 for_each_zone(zone) {
4256 if (!managed_zone(zone))
4257 continue;
4258 max_zone_pfn = zone_end_pfn(zone);
4259 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
4260 int nr_pages;
4261
4262 page = pfn_to_online_page(pfn);
4263 if (!page || PageTail(page))
4264 continue;
4265 folio = page_folio(page);
4266 if (!folio_try_get(folio))
4267 continue;
4268
4269 if (unlikely(page_folio(page) != folio))
4270 goto next;
4271
4272 if (zone != folio_zone(folio))
4273 goto next;
4274
4275 if (!folio_test_large(folio)
4276 || folio_test_hugetlb(folio)
4277 || !folio_test_lru(folio))
4278 goto next;
4279
4280 total++;
4281 folio_lock(folio);
4282 nr_pages = folio_nr_pages(folio);
4283 if (!split_folio(folio))
4284 split++;
4285 pfn += nr_pages - 1;
4286 folio_unlock(folio);
4287 next:
4288 folio_put(folio);
4289 cond_resched();
4290 }
4291 }
4292
4293 pr_debug("%lu of %lu THP split\n", split, total);
4294 }
4295
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)4296 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
4297 {
4298 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
4299 is_vm_hugetlb_page(vma);
4300 }
4301
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end,unsigned int new_order,long in_folio_offset)4302 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
4303 unsigned long vaddr_end, unsigned int new_order,
4304 long in_folio_offset)
4305 {
4306 int ret = 0;
4307 struct task_struct *task;
4308 struct mm_struct *mm;
4309 unsigned long total = 0, split = 0;
4310 unsigned long addr;
4311
4312 vaddr_start &= PAGE_MASK;
4313 vaddr_end &= PAGE_MASK;
4314
4315 task = find_get_task_by_vpid(pid);
4316 if (!task) {
4317 ret = -ESRCH;
4318 goto out;
4319 }
4320
4321 /* Find the mm_struct */
4322 mm = get_task_mm(task);
4323 put_task_struct(task);
4324
4325 if (!mm) {
4326 ret = -EINVAL;
4327 goto out;
4328 }
4329
4330 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
4331 pid, vaddr_start, vaddr_end);
4332
4333 mmap_read_lock(mm);
4334 /*
4335 * always increase addr by PAGE_SIZE, since we could have a PTE page
4336 * table filled with PTE-mapped THPs, each of which is distinct.
4337 */
4338 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
4339 struct vm_area_struct *vma = vma_lookup(mm, addr);
4340 struct folio_walk fw;
4341 struct folio *folio;
4342 struct address_space *mapping;
4343 unsigned int target_order = new_order;
4344
4345 if (!vma)
4346 break;
4347
4348 /* skip special VMA and hugetlb VMA */
4349 if (vma_not_suitable_for_thp_split(vma)) {
4350 addr = vma->vm_end;
4351 continue;
4352 }
4353
4354 folio = folio_walk_start(&fw, vma, addr, 0);
4355 if (!folio)
4356 continue;
4357
4358 if (!is_transparent_hugepage(folio))
4359 goto next;
4360
4361 if (!folio_test_anon(folio)) {
4362 mapping = folio->mapping;
4363 target_order = max(new_order,
4364 mapping_min_folio_order(mapping));
4365 }
4366
4367 if (target_order >= folio_order(folio))
4368 goto next;
4369
4370 total++;
4371 /*
4372 * For folios with private, split_huge_page_to_list_to_order()
4373 * will try to drop it before split and then check if the folio
4374 * can be split or not. So skip the check here.
4375 */
4376 if (!folio_test_private(folio) &&
4377 !can_split_folio(folio, 0, NULL))
4378 goto next;
4379
4380 if (!folio_trylock(folio))
4381 goto next;
4382 folio_get(folio);
4383 folio_walk_end(&fw, vma);
4384
4385 if (!folio_test_anon(folio) && folio->mapping != mapping)
4386 goto unlock;
4387
4388 if (in_folio_offset < 0 ||
4389 in_folio_offset >= folio_nr_pages(folio)) {
4390 if (!split_folio_to_order(folio, target_order))
4391 split++;
4392 } else {
4393 struct page *split_at = folio_page(folio,
4394 in_folio_offset);
4395 if (!folio_split(folio, target_order, split_at, NULL))
4396 split++;
4397 }
4398
4399 unlock:
4400
4401 folio_unlock(folio);
4402 folio_put(folio);
4403
4404 cond_resched();
4405 continue;
4406 next:
4407 folio_walk_end(&fw, vma);
4408 cond_resched();
4409 }
4410 mmap_read_unlock(mm);
4411 mmput(mm);
4412
4413 pr_debug("%lu of %lu THP split\n", split, total);
4414
4415 out:
4416 return ret;
4417 }
4418
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end,unsigned int new_order,long in_folio_offset)4419 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
4420 pgoff_t off_end, unsigned int new_order,
4421 long in_folio_offset)
4422 {
4423 struct filename *file;
4424 struct file *candidate;
4425 struct address_space *mapping;
4426 int ret = -EINVAL;
4427 pgoff_t index;
4428 int nr_pages = 1;
4429 unsigned long total = 0, split = 0;
4430 unsigned int min_order;
4431 unsigned int target_order;
4432
4433 file = getname_kernel(file_path);
4434 if (IS_ERR(file))
4435 return ret;
4436
4437 candidate = file_open_name(file, O_RDONLY, 0);
4438 if (IS_ERR(candidate))
4439 goto out;
4440
4441 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
4442 file_path, off_start, off_end);
4443
4444 mapping = candidate->f_mapping;
4445 min_order = mapping_min_folio_order(mapping);
4446 target_order = max(new_order, min_order);
4447
4448 for (index = off_start; index < off_end; index += nr_pages) {
4449 struct folio *folio = filemap_get_folio(mapping, index);
4450
4451 nr_pages = 1;
4452 if (IS_ERR(folio))
4453 continue;
4454
4455 if (!folio_test_large(folio))
4456 goto next;
4457
4458 total++;
4459 nr_pages = folio_nr_pages(folio);
4460
4461 if (target_order >= folio_order(folio))
4462 goto next;
4463
4464 if (!folio_trylock(folio))
4465 goto next;
4466
4467 if (folio->mapping != mapping)
4468 goto unlock;
4469
4470 if (in_folio_offset < 0 || in_folio_offset >= nr_pages) {
4471 if (!split_folio_to_order(folio, target_order))
4472 split++;
4473 } else {
4474 struct page *split_at = folio_page(folio,
4475 in_folio_offset);
4476 if (!folio_split(folio, target_order, split_at, NULL))
4477 split++;
4478 }
4479
4480 unlock:
4481 folio_unlock(folio);
4482 next:
4483 folio_put(folio);
4484 cond_resched();
4485 }
4486
4487 filp_close(candidate, NULL);
4488 ret = 0;
4489
4490 pr_debug("%lu of %lu file-backed THP split\n", split, total);
4491 out:
4492 putname(file);
4493 return ret;
4494 }
4495
4496 #define MAX_INPUT_BUF_SZ 255
4497
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)4498 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
4499 size_t count, loff_t *ppops)
4500 {
4501 static DEFINE_MUTEX(split_debug_mutex);
4502 ssize_t ret;
4503 /*
4504 * hold pid, start_vaddr, end_vaddr, new_order or
4505 * file_path, off_start, off_end, new_order
4506 */
4507 char input_buf[MAX_INPUT_BUF_SZ];
4508 int pid;
4509 unsigned long vaddr_start, vaddr_end;
4510 unsigned int new_order = 0;
4511 long in_folio_offset = -1;
4512
4513 ret = mutex_lock_interruptible(&split_debug_mutex);
4514 if (ret)
4515 return ret;
4516
4517 ret = -EFAULT;
4518
4519 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
4520 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
4521 goto out;
4522
4523 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
4524
4525 if (input_buf[0] == '/') {
4526 char *tok;
4527 char *tok_buf = input_buf;
4528 char file_path[MAX_INPUT_BUF_SZ];
4529 pgoff_t off_start = 0, off_end = 0;
4530 size_t input_len = strlen(input_buf);
4531
4532 tok = strsep(&tok_buf, ",");
4533 if (tok && tok_buf) {
4534 strscpy(file_path, tok);
4535 } else {
4536 ret = -EINVAL;
4537 goto out;
4538 }
4539
4540 ret = sscanf(tok_buf, "0x%lx,0x%lx,%d,%ld", &off_start, &off_end,
4541 &new_order, &in_folio_offset);
4542 if (ret != 2 && ret != 3 && ret != 4) {
4543 ret = -EINVAL;
4544 goto out;
4545 }
4546 ret = split_huge_pages_in_file(file_path, off_start, off_end,
4547 new_order, in_folio_offset);
4548 if (!ret)
4549 ret = input_len;
4550
4551 goto out;
4552 }
4553
4554 ret = sscanf(input_buf, "%d,0x%lx,0x%lx,%d,%ld", &pid, &vaddr_start,
4555 &vaddr_end, &new_order, &in_folio_offset);
4556 if (ret == 1 && pid == 1) {
4557 split_huge_pages_all();
4558 ret = strlen(input_buf);
4559 goto out;
4560 } else if (ret != 3 && ret != 4 && ret != 5) {
4561 ret = -EINVAL;
4562 goto out;
4563 }
4564
4565 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end, new_order,
4566 in_folio_offset);
4567 if (!ret)
4568 ret = strlen(input_buf);
4569 out:
4570 mutex_unlock(&split_debug_mutex);
4571 return ret;
4572
4573 }
4574
4575 static const struct file_operations split_huge_pages_fops = {
4576 .owner = THIS_MODULE,
4577 .write = split_huge_pages_write,
4578 };
4579
split_huge_pages_debugfs(void)4580 static int __init split_huge_pages_debugfs(void)
4581 {
4582 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
4583 &split_huge_pages_fops);
4584 return 0;
4585 }
4586 late_initcall(split_huge_pages_debugfs);
4587 #endif
4588
4589 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)4590 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
4591 struct page *page)
4592 {
4593 struct folio *folio = page_folio(page);
4594 struct vm_area_struct *vma = pvmw->vma;
4595 struct mm_struct *mm = vma->vm_mm;
4596 unsigned long address = pvmw->address;
4597 bool anon_exclusive;
4598 pmd_t pmdval;
4599 swp_entry_t entry;
4600 pmd_t pmdswp;
4601
4602 if (!(pvmw->pmd && !pvmw->pte))
4603 return 0;
4604
4605 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
4606 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
4607
4608 /* See folio_try_share_anon_rmap_pmd(): invalidate PMD first. */
4609 anon_exclusive = folio_test_anon(folio) && PageAnonExclusive(page);
4610 if (anon_exclusive && folio_try_share_anon_rmap_pmd(folio, page)) {
4611 set_pmd_at(mm, address, pvmw->pmd, pmdval);
4612 return -EBUSY;
4613 }
4614
4615 if (pmd_dirty(pmdval))
4616 folio_mark_dirty(folio);
4617 if (pmd_write(pmdval))
4618 entry = make_writable_migration_entry(page_to_pfn(page));
4619 else if (anon_exclusive)
4620 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
4621 else
4622 entry = make_readable_migration_entry(page_to_pfn(page));
4623 if (pmd_young(pmdval))
4624 entry = make_migration_entry_young(entry);
4625 if (pmd_dirty(pmdval))
4626 entry = make_migration_entry_dirty(entry);
4627 pmdswp = swp_entry_to_pmd(entry);
4628 if (pmd_soft_dirty(pmdval))
4629 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
4630 if (pmd_uffd_wp(pmdval))
4631 pmdswp = pmd_swp_mkuffd_wp(pmdswp);
4632 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
4633 folio_remove_rmap_pmd(folio, page, vma);
4634 folio_put(folio);
4635 trace_set_migration_pmd(address, pmd_val(pmdswp));
4636
4637 return 0;
4638 }
4639
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)4640 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
4641 {
4642 struct folio *folio = page_folio(new);
4643 struct vm_area_struct *vma = pvmw->vma;
4644 struct mm_struct *mm = vma->vm_mm;
4645 unsigned long address = pvmw->address;
4646 unsigned long haddr = address & HPAGE_PMD_MASK;
4647 pmd_t pmde;
4648 swp_entry_t entry;
4649
4650 if (!(pvmw->pmd && !pvmw->pte))
4651 return;
4652
4653 entry = pmd_to_swp_entry(*pvmw->pmd);
4654 folio_get(folio);
4655 pmde = folio_mk_pmd(folio, READ_ONCE(vma->vm_page_prot));
4656 if (pmd_swp_soft_dirty(*pvmw->pmd))
4657 pmde = pmd_mksoft_dirty(pmde);
4658 if (is_writable_migration_entry(entry))
4659 pmde = pmd_mkwrite(pmde, vma);
4660 if (pmd_swp_uffd_wp(*pvmw->pmd))
4661 pmde = pmd_mkuffd_wp(pmde);
4662 if (!is_migration_entry_young(entry))
4663 pmde = pmd_mkold(pmde);
4664 /* NOTE: this may contain setting soft-dirty on some archs */
4665 if (folio_test_dirty(folio) && is_migration_entry_dirty(entry))
4666 pmde = pmd_mkdirty(pmde);
4667
4668 if (folio_test_anon(folio)) {
4669 rmap_t rmap_flags = RMAP_NONE;
4670
4671 if (!is_readable_migration_entry(entry))
4672 rmap_flags |= RMAP_EXCLUSIVE;
4673
4674 folio_add_anon_rmap_pmd(folio, new, vma, haddr, rmap_flags);
4675 } else {
4676 folio_add_file_rmap_pmd(folio, new, vma);
4677 }
4678 VM_BUG_ON(pmd_write(pmde) && folio_test_anon(folio) && !PageAnonExclusive(new));
4679 set_pmd_at(mm, haddr, pvmw->pmd, pmde);
4680
4681 /* No need to invalidate - it was non-present before */
4682 update_mmu_cache_pmd(vma, address, pvmw->pmd);
4683 trace_remove_migration_pmd(address, pmd_val(pmde));
4684 }
4685 #endif
4686