xref: /qemu/util/oslib-posix.c (revision 70ce076fa6dff60585c229a4b641b13e64bf03cf)
1 /*
2  * os-posix-lib.c
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2010 Red Hat, Inc.
6  *
7  * QEMU library functions on POSIX which are shared between QEMU and
8  * the QEMU tools.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include <termios.h>
31 
32 #include <glib/gprintf.h>
33 
34 #include "system/system.h"
35 #include "trace.h"
36 #include "qapi/error.h"
37 #include "qemu/error-report.h"
38 #include "qemu/madvise.h"
39 #include "qemu/sockets.h"
40 #include "qemu/thread.h"
41 #include <libgen.h>
42 #include "qemu/cutils.h"
43 #include "qemu/units.h"
44 #include "qemu/thread-context.h"
45 #include "qemu/main-loop.h"
46 
47 #ifdef CONFIG_LINUX
48 #include <sys/syscall.h>
49 #endif
50 
51 #ifdef __FreeBSD__
52 #include <sys/thr.h>
53 #include <sys/user.h>
54 #include <libutil.h>
55 #endif
56 
57 #ifdef __NetBSD__
58 #include <lwp.h>
59 #endif
60 
61 #include "qemu/mmap-alloc.h"
62 
63 #define MAX_MEM_PREALLOC_THREAD_COUNT 16
64 
65 struct MemsetThread;
66 
67 static QLIST_HEAD(, MemsetContext) memset_contexts =
68     QLIST_HEAD_INITIALIZER(memset_contexts);
69 
70 typedef struct MemsetContext {
71     bool all_threads_created;
72     bool any_thread_failed;
73     struct MemsetThread *threads;
74     int num_threads;
75     QLIST_ENTRY(MemsetContext) next;
76 } MemsetContext;
77 
78 struct MemsetThread {
79     char *addr;
80     size_t numpages;
81     size_t hpagesize;
82     QemuThread pgthread;
83     sigjmp_buf env;
84     MemsetContext *context;
85 };
86 typedef struct MemsetThread MemsetThread;
87 
88 /* used by sigbus_handler() */
89 static MemsetContext *sigbus_memset_context;
90 struct sigaction sigbus_oldact;
91 static QemuMutex sigbus_mutex;
92 
93 static QemuMutex page_mutex;
94 static QemuCond page_cond;
95 
96 int qemu_get_thread_id(void)
97 {
98 #if defined(__linux__)
99     return syscall(SYS_gettid);
100 #elif defined(__FreeBSD__)
101     /* thread id is up to INT_MAX */
102     long tid;
103     thr_self(&tid);
104     return (int)tid;
105 #elif defined(__NetBSD__)
106     return _lwp_self();
107 #elif defined(__OpenBSD__)
108     return getthrid();
109 #else
110     return getpid();
111 #endif
112 }
113 
114 int qemu_kill_thread(int tid, int sig)
115 {
116 #if defined(__linux__)
117     return syscall(__NR_tgkill, getpid(), tid, sig);
118 #elif defined(__FreeBSD__)
119     return thr_kill2(getpid(), tid, sig);
120 #elif defined(__NetBSD__)
121     return _lwp_kill(tid, sig);
122 #elif defined(__OpenBSD__)
123     return thrkill(tid, sig, NULL);
124 #else
125     return kill(tid, sig);
126 #endif
127 }
128 
129 int qemu_daemon(int nochdir, int noclose)
130 {
131     return daemon(nochdir, noclose);
132 }
133 
134 bool qemu_write_pidfile(const char *path, Error **errp)
135 {
136     int fd;
137     char pidstr[32];
138 
139     while (1) {
140         struct stat a, b;
141         struct flock lock = {
142             .l_type = F_WRLCK,
143             .l_whence = SEEK_SET,
144             .l_len = 0,
145         };
146 
147         fd = qemu_create(path, O_WRONLY, S_IRUSR | S_IWUSR, errp);
148         if (fd == -1) {
149             return false;
150         }
151 
152         if (fstat(fd, &b) < 0) {
153             error_setg_errno(errp, errno, "Cannot stat file");
154             goto fail_close;
155         }
156 
157         if (fcntl(fd, F_SETLK, &lock)) {
158             error_setg_errno(errp, errno, "Cannot lock pid file");
159             goto fail_close;
160         }
161 
162         /*
163          * Now make sure the path we locked is the same one that now
164          * exists on the filesystem.
165          */
166         if (stat(path, &a) < 0) {
167             /*
168              * PID file disappeared, someone else must be racing with
169              * us, so try again.
170              */
171             close(fd);
172             continue;
173         }
174 
175         if (a.st_ino == b.st_ino) {
176             break;
177         }
178 
179         /*
180          * PID file was recreated, someone else must be racing with
181          * us, so try again.
182          */
183         close(fd);
184     }
185 
186     if (ftruncate(fd, 0) < 0) {
187         error_setg_errno(errp, errno, "Failed to truncate pid file");
188         goto fail_unlink;
189     }
190 
191     snprintf(pidstr, sizeof(pidstr), FMT_pid "\n", getpid());
192     if (qemu_write_full(fd, pidstr, strlen(pidstr)) != strlen(pidstr)) {
193         error_setg(errp, "Failed to write pid file");
194         goto fail_unlink;
195     }
196 
197     return true;
198 
199 fail_unlink:
200     unlink(path);
201 fail_close:
202     close(fd);
203     return false;
204 }
205 
206 /* alloc shared memory pages */
207 void *qemu_anon_ram_alloc(size_t size, uint64_t *alignment, bool shared,
208                           bool noreserve)
209 {
210     const uint32_t qemu_map_flags = (shared ? QEMU_MAP_SHARED : 0) |
211                                     (noreserve ? QEMU_MAP_NORESERVE : 0);
212     size_t align = QEMU_VMALLOC_ALIGN;
213     void *ptr = qemu_ram_mmap(-1, size, align, qemu_map_flags, 0);
214 
215     if (ptr == MAP_FAILED) {
216         return NULL;
217     }
218 
219     if (alignment) {
220         *alignment = align;
221     }
222 
223     trace_qemu_anon_ram_alloc(size, ptr);
224     return ptr;
225 }
226 
227 void qemu_anon_ram_free(void *ptr, size_t size)
228 {
229     trace_qemu_anon_ram_free(ptr, size);
230     qemu_ram_munmap(-1, ptr, size);
231 }
232 
233 void qemu_socket_set_block(int fd)
234 {
235     g_unix_set_fd_nonblocking(fd, false, NULL);
236 }
237 
238 int qemu_socket_try_set_nonblock(int fd)
239 {
240     return g_unix_set_fd_nonblocking(fd, true, NULL) ? 0 : -errno;
241 }
242 
243 void qemu_socket_set_nonblock(int fd)
244 {
245     int f;
246     f = qemu_socket_try_set_nonblock(fd);
247     assert(f == 0);
248 }
249 
250 int socket_set_fast_reuse(int fd)
251 {
252     int val = 1, ret;
253 
254     ret = setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
255                      (const char *)&val, sizeof(val));
256 
257     assert(ret == 0);
258 
259     return ret;
260 }
261 
262 void qemu_set_cloexec(int fd)
263 {
264     int f;
265     f = fcntl(fd, F_GETFD);
266     assert(f != -1);
267     f = fcntl(fd, F_SETFD, f | FD_CLOEXEC);
268     assert(f != -1);
269 }
270 
271 int qemu_socketpair(int domain, int type, int protocol, int sv[2])
272 {
273     int ret;
274 
275 #ifdef SOCK_CLOEXEC
276     ret = socketpair(domain, type | SOCK_CLOEXEC, protocol, sv);
277     if (ret != -1 || errno != EINVAL) {
278         return ret;
279     }
280 #endif
281     ret = socketpair(domain, type, protocol, sv);
282     if (ret == 0) {
283         qemu_set_cloexec(sv[0]);
284         qemu_set_cloexec(sv[1]);
285     }
286 
287     return ret;
288 }
289 
290 char *
291 qemu_get_local_state_dir(void)
292 {
293     return get_relocated_path(CONFIG_QEMU_LOCALSTATEDIR);
294 }
295 
296 void qemu_set_tty_echo(int fd, bool echo)
297 {
298     struct termios tty;
299 
300     tcgetattr(fd, &tty);
301 
302     if (echo) {
303         tty.c_lflag |= ECHO | ECHONL | ICANON | IEXTEN;
304     } else {
305         tty.c_lflag &= ~(ECHO | ECHONL | ICANON | IEXTEN);
306     }
307 
308     tcsetattr(fd, TCSANOW, &tty);
309 }
310 
311 #ifdef CONFIG_LINUX
312 static void sigbus_handler(int signal, siginfo_t *siginfo, void *ctx)
313 #else /* CONFIG_LINUX */
314 static void sigbus_handler(int signal)
315 #endif /* CONFIG_LINUX */
316 {
317     int i;
318 
319     if (sigbus_memset_context) {
320         for (i = 0; i < sigbus_memset_context->num_threads; i++) {
321             MemsetThread *thread = &sigbus_memset_context->threads[i];
322 
323             if (qemu_thread_is_self(&thread->pgthread)) {
324                 siglongjmp(thread->env, 1);
325             }
326         }
327     }
328 
329 #ifdef CONFIG_LINUX
330     /*
331      * We assume that the MCE SIGBUS handler could have been registered. We
332      * should never receive BUS_MCEERR_AO on any of our threads, but only on
333      * the main thread registered for PR_MCE_KILL_EARLY. Further, we should not
334      * receive BUS_MCEERR_AR triggered by action of other threads on one of
335      * our threads. So, no need to check for unrelated SIGBUS when seeing one
336      * for our threads.
337      *
338      * We will forward to the MCE handler, which will either handle the SIGBUS
339      * or reinstall the default SIGBUS handler and reraise the SIGBUS. The
340      * default SIGBUS handler will crash the process, so we don't care.
341      */
342     if (sigbus_oldact.sa_flags & SA_SIGINFO) {
343         sigbus_oldact.sa_sigaction(signal, siginfo, ctx);
344         return;
345     }
346 #endif /* CONFIG_LINUX */
347     warn_report("qemu_prealloc_mem: unrelated SIGBUS detected and ignored");
348 }
349 
350 static void *do_touch_pages(void *arg)
351 {
352     MemsetThread *memset_args = (MemsetThread *)arg;
353     sigset_t set, oldset;
354     int ret = 0;
355 
356     /*
357      * On Linux, the page faults from the loop below can cause mmap_sem
358      * contention with allocation of the thread stacks.  Do not start
359      * clearing until all threads have been created.
360      */
361     qemu_mutex_lock(&page_mutex);
362     while (!memset_args->context->all_threads_created) {
363         qemu_cond_wait(&page_cond, &page_mutex);
364     }
365     qemu_mutex_unlock(&page_mutex);
366 
367     /* unblock SIGBUS */
368     sigemptyset(&set);
369     sigaddset(&set, SIGBUS);
370     pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
371 
372     if (sigsetjmp(memset_args->env, 1)) {
373         ret = -EFAULT;
374     } else {
375         char *addr = memset_args->addr;
376         size_t numpages = memset_args->numpages;
377         size_t hpagesize = memset_args->hpagesize;
378         size_t i;
379         for (i = 0; i < numpages; i++) {
380             /*
381              * Read & write back the same value, so we don't
382              * corrupt existing user/app data that might be
383              * stored.
384              *
385              * 'volatile' to stop compiler optimizing this away
386              * to a no-op
387              */
388             *(volatile char *)addr = *addr;
389             addr += hpagesize;
390         }
391     }
392     pthread_sigmask(SIG_SETMASK, &oldset, NULL);
393     return (void *)(uintptr_t)ret;
394 }
395 
396 static void *do_madv_populate_write_pages(void *arg)
397 {
398     MemsetThread *memset_args = (MemsetThread *)arg;
399     const size_t size = memset_args->numpages * memset_args->hpagesize;
400     char * const addr = memset_args->addr;
401     int ret = 0;
402 
403     /* See do_touch_pages(). */
404     qemu_mutex_lock(&page_mutex);
405     while (!memset_args->context->all_threads_created) {
406         qemu_cond_wait(&page_cond, &page_mutex);
407     }
408     qemu_mutex_unlock(&page_mutex);
409 
410     if (size && qemu_madvise(addr, size, QEMU_MADV_POPULATE_WRITE)) {
411         ret = -errno;
412     }
413     return (void *)(uintptr_t)ret;
414 }
415 
416 static inline int get_memset_num_threads(size_t hpagesize, size_t numpages,
417                                          int max_threads)
418 {
419     long host_procs = sysconf(_SC_NPROCESSORS_ONLN);
420     int ret = 1;
421 
422     if (host_procs > 0) {
423         ret = MIN(MIN(host_procs, MAX_MEM_PREALLOC_THREAD_COUNT), max_threads);
424     }
425 
426     /* Especially with gigantic pages, don't create more threads than pages. */
427     ret = MIN(ret, numpages);
428     /* Don't start threads to prealloc comparatively little memory. */
429     ret = MIN(ret, MAX(1, hpagesize * numpages / (64 * MiB)));
430 
431     /* In case sysconf() fails, we fall back to single threaded */
432     return ret;
433 }
434 
435 static int wait_and_free_mem_prealloc_context(MemsetContext *context)
436 {
437     int i, ret = 0, tmp;
438 
439     for (i = 0; i < context->num_threads; i++) {
440         tmp = (uintptr_t)qemu_thread_join(&context->threads[i].pgthread);
441 
442         if (tmp) {
443             ret = tmp;
444         }
445     }
446     g_free(context->threads);
447     g_free(context);
448     return ret;
449 }
450 
451 static int touch_all_pages(char *area, size_t hpagesize, size_t numpages,
452                            int max_threads, ThreadContext *tc, bool async,
453                            bool use_madv_populate_write)
454 {
455     static gsize initialized = 0;
456     MemsetContext *context = g_malloc0(sizeof(MemsetContext));
457     size_t numpages_per_thread, leftover;
458     void *(*touch_fn)(void *);
459     int ret, i = 0;
460     char *addr = area;
461 
462     /*
463      * Asynchronous preallocation is only allowed when using MADV_POPULATE_WRITE
464      * and prealloc context for thread placement.
465      */
466     if (!use_madv_populate_write || !tc) {
467         async = false;
468     }
469 
470     context->num_threads =
471         get_memset_num_threads(hpagesize, numpages, max_threads);
472 
473     if (g_once_init_enter(&initialized)) {
474         qemu_mutex_init(&page_mutex);
475         qemu_cond_init(&page_cond);
476         g_once_init_leave(&initialized, 1);
477     }
478 
479     if (use_madv_populate_write) {
480         /*
481          * Avoid creating a single thread for MADV_POPULATE_WRITE when
482          * preallocating synchronously.
483          */
484         if (context->num_threads == 1 && !async) {
485             ret = 0;
486             if (qemu_madvise(area, hpagesize * numpages,
487                              QEMU_MADV_POPULATE_WRITE)) {
488                 ret = -errno;
489             }
490             g_free(context);
491             return ret;
492         }
493         touch_fn = do_madv_populate_write_pages;
494     } else {
495         touch_fn = do_touch_pages;
496     }
497 
498     context->threads = g_new0(MemsetThread, context->num_threads);
499     numpages_per_thread = numpages / context->num_threads;
500     leftover = numpages % context->num_threads;
501     for (i = 0; i < context->num_threads; i++) {
502         context->threads[i].addr = addr;
503         context->threads[i].numpages = numpages_per_thread + (i < leftover);
504         context->threads[i].hpagesize = hpagesize;
505         context->threads[i].context = context;
506         if (tc) {
507             thread_context_create_thread(tc, &context->threads[i].pgthread,
508                                          "touch_pages",
509                                          touch_fn, &context->threads[i],
510                                          QEMU_THREAD_JOINABLE);
511         } else {
512             qemu_thread_create(&context->threads[i].pgthread, "touch_pages",
513                                touch_fn, &context->threads[i],
514                                QEMU_THREAD_JOINABLE);
515         }
516         addr += context->threads[i].numpages * hpagesize;
517     }
518 
519     if (async) {
520         /*
521          * async requests currently require the BQL. Add it to the list and kick
522          * preallocation off during qemu_finish_async_prealloc_mem().
523          */
524         assert(bql_locked());
525         QLIST_INSERT_HEAD(&memset_contexts, context, next);
526         return 0;
527     }
528 
529     if (!use_madv_populate_write) {
530         sigbus_memset_context = context;
531     }
532 
533     qemu_mutex_lock(&page_mutex);
534     context->all_threads_created = true;
535     qemu_cond_broadcast(&page_cond);
536     qemu_mutex_unlock(&page_mutex);
537 
538     ret = wait_and_free_mem_prealloc_context(context);
539 
540     if (!use_madv_populate_write) {
541         sigbus_memset_context = NULL;
542     }
543     return ret;
544 }
545 
546 bool qemu_finish_async_prealloc_mem(Error **errp)
547 {
548     int ret = 0, tmp;
549     MemsetContext *context, *next_context;
550 
551     /* Waiting for preallocation requires the BQL. */
552     assert(bql_locked());
553     if (QLIST_EMPTY(&memset_contexts)) {
554         return true;
555     }
556 
557     qemu_mutex_lock(&page_mutex);
558     QLIST_FOREACH(context, &memset_contexts, next) {
559         context->all_threads_created = true;
560     }
561     qemu_cond_broadcast(&page_cond);
562     qemu_mutex_unlock(&page_mutex);
563 
564     QLIST_FOREACH_SAFE(context, &memset_contexts, next, next_context) {
565         QLIST_REMOVE(context, next);
566         tmp = wait_and_free_mem_prealloc_context(context);
567         if (tmp) {
568             ret = tmp;
569         }
570     }
571 
572     if (ret) {
573         error_setg_errno(errp, -ret,
574                          "qemu_prealloc_mem: preallocating memory failed");
575         return false;
576     }
577     return true;
578 }
579 
580 static bool madv_populate_write_possible(char *area, size_t pagesize)
581 {
582     return !qemu_madvise(area, pagesize, QEMU_MADV_POPULATE_WRITE) ||
583            errno != EINVAL;
584 }
585 
586 bool qemu_prealloc_mem(int fd, char *area, size_t sz, int max_threads,
587                        ThreadContext *tc, bool async, Error **errp)
588 {
589     static gsize initialized;
590     int ret;
591     size_t hpagesize = qemu_fd_getpagesize(fd);
592     size_t numpages = DIV_ROUND_UP(sz, hpagesize);
593     bool use_madv_populate_write;
594     struct sigaction act;
595     bool rv = true;
596 
597     /*
598      * Sense on every invocation, as MADV_POPULATE_WRITE cannot be used for
599      * some special mappings, such as mapping /dev/mem.
600      */
601     use_madv_populate_write = madv_populate_write_possible(area, hpagesize);
602 
603     if (!use_madv_populate_write) {
604         if (g_once_init_enter(&initialized)) {
605             qemu_mutex_init(&sigbus_mutex);
606             g_once_init_leave(&initialized, 1);
607         }
608 
609         qemu_mutex_lock(&sigbus_mutex);
610         memset(&act, 0, sizeof(act));
611 #ifdef CONFIG_LINUX
612         act.sa_sigaction = &sigbus_handler;
613         act.sa_flags = SA_SIGINFO;
614 #else /* CONFIG_LINUX */
615         act.sa_handler = &sigbus_handler;
616         act.sa_flags = 0;
617 #endif /* CONFIG_LINUX */
618 
619         ret = sigaction(SIGBUS, &act, &sigbus_oldact);
620         if (ret) {
621             qemu_mutex_unlock(&sigbus_mutex);
622             error_setg_errno(errp, errno,
623                 "qemu_prealloc_mem: failed to install signal handler");
624             return false;
625         }
626     }
627 
628     /* touch pages simultaneously */
629     ret = touch_all_pages(area, hpagesize, numpages, max_threads, tc, async,
630                           use_madv_populate_write);
631     if (ret) {
632         error_setg_errno(errp, -ret,
633                          "qemu_prealloc_mem: preallocating memory failed");
634         rv = false;
635     }
636 
637     if (!use_madv_populate_write) {
638         ret = sigaction(SIGBUS, &sigbus_oldact, NULL);
639         if (ret) {
640             /* Terminate QEMU since it can't recover from error */
641             perror("qemu_prealloc_mem: failed to reinstall signal handler");
642             exit(1);
643         }
644         qemu_mutex_unlock(&sigbus_mutex);
645     }
646     return rv;
647 }
648 
649 char *qemu_get_pid_name(pid_t pid)
650 {
651     char *name = NULL;
652 
653 #if defined(__FreeBSD__)
654     /* BSDs don't have /proc, but they provide a nice substitute */
655     struct kinfo_proc *proc = kinfo_getproc(pid);
656 
657     if (proc) {
658         name = g_strdup(proc->ki_comm);
659         free(proc);
660     }
661 #else
662     /* Assume a system with reasonable procfs */
663     char *pid_path;
664     size_t len;
665 
666     pid_path = g_strdup_printf("/proc/%d/cmdline", pid);
667     g_file_get_contents(pid_path, &name, &len, NULL);
668     g_free(pid_path);
669 #endif
670 
671     return name;
672 }
673 
674 
675 void *qemu_alloc_stack(size_t *sz)
676 {
677     void *ptr;
678     int flags;
679 #ifdef CONFIG_DEBUG_STACK_USAGE
680     void *ptr2;
681 #endif
682     size_t pagesz = qemu_real_host_page_size();
683 #ifdef _SC_THREAD_STACK_MIN
684     /* avoid stacks smaller than _SC_THREAD_STACK_MIN */
685     long min_stack_sz = sysconf(_SC_THREAD_STACK_MIN);
686     *sz = MAX(MAX(min_stack_sz, 0), *sz);
687 #endif
688     /* adjust stack size to a multiple of the page size */
689     *sz = ROUND_UP(*sz, pagesz);
690     /* allocate one extra page for the guard page */
691     *sz += pagesz;
692 
693     flags = MAP_PRIVATE | MAP_ANONYMOUS;
694 #if defined(MAP_STACK) && defined(__OpenBSD__)
695     /* Only enable MAP_STACK on OpenBSD. Other OS's such as
696      * Linux/FreeBSD/NetBSD have a flag with the same name
697      * but have differing functionality. OpenBSD will SEGV
698      * if it spots execution with a stack pointer pointing
699      * at memory that was not allocated with MAP_STACK.
700      */
701     flags |= MAP_STACK;
702 #endif
703 
704     ptr = mmap(NULL, *sz, PROT_READ | PROT_WRITE, flags, -1, 0);
705     if (ptr == MAP_FAILED) {
706         perror("failed to allocate memory for stack");
707         abort();
708     }
709 
710     /* Stack grows down -- guard page at the bottom. */
711     if (mprotect(ptr, pagesz, PROT_NONE) != 0) {
712         perror("failed to set up stack guard page");
713         abort();
714     }
715 
716 #ifdef CONFIG_DEBUG_STACK_USAGE
717     for (ptr2 = ptr + pagesz; ptr2 < ptr + *sz; ptr2 += sizeof(uint32_t)) {
718         *(uint32_t *)ptr2 = 0xdeadbeaf;
719     }
720 #endif
721 
722     return ptr;
723 }
724 
725 #ifdef CONFIG_DEBUG_STACK_USAGE
726 static __thread unsigned int max_stack_usage;
727 #endif
728 
729 void qemu_free_stack(void *stack, size_t sz)
730 {
731 #ifdef CONFIG_DEBUG_STACK_USAGE
732     unsigned int usage;
733     void *ptr;
734 
735     for (ptr = stack + qemu_real_host_page_size(); ptr < stack + sz;
736          ptr += sizeof(uint32_t)) {
737         if (*(uint32_t *)ptr != 0xdeadbeaf) {
738             break;
739         }
740     }
741     usage = sz - (uintptr_t) (ptr - stack);
742     if (usage > max_stack_usage) {
743         error_report("thread %d max stack usage increased from %u to %u",
744                      qemu_get_thread_id(), max_stack_usage, usage);
745         max_stack_usage = usage;
746     }
747 #endif
748 
749     munmap(stack, sz);
750 }
751 
752 /*
753  * Disable CFI checks.
754  * We are going to call a signal handler directly. Such handler may or may not
755  * have been defined in our binary, so there's no guarantee that the pointer
756  * used to set the handler is a cfi-valid pointer. Since the handlers are
757  * stored in kernel memory, changing the handler to an attacker-defined
758  * function requires being able to call a sigaction() syscall,
759  * which is not as easy as overwriting a pointer in memory.
760  */
761 QEMU_DISABLE_CFI
762 void sigaction_invoke(struct sigaction *action,
763                       struct qemu_signalfd_siginfo *info)
764 {
765     siginfo_t si = {};
766     si.si_signo = info->ssi_signo;
767     si.si_errno = info->ssi_errno;
768     si.si_code = info->ssi_code;
769 
770     /* Convert the minimal set of fields defined by POSIX.
771      * Positive si_code values are reserved for kernel-generated
772      * signals, where the valid siginfo fields are determined by
773      * the signal number.  But according to POSIX, it is unspecified
774      * whether SI_USER and SI_QUEUE have values less than or equal to
775      * zero.
776      */
777     if (info->ssi_code == SI_USER || info->ssi_code == SI_QUEUE ||
778         info->ssi_code <= 0) {
779         /* SIGTERM, etc.  */
780         si.si_pid = info->ssi_pid;
781         si.si_uid = info->ssi_uid;
782     } else if (info->ssi_signo == SIGILL || info->ssi_signo == SIGFPE ||
783                info->ssi_signo == SIGSEGV || info->ssi_signo == SIGBUS) {
784         si.si_addr = (void *)(uintptr_t)info->ssi_addr;
785     } else if (info->ssi_signo == SIGCHLD) {
786         si.si_pid = info->ssi_pid;
787         si.si_status = info->ssi_status;
788         si.si_uid = info->ssi_uid;
789     }
790     action->sa_sigaction(info->ssi_signo, &si, NULL);
791 }
792 
793 size_t qemu_get_host_physmem(void)
794 {
795 #ifdef _SC_PHYS_PAGES
796     long pages = sysconf(_SC_PHYS_PAGES);
797     if (pages > 0) {
798         if (pages > SIZE_MAX / qemu_real_host_page_size()) {
799             return SIZE_MAX;
800         } else {
801             return pages * qemu_real_host_page_size();
802         }
803     }
804 #endif
805     return 0;
806 }
807 
808 int qemu_msync(void *addr, size_t length, int fd)
809 {
810     size_t align_mask = ~(qemu_real_host_page_size() - 1);
811 
812     /**
813      * There are no strict reqs as per the length of mapping
814      * to be synced. Still the length needs to follow the address
815      * alignment changes. Additionally - round the size to the multiple
816      * of PAGE_SIZE
817      */
818     length += ((uintptr_t)addr & (qemu_real_host_page_size() - 1));
819     length = (length + ~align_mask) & align_mask;
820 
821     addr = (void *)((uintptr_t)addr & align_mask);
822 
823     return msync(addr, length, MS_SYNC);
824 }
825 
826 static bool qemu_close_all_open_fd_proc(const int *skip, unsigned int nskip)
827 {
828     struct dirent *de;
829     int fd, dfd;
830     DIR *dir;
831     unsigned int skip_start = 0, skip_end = nskip;
832 
833     dir = opendir("/proc/self/fd");
834     if (!dir) {
835         /* If /proc is not mounted, there is nothing that can be done. */
836         return false;
837     }
838     /* Avoid closing the directory. */
839     dfd = dirfd(dir);
840 
841     for (de = readdir(dir); de; de = readdir(dir)) {
842         bool close_fd = true;
843 
844         if (de->d_name[0] == '.') {
845             continue;
846         }
847         fd = atoi(de->d_name);
848         if (fd == dfd) {
849             continue;
850         }
851 
852         for (unsigned int i = skip_start; i < skip_end; i++) {
853             if (fd < skip[i]) {
854                 /* We are below the next skipped fd, break */
855                 break;
856             } else if (fd == skip[i]) {
857                 close_fd = false;
858                 /* Restrict the range as we found fds matching start/end */
859                 if (i == skip_start) {
860                     skip_start++;
861                 } else if (i == skip_end) {
862                     skip_end--;
863                 }
864                 break;
865             }
866         }
867 
868         if (close_fd) {
869             close(fd);
870         }
871     }
872     closedir(dir);
873 
874     return true;
875 }
876 
877 static bool qemu_close_all_open_fd_close_range(const int *skip,
878                                                unsigned int nskip,
879                                                int open_max)
880 {
881 #ifdef CONFIG_CLOSE_RANGE
882     int max_fd = open_max - 1;
883     int first = 0, last;
884     unsigned int cur_skip = 0;
885     int ret;
886 
887     do {
888         /* Find the start boundary of the range to close */
889         while (cur_skip < nskip && first == skip[cur_skip]) {
890             cur_skip++;
891             first++;
892         }
893 
894         /* Find the upper boundary of the range to close */
895         last = max_fd;
896         if (cur_skip < nskip) {
897             last = skip[cur_skip] - 1;
898             last = MIN(last, max_fd);
899         }
900 
901         /* With the adjustments to the range, we might be done. */
902         if (first > last) {
903             break;
904         }
905 
906         ret = close_range(first, last, 0);
907         if (ret < 0) {
908             return false;
909         }
910 
911         first = last + 1;
912     } while (last < max_fd);
913 
914     return true;
915 #else
916     return false;
917 #endif
918 }
919 
920 static void qemu_close_all_open_fd_fallback(const int *skip, unsigned int nskip,
921                                             int open_max)
922 {
923     unsigned int cur_skip = 0;
924 
925     /* Fallback */
926     for (int i = 0; i < open_max; i++) {
927         if (cur_skip < nskip && i == skip[cur_skip]) {
928             cur_skip++;
929             continue;
930         }
931         close(i);
932     }
933 }
934 
935 /*
936  * Close all open file descriptors.
937  */
938 void qemu_close_all_open_fd(const int *skip, unsigned int nskip)
939 {
940     int open_max = sysconf(_SC_OPEN_MAX);
941 
942     assert(skip != NULL || nskip == 0);
943 
944     if (!qemu_close_all_open_fd_close_range(skip, nskip, open_max) &&
945         !qemu_close_all_open_fd_proc(skip, nskip)) {
946         qemu_close_all_open_fd_fallback(skip, nskip, open_max);
947     }
948 }
949 
950 int qemu_shm_alloc(size_t size, Error **errp)
951 {
952     g_autoptr(GString) shm_name = g_string_new(NULL);
953     int fd, oflag, cur_sequence;
954     static int sequence;
955     mode_t mode;
956 
957     cur_sequence = qatomic_fetch_inc(&sequence);
958 
959     /*
960      * Let's use `mode = 0` because we don't want other processes to open our
961      * memory unless we share the file descriptor with them.
962      */
963     mode = 0;
964     oflag = O_RDWR | O_CREAT | O_EXCL;
965 
966     /*
967      * Some operating systems allow creating anonymous POSIX shared memory
968      * objects (e.g. FreeBSD provides the SHM_ANON constant), but this is not
969      * defined by POSIX, so let's create a unique name.
970      *
971      * From Linux's shm_open(3) man-page:
972      *   For  portable  use,  a shared  memory  object should be identified
973      *   by a name of the form /somename;"
974      */
975     g_string_printf(shm_name, "/qemu-" FMT_pid "-shm-%d", getpid(),
976                     cur_sequence);
977 
978     fd = shm_open(shm_name->str, oflag, mode);
979     if (fd < 0) {
980         error_setg_errno(errp, errno,
981                          "failed to create POSIX shared memory");
982         return -1;
983     }
984 
985     /*
986      * We have the file descriptor, so we no longer need to expose the
987      * POSIX shared memory object. However it will remain allocated as long as
988      * there are file descriptors pointing to it.
989      */
990     shm_unlink(shm_name->str);
991 
992     if (ftruncate(fd, size) == -1) {
993         error_setg_errno(errp, errno,
994                          "failed to resize POSIX shared memory to %zu", size);
995         close(fd);
996         return -1;
997     }
998 
999     return fd;
1000 }
1001