xref: /qemu/util/hbitmap.c (revision 954a6c4f7862b45617ff3b65609f0f290dcd5077)
1  /*
2   * Hierarchical Bitmap Data Type
3   *
4   * Copyright Red Hat, Inc., 2012
5   *
6   * Author: Paolo Bonzini <pbonzini@redhat.com>
7   *
8   * This work is licensed under the terms of the GNU GPL, version 2 or
9   * later.  See the COPYING file in the top-level directory.
10   */
11  
12  #include "qemu/osdep.h"
13  #include "qemu/hbitmap.h"
14  #include "qemu/host-utils.h"
15  #include "trace.h"
16  #include "crypto/hash.h"
17  
18  /* HBitmaps provides an array of bits.  The bits are stored as usual in an
19   * array of unsigned longs, but HBitmap is also optimized to provide fast
20   * iteration over set bits; going from one bit to the next is O(logB n)
21   * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
22   * that the number of levels is in fact fixed.
23   *
24   * In order to do this, it stacks multiple bitmaps with progressively coarser
25   * granularity; in all levels except the last, bit N is set iff the N-th
26   * unsigned long is nonzero in the immediately next level.  When iteration
27   * completes on the last level it can examine the 2nd-last level to quickly
28   * skip entire words, and even do so recursively to skip blocks of 64 words or
29   * powers thereof (32 on 32-bit machines).
30   *
31   * Given an index in the bitmap, it can be split in group of bits like
32   * this (for the 64-bit case):
33   *
34   *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
35   *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
36   *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
37   *
38   * So it is easy to move up simply by shifting the index right by
39   * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
40   * similarly, and add the word index within the group.  Iteration uses
41   * ffs (find first set bit) to find the next word to examine; this
42   * operation can be done in constant time in most current architectures.
43   *
44   * Setting or clearing a range of m bits on all levels, the work to perform
45   * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
46   *
47   * When iterating on a bitmap, each bit (on any level) is only visited
48   * once.  Hence, The total cost of visiting a bitmap with m bits in it is
49   * the number of bits that are set in all bitmaps.  Unless the bitmap is
50   * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
51   * cost of advancing from one bit to the next is usually constant (worst case
52   * O(logB n) as in the non-amortized complexity).
53   */
54  
55  struct HBitmap {
56      /*
57       * Size of the bitmap, as requested in hbitmap_alloc or in hbitmap_truncate.
58       */
59      uint64_t orig_size;
60  
61      /* Number of total bits in the bottom level.  */
62      uint64_t size;
63  
64      /* Number of set bits in the bottom level.  */
65      uint64_t count;
66  
67      /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
68       * will actually represent a group of 2^G elements.  Each operation on a
69       * range of bits first rounds the bits to determine which group they land
70       * in, and then affect the entire page; iteration will only visit the first
71       * bit of each group.  Here is an example of operations in a size-16,
72       * granularity-1 HBitmap:
73       *
74       *    initial state            00000000
75       *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
76       *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
77       *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
78       *    reset(start=5, count=5)  00000000
79       *
80       * From an implementation point of view, when setting or resetting bits,
81       * the bitmap will scale bit numbers right by this amount of bits.  When
82       * iterating, the bitmap will scale bit numbers left by this amount of
83       * bits.
84       */
85      int granularity;
86  
87      /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
88      HBitmap *meta;
89  
90      /* A number of progressively less coarse bitmaps (i.e. level 0 is the
91       * coarsest).  Each bit in level N represents a word in level N+1 that
92       * has a set bit, except the last level where each bit represents the
93       * actual bitmap.
94       *
95       * Note that all bitmaps have the same number of levels.  Even a 1-bit
96       * bitmap will still allocate HBITMAP_LEVELS arrays.
97       */
98      unsigned long *levels[HBITMAP_LEVELS];
99  
100      /* The length of each levels[] array. */
101      uint64_t sizes[HBITMAP_LEVELS];
102  };
103  
104  /* Advance hbi to the next nonzero word and return it.  hbi->pos
105   * is updated.  Returns zero if we reach the end of the bitmap.
106   */
107  static unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
108  {
109      size_t pos = hbi->pos;
110      const HBitmap *hb = hbi->hb;
111      unsigned i = HBITMAP_LEVELS - 1;
112  
113      unsigned long cur;
114      do {
115          i--;
116          pos >>= BITS_PER_LEVEL;
117          cur = hbi->cur[i] & hb->levels[i][pos];
118      } while (cur == 0);
119  
120      /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
121       * bits in the level 0 bitmap; thus we can repurpose the most significant
122       * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
123       * that the above loop ends even without an explicit check on i.
124       */
125  
126      if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
127          return 0;
128      }
129      for (; i < HBITMAP_LEVELS - 1; i++) {
130          /* Shift back pos to the left, matching the right shifts above.
131           * The index of this word's least significant set bit provides
132           * the low-order bits.
133           */
134          assert(cur);
135          pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
136          hbi->cur[i] = cur & (cur - 1);
137  
138          /* Set up next level for iteration.  */
139          cur = hb->levels[i + 1][pos];
140      }
141  
142      hbi->pos = pos;
143      trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
144  
145      assert(cur);
146      return cur;
147  }
148  
149  int64_t hbitmap_iter_next(HBitmapIter *hbi)
150  {
151      unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
152              hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
153      int64_t item;
154  
155      if (cur == 0) {
156          cur = hbitmap_iter_skip_words(hbi);
157          if (cur == 0) {
158              return -1;
159          }
160      }
161  
162      /* The next call will resume work from the next bit.  */
163      hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
164      item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
165  
166      return item << hbi->granularity;
167  }
168  
169  void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
170  {
171      unsigned i, bit;
172      uint64_t pos;
173  
174      hbi->hb = hb;
175      pos = first >> hb->granularity;
176      assert(pos < hb->size);
177      hbi->pos = pos >> BITS_PER_LEVEL;
178      hbi->granularity = hb->granularity;
179  
180      for (i = HBITMAP_LEVELS; i-- > 0; ) {
181          bit = pos & (BITS_PER_LONG - 1);
182          pos >>= BITS_PER_LEVEL;
183  
184          /* Drop bits representing items before first.  */
185          hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
186  
187          /* We have already added level i+1, so the lowest set bit has
188           * been processed.  Clear it.
189           */
190          if (i != HBITMAP_LEVELS - 1) {
191              hbi->cur[i] &= ~(1UL << bit);
192          }
193      }
194  }
195  
196  int64_t hbitmap_next_dirty(const HBitmap *hb, int64_t start, int64_t count)
197  {
198      HBitmapIter hbi;
199      int64_t first_dirty_off;
200      uint64_t end;
201  
202      assert(start >= 0 && count >= 0);
203  
204      if (start >= hb->orig_size || count == 0) {
205          return -1;
206      }
207  
208      end = count > hb->orig_size - start ? hb->orig_size : start + count;
209  
210      hbitmap_iter_init(&hbi, hb, start);
211      first_dirty_off = hbitmap_iter_next(&hbi);
212  
213      if (first_dirty_off < 0 || first_dirty_off >= end) {
214          return -1;
215      }
216  
217      return MAX(start, first_dirty_off);
218  }
219  
220  int64_t hbitmap_next_zero(const HBitmap *hb, int64_t start, int64_t count)
221  {
222      size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
223      unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
224      unsigned long cur = last_lev[pos];
225      unsigned start_bit_offset;
226      uint64_t end_bit, sz;
227      int64_t res;
228  
229      assert(start >= 0 && count >= 0);
230  
231      if (start >= hb->orig_size || count == 0) {
232          return -1;
233      }
234  
235      end_bit = count > hb->orig_size - start ?
236                  hb->size :
237                  ((start + count - 1) >> hb->granularity) + 1;
238      sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
239  
240      /* There may be some zero bits in @cur before @start. We are not interested
241       * in them, let's set them.
242       */
243      start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
244      cur |= (1UL << start_bit_offset) - 1;
245      assert((start >> hb->granularity) < hb->size);
246  
247      if (cur == (unsigned long)-1) {
248          do {
249              pos++;
250          } while (pos < sz && last_lev[pos] == (unsigned long)-1);
251  
252          if (pos >= sz) {
253              return -1;
254          }
255  
256          cur = last_lev[pos];
257      }
258  
259      res = (pos << BITS_PER_LEVEL) + ctol(cur);
260      if (res >= end_bit) {
261          return -1;
262      }
263  
264      res = res << hb->granularity;
265      if (res < start) {
266          assert(((start - res) >> hb->granularity) == 0);
267          return start;
268      }
269  
270      return res;
271  }
272  
273  bool hbitmap_next_dirty_area(const HBitmap *hb, int64_t start, int64_t end,
274                               int64_t max_dirty_count,
275                               int64_t *dirty_start, int64_t *dirty_count)
276  {
277      int64_t next_zero;
278  
279      assert(start >= 0 && end >= 0 && max_dirty_count > 0);
280  
281      end = MIN(end, hb->orig_size);
282      if (start >= end) {
283          return false;
284      }
285  
286      start = hbitmap_next_dirty(hb, start, end - start);
287      if (start < 0) {
288          return false;
289      }
290  
291      end = start + MIN(end - start, max_dirty_count);
292  
293      next_zero = hbitmap_next_zero(hb, start, end - start);
294      if (next_zero >= 0) {
295          end = next_zero;
296      }
297  
298      *dirty_start = start;
299      *dirty_count = end - start;
300  
301      return true;
302  }
303  
304  bool hbitmap_status(const HBitmap *hb, int64_t start, int64_t count,
305                      int64_t *pnum)
306  {
307      int64_t next_dirty, next_zero;
308  
309      assert(start >= 0);
310      assert(count > 0);
311      assert(start + count <= hb->orig_size);
312  
313      next_dirty = hbitmap_next_dirty(hb, start, count);
314      if (next_dirty == -1) {
315          *pnum = count;
316          return false;
317      }
318  
319      if (next_dirty > start) {
320          *pnum = next_dirty - start;
321          return false;
322      }
323  
324      assert(next_dirty == start);
325  
326      next_zero = hbitmap_next_zero(hb, start, count);
327      if (next_zero == -1) {
328          *pnum = count;
329          return true;
330      }
331  
332      assert(next_zero > start);
333      *pnum = next_zero - start;
334      return false;
335  }
336  
337  bool hbitmap_empty(const HBitmap *hb)
338  {
339      return hb->count == 0;
340  }
341  
342  int hbitmap_granularity(const HBitmap *hb)
343  {
344      return hb->granularity;
345  }
346  
347  uint64_t hbitmap_count(const HBitmap *hb)
348  {
349      return hb->count << hb->granularity;
350  }
351  
352  /**
353   * hbitmap_iter_next_word:
354   * @hbi: HBitmapIter to operate on.
355   * @p_cur: Location where to store the next non-zero word.
356   *
357   * Return the index of the next nonzero word that is set in @hbi's
358   * associated HBitmap, and set *p_cur to the content of that word
359   * (bits before the index that was passed to hbitmap_iter_init are
360   * trimmed on the first call).  Return -1, and set *p_cur to zero,
361   * if all remaining words are zero.
362   */
363  static size_t hbitmap_iter_next_word(HBitmapIter *hbi, unsigned long *p_cur)
364  {
365      unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1];
366  
367      if (cur == 0) {
368          cur = hbitmap_iter_skip_words(hbi);
369          if (cur == 0) {
370              *p_cur = 0;
371              return -1;
372          }
373      }
374  
375      /* The next call will resume work from the next word.  */
376      hbi->cur[HBITMAP_LEVELS - 1] = 0;
377      *p_cur = cur;
378      return hbi->pos;
379  }
380  
381  /* Count the number of set bits between start and end, not accounting for
382   * the granularity.  Also an example of how to use hbitmap_iter_next_word.
383   */
384  static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
385  {
386      HBitmapIter hbi;
387      uint64_t count = 0;
388      uint64_t end = last + 1;
389      unsigned long cur;
390      size_t pos;
391  
392      hbitmap_iter_init(&hbi, hb, start << hb->granularity);
393      for (;;) {
394          pos = hbitmap_iter_next_word(&hbi, &cur);
395          if (pos >= (end >> BITS_PER_LEVEL)) {
396              break;
397          }
398          count += ctpopl(cur);
399      }
400  
401      if (pos == (end >> BITS_PER_LEVEL)) {
402          /* Drop bits representing the END-th and subsequent items.  */
403          int bit = end & (BITS_PER_LONG - 1);
404          cur &= (1UL << bit) - 1;
405          count += ctpopl(cur);
406      }
407  
408      return count;
409  }
410  
411  /* Setting starts at the last layer and propagates up if an element
412   * changes.
413   */
414  static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
415  {
416      unsigned long mask;
417      unsigned long old;
418  
419      assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
420      assert(start <= last);
421  
422      mask = 2UL << (last & (BITS_PER_LONG - 1));
423      mask -= 1UL << (start & (BITS_PER_LONG - 1));
424      old = *elem;
425      *elem |= mask;
426      return old != *elem;
427  }
428  
429  /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
430   * Returns true if at least one bit is changed. */
431  static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
432                             uint64_t last)
433  {
434      size_t pos = start >> BITS_PER_LEVEL;
435      size_t lastpos = last >> BITS_PER_LEVEL;
436      bool changed = false;
437      size_t i;
438  
439      i = pos;
440      if (i < lastpos) {
441          uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
442          changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
443          for (;;) {
444              start = next;
445              next += BITS_PER_LONG;
446              if (++i == lastpos) {
447                  break;
448              }
449              changed |= (hb->levels[level][i] == 0);
450              hb->levels[level][i] = ~0UL;
451          }
452      }
453      changed |= hb_set_elem(&hb->levels[level][i], start, last);
454  
455      /* If there was any change in this layer, we may have to update
456       * the one above.
457       */
458      if (level > 0 && changed) {
459          hb_set_between(hb, level - 1, pos, lastpos);
460      }
461      return changed;
462  }
463  
464  void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
465  {
466      /* Compute range in the last layer.  */
467      uint64_t first, n;
468      uint64_t last = start + count - 1;
469  
470      if (count == 0) {
471          return;
472      }
473  
474      trace_hbitmap_set(hb, start, count,
475                        start >> hb->granularity, last >> hb->granularity);
476  
477      first = start >> hb->granularity;
478      last >>= hb->granularity;
479      assert(last < hb->size);
480      n = last - first + 1;
481  
482      hb->count += n - hb_count_between(hb, first, last);
483      if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
484          hb->meta) {
485          hbitmap_set(hb->meta, start, count);
486      }
487  }
488  
489  /* Resetting works the other way round: propagate up if the new
490   * value is zero.
491   */
492  static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
493  {
494      unsigned long mask;
495      bool blanked;
496  
497      assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
498      assert(start <= last);
499  
500      mask = 2UL << (last & (BITS_PER_LONG - 1));
501      mask -= 1UL << (start & (BITS_PER_LONG - 1));
502      blanked = *elem != 0 && ((*elem & ~mask) == 0);
503      *elem &= ~mask;
504      return blanked;
505  }
506  
507  /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
508   * Returns true if at least one bit is changed. */
509  static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
510                               uint64_t last)
511  {
512      size_t pos = start >> BITS_PER_LEVEL;
513      size_t lastpos = last >> BITS_PER_LEVEL;
514      bool changed = false;
515      size_t i;
516  
517      i = pos;
518      if (i < lastpos) {
519          uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
520  
521          /* Here we need a more complex test than when setting bits.  Even if
522           * something was changed, we must not blank bits in the upper level
523           * unless the lower-level word became entirely zero.  So, remove pos
524           * from the upper-level range if bits remain set.
525           */
526          if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
527              changed = true;
528          } else {
529              pos++;
530          }
531  
532          for (;;) {
533              start = next;
534              next += BITS_PER_LONG;
535              if (++i == lastpos) {
536                  break;
537              }
538              changed |= (hb->levels[level][i] != 0);
539              hb->levels[level][i] = 0UL;
540          }
541      }
542  
543      /* Same as above, this time for lastpos.  */
544      if (hb_reset_elem(&hb->levels[level][i], start, last)) {
545          changed = true;
546      } else {
547          lastpos--;
548      }
549  
550      if (level > 0 && changed) {
551          hb_reset_between(hb, level - 1, pos, lastpos);
552      }
553  
554      return changed;
555  
556  }
557  
558  void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
559  {
560      /* Compute range in the last layer.  */
561      uint64_t first;
562      uint64_t last = start + count - 1;
563      uint64_t gran = 1ULL << hb->granularity;
564  
565      if (count == 0) {
566          return;
567      }
568  
569      assert(QEMU_IS_ALIGNED(start, gran));
570      assert(QEMU_IS_ALIGNED(count, gran) || (start + count == hb->orig_size));
571  
572      trace_hbitmap_reset(hb, start, count,
573                          start >> hb->granularity, last >> hb->granularity);
574  
575      first = start >> hb->granularity;
576      last >>= hb->granularity;
577      assert(last < hb->size);
578  
579      hb->count -= hb_count_between(hb, first, last);
580      if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
581          hb->meta) {
582          hbitmap_set(hb->meta, start, count);
583      }
584  }
585  
586  void hbitmap_reset_all(HBitmap *hb)
587  {
588      unsigned int i;
589  
590      /* Same as hbitmap_alloc() except for memset() instead of malloc() */
591      for (i = HBITMAP_LEVELS; --i >= 1; ) {
592          memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
593      }
594  
595      hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
596      hb->count = 0;
597  }
598  
599  bool hbitmap_is_serializable(const HBitmap *hb)
600  {
601      /* Every serialized chunk must be aligned to 64 bits so that endianness
602       * requirements can be fulfilled on both 64 bit and 32 bit hosts.
603       * We have hbitmap_serialization_align() which converts this
604       * alignment requirement from bitmap bits to items covered (e.g. sectors).
605       * That value is:
606       *    64 << hb->granularity
607       * Since this value must not exceed UINT64_MAX, hb->granularity must be
608       * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
609       *
610       * In order for hbitmap_serialization_align() to always return a
611       * meaningful value, bitmaps that are to be serialized must have a
612       * granularity of less than 58. */
613  
614      return hb->granularity < 58;
615  }
616  
617  bool hbitmap_get(const HBitmap *hb, uint64_t item)
618  {
619      /* Compute position and bit in the last layer.  */
620      uint64_t pos = item >> hb->granularity;
621      unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
622      assert(pos < hb->size);
623  
624      return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
625  }
626  
627  uint64_t hbitmap_serialization_align(const HBitmap *hb)
628  {
629      assert(hbitmap_is_serializable(hb));
630  
631      /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
632       * hosts. */
633      return UINT64_C(64) << hb->granularity;
634  }
635  
636  /* Start should be aligned to serialization granularity, chunk size should be
637   * aligned to serialization granularity too, except for last chunk.
638   */
639  static void serialization_chunk(const HBitmap *hb,
640                                  uint64_t start, uint64_t count,
641                                  unsigned long **first_el, uint64_t *el_count)
642  {
643      uint64_t last = start + count - 1;
644      uint64_t gran = hbitmap_serialization_align(hb);
645  
646      assert((start & (gran - 1)) == 0);
647      assert((last >> hb->granularity) < hb->size);
648      if ((last >> hb->granularity) != hb->size - 1) {
649          assert((count & (gran - 1)) == 0);
650      }
651  
652      start = (start >> hb->granularity) >> BITS_PER_LEVEL;
653      last = (last >> hb->granularity) >> BITS_PER_LEVEL;
654  
655      *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
656      *el_count = last - start + 1;
657  }
658  
659  uint64_t hbitmap_serialization_size(const HBitmap *hb,
660                                      uint64_t start, uint64_t count)
661  {
662      uint64_t el_count;
663      unsigned long *cur;
664  
665      if (!count) {
666          return 0;
667      }
668      serialization_chunk(hb, start, count, &cur, &el_count);
669  
670      return el_count * sizeof(unsigned long);
671  }
672  
673  void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
674                              uint64_t start, uint64_t count)
675  {
676      uint64_t el_count;
677      unsigned long *cur, *end;
678  
679      if (!count) {
680          return;
681      }
682      serialization_chunk(hb, start, count, &cur, &el_count);
683      end = cur + el_count;
684  
685      while (cur != end) {
686          unsigned long el =
687              (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
688  
689          memcpy(buf, &el, sizeof(el));
690          buf += sizeof(el);
691          cur++;
692      }
693  }
694  
695  void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
696                                uint64_t start, uint64_t count,
697                                bool finish)
698  {
699      uint64_t el_count;
700      unsigned long *cur, *end;
701  
702      if (!count) {
703          return;
704      }
705      serialization_chunk(hb, start, count, &cur, &el_count);
706      end = cur + el_count;
707  
708      while (cur != end) {
709          memcpy(cur, buf, sizeof(*cur));
710  
711          if (BITS_PER_LONG == 32) {
712              le32_to_cpus((uint32_t *)cur);
713          } else {
714              le64_to_cpus((uint64_t *)cur);
715          }
716  
717          buf += sizeof(unsigned long);
718          cur++;
719      }
720      if (finish) {
721          hbitmap_deserialize_finish(hb);
722      }
723  }
724  
725  void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
726                                  bool finish)
727  {
728      uint64_t el_count;
729      unsigned long *first;
730  
731      if (!count) {
732          return;
733      }
734      serialization_chunk(hb, start, count, &first, &el_count);
735  
736      memset(first, 0, el_count * sizeof(unsigned long));
737      if (finish) {
738          hbitmap_deserialize_finish(hb);
739      }
740  }
741  
742  void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
743                                bool finish)
744  {
745      uint64_t el_count;
746      unsigned long *first;
747  
748      if (!count) {
749          return;
750      }
751      serialization_chunk(hb, start, count, &first, &el_count);
752  
753      memset(first, 0xff, el_count * sizeof(unsigned long));
754      if (finish) {
755          hbitmap_deserialize_finish(hb);
756      }
757  }
758  
759  void hbitmap_deserialize_finish(HBitmap *bitmap)
760  {
761      int64_t i, size, prev_size;
762      int lev;
763  
764      /* restore levels starting from penultimate to zero level, assuming
765       * that the last level is ok */
766      size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
767      for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
768          prev_size = size;
769          size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
770          memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
771  
772          for (i = 0; i < prev_size; ++i) {
773              if (bitmap->levels[lev + 1][i]) {
774                  bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
775                      1UL << (i & (BITS_PER_LONG - 1));
776              }
777          }
778      }
779  
780      bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
781      bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
782  }
783  
784  void hbitmap_free(HBitmap *hb)
785  {
786      unsigned i;
787      assert(!hb->meta);
788      for (i = HBITMAP_LEVELS; i-- > 0; ) {
789          g_free(hb->levels[i]);
790      }
791      g_free(hb);
792  }
793  
794  HBitmap *hbitmap_alloc(uint64_t size, int granularity)
795  {
796      HBitmap *hb = g_new0(struct HBitmap, 1);
797      unsigned i;
798  
799      assert(size <= INT64_MAX);
800      hb->orig_size = size;
801  
802      assert(granularity >= 0 && granularity < 64);
803      size = (size + (1ULL << granularity) - 1) >> granularity;
804      assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
805  
806      hb->size = size;
807      hb->granularity = granularity;
808      for (i = HBITMAP_LEVELS; i-- > 0; ) {
809          size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
810          hb->sizes[i] = size;
811          hb->levels[i] = g_new0(unsigned long, size);
812      }
813  
814      /* We necessarily have free bits in level 0 due to the definition
815       * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
816       * hbitmap_iter_skip_words.
817       */
818      assert(size == 1);
819      hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
820      return hb;
821  }
822  
823  void hbitmap_truncate(HBitmap *hb, uint64_t size)
824  {
825      bool shrink;
826      unsigned i;
827      uint64_t num_elements = size;
828      uint64_t old;
829  
830      assert(size <= INT64_MAX);
831      hb->orig_size = size;
832  
833      /* Size comes in as logical elements, adjust for granularity. */
834      size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
835      assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
836      shrink = size < hb->size;
837  
838      /* bit sizes are identical; nothing to do. */
839      if (size == hb->size) {
840          return;
841      }
842  
843      /* If we're losing bits, let's clear those bits before we invalidate all of
844       * our invariants. This helps keep the bitcount consistent, and will prevent
845       * us from carrying around garbage bits beyond the end of the map.
846       */
847      if (shrink) {
848          /* Don't clear partial granularity groups;
849           * start at the first full one. */
850          uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
851          uint64_t fix_count = (hb->size << hb->granularity) - start;
852  
853          assert(fix_count);
854          hbitmap_reset(hb, start, fix_count);
855      }
856  
857      hb->size = size;
858      for (i = HBITMAP_LEVELS; i-- > 0; ) {
859          size = MAX(BITS_TO_LONGS(size), 1);
860          if (hb->sizes[i] == size) {
861              break;
862          }
863          old = hb->sizes[i];
864          hb->sizes[i] = size;
865          hb->levels[i] = g_renew(unsigned long, hb->levels[i], size);
866          if (!shrink) {
867              memset(&hb->levels[i][old], 0x00,
868                     (size - old) * sizeof(*hb->levels[i]));
869          }
870      }
871      if (hb->meta) {
872          hbitmap_truncate(hb->meta, hb->size << hb->granularity);
873      }
874  }
875  
876  /**
877   * hbitmap_sparse_merge: performs dst = dst | src
878   * works with differing granularities.
879   * best used when src is sparsely populated.
880   */
881  static void hbitmap_sparse_merge(HBitmap *dst, const HBitmap *src)
882  {
883      int64_t offset;
884      int64_t count;
885  
886      for (offset = 0;
887           hbitmap_next_dirty_area(src, offset, src->orig_size, INT64_MAX,
888                                   &offset, &count);
889           offset += count)
890      {
891          hbitmap_set(dst, offset, count);
892      }
893  }
894  
895  /**
896   * Given HBitmaps A and B, let R := A (BITOR) B.
897   * Bitmaps A and B will not be modified,
898   *     except when bitmap R is an alias of A or B.
899   * Bitmaps must have same size.
900   */
901  void hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
902  {
903      int i;
904      uint64_t j;
905  
906      assert(a->orig_size == result->orig_size);
907      assert(b->orig_size == result->orig_size);
908  
909      if ((!hbitmap_count(a) && result == b) ||
910          (!hbitmap_count(b) && result == a)) {
911          return;
912      }
913  
914      if (!hbitmap_count(a) && !hbitmap_count(b)) {
915          hbitmap_reset_all(result);
916          return;
917      }
918  
919      if (a->granularity != b->granularity) {
920          if ((a != result) && (b != result)) {
921              hbitmap_reset_all(result);
922          }
923          if (a != result) {
924              hbitmap_sparse_merge(result, a);
925          }
926          if (b != result) {
927              hbitmap_sparse_merge(result, b);
928          }
929          return;
930      }
931  
932      /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
933       * It may be possible to improve running times for sparsely populated maps
934       * by using hbitmap_iter_next, but this is suboptimal for dense maps.
935       */
936      assert(a->size == b->size);
937      for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
938          for (j = 0; j < a->sizes[i]; j++) {
939              result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
940          }
941      }
942  
943      /* Recompute the dirty count */
944      result->count = hb_count_between(result, 0, result->size - 1);
945  }
946  
947  char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
948  {
949      size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
950      char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
951      char *hash = NULL;
952      qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
953  
954      return hash;
955  }
956