1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 32 #define CASE_OP_32_64(x) \ 33 glue(glue(case INDEX_op_, x), _i32): \ 34 glue(glue(case INDEX_op_, x), _i64) 35 36 #define CASE_OP_32_64_VEC(x) \ 37 glue(glue(case INDEX_op_, x), _i32): \ 38 glue(glue(case INDEX_op_, x), _i64): \ 39 glue(glue(case INDEX_op_, x), _vec) 40 41 typedef struct MemCopyInfo { 42 IntervalTreeNode itree; 43 QSIMPLEQ_ENTRY (MemCopyInfo) next; 44 TCGTemp *ts; 45 TCGType type; 46 } MemCopyInfo; 47 48 typedef struct TempOptInfo { 49 bool is_const; 50 TCGTemp *prev_copy; 51 TCGTemp *next_copy; 52 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 53 uint64_t val; 54 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 55 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 56 } TempOptInfo; 57 58 typedef struct OptContext { 59 TCGContext *tcg; 60 TCGOp *prev_mb; 61 TCGTempSet temps_used; 62 63 IntervalTreeRoot mem_copy; 64 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 65 66 /* In flight values from optimization. */ 67 TCGType type; 68 } OptContext; 69 70 static inline TempOptInfo *ts_info(TCGTemp *ts) 71 { 72 return ts->state_ptr; 73 } 74 75 static inline TempOptInfo *arg_info(TCGArg arg) 76 { 77 return ts_info(arg_temp(arg)); 78 } 79 80 static inline bool ti_is_const(TempOptInfo *ti) 81 { 82 return ti->is_const; 83 } 84 85 static inline uint64_t ti_const_val(TempOptInfo *ti) 86 { 87 return ti->val; 88 } 89 90 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 91 { 92 return ti_is_const(ti) && ti_const_val(ti) == val; 93 } 94 95 static inline bool ts_is_const(TCGTemp *ts) 96 { 97 return ti_is_const(ts_info(ts)); 98 } 99 100 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 101 { 102 return ti_is_const_val(ts_info(ts), val); 103 } 104 105 static inline bool arg_is_const(TCGArg arg) 106 { 107 return ts_is_const(arg_temp(arg)); 108 } 109 110 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 111 { 112 return ts_is_const_val(arg_temp(arg), val); 113 } 114 115 static inline bool ts_is_copy(TCGTemp *ts) 116 { 117 return ts_info(ts)->next_copy != ts; 118 } 119 120 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 121 { 122 return a->kind < b->kind ? b : a; 123 } 124 125 /* Initialize and activate a temporary. */ 126 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 127 { 128 size_t idx = temp_idx(ts); 129 TempOptInfo *ti; 130 131 if (test_bit(idx, ctx->temps_used.l)) { 132 return; 133 } 134 set_bit(idx, ctx->temps_used.l); 135 136 ti = ts->state_ptr; 137 if (ti == NULL) { 138 ti = tcg_malloc(sizeof(TempOptInfo)); 139 ts->state_ptr = ti; 140 } 141 142 ti->next_copy = ts; 143 ti->prev_copy = ts; 144 QSIMPLEQ_INIT(&ti->mem_copy); 145 if (ts->kind == TEMP_CONST) { 146 ti->is_const = true; 147 ti->val = ts->val; 148 ti->z_mask = ts->val; 149 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 150 } else { 151 ti->is_const = false; 152 ti->z_mask = -1; 153 ti->s_mask = 0; 154 } 155 } 156 157 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 158 { 159 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 160 return r ? container_of(r, MemCopyInfo, itree) : NULL; 161 } 162 163 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 164 { 165 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 166 return r ? container_of(r, MemCopyInfo, itree) : NULL; 167 } 168 169 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 170 { 171 TCGTemp *ts = mc->ts; 172 TempOptInfo *ti = ts_info(ts); 173 174 interval_tree_remove(&mc->itree, &ctx->mem_copy); 175 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 176 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 177 } 178 179 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 180 { 181 while (true) { 182 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 183 if (!mc) { 184 break; 185 } 186 remove_mem_copy(ctx, mc); 187 } 188 } 189 190 static void remove_mem_copy_all(OptContext *ctx) 191 { 192 remove_mem_copy_in(ctx, 0, -1); 193 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 194 } 195 196 static TCGTemp *find_better_copy(TCGTemp *ts) 197 { 198 TCGTemp *i, *ret; 199 200 /* If this is already readonly, we can't do better. */ 201 if (temp_readonly(ts)) { 202 return ts; 203 } 204 205 ret = ts; 206 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 207 ret = cmp_better_copy(ret, i); 208 } 209 return ret; 210 } 211 212 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 213 { 214 TempOptInfo *si = ts_info(src_ts); 215 TempOptInfo *di = ts_info(dst_ts); 216 MemCopyInfo *mc; 217 218 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 219 tcg_debug_assert(mc->ts == src_ts); 220 mc->ts = dst_ts; 221 } 222 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 223 } 224 225 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 226 static void reset_ts(OptContext *ctx, TCGTemp *ts) 227 { 228 TempOptInfo *ti = ts_info(ts); 229 TCGTemp *pts = ti->prev_copy; 230 TCGTemp *nts = ti->next_copy; 231 TempOptInfo *pi = ts_info(pts); 232 TempOptInfo *ni = ts_info(nts); 233 234 ni->prev_copy = ti->prev_copy; 235 pi->next_copy = ti->next_copy; 236 ti->next_copy = ts; 237 ti->prev_copy = ts; 238 ti->is_const = false; 239 ti->z_mask = -1; 240 ti->s_mask = 0; 241 242 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 243 if (ts == nts) { 244 /* Last temp copy being removed, the mem copies die. */ 245 MemCopyInfo *mc; 246 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 247 interval_tree_remove(&mc->itree, &ctx->mem_copy); 248 } 249 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 250 } else { 251 move_mem_copies(find_better_copy(nts), ts); 252 } 253 } 254 } 255 256 static void reset_temp(OptContext *ctx, TCGArg arg) 257 { 258 reset_ts(ctx, arg_temp(arg)); 259 } 260 261 static void record_mem_copy(OptContext *ctx, TCGType type, 262 TCGTemp *ts, intptr_t start, intptr_t last) 263 { 264 MemCopyInfo *mc; 265 TempOptInfo *ti; 266 267 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 268 if (mc) { 269 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 270 } else { 271 mc = tcg_malloc(sizeof(*mc)); 272 } 273 274 memset(mc, 0, sizeof(*mc)); 275 mc->itree.start = start; 276 mc->itree.last = last; 277 mc->type = type; 278 interval_tree_insert(&mc->itree, &ctx->mem_copy); 279 280 ts = find_better_copy(ts); 281 ti = ts_info(ts); 282 mc->ts = ts; 283 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 284 } 285 286 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 287 { 288 TCGTemp *i; 289 290 if (ts1 == ts2) { 291 return true; 292 } 293 294 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 295 return false; 296 } 297 298 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 299 if (i == ts2) { 300 return true; 301 } 302 } 303 304 return false; 305 } 306 307 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 308 { 309 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 310 } 311 312 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 313 { 314 MemCopyInfo *mc; 315 316 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 317 if (mc->itree.start == s && mc->type == type) { 318 return find_better_copy(mc->ts); 319 } 320 } 321 return NULL; 322 } 323 324 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 325 { 326 TCGType type = ctx->type; 327 TCGTemp *ts; 328 329 if (type == TCG_TYPE_I32) { 330 val = (int32_t)val; 331 } 332 333 ts = tcg_constant_internal(type, val); 334 init_ts_info(ctx, ts); 335 336 return temp_arg(ts); 337 } 338 339 static TCGArg arg_new_temp(OptContext *ctx) 340 { 341 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 342 init_ts_info(ctx, ts); 343 return temp_arg(ts); 344 } 345 346 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 347 { 348 TCGTemp *dst_ts = arg_temp(dst); 349 TCGTemp *src_ts = arg_temp(src); 350 TempOptInfo *di; 351 TempOptInfo *si; 352 TCGOpcode new_op; 353 354 if (ts_are_copies(dst_ts, src_ts)) { 355 tcg_op_remove(ctx->tcg, op); 356 return true; 357 } 358 359 reset_ts(ctx, dst_ts); 360 di = ts_info(dst_ts); 361 si = ts_info(src_ts); 362 363 switch (ctx->type) { 364 case TCG_TYPE_I32: 365 new_op = INDEX_op_mov_i32; 366 break; 367 case TCG_TYPE_I64: 368 new_op = INDEX_op_mov_i64; 369 break; 370 case TCG_TYPE_V64: 371 case TCG_TYPE_V128: 372 case TCG_TYPE_V256: 373 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */ 374 new_op = INDEX_op_mov_vec; 375 break; 376 default: 377 g_assert_not_reached(); 378 } 379 op->opc = new_op; 380 op->args[0] = dst; 381 op->args[1] = src; 382 383 di->z_mask = si->z_mask; 384 di->s_mask = si->s_mask; 385 386 if (src_ts->type == dst_ts->type) { 387 TempOptInfo *ni = ts_info(si->next_copy); 388 389 di->next_copy = si->next_copy; 390 di->prev_copy = src_ts; 391 ni->prev_copy = dst_ts; 392 si->next_copy = dst_ts; 393 di->is_const = si->is_const; 394 di->val = si->val; 395 396 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 397 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 398 move_mem_copies(dst_ts, src_ts); 399 } 400 } 401 return true; 402 } 403 404 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 405 TCGArg dst, uint64_t val) 406 { 407 /* Convert movi to mov with constant temp. */ 408 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 409 } 410 411 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 412 { 413 uint64_t l64, h64; 414 415 switch (op) { 416 CASE_OP_32_64(add): 417 return x + y; 418 419 CASE_OP_32_64(sub): 420 return x - y; 421 422 CASE_OP_32_64(mul): 423 return x * y; 424 425 CASE_OP_32_64_VEC(and): 426 return x & y; 427 428 CASE_OP_32_64_VEC(or): 429 return x | y; 430 431 CASE_OP_32_64_VEC(xor): 432 return x ^ y; 433 434 case INDEX_op_shl_i32: 435 return (uint32_t)x << (y & 31); 436 437 case INDEX_op_shl_i64: 438 return (uint64_t)x << (y & 63); 439 440 case INDEX_op_shr_i32: 441 return (uint32_t)x >> (y & 31); 442 443 case INDEX_op_shr_i64: 444 return (uint64_t)x >> (y & 63); 445 446 case INDEX_op_sar_i32: 447 return (int32_t)x >> (y & 31); 448 449 case INDEX_op_sar_i64: 450 return (int64_t)x >> (y & 63); 451 452 case INDEX_op_rotr_i32: 453 return ror32(x, y & 31); 454 455 case INDEX_op_rotr_i64: 456 return ror64(x, y & 63); 457 458 case INDEX_op_rotl_i32: 459 return rol32(x, y & 31); 460 461 case INDEX_op_rotl_i64: 462 return rol64(x, y & 63); 463 464 CASE_OP_32_64_VEC(not): 465 return ~x; 466 467 CASE_OP_32_64(neg): 468 return -x; 469 470 CASE_OP_32_64_VEC(andc): 471 return x & ~y; 472 473 CASE_OP_32_64_VEC(orc): 474 return x | ~y; 475 476 CASE_OP_32_64_VEC(eqv): 477 return ~(x ^ y); 478 479 CASE_OP_32_64_VEC(nand): 480 return ~(x & y); 481 482 CASE_OP_32_64_VEC(nor): 483 return ~(x | y); 484 485 case INDEX_op_clz_i32: 486 return (uint32_t)x ? clz32(x) : y; 487 488 case INDEX_op_clz_i64: 489 return x ? clz64(x) : y; 490 491 case INDEX_op_ctz_i32: 492 return (uint32_t)x ? ctz32(x) : y; 493 494 case INDEX_op_ctz_i64: 495 return x ? ctz64(x) : y; 496 497 case INDEX_op_ctpop_i32: 498 return ctpop32(x); 499 500 case INDEX_op_ctpop_i64: 501 return ctpop64(x); 502 503 CASE_OP_32_64(ext8s): 504 return (int8_t)x; 505 506 CASE_OP_32_64(ext16s): 507 return (int16_t)x; 508 509 CASE_OP_32_64(ext8u): 510 return (uint8_t)x; 511 512 CASE_OP_32_64(ext16u): 513 return (uint16_t)x; 514 515 CASE_OP_32_64(bswap16): 516 x = bswap16(x); 517 return y & TCG_BSWAP_OS ? (int16_t)x : x; 518 519 CASE_OP_32_64(bswap32): 520 x = bswap32(x); 521 return y & TCG_BSWAP_OS ? (int32_t)x : x; 522 523 case INDEX_op_bswap64_i64: 524 return bswap64(x); 525 526 case INDEX_op_ext_i32_i64: 527 case INDEX_op_ext32s_i64: 528 return (int32_t)x; 529 530 case INDEX_op_extu_i32_i64: 531 case INDEX_op_extrl_i64_i32: 532 case INDEX_op_ext32u_i64: 533 return (uint32_t)x; 534 535 case INDEX_op_extrh_i64_i32: 536 return (uint64_t)x >> 32; 537 538 case INDEX_op_muluh_i32: 539 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 540 case INDEX_op_mulsh_i32: 541 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 542 543 case INDEX_op_muluh_i64: 544 mulu64(&l64, &h64, x, y); 545 return h64; 546 case INDEX_op_mulsh_i64: 547 muls64(&l64, &h64, x, y); 548 return h64; 549 550 case INDEX_op_div_i32: 551 /* Avoid crashing on divide by zero, otherwise undefined. */ 552 return (int32_t)x / ((int32_t)y ? : 1); 553 case INDEX_op_divu_i32: 554 return (uint32_t)x / ((uint32_t)y ? : 1); 555 case INDEX_op_div_i64: 556 return (int64_t)x / ((int64_t)y ? : 1); 557 case INDEX_op_divu_i64: 558 return (uint64_t)x / ((uint64_t)y ? : 1); 559 560 case INDEX_op_rem_i32: 561 return (int32_t)x % ((int32_t)y ? : 1); 562 case INDEX_op_remu_i32: 563 return (uint32_t)x % ((uint32_t)y ? : 1); 564 case INDEX_op_rem_i64: 565 return (int64_t)x % ((int64_t)y ? : 1); 566 case INDEX_op_remu_i64: 567 return (uint64_t)x % ((uint64_t)y ? : 1); 568 569 default: 570 g_assert_not_reached(); 571 } 572 } 573 574 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 575 uint64_t x, uint64_t y) 576 { 577 uint64_t res = do_constant_folding_2(op, x, y); 578 if (type == TCG_TYPE_I32) { 579 res = (int32_t)res; 580 } 581 return res; 582 } 583 584 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 585 { 586 switch (c) { 587 case TCG_COND_EQ: 588 return x == y; 589 case TCG_COND_NE: 590 return x != y; 591 case TCG_COND_LT: 592 return (int32_t)x < (int32_t)y; 593 case TCG_COND_GE: 594 return (int32_t)x >= (int32_t)y; 595 case TCG_COND_LE: 596 return (int32_t)x <= (int32_t)y; 597 case TCG_COND_GT: 598 return (int32_t)x > (int32_t)y; 599 case TCG_COND_LTU: 600 return x < y; 601 case TCG_COND_GEU: 602 return x >= y; 603 case TCG_COND_LEU: 604 return x <= y; 605 case TCG_COND_GTU: 606 return x > y; 607 case TCG_COND_TSTEQ: 608 return (x & y) == 0; 609 case TCG_COND_TSTNE: 610 return (x & y) != 0; 611 case TCG_COND_ALWAYS: 612 case TCG_COND_NEVER: 613 break; 614 } 615 g_assert_not_reached(); 616 } 617 618 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 619 { 620 switch (c) { 621 case TCG_COND_EQ: 622 return x == y; 623 case TCG_COND_NE: 624 return x != y; 625 case TCG_COND_LT: 626 return (int64_t)x < (int64_t)y; 627 case TCG_COND_GE: 628 return (int64_t)x >= (int64_t)y; 629 case TCG_COND_LE: 630 return (int64_t)x <= (int64_t)y; 631 case TCG_COND_GT: 632 return (int64_t)x > (int64_t)y; 633 case TCG_COND_LTU: 634 return x < y; 635 case TCG_COND_GEU: 636 return x >= y; 637 case TCG_COND_LEU: 638 return x <= y; 639 case TCG_COND_GTU: 640 return x > y; 641 case TCG_COND_TSTEQ: 642 return (x & y) == 0; 643 case TCG_COND_TSTNE: 644 return (x & y) != 0; 645 case TCG_COND_ALWAYS: 646 case TCG_COND_NEVER: 647 break; 648 } 649 g_assert_not_reached(); 650 } 651 652 static int do_constant_folding_cond_eq(TCGCond c) 653 { 654 switch (c) { 655 case TCG_COND_GT: 656 case TCG_COND_LTU: 657 case TCG_COND_LT: 658 case TCG_COND_GTU: 659 case TCG_COND_NE: 660 return 0; 661 case TCG_COND_GE: 662 case TCG_COND_GEU: 663 case TCG_COND_LE: 664 case TCG_COND_LEU: 665 case TCG_COND_EQ: 666 return 1; 667 case TCG_COND_TSTEQ: 668 case TCG_COND_TSTNE: 669 return -1; 670 case TCG_COND_ALWAYS: 671 case TCG_COND_NEVER: 672 break; 673 } 674 g_assert_not_reached(); 675 } 676 677 /* 678 * Return -1 if the condition can't be simplified, 679 * and the result of the condition (0 or 1) if it can. 680 */ 681 static int do_constant_folding_cond(TCGType type, TCGArg x, 682 TCGArg y, TCGCond c) 683 { 684 if (arg_is_const(x) && arg_is_const(y)) { 685 uint64_t xv = arg_info(x)->val; 686 uint64_t yv = arg_info(y)->val; 687 688 switch (type) { 689 case TCG_TYPE_I32: 690 return do_constant_folding_cond_32(xv, yv, c); 691 case TCG_TYPE_I64: 692 return do_constant_folding_cond_64(xv, yv, c); 693 default: 694 /* Only scalar comparisons are optimizable */ 695 return -1; 696 } 697 } else if (args_are_copies(x, y)) { 698 return do_constant_folding_cond_eq(c); 699 } else if (arg_is_const_val(y, 0)) { 700 switch (c) { 701 case TCG_COND_LTU: 702 case TCG_COND_TSTNE: 703 return 0; 704 case TCG_COND_GEU: 705 case TCG_COND_TSTEQ: 706 return 1; 707 default: 708 return -1; 709 } 710 } 711 return -1; 712 } 713 714 /** 715 * swap_commutative: 716 * @dest: TCGArg of the destination argument, or NO_DEST. 717 * @p1: first paired argument 718 * @p2: second paired argument 719 * 720 * If *@p1 is a constant and *@p2 is not, swap. 721 * If *@p2 matches @dest, swap. 722 * Return true if a swap was performed. 723 */ 724 725 #define NO_DEST temp_arg(NULL) 726 727 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 728 { 729 TCGArg a1 = *p1, a2 = *p2; 730 int sum = 0; 731 sum += arg_is_const(a1); 732 sum -= arg_is_const(a2); 733 734 /* Prefer the constant in second argument, and then the form 735 op a, a, b, which is better handled on non-RISC hosts. */ 736 if (sum > 0 || (sum == 0 && dest == a2)) { 737 *p1 = a2; 738 *p2 = a1; 739 return true; 740 } 741 return false; 742 } 743 744 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 745 { 746 int sum = 0; 747 sum += arg_is_const(p1[0]); 748 sum += arg_is_const(p1[1]); 749 sum -= arg_is_const(p2[0]); 750 sum -= arg_is_const(p2[1]); 751 if (sum > 0) { 752 TCGArg t; 753 t = p1[0], p1[0] = p2[0], p2[0] = t; 754 t = p1[1], p1[1] = p2[1], p2[1] = t; 755 return true; 756 } 757 return false; 758 } 759 760 /* 761 * Return -1 if the condition can't be simplified, 762 * and the result of the condition (0 or 1) if it can. 763 */ 764 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 765 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 766 { 767 TCGCond cond; 768 bool swap; 769 int r; 770 771 swap = swap_commutative(dest, p1, p2); 772 cond = *pcond; 773 if (swap) { 774 *pcond = cond = tcg_swap_cond(cond); 775 } 776 777 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 778 if (r >= 0) { 779 return r; 780 } 781 if (!is_tst_cond(cond)) { 782 return -1; 783 } 784 785 /* 786 * TSTNE x,x -> NE x,0 787 * TSTNE x,-1 -> NE x,0 788 */ 789 if (args_are_copies(*p1, *p2) || arg_is_const_val(*p2, -1)) { 790 *p2 = arg_new_constant(ctx, 0); 791 *pcond = tcg_tst_eqne_cond(cond); 792 return -1; 793 } 794 795 /* TSTNE x,sign -> LT x,0 */ 796 if (arg_is_const_val(*p2, (ctx->type == TCG_TYPE_I32 797 ? INT32_MIN : INT64_MIN))) { 798 *p2 = arg_new_constant(ctx, 0); 799 *pcond = tcg_tst_ltge_cond(cond); 800 return -1; 801 } 802 803 /* Expand to AND with a temporary if no backend support. */ 804 if (!TCG_TARGET_HAS_tst) { 805 TCGOpcode and_opc = (ctx->type == TCG_TYPE_I32 806 ? INDEX_op_and_i32 : INDEX_op_and_i64); 807 TCGOp *op2 = tcg_op_insert_before(ctx->tcg, op, and_opc, 3); 808 TCGArg tmp = arg_new_temp(ctx); 809 810 op2->args[0] = tmp; 811 op2->args[1] = *p1; 812 op2->args[2] = *p2; 813 814 *p1 = tmp; 815 *p2 = arg_new_constant(ctx, 0); 816 *pcond = tcg_tst_eqne_cond(cond); 817 } 818 return -1; 819 } 820 821 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 822 { 823 TCGArg al, ah, bl, bh; 824 TCGCond c; 825 bool swap; 826 int r; 827 828 swap = swap_commutative2(args, args + 2); 829 c = args[4]; 830 if (swap) { 831 args[4] = c = tcg_swap_cond(c); 832 } 833 834 al = args[0]; 835 ah = args[1]; 836 bl = args[2]; 837 bh = args[3]; 838 839 if (arg_is_const(bl) && arg_is_const(bh)) { 840 tcg_target_ulong blv = arg_info(bl)->val; 841 tcg_target_ulong bhv = arg_info(bh)->val; 842 uint64_t b = deposit64(blv, 32, 32, bhv); 843 844 if (arg_is_const(al) && arg_is_const(ah)) { 845 tcg_target_ulong alv = arg_info(al)->val; 846 tcg_target_ulong ahv = arg_info(ah)->val; 847 uint64_t a = deposit64(alv, 32, 32, ahv); 848 849 r = do_constant_folding_cond_64(a, b, c); 850 if (r >= 0) { 851 return r; 852 } 853 } 854 855 if (b == 0) { 856 switch (c) { 857 case TCG_COND_LTU: 858 case TCG_COND_TSTNE: 859 return 0; 860 case TCG_COND_GEU: 861 case TCG_COND_TSTEQ: 862 return 1; 863 default: 864 break; 865 } 866 } 867 868 /* TSTNE x,-1 -> NE x,0 */ 869 if (b == -1 && is_tst_cond(c)) { 870 args[3] = args[2] = arg_new_constant(ctx, 0); 871 args[4] = tcg_tst_eqne_cond(c); 872 return -1; 873 } 874 875 /* TSTNE x,sign -> LT x,0 */ 876 if (b == INT64_MIN && is_tst_cond(c)) { 877 /* bl must be 0, so copy that to bh */ 878 args[3] = bl; 879 args[4] = tcg_tst_ltge_cond(c); 880 return -1; 881 } 882 } 883 884 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 885 r = do_constant_folding_cond_eq(c); 886 if (r >= 0) { 887 return r; 888 } 889 890 /* TSTNE x,x -> NE x,0 */ 891 if (is_tst_cond(c)) { 892 args[3] = args[2] = arg_new_constant(ctx, 0); 893 args[4] = tcg_tst_eqne_cond(c); 894 return -1; 895 } 896 } 897 898 /* Expand to AND with a temporary if no backend support. */ 899 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 900 TCGOp *op1 = tcg_op_insert_before(ctx->tcg, op, INDEX_op_and_i32, 3); 901 TCGOp *op2 = tcg_op_insert_before(ctx->tcg, op, INDEX_op_and_i32, 3); 902 TCGArg t1 = arg_new_temp(ctx); 903 TCGArg t2 = arg_new_temp(ctx); 904 905 op1->args[0] = t1; 906 op1->args[1] = al; 907 op1->args[2] = bl; 908 op2->args[0] = t2; 909 op2->args[1] = ah; 910 op2->args[2] = bh; 911 912 args[0] = t1; 913 args[1] = t2; 914 args[3] = args[2] = arg_new_constant(ctx, 0); 915 args[4] = tcg_tst_eqne_cond(c); 916 } 917 return -1; 918 } 919 920 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 921 { 922 for (int i = 0; i < nb_args; i++) { 923 TCGTemp *ts = arg_temp(op->args[i]); 924 init_ts_info(ctx, ts); 925 } 926 } 927 928 static void copy_propagate(OptContext *ctx, TCGOp *op, 929 int nb_oargs, int nb_iargs) 930 { 931 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 932 TCGTemp *ts = arg_temp(op->args[i]); 933 if (ts_is_copy(ts)) { 934 op->args[i] = temp_arg(find_better_copy(ts)); 935 } 936 } 937 } 938 939 static void finish_bb(OptContext *ctx) 940 { 941 /* We only optimize memory barriers across basic blocks. */ 942 ctx->prev_mb = NULL; 943 } 944 945 static void finish_ebb(OptContext *ctx) 946 { 947 finish_bb(ctx); 948 /* We only optimize across extended basic blocks. */ 949 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 950 remove_mem_copy_all(ctx); 951 } 952 953 static bool finish_folding(OptContext *ctx, TCGOp *op) 954 { 955 const TCGOpDef *def = &tcg_op_defs[op->opc]; 956 int i, nb_oargs; 957 958 nb_oargs = def->nb_oargs; 959 for (i = 0; i < nb_oargs; i++) { 960 TCGTemp *ts = arg_temp(op->args[i]); 961 reset_ts(ctx, ts); 962 } 963 return true; 964 } 965 966 /* 967 * The fold_* functions return true when processing is complete, 968 * usually by folding the operation to a constant or to a copy, 969 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 970 * like collect information about the value produced, for use in 971 * optimizing a subsequent operation. 972 * 973 * These first fold_* functions are all helpers, used by other 974 * folders for more specific operations. 975 */ 976 977 static bool fold_const1(OptContext *ctx, TCGOp *op) 978 { 979 if (arg_is_const(op->args[1])) { 980 uint64_t t; 981 982 t = arg_info(op->args[1])->val; 983 t = do_constant_folding(op->opc, ctx->type, t, 0); 984 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 985 } 986 return false; 987 } 988 989 static bool fold_const2(OptContext *ctx, TCGOp *op) 990 { 991 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 992 uint64_t t1 = arg_info(op->args[1])->val; 993 uint64_t t2 = arg_info(op->args[2])->val; 994 995 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 996 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 997 } 998 return false; 999 } 1000 1001 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1002 { 1003 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1004 return false; 1005 } 1006 1007 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1008 { 1009 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1010 return fold_const2(ctx, op); 1011 } 1012 1013 /* 1014 * Record "zero" and "sign" masks for the single output of @op. 1015 * See TempOptInfo definition of z_mask and s_mask. 1016 * If z_mask allows, fold the output to constant zero. 1017 * The passed s_mask may be augmented by z_mask. 1018 */ 1019 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1020 uint64_t z_mask, int64_t s_mask) 1021 { 1022 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1023 TCGTemp *ts; 1024 TempOptInfo *ti; 1025 int rep; 1026 1027 /* Only single-output opcodes are supported here. */ 1028 tcg_debug_assert(def->nb_oargs == 1); 1029 1030 /* 1031 * 32-bit ops generate 32-bit results, which for the purpose of 1032 * simplifying tcg are sign-extended. Certainly that's how we 1033 * represent our constants elsewhere. Note that the bits will 1034 * be reset properly for a 64-bit value when encountering the 1035 * type changing opcodes. 1036 */ 1037 if (ctx->type == TCG_TYPE_I32) { 1038 z_mask = (int32_t)z_mask; 1039 s_mask |= INT32_MIN; 1040 } 1041 1042 if (z_mask == 0) { 1043 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1044 } 1045 1046 ts = arg_temp(op->args[0]); 1047 reset_ts(ctx, ts); 1048 1049 ti = ts_info(ts); 1050 ti->z_mask = z_mask; 1051 1052 /* Canonicalize s_mask and incorporate data from z_mask. */ 1053 rep = clz64(~s_mask); 1054 rep = MAX(rep, clz64(z_mask)); 1055 rep = MAX(rep - 1, 0); 1056 ti->s_mask = INT64_MIN >> rep; 1057 1058 return true; 1059 } 1060 1061 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1062 { 1063 return fold_masks_zs(ctx, op, z_mask, 0); 1064 } 1065 1066 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1067 { 1068 return fold_masks_zs(ctx, op, -1, s_mask); 1069 } 1070 1071 /* 1072 * An "affected" mask bit is 0 if and only if the result is identical 1073 * to the first input. Thus if the entire mask is 0, the operation 1074 * is equivalent to a copy. 1075 */ 1076 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1077 { 1078 if (ctx->type == TCG_TYPE_I32) { 1079 a_mask = (uint32_t)a_mask; 1080 } 1081 if (a_mask == 0) { 1082 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1083 } 1084 return false; 1085 } 1086 1087 /* 1088 * Convert @op to NOT, if NOT is supported by the host. 1089 * Return true f the conversion is successful, which will still 1090 * indicate that the processing is complete. 1091 */ 1092 static bool fold_not(OptContext *ctx, TCGOp *op); 1093 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1094 { 1095 TCGOpcode not_op; 1096 bool have_not; 1097 1098 switch (ctx->type) { 1099 case TCG_TYPE_I32: 1100 not_op = INDEX_op_not_i32; 1101 have_not = TCG_TARGET_HAS_not_i32; 1102 break; 1103 case TCG_TYPE_I64: 1104 not_op = INDEX_op_not_i64; 1105 have_not = TCG_TARGET_HAS_not_i64; 1106 break; 1107 case TCG_TYPE_V64: 1108 case TCG_TYPE_V128: 1109 case TCG_TYPE_V256: 1110 not_op = INDEX_op_not_vec; 1111 have_not = TCG_TARGET_HAS_not_vec; 1112 break; 1113 default: 1114 g_assert_not_reached(); 1115 } 1116 if (have_not) { 1117 op->opc = not_op; 1118 op->args[1] = op->args[idx]; 1119 return fold_not(ctx, op); 1120 } 1121 return false; 1122 } 1123 1124 /* If the binary operation has first argument @i, fold to @i. */ 1125 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1126 { 1127 if (arg_is_const_val(op->args[1], i)) { 1128 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1129 } 1130 return false; 1131 } 1132 1133 /* If the binary operation has first argument @i, fold to NOT. */ 1134 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1135 { 1136 if (arg_is_const_val(op->args[1], i)) { 1137 return fold_to_not(ctx, op, 2); 1138 } 1139 return false; 1140 } 1141 1142 /* If the binary operation has second argument @i, fold to @i. */ 1143 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1144 { 1145 if (arg_is_const_val(op->args[2], i)) { 1146 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1147 } 1148 return false; 1149 } 1150 1151 /* If the binary operation has second argument @i, fold to identity. */ 1152 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1153 { 1154 if (arg_is_const_val(op->args[2], i)) { 1155 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1156 } 1157 return false; 1158 } 1159 1160 /* If the binary operation has second argument @i, fold to NOT. */ 1161 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1162 { 1163 if (arg_is_const_val(op->args[2], i)) { 1164 return fold_to_not(ctx, op, 1); 1165 } 1166 return false; 1167 } 1168 1169 /* If the binary operation has both arguments equal, fold to @i. */ 1170 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1171 { 1172 if (args_are_copies(op->args[1], op->args[2])) { 1173 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1174 } 1175 return false; 1176 } 1177 1178 /* If the binary operation has both arguments equal, fold to identity. */ 1179 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1180 { 1181 if (args_are_copies(op->args[1], op->args[2])) { 1182 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1183 } 1184 return false; 1185 } 1186 1187 /* 1188 * These outermost fold_<op> functions are sorted alphabetically. 1189 * 1190 * The ordering of the transformations should be: 1191 * 1) those that produce a constant 1192 * 2) those that produce a copy 1193 * 3) those that produce information about the result value. 1194 */ 1195 1196 static bool fold_or(OptContext *ctx, TCGOp *op); 1197 static bool fold_orc(OptContext *ctx, TCGOp *op); 1198 static bool fold_xor(OptContext *ctx, TCGOp *op); 1199 1200 static bool fold_add(OptContext *ctx, TCGOp *op) 1201 { 1202 if (fold_const2_commutative(ctx, op) || 1203 fold_xi_to_x(ctx, op, 0)) { 1204 return true; 1205 } 1206 return finish_folding(ctx, op); 1207 } 1208 1209 /* We cannot as yet do_constant_folding with vectors. */ 1210 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1211 { 1212 if (fold_commutative(ctx, op) || 1213 fold_xi_to_x(ctx, op, 0)) { 1214 return true; 1215 } 1216 return finish_folding(ctx, op); 1217 } 1218 1219 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1220 { 1221 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1222 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1223 1224 if (a_const && b_const) { 1225 uint64_t al = arg_info(op->args[2])->val; 1226 uint64_t ah = arg_info(op->args[3])->val; 1227 uint64_t bl = arg_info(op->args[4])->val; 1228 uint64_t bh = arg_info(op->args[5])->val; 1229 TCGArg rl, rh; 1230 TCGOp *op2; 1231 1232 if (ctx->type == TCG_TYPE_I32) { 1233 uint64_t a = deposit64(al, 32, 32, ah); 1234 uint64_t b = deposit64(bl, 32, 32, bh); 1235 1236 if (add) { 1237 a += b; 1238 } else { 1239 a -= b; 1240 } 1241 1242 al = sextract64(a, 0, 32); 1243 ah = sextract64(a, 32, 32); 1244 } else { 1245 Int128 a = int128_make128(al, ah); 1246 Int128 b = int128_make128(bl, bh); 1247 1248 if (add) { 1249 a = int128_add(a, b); 1250 } else { 1251 a = int128_sub(a, b); 1252 } 1253 1254 al = int128_getlo(a); 1255 ah = int128_gethi(a); 1256 } 1257 1258 rl = op->args[0]; 1259 rh = op->args[1]; 1260 1261 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1262 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 1263 1264 tcg_opt_gen_movi(ctx, op, rl, al); 1265 tcg_opt_gen_movi(ctx, op2, rh, ah); 1266 return true; 1267 } 1268 1269 /* Fold sub2 r,x,i to add2 r,x,-i */ 1270 if (!add && b_const) { 1271 uint64_t bl = arg_info(op->args[4])->val; 1272 uint64_t bh = arg_info(op->args[5])->val; 1273 1274 /* Negate the two parts without assembling and disassembling. */ 1275 bl = -bl; 1276 bh = ~bh + !bl; 1277 1278 op->opc = (ctx->type == TCG_TYPE_I32 1279 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1280 op->args[4] = arg_new_constant(ctx, bl); 1281 op->args[5] = arg_new_constant(ctx, bh); 1282 } 1283 return finish_folding(ctx, op); 1284 } 1285 1286 static bool fold_add2(OptContext *ctx, TCGOp *op) 1287 { 1288 /* Note that the high and low parts may be independently swapped. */ 1289 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1290 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1291 1292 return fold_addsub2(ctx, op, true); 1293 } 1294 1295 static bool fold_and(OptContext *ctx, TCGOp *op) 1296 { 1297 uint64_t z1, z2, z_mask, s_mask; 1298 TempOptInfo *t1, *t2; 1299 1300 if (fold_const2_commutative(ctx, op) || 1301 fold_xi_to_i(ctx, op, 0) || 1302 fold_xi_to_x(ctx, op, -1) || 1303 fold_xx_to_x(ctx, op)) { 1304 return true; 1305 } 1306 1307 t1 = arg_info(op->args[1]); 1308 t2 = arg_info(op->args[2]); 1309 z1 = t1->z_mask; 1310 z2 = t2->z_mask; 1311 1312 /* 1313 * Known-zeros does not imply known-ones. Therefore unless 1314 * arg2 is constant, we can't infer affected bits from it. 1315 */ 1316 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1317 return true; 1318 } 1319 1320 z_mask = z1 & z2; 1321 1322 /* 1323 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1324 * Bitwise operations preserve the relative quantity of the repetitions. 1325 */ 1326 s_mask = t1->s_mask & t2->s_mask; 1327 1328 return fold_masks_zs(ctx, op, z_mask, s_mask); 1329 } 1330 1331 static bool fold_andc(OptContext *ctx, TCGOp *op) 1332 { 1333 uint64_t z_mask, s_mask; 1334 TempOptInfo *t1, *t2; 1335 1336 if (fold_const2(ctx, op) || 1337 fold_xx_to_i(ctx, op, 0) || 1338 fold_xi_to_x(ctx, op, 0) || 1339 fold_ix_to_not(ctx, op, -1)) { 1340 return true; 1341 } 1342 1343 t1 = arg_info(op->args[1]); 1344 t2 = arg_info(op->args[2]); 1345 z_mask = t1->z_mask; 1346 1347 /* 1348 * Known-zeros does not imply known-ones. Therefore unless 1349 * arg2 is constant, we can't infer anything from it. 1350 */ 1351 if (ti_is_const(t2)) { 1352 uint64_t v2 = ti_const_val(t2); 1353 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1354 return true; 1355 } 1356 z_mask &= ~v2; 1357 } 1358 1359 s_mask = t1->s_mask & t2->s_mask; 1360 return fold_masks_zs(ctx, op, z_mask, s_mask); 1361 } 1362 1363 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1364 { 1365 /* If true and false values are the same, eliminate the cmp. */ 1366 if (args_are_copies(op->args[2], op->args[3])) { 1367 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1368 } 1369 1370 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1371 uint64_t tv = arg_info(op->args[2])->val; 1372 uint64_t fv = arg_info(op->args[3])->val; 1373 1374 if (tv == -1 && fv == 0) { 1375 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1376 } 1377 if (tv == 0 && fv == -1) { 1378 if (TCG_TARGET_HAS_not_vec) { 1379 op->opc = INDEX_op_not_vec; 1380 return fold_not(ctx, op); 1381 } else { 1382 op->opc = INDEX_op_xor_vec; 1383 op->args[2] = arg_new_constant(ctx, -1); 1384 return fold_xor(ctx, op); 1385 } 1386 } 1387 } 1388 if (arg_is_const(op->args[2])) { 1389 uint64_t tv = arg_info(op->args[2])->val; 1390 if (tv == -1) { 1391 op->opc = INDEX_op_or_vec; 1392 op->args[2] = op->args[3]; 1393 return fold_or(ctx, op); 1394 } 1395 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1396 op->opc = INDEX_op_andc_vec; 1397 op->args[2] = op->args[1]; 1398 op->args[1] = op->args[3]; 1399 return fold_andc(ctx, op); 1400 } 1401 } 1402 if (arg_is_const(op->args[3])) { 1403 uint64_t fv = arg_info(op->args[3])->val; 1404 if (fv == 0) { 1405 op->opc = INDEX_op_and_vec; 1406 return fold_and(ctx, op); 1407 } 1408 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1409 op->opc = INDEX_op_orc_vec; 1410 op->args[2] = op->args[1]; 1411 op->args[1] = op->args[3]; 1412 return fold_orc(ctx, op); 1413 } 1414 } 1415 return finish_folding(ctx, op); 1416 } 1417 1418 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1419 { 1420 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1421 &op->args[1], &op->args[2]); 1422 if (i == 0) { 1423 tcg_op_remove(ctx->tcg, op); 1424 return true; 1425 } 1426 if (i > 0) { 1427 op->opc = INDEX_op_br; 1428 op->args[0] = op->args[3]; 1429 finish_ebb(ctx); 1430 } else { 1431 finish_bb(ctx); 1432 } 1433 return true; 1434 } 1435 1436 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1437 { 1438 TCGCond cond; 1439 TCGArg label; 1440 int i, inv = 0; 1441 1442 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1443 cond = op->args[4]; 1444 label = op->args[5]; 1445 if (i >= 0) { 1446 goto do_brcond_const; 1447 } 1448 1449 switch (cond) { 1450 case TCG_COND_LT: 1451 case TCG_COND_GE: 1452 /* 1453 * Simplify LT/GE comparisons vs zero to a single compare 1454 * vs the high word of the input. 1455 */ 1456 if (arg_is_const_val(op->args[2], 0) && 1457 arg_is_const_val(op->args[3], 0)) { 1458 goto do_brcond_high; 1459 } 1460 break; 1461 1462 case TCG_COND_NE: 1463 inv = 1; 1464 QEMU_FALLTHROUGH; 1465 case TCG_COND_EQ: 1466 /* 1467 * Simplify EQ/NE comparisons where one of the pairs 1468 * can be simplified. 1469 */ 1470 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1471 op->args[2], cond); 1472 switch (i ^ inv) { 1473 case 0: 1474 goto do_brcond_const; 1475 case 1: 1476 goto do_brcond_high; 1477 } 1478 1479 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1480 op->args[3], cond); 1481 switch (i ^ inv) { 1482 case 0: 1483 goto do_brcond_const; 1484 case 1: 1485 goto do_brcond_low; 1486 } 1487 break; 1488 1489 case TCG_COND_TSTEQ: 1490 case TCG_COND_TSTNE: 1491 if (arg_is_const_val(op->args[2], 0)) { 1492 goto do_brcond_high; 1493 } 1494 if (arg_is_const_val(op->args[3], 0)) { 1495 goto do_brcond_low; 1496 } 1497 break; 1498 1499 default: 1500 break; 1501 1502 do_brcond_low: 1503 op->opc = INDEX_op_brcond_i32; 1504 op->args[1] = op->args[2]; 1505 op->args[2] = cond; 1506 op->args[3] = label; 1507 return fold_brcond(ctx, op); 1508 1509 do_brcond_high: 1510 op->opc = INDEX_op_brcond_i32; 1511 op->args[0] = op->args[1]; 1512 op->args[1] = op->args[3]; 1513 op->args[2] = cond; 1514 op->args[3] = label; 1515 return fold_brcond(ctx, op); 1516 1517 do_brcond_const: 1518 if (i == 0) { 1519 tcg_op_remove(ctx->tcg, op); 1520 return true; 1521 } 1522 op->opc = INDEX_op_br; 1523 op->args[0] = label; 1524 finish_ebb(ctx); 1525 return true; 1526 } 1527 1528 finish_bb(ctx); 1529 return true; 1530 } 1531 1532 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1533 { 1534 uint64_t z_mask, s_mask, sign; 1535 TempOptInfo *t1 = arg_info(op->args[1]); 1536 1537 if (ti_is_const(t1)) { 1538 return tcg_opt_gen_movi(ctx, op, op->args[0], 1539 do_constant_folding(op->opc, ctx->type, 1540 ti_const_val(t1), 1541 op->args[2])); 1542 } 1543 1544 z_mask = t1->z_mask; 1545 switch (op->opc) { 1546 case INDEX_op_bswap16_i32: 1547 case INDEX_op_bswap16_i64: 1548 z_mask = bswap16(z_mask); 1549 sign = INT16_MIN; 1550 break; 1551 case INDEX_op_bswap32_i32: 1552 case INDEX_op_bswap32_i64: 1553 z_mask = bswap32(z_mask); 1554 sign = INT32_MIN; 1555 break; 1556 case INDEX_op_bswap64_i64: 1557 z_mask = bswap64(z_mask); 1558 sign = INT64_MIN; 1559 break; 1560 default: 1561 g_assert_not_reached(); 1562 } 1563 1564 s_mask = 0; 1565 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1566 case TCG_BSWAP_OZ: 1567 break; 1568 case TCG_BSWAP_OS: 1569 /* If the sign bit may be 1, force all the bits above to 1. */ 1570 if (z_mask & sign) { 1571 z_mask |= sign; 1572 } 1573 /* The value and therefore s_mask is explicitly sign-extended. */ 1574 s_mask = sign; 1575 break; 1576 default: 1577 /* The high bits are undefined: force all bits above the sign to 1. */ 1578 z_mask |= sign << 1; 1579 break; 1580 } 1581 1582 return fold_masks_zs(ctx, op, z_mask, s_mask); 1583 } 1584 1585 static bool fold_call(OptContext *ctx, TCGOp *op) 1586 { 1587 TCGContext *s = ctx->tcg; 1588 int nb_oargs = TCGOP_CALLO(op); 1589 int nb_iargs = TCGOP_CALLI(op); 1590 int flags, i; 1591 1592 init_arguments(ctx, op, nb_oargs + nb_iargs); 1593 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1594 1595 /* If the function reads or writes globals, reset temp data. */ 1596 flags = tcg_call_flags(op); 1597 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1598 int nb_globals = s->nb_globals; 1599 1600 for (i = 0; i < nb_globals; i++) { 1601 if (test_bit(i, ctx->temps_used.l)) { 1602 reset_ts(ctx, &ctx->tcg->temps[i]); 1603 } 1604 } 1605 } 1606 1607 /* If the function has side effects, reset mem data. */ 1608 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1609 remove_mem_copy_all(ctx); 1610 } 1611 1612 /* Reset temp data for outputs. */ 1613 for (i = 0; i < nb_oargs; i++) { 1614 reset_temp(ctx, op->args[i]); 1615 } 1616 1617 /* Stop optimizing MB across calls. */ 1618 ctx->prev_mb = NULL; 1619 return true; 1620 } 1621 1622 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1623 { 1624 /* Canonicalize the comparison to put immediate second. */ 1625 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1626 op->args[3] = tcg_swap_cond(op->args[3]); 1627 } 1628 return finish_folding(ctx, op); 1629 } 1630 1631 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1632 { 1633 /* If true and false values are the same, eliminate the cmp. */ 1634 if (args_are_copies(op->args[3], op->args[4])) { 1635 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1636 } 1637 1638 /* Canonicalize the comparison to put immediate second. */ 1639 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1640 op->args[5] = tcg_swap_cond(op->args[5]); 1641 } 1642 /* 1643 * Canonicalize the "false" input reg to match the destination, 1644 * so that the tcg backend can implement "move if true". 1645 */ 1646 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1647 op->args[5] = tcg_invert_cond(op->args[5]); 1648 } 1649 return finish_folding(ctx, op); 1650 } 1651 1652 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1653 { 1654 uint64_t z_mask, s_mask; 1655 TempOptInfo *t1 = arg_info(op->args[1]); 1656 TempOptInfo *t2 = arg_info(op->args[2]); 1657 1658 if (ti_is_const(t1)) { 1659 uint64_t t = ti_const_val(t1); 1660 1661 if (t != 0) { 1662 t = do_constant_folding(op->opc, ctx->type, t, 0); 1663 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1664 } 1665 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1666 } 1667 1668 switch (ctx->type) { 1669 case TCG_TYPE_I32: 1670 z_mask = 31; 1671 break; 1672 case TCG_TYPE_I64: 1673 z_mask = 63; 1674 break; 1675 default: 1676 g_assert_not_reached(); 1677 } 1678 s_mask = ~z_mask; 1679 z_mask |= t2->z_mask; 1680 s_mask &= t2->s_mask; 1681 1682 return fold_masks_zs(ctx, op, z_mask, s_mask); 1683 } 1684 1685 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1686 { 1687 uint64_t z_mask; 1688 1689 if (fold_const1(ctx, op)) { 1690 return true; 1691 } 1692 1693 switch (ctx->type) { 1694 case TCG_TYPE_I32: 1695 z_mask = 32 | 31; 1696 break; 1697 case TCG_TYPE_I64: 1698 z_mask = 64 | 63; 1699 break; 1700 default: 1701 g_assert_not_reached(); 1702 } 1703 return fold_masks_z(ctx, op, z_mask); 1704 } 1705 1706 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1707 { 1708 TempOptInfo *t1 = arg_info(op->args[1]); 1709 TempOptInfo *t2 = arg_info(op->args[2]); 1710 int ofs = op->args[3]; 1711 int len = op->args[4]; 1712 int width; 1713 TCGOpcode and_opc; 1714 uint64_t z_mask, s_mask; 1715 1716 if (ti_is_const(t1) && ti_is_const(t2)) { 1717 return tcg_opt_gen_movi(ctx, op, op->args[0], 1718 deposit64(ti_const_val(t1), ofs, len, 1719 ti_const_val(t2))); 1720 } 1721 1722 switch (ctx->type) { 1723 case TCG_TYPE_I32: 1724 and_opc = INDEX_op_and_i32; 1725 width = 32; 1726 break; 1727 case TCG_TYPE_I64: 1728 and_opc = INDEX_op_and_i64; 1729 width = 64; 1730 break; 1731 default: 1732 g_assert_not_reached(); 1733 } 1734 1735 /* Inserting a value into zero at offset 0. */ 1736 if (ti_is_const_val(t1, 0) && ofs == 0) { 1737 uint64_t mask = MAKE_64BIT_MASK(0, len); 1738 1739 op->opc = and_opc; 1740 op->args[1] = op->args[2]; 1741 op->args[2] = arg_new_constant(ctx, mask); 1742 return fold_and(ctx, op); 1743 } 1744 1745 /* Inserting zero into a value. */ 1746 if (ti_is_const_val(t2, 0)) { 1747 uint64_t mask = deposit64(-1, ofs, len, 0); 1748 1749 op->opc = and_opc; 1750 op->args[2] = arg_new_constant(ctx, mask); 1751 return fold_and(ctx, op); 1752 } 1753 1754 /* The s_mask from the top portion of the deposit is still valid. */ 1755 if (ofs + len == width) { 1756 s_mask = t2->s_mask << ofs; 1757 } else { 1758 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1759 } 1760 1761 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1762 return fold_masks_zs(ctx, op, z_mask, s_mask); 1763 } 1764 1765 static bool fold_divide(OptContext *ctx, TCGOp *op) 1766 { 1767 if (fold_const2(ctx, op) || 1768 fold_xi_to_x(ctx, op, 1)) { 1769 return true; 1770 } 1771 return finish_folding(ctx, op); 1772 } 1773 1774 static bool fold_dup(OptContext *ctx, TCGOp *op) 1775 { 1776 if (arg_is_const(op->args[1])) { 1777 uint64_t t = arg_info(op->args[1])->val; 1778 t = dup_const(TCGOP_VECE(op), t); 1779 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1780 } 1781 return finish_folding(ctx, op); 1782 } 1783 1784 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1785 { 1786 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1787 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1788 arg_info(op->args[2])->val); 1789 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1790 } 1791 1792 if (args_are_copies(op->args[1], op->args[2])) { 1793 op->opc = INDEX_op_dup_vec; 1794 TCGOP_VECE(op) = MO_32; 1795 } 1796 return finish_folding(ctx, op); 1797 } 1798 1799 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1800 { 1801 uint64_t s_mask; 1802 1803 if (fold_const2_commutative(ctx, op) || 1804 fold_xi_to_x(ctx, op, -1) || 1805 fold_xi_to_not(ctx, op, 0)) { 1806 return true; 1807 } 1808 1809 s_mask = arg_info(op->args[1])->s_mask 1810 & arg_info(op->args[2])->s_mask; 1811 return fold_masks_s(ctx, op, s_mask); 1812 } 1813 1814 static bool fold_extract(OptContext *ctx, TCGOp *op) 1815 { 1816 uint64_t z_mask_old, z_mask; 1817 TempOptInfo *t1 = arg_info(op->args[1]); 1818 int pos = op->args[2]; 1819 int len = op->args[3]; 1820 1821 if (ti_is_const(t1)) { 1822 return tcg_opt_gen_movi(ctx, op, op->args[0], 1823 extract64(ti_const_val(t1), pos, len)); 1824 } 1825 1826 z_mask_old = t1->z_mask; 1827 z_mask = extract64(z_mask_old, pos, len); 1828 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1829 return true; 1830 } 1831 1832 return fold_masks_z(ctx, op, z_mask); 1833 } 1834 1835 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1836 { 1837 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1838 uint64_t v1 = arg_info(op->args[1])->val; 1839 uint64_t v2 = arg_info(op->args[2])->val; 1840 int shr = op->args[3]; 1841 1842 if (op->opc == INDEX_op_extract2_i64) { 1843 v1 >>= shr; 1844 v2 <<= 64 - shr; 1845 } else { 1846 v1 = (uint32_t)v1 >> shr; 1847 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1848 } 1849 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1850 } 1851 return finish_folding(ctx, op); 1852 } 1853 1854 static bool fold_exts(OptContext *ctx, TCGOp *op) 1855 { 1856 uint64_t s_mask_old, s_mask, z_mask; 1857 bool type_change = false; 1858 TempOptInfo *t1; 1859 1860 if (fold_const1(ctx, op)) { 1861 return true; 1862 } 1863 1864 t1 = arg_info(op->args[1]); 1865 z_mask = t1->z_mask; 1866 s_mask = t1->s_mask; 1867 s_mask_old = s_mask; 1868 1869 switch (op->opc) { 1870 CASE_OP_32_64(ext8s): 1871 s_mask |= INT8_MIN; 1872 z_mask = (int8_t)z_mask; 1873 break; 1874 CASE_OP_32_64(ext16s): 1875 s_mask |= INT16_MIN; 1876 z_mask = (int16_t)z_mask; 1877 break; 1878 case INDEX_op_ext_i32_i64: 1879 type_change = true; 1880 QEMU_FALLTHROUGH; 1881 case INDEX_op_ext32s_i64: 1882 s_mask |= INT32_MIN; 1883 z_mask = (int32_t)z_mask; 1884 break; 1885 default: 1886 g_assert_not_reached(); 1887 } 1888 1889 if (!type_change && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 1890 return true; 1891 } 1892 1893 return fold_masks_zs(ctx, op, z_mask, s_mask); 1894 } 1895 1896 static bool fold_extu(OptContext *ctx, TCGOp *op) 1897 { 1898 uint64_t z_mask_old, z_mask; 1899 bool type_change = false; 1900 1901 if (fold_const1(ctx, op)) { 1902 return true; 1903 } 1904 1905 z_mask_old = z_mask = arg_info(op->args[1])->z_mask; 1906 1907 switch (op->opc) { 1908 CASE_OP_32_64(ext8u): 1909 z_mask = (uint8_t)z_mask; 1910 break; 1911 CASE_OP_32_64(ext16u): 1912 z_mask = (uint16_t)z_mask; 1913 break; 1914 case INDEX_op_extrl_i64_i32: 1915 case INDEX_op_extu_i32_i64: 1916 type_change = true; 1917 QEMU_FALLTHROUGH; 1918 case INDEX_op_ext32u_i64: 1919 z_mask = (uint32_t)z_mask; 1920 break; 1921 case INDEX_op_extrh_i64_i32: 1922 type_change = true; 1923 z_mask >>= 32; 1924 break; 1925 default: 1926 g_assert_not_reached(); 1927 } 1928 1929 if (!type_change && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1930 return true; 1931 } 1932 1933 return fold_masks_z(ctx, op, z_mask); 1934 } 1935 1936 static bool fold_mb(OptContext *ctx, TCGOp *op) 1937 { 1938 /* Eliminate duplicate and redundant fence instructions. */ 1939 if (ctx->prev_mb) { 1940 /* 1941 * Merge two barriers of the same type into one, 1942 * or a weaker barrier into a stronger one, 1943 * or two weaker barriers into a stronger one. 1944 * mb X; mb Y => mb X|Y 1945 * mb; strl => mb; st 1946 * ldaq; mb => ld; mb 1947 * ldaq; strl => ld; mb; st 1948 * Other combinations are also merged into a strong 1949 * barrier. This is stricter than specified but for 1950 * the purposes of TCG is better than not optimizing. 1951 */ 1952 ctx->prev_mb->args[0] |= op->args[0]; 1953 tcg_op_remove(ctx->tcg, op); 1954 } else { 1955 ctx->prev_mb = op; 1956 } 1957 return true; 1958 } 1959 1960 static bool fold_mov(OptContext *ctx, TCGOp *op) 1961 { 1962 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1963 } 1964 1965 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1966 { 1967 uint64_t z_mask, s_mask; 1968 TempOptInfo *tt, *ft; 1969 int i; 1970 1971 /* If true and false values are the same, eliminate the cmp. */ 1972 if (args_are_copies(op->args[3], op->args[4])) { 1973 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1974 } 1975 1976 /* 1977 * Canonicalize the "false" input reg to match the destination reg so 1978 * that the tcg backend can implement a "move if true" operation. 1979 */ 1980 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1981 op->args[5] = tcg_invert_cond(op->args[5]); 1982 } 1983 1984 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1985 &op->args[2], &op->args[5]); 1986 if (i >= 0) { 1987 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1988 } 1989 1990 tt = arg_info(op->args[3]); 1991 ft = arg_info(op->args[4]); 1992 z_mask = tt->z_mask | ft->z_mask; 1993 s_mask = tt->s_mask & ft->s_mask; 1994 1995 if (ti_is_const(tt) && ti_is_const(ft)) { 1996 uint64_t tv = ti_const_val(tt); 1997 uint64_t fv = ti_const_val(ft); 1998 TCGOpcode opc, negopc = 0; 1999 TCGCond cond = op->args[5]; 2000 2001 switch (ctx->type) { 2002 case TCG_TYPE_I32: 2003 opc = INDEX_op_setcond_i32; 2004 if (TCG_TARGET_HAS_negsetcond_i32) { 2005 negopc = INDEX_op_negsetcond_i32; 2006 } 2007 tv = (int32_t)tv; 2008 fv = (int32_t)fv; 2009 break; 2010 case TCG_TYPE_I64: 2011 opc = INDEX_op_setcond_i64; 2012 if (TCG_TARGET_HAS_negsetcond_i64) { 2013 negopc = INDEX_op_negsetcond_i64; 2014 } 2015 break; 2016 default: 2017 g_assert_not_reached(); 2018 } 2019 2020 if (tv == 1 && fv == 0) { 2021 op->opc = opc; 2022 op->args[3] = cond; 2023 } else if (fv == 1 && tv == 0) { 2024 op->opc = opc; 2025 op->args[3] = tcg_invert_cond(cond); 2026 } else if (negopc) { 2027 if (tv == -1 && fv == 0) { 2028 op->opc = negopc; 2029 op->args[3] = cond; 2030 } else if (fv == -1 && tv == 0) { 2031 op->opc = negopc; 2032 op->args[3] = tcg_invert_cond(cond); 2033 } 2034 } 2035 } 2036 2037 return fold_masks_zs(ctx, op, z_mask, s_mask); 2038 } 2039 2040 static bool fold_mul(OptContext *ctx, TCGOp *op) 2041 { 2042 if (fold_const2(ctx, op) || 2043 fold_xi_to_i(ctx, op, 0) || 2044 fold_xi_to_x(ctx, op, 1)) { 2045 return true; 2046 } 2047 return finish_folding(ctx, op); 2048 } 2049 2050 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2051 { 2052 if (fold_const2_commutative(ctx, op) || 2053 fold_xi_to_i(ctx, op, 0)) { 2054 return true; 2055 } 2056 return finish_folding(ctx, op); 2057 } 2058 2059 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2060 { 2061 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2062 2063 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2064 uint64_t a = arg_info(op->args[2])->val; 2065 uint64_t b = arg_info(op->args[3])->val; 2066 uint64_t h, l; 2067 TCGArg rl, rh; 2068 TCGOp *op2; 2069 2070 switch (op->opc) { 2071 case INDEX_op_mulu2_i32: 2072 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2073 h = (int32_t)(l >> 32); 2074 l = (int32_t)l; 2075 break; 2076 case INDEX_op_muls2_i32: 2077 l = (int64_t)(int32_t)a * (int32_t)b; 2078 h = l >> 32; 2079 l = (int32_t)l; 2080 break; 2081 case INDEX_op_mulu2_i64: 2082 mulu64(&l, &h, a, b); 2083 break; 2084 case INDEX_op_muls2_i64: 2085 muls64(&l, &h, a, b); 2086 break; 2087 default: 2088 g_assert_not_reached(); 2089 } 2090 2091 rl = op->args[0]; 2092 rh = op->args[1]; 2093 2094 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2095 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 2096 2097 tcg_opt_gen_movi(ctx, op, rl, l); 2098 tcg_opt_gen_movi(ctx, op2, rh, h); 2099 return true; 2100 } 2101 return finish_folding(ctx, op); 2102 } 2103 2104 static bool fold_nand(OptContext *ctx, TCGOp *op) 2105 { 2106 uint64_t s_mask; 2107 2108 if (fold_const2_commutative(ctx, op) || 2109 fold_xi_to_not(ctx, op, -1)) { 2110 return true; 2111 } 2112 2113 s_mask = arg_info(op->args[1])->s_mask 2114 & arg_info(op->args[2])->s_mask; 2115 return fold_masks_s(ctx, op, s_mask); 2116 } 2117 2118 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2119 { 2120 /* Set to 1 all bits to the left of the rightmost. */ 2121 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2122 z_mask = -(z_mask & -z_mask); 2123 2124 return fold_masks_z(ctx, op, z_mask); 2125 } 2126 2127 static bool fold_neg(OptContext *ctx, TCGOp *op) 2128 { 2129 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2130 } 2131 2132 static bool fold_nor(OptContext *ctx, TCGOp *op) 2133 { 2134 uint64_t s_mask; 2135 2136 if (fold_const2_commutative(ctx, op) || 2137 fold_xi_to_not(ctx, op, 0)) { 2138 return true; 2139 } 2140 2141 s_mask = arg_info(op->args[1])->s_mask 2142 & arg_info(op->args[2])->s_mask; 2143 return fold_masks_s(ctx, op, s_mask); 2144 } 2145 2146 static bool fold_not(OptContext *ctx, TCGOp *op) 2147 { 2148 if (fold_const1(ctx, op)) { 2149 return true; 2150 } 2151 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2152 } 2153 2154 static bool fold_or(OptContext *ctx, TCGOp *op) 2155 { 2156 uint64_t z_mask, s_mask; 2157 TempOptInfo *t1, *t2; 2158 2159 if (fold_const2_commutative(ctx, op) || 2160 fold_xi_to_x(ctx, op, 0) || 2161 fold_xx_to_x(ctx, op)) { 2162 return true; 2163 } 2164 2165 t1 = arg_info(op->args[1]); 2166 t2 = arg_info(op->args[2]); 2167 z_mask = t1->z_mask | t2->z_mask; 2168 s_mask = t1->s_mask & t2->s_mask; 2169 return fold_masks_zs(ctx, op, z_mask, s_mask); 2170 } 2171 2172 static bool fold_orc(OptContext *ctx, TCGOp *op) 2173 { 2174 uint64_t s_mask; 2175 2176 if (fold_const2(ctx, op) || 2177 fold_xx_to_i(ctx, op, -1) || 2178 fold_xi_to_x(ctx, op, -1) || 2179 fold_ix_to_not(ctx, op, 0)) { 2180 return true; 2181 } 2182 2183 s_mask = arg_info(op->args[1])->s_mask 2184 & arg_info(op->args[2])->s_mask; 2185 return fold_masks_s(ctx, op, s_mask); 2186 } 2187 2188 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2189 { 2190 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2191 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2192 MemOp mop = get_memop(oi); 2193 int width = 8 * memop_size(mop); 2194 uint64_t z_mask = -1, s_mask = 0; 2195 2196 if (width < 64) { 2197 if (mop & MO_SIGN) { 2198 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2199 } else { 2200 z_mask = MAKE_64BIT_MASK(0, width); 2201 } 2202 } 2203 2204 /* Opcodes that touch guest memory stop the mb optimization. */ 2205 ctx->prev_mb = NULL; 2206 2207 return fold_masks_zs(ctx, op, z_mask, s_mask); 2208 } 2209 2210 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2211 { 2212 /* Opcodes that touch guest memory stop the mb optimization. */ 2213 ctx->prev_mb = NULL; 2214 return finish_folding(ctx, op); 2215 } 2216 2217 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2218 { 2219 /* Opcodes that touch guest memory stop the mb optimization. */ 2220 ctx->prev_mb = NULL; 2221 return true; 2222 } 2223 2224 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2225 { 2226 if (fold_const2(ctx, op) || 2227 fold_xx_to_i(ctx, op, 0)) { 2228 return true; 2229 } 2230 return finish_folding(ctx, op); 2231 } 2232 2233 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2234 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2235 { 2236 uint64_t a_zmask, b_val; 2237 TCGCond cond; 2238 2239 if (!arg_is_const(op->args[2])) { 2240 return false; 2241 } 2242 2243 a_zmask = arg_info(op->args[1])->z_mask; 2244 b_val = arg_info(op->args[2])->val; 2245 cond = op->args[3]; 2246 2247 if (ctx->type == TCG_TYPE_I32) { 2248 a_zmask = (uint32_t)a_zmask; 2249 b_val = (uint32_t)b_val; 2250 } 2251 2252 /* 2253 * A with only low bits set vs B with high bits set means that A < B. 2254 */ 2255 if (a_zmask < b_val) { 2256 bool inv = false; 2257 2258 switch (cond) { 2259 case TCG_COND_NE: 2260 case TCG_COND_LEU: 2261 case TCG_COND_LTU: 2262 inv = true; 2263 /* fall through */ 2264 case TCG_COND_GTU: 2265 case TCG_COND_GEU: 2266 case TCG_COND_EQ: 2267 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2268 default: 2269 break; 2270 } 2271 } 2272 2273 /* 2274 * A with only lsb set is already boolean. 2275 */ 2276 if (a_zmask <= 1) { 2277 bool convert = false; 2278 bool inv = false; 2279 2280 switch (cond) { 2281 case TCG_COND_EQ: 2282 inv = true; 2283 /* fall through */ 2284 case TCG_COND_NE: 2285 convert = (b_val == 0); 2286 break; 2287 case TCG_COND_LTU: 2288 case TCG_COND_TSTEQ: 2289 inv = true; 2290 /* fall through */ 2291 case TCG_COND_GEU: 2292 case TCG_COND_TSTNE: 2293 convert = (b_val == 1); 2294 break; 2295 default: 2296 break; 2297 } 2298 if (convert) { 2299 TCGOpcode add_opc, xor_opc, neg_opc; 2300 2301 if (!inv && !neg) { 2302 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2303 } 2304 2305 switch (ctx->type) { 2306 case TCG_TYPE_I32: 2307 add_opc = INDEX_op_add_i32; 2308 neg_opc = INDEX_op_neg_i32; 2309 xor_opc = INDEX_op_xor_i32; 2310 break; 2311 case TCG_TYPE_I64: 2312 add_opc = INDEX_op_add_i64; 2313 neg_opc = INDEX_op_neg_i64; 2314 xor_opc = INDEX_op_xor_i64; 2315 break; 2316 default: 2317 g_assert_not_reached(); 2318 } 2319 2320 if (!inv) { 2321 op->opc = neg_opc; 2322 } else if (neg) { 2323 op->opc = add_opc; 2324 op->args[2] = arg_new_constant(ctx, -1); 2325 } else { 2326 op->opc = xor_opc; 2327 op->args[2] = arg_new_constant(ctx, 1); 2328 } 2329 return -1; 2330 } 2331 } 2332 return 0; 2333 } 2334 2335 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2336 { 2337 TCGOpcode and_opc, sub_opc, xor_opc, neg_opc, shr_opc; 2338 TCGOpcode uext_opc = 0, sext_opc = 0; 2339 TCGCond cond = op->args[3]; 2340 TCGArg ret, src1, src2; 2341 TCGOp *op2; 2342 uint64_t val; 2343 int sh; 2344 bool inv; 2345 2346 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2347 return; 2348 } 2349 2350 src2 = op->args[2]; 2351 val = arg_info(src2)->val; 2352 if (!is_power_of_2(val)) { 2353 return; 2354 } 2355 sh = ctz64(val); 2356 2357 switch (ctx->type) { 2358 case TCG_TYPE_I32: 2359 and_opc = INDEX_op_and_i32; 2360 sub_opc = INDEX_op_sub_i32; 2361 xor_opc = INDEX_op_xor_i32; 2362 shr_opc = INDEX_op_shr_i32; 2363 neg_opc = INDEX_op_neg_i32; 2364 if (TCG_TARGET_extract_i32_valid(sh, 1)) { 2365 uext_opc = TCG_TARGET_HAS_extract_i32 ? INDEX_op_extract_i32 : 0; 2366 sext_opc = TCG_TARGET_HAS_sextract_i32 ? INDEX_op_sextract_i32 : 0; 2367 } 2368 break; 2369 case TCG_TYPE_I64: 2370 and_opc = INDEX_op_and_i64; 2371 sub_opc = INDEX_op_sub_i64; 2372 xor_opc = INDEX_op_xor_i64; 2373 shr_opc = INDEX_op_shr_i64; 2374 neg_opc = INDEX_op_neg_i64; 2375 if (TCG_TARGET_extract_i64_valid(sh, 1)) { 2376 uext_opc = TCG_TARGET_HAS_extract_i64 ? INDEX_op_extract_i64 : 0; 2377 sext_opc = TCG_TARGET_HAS_sextract_i64 ? INDEX_op_sextract_i64 : 0; 2378 } 2379 break; 2380 default: 2381 g_assert_not_reached(); 2382 } 2383 2384 ret = op->args[0]; 2385 src1 = op->args[1]; 2386 inv = cond == TCG_COND_TSTEQ; 2387 2388 if (sh && sext_opc && neg && !inv) { 2389 op->opc = sext_opc; 2390 op->args[1] = src1; 2391 op->args[2] = sh; 2392 op->args[3] = 1; 2393 return; 2394 } else if (sh && uext_opc) { 2395 op->opc = uext_opc; 2396 op->args[1] = src1; 2397 op->args[2] = sh; 2398 op->args[3] = 1; 2399 } else { 2400 if (sh) { 2401 op2 = tcg_op_insert_before(ctx->tcg, op, shr_opc, 3); 2402 op2->args[0] = ret; 2403 op2->args[1] = src1; 2404 op2->args[2] = arg_new_constant(ctx, sh); 2405 src1 = ret; 2406 } 2407 op->opc = and_opc; 2408 op->args[1] = src1; 2409 op->args[2] = arg_new_constant(ctx, 1); 2410 } 2411 2412 if (neg && inv) { 2413 op2 = tcg_op_insert_after(ctx->tcg, op, sub_opc, 3); 2414 op2->args[0] = ret; 2415 op2->args[1] = ret; 2416 op2->args[2] = arg_new_constant(ctx, 1); 2417 } else if (inv) { 2418 op2 = tcg_op_insert_after(ctx->tcg, op, xor_opc, 3); 2419 op2->args[0] = ret; 2420 op2->args[1] = ret; 2421 op2->args[2] = arg_new_constant(ctx, 1); 2422 } else if (neg) { 2423 op2 = tcg_op_insert_after(ctx->tcg, op, neg_opc, 2); 2424 op2->args[0] = ret; 2425 op2->args[1] = ret; 2426 } 2427 } 2428 2429 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2430 { 2431 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2432 &op->args[2], &op->args[3]); 2433 if (i >= 0) { 2434 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2435 } 2436 2437 i = fold_setcond_zmask(ctx, op, false); 2438 if (i > 0) { 2439 return true; 2440 } 2441 if (i == 0) { 2442 fold_setcond_tst_pow2(ctx, op, false); 2443 } 2444 2445 return fold_masks_z(ctx, op, 1); 2446 } 2447 2448 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2449 { 2450 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2451 &op->args[2], &op->args[3]); 2452 if (i >= 0) { 2453 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2454 } 2455 2456 i = fold_setcond_zmask(ctx, op, true); 2457 if (i > 0) { 2458 return true; 2459 } 2460 if (i == 0) { 2461 fold_setcond_tst_pow2(ctx, op, true); 2462 } 2463 2464 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2465 return fold_masks_s(ctx, op, -1); 2466 } 2467 2468 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2469 { 2470 TCGCond cond; 2471 int i, inv = 0; 2472 2473 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2474 cond = op->args[5]; 2475 if (i >= 0) { 2476 goto do_setcond_const; 2477 } 2478 2479 switch (cond) { 2480 case TCG_COND_LT: 2481 case TCG_COND_GE: 2482 /* 2483 * Simplify LT/GE comparisons vs zero to a single compare 2484 * vs the high word of the input. 2485 */ 2486 if (arg_is_const_val(op->args[3], 0) && 2487 arg_is_const_val(op->args[4], 0)) { 2488 goto do_setcond_high; 2489 } 2490 break; 2491 2492 case TCG_COND_NE: 2493 inv = 1; 2494 QEMU_FALLTHROUGH; 2495 case TCG_COND_EQ: 2496 /* 2497 * Simplify EQ/NE comparisons where one of the pairs 2498 * can be simplified. 2499 */ 2500 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2501 op->args[3], cond); 2502 switch (i ^ inv) { 2503 case 0: 2504 goto do_setcond_const; 2505 case 1: 2506 goto do_setcond_high; 2507 } 2508 2509 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2510 op->args[4], cond); 2511 switch (i ^ inv) { 2512 case 0: 2513 goto do_setcond_const; 2514 case 1: 2515 goto do_setcond_low; 2516 } 2517 break; 2518 2519 case TCG_COND_TSTEQ: 2520 case TCG_COND_TSTNE: 2521 if (arg_is_const_val(op->args[3], 0)) { 2522 goto do_setcond_high; 2523 } 2524 if (arg_is_const_val(op->args[4], 0)) { 2525 goto do_setcond_low; 2526 } 2527 break; 2528 2529 default: 2530 break; 2531 2532 do_setcond_low: 2533 op->args[2] = op->args[3]; 2534 op->args[3] = cond; 2535 op->opc = INDEX_op_setcond_i32; 2536 return fold_setcond(ctx, op); 2537 2538 do_setcond_high: 2539 op->args[1] = op->args[2]; 2540 op->args[2] = op->args[4]; 2541 op->args[3] = cond; 2542 op->opc = INDEX_op_setcond_i32; 2543 return fold_setcond(ctx, op); 2544 } 2545 2546 return fold_masks_z(ctx, op, 1); 2547 2548 do_setcond_const: 2549 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2550 } 2551 2552 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2553 { 2554 uint64_t z_mask, s_mask, s_mask_old; 2555 TempOptInfo *t1 = arg_info(op->args[1]); 2556 int pos = op->args[2]; 2557 int len = op->args[3]; 2558 2559 if (ti_is_const(t1)) { 2560 return tcg_opt_gen_movi(ctx, op, op->args[0], 2561 sextract64(ti_const_val(t1), pos, len)); 2562 } 2563 2564 s_mask_old = t1->s_mask; 2565 s_mask = s_mask_old >> pos; 2566 s_mask |= -1ull << (len - 1); 2567 2568 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2569 return true; 2570 } 2571 2572 z_mask = sextract64(t1->z_mask, pos, len); 2573 return fold_masks_zs(ctx, op, z_mask, s_mask); 2574 } 2575 2576 static bool fold_shift(OptContext *ctx, TCGOp *op) 2577 { 2578 uint64_t s_mask, z_mask; 2579 TempOptInfo *t1, *t2; 2580 2581 if (fold_const2(ctx, op) || 2582 fold_ix_to_i(ctx, op, 0) || 2583 fold_xi_to_x(ctx, op, 0)) { 2584 return true; 2585 } 2586 2587 t1 = arg_info(op->args[1]); 2588 t2 = arg_info(op->args[2]); 2589 s_mask = t1->s_mask; 2590 z_mask = t1->z_mask; 2591 2592 if (ti_is_const(t2)) { 2593 int sh = ti_const_val(t2); 2594 2595 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2596 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2597 2598 return fold_masks_zs(ctx, op, z_mask, s_mask); 2599 } 2600 2601 switch (op->opc) { 2602 CASE_OP_32_64(sar): 2603 /* 2604 * Arithmetic right shift will not reduce the number of 2605 * input sign repetitions. 2606 */ 2607 return fold_masks_s(ctx, op, s_mask); 2608 CASE_OP_32_64(shr): 2609 /* 2610 * If the sign bit is known zero, then logical right shift 2611 * will not reduce the number of input sign repetitions. 2612 */ 2613 if (~z_mask & -s_mask) { 2614 return fold_masks_s(ctx, op, s_mask); 2615 } 2616 break; 2617 default: 2618 break; 2619 } 2620 2621 return finish_folding(ctx, op); 2622 } 2623 2624 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2625 { 2626 TCGOpcode neg_op; 2627 bool have_neg; 2628 2629 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2630 return false; 2631 } 2632 2633 switch (ctx->type) { 2634 case TCG_TYPE_I32: 2635 neg_op = INDEX_op_neg_i32; 2636 have_neg = true; 2637 break; 2638 case TCG_TYPE_I64: 2639 neg_op = INDEX_op_neg_i64; 2640 have_neg = true; 2641 break; 2642 case TCG_TYPE_V64: 2643 case TCG_TYPE_V128: 2644 case TCG_TYPE_V256: 2645 neg_op = INDEX_op_neg_vec; 2646 have_neg = (TCG_TARGET_HAS_neg_vec && 2647 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2648 break; 2649 default: 2650 g_assert_not_reached(); 2651 } 2652 if (have_neg) { 2653 op->opc = neg_op; 2654 op->args[1] = op->args[2]; 2655 return fold_neg_no_const(ctx, op); 2656 } 2657 return false; 2658 } 2659 2660 /* We cannot as yet do_constant_folding with vectors. */ 2661 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2662 { 2663 if (fold_xx_to_i(ctx, op, 0) || 2664 fold_xi_to_x(ctx, op, 0) || 2665 fold_sub_to_neg(ctx, op)) { 2666 return true; 2667 } 2668 return finish_folding(ctx, op); 2669 } 2670 2671 static bool fold_sub(OptContext *ctx, TCGOp *op) 2672 { 2673 if (fold_const2(ctx, op) || 2674 fold_xx_to_i(ctx, op, 0) || 2675 fold_xi_to_x(ctx, op, 0) || 2676 fold_sub_to_neg(ctx, op)) { 2677 return true; 2678 } 2679 2680 /* Fold sub r,x,i to add r,x,-i */ 2681 if (arg_is_const(op->args[2])) { 2682 uint64_t val = arg_info(op->args[2])->val; 2683 2684 op->opc = (ctx->type == TCG_TYPE_I32 2685 ? INDEX_op_add_i32 : INDEX_op_add_i64); 2686 op->args[2] = arg_new_constant(ctx, -val); 2687 } 2688 return finish_folding(ctx, op); 2689 } 2690 2691 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2692 { 2693 return fold_addsub2(ctx, op, false); 2694 } 2695 2696 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2697 { 2698 uint64_t z_mask = -1, s_mask = 0; 2699 2700 /* We can't do any folding with a load, but we can record bits. */ 2701 switch (op->opc) { 2702 CASE_OP_32_64(ld8s): 2703 s_mask = INT8_MIN; 2704 break; 2705 CASE_OP_32_64(ld8u): 2706 z_mask = MAKE_64BIT_MASK(0, 8); 2707 break; 2708 CASE_OP_32_64(ld16s): 2709 s_mask = INT16_MIN; 2710 break; 2711 CASE_OP_32_64(ld16u): 2712 z_mask = MAKE_64BIT_MASK(0, 16); 2713 break; 2714 case INDEX_op_ld32s_i64: 2715 s_mask = INT32_MIN; 2716 break; 2717 case INDEX_op_ld32u_i64: 2718 z_mask = MAKE_64BIT_MASK(0, 32); 2719 break; 2720 default: 2721 g_assert_not_reached(); 2722 } 2723 return fold_masks_zs(ctx, op, z_mask, s_mask); 2724 } 2725 2726 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2727 { 2728 TCGTemp *dst, *src; 2729 intptr_t ofs; 2730 TCGType type; 2731 2732 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2733 return finish_folding(ctx, op); 2734 } 2735 2736 type = ctx->type; 2737 ofs = op->args[2]; 2738 dst = arg_temp(op->args[0]); 2739 src = find_mem_copy_for(ctx, type, ofs); 2740 if (src && src->base_type == type) { 2741 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2742 } 2743 2744 reset_ts(ctx, dst); 2745 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2746 return true; 2747 } 2748 2749 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2750 { 2751 intptr_t ofs = op->args[2]; 2752 intptr_t lm1; 2753 2754 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2755 remove_mem_copy_all(ctx); 2756 return true; 2757 } 2758 2759 switch (op->opc) { 2760 CASE_OP_32_64(st8): 2761 lm1 = 0; 2762 break; 2763 CASE_OP_32_64(st16): 2764 lm1 = 1; 2765 break; 2766 case INDEX_op_st32_i64: 2767 case INDEX_op_st_i32: 2768 lm1 = 3; 2769 break; 2770 case INDEX_op_st_i64: 2771 lm1 = 7; 2772 break; 2773 case INDEX_op_st_vec: 2774 lm1 = tcg_type_size(ctx->type) - 1; 2775 break; 2776 default: 2777 g_assert_not_reached(); 2778 } 2779 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2780 return true; 2781 } 2782 2783 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2784 { 2785 TCGTemp *src; 2786 intptr_t ofs, last; 2787 TCGType type; 2788 2789 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2790 return fold_tcg_st(ctx, op); 2791 } 2792 2793 src = arg_temp(op->args[0]); 2794 ofs = op->args[2]; 2795 type = ctx->type; 2796 2797 /* 2798 * Eliminate duplicate stores of a constant. 2799 * This happens frequently when the target ISA zero-extends. 2800 */ 2801 if (ts_is_const(src)) { 2802 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2803 if (src == prev) { 2804 tcg_op_remove(ctx->tcg, op); 2805 return true; 2806 } 2807 } 2808 2809 last = ofs + tcg_type_size(type) - 1; 2810 remove_mem_copy_in(ctx, ofs, last); 2811 record_mem_copy(ctx, type, src, ofs, last); 2812 return true; 2813 } 2814 2815 static bool fold_xor(OptContext *ctx, TCGOp *op) 2816 { 2817 uint64_t z_mask, s_mask; 2818 TempOptInfo *t1, *t2; 2819 2820 if (fold_const2_commutative(ctx, op) || 2821 fold_xx_to_i(ctx, op, 0) || 2822 fold_xi_to_x(ctx, op, 0) || 2823 fold_xi_to_not(ctx, op, -1)) { 2824 return true; 2825 } 2826 2827 t1 = arg_info(op->args[1]); 2828 t2 = arg_info(op->args[2]); 2829 z_mask = t1->z_mask | t2->z_mask; 2830 s_mask = t1->s_mask & t2->s_mask; 2831 return fold_masks_zs(ctx, op, z_mask, s_mask); 2832 } 2833 2834 /* Propagate constants and copies, fold constant expressions. */ 2835 void tcg_optimize(TCGContext *s) 2836 { 2837 int nb_temps, i; 2838 TCGOp *op, *op_next; 2839 OptContext ctx = { .tcg = s }; 2840 2841 QSIMPLEQ_INIT(&ctx.mem_free); 2842 2843 /* Array VALS has an element for each temp. 2844 If this temp holds a constant then its value is kept in VALS' element. 2845 If this temp is a copy of other ones then the other copies are 2846 available through the doubly linked circular list. */ 2847 2848 nb_temps = s->nb_temps; 2849 for (i = 0; i < nb_temps; ++i) { 2850 s->temps[i].state_ptr = NULL; 2851 } 2852 2853 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2854 TCGOpcode opc = op->opc; 2855 const TCGOpDef *def; 2856 bool done = false; 2857 2858 /* Calls are special. */ 2859 if (opc == INDEX_op_call) { 2860 fold_call(&ctx, op); 2861 continue; 2862 } 2863 2864 def = &tcg_op_defs[opc]; 2865 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2866 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2867 2868 /* Pre-compute the type of the operation. */ 2869 if (def->flags & TCG_OPF_VECTOR) { 2870 ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op); 2871 } else if (def->flags & TCG_OPF_64BIT) { 2872 ctx.type = TCG_TYPE_I64; 2873 } else { 2874 ctx.type = TCG_TYPE_I32; 2875 } 2876 2877 /* 2878 * Process each opcode. 2879 * Sorted alphabetically by opcode as much as possible. 2880 */ 2881 switch (opc) { 2882 CASE_OP_32_64(add): 2883 done = fold_add(&ctx, op); 2884 break; 2885 case INDEX_op_add_vec: 2886 done = fold_add_vec(&ctx, op); 2887 break; 2888 CASE_OP_32_64(add2): 2889 done = fold_add2(&ctx, op); 2890 break; 2891 CASE_OP_32_64_VEC(and): 2892 done = fold_and(&ctx, op); 2893 break; 2894 CASE_OP_32_64_VEC(andc): 2895 done = fold_andc(&ctx, op); 2896 break; 2897 CASE_OP_32_64(brcond): 2898 done = fold_brcond(&ctx, op); 2899 break; 2900 case INDEX_op_brcond2_i32: 2901 done = fold_brcond2(&ctx, op); 2902 break; 2903 CASE_OP_32_64(bswap16): 2904 CASE_OP_32_64(bswap32): 2905 case INDEX_op_bswap64_i64: 2906 done = fold_bswap(&ctx, op); 2907 break; 2908 CASE_OP_32_64(clz): 2909 CASE_OP_32_64(ctz): 2910 done = fold_count_zeros(&ctx, op); 2911 break; 2912 CASE_OP_32_64(ctpop): 2913 done = fold_ctpop(&ctx, op); 2914 break; 2915 CASE_OP_32_64(deposit): 2916 done = fold_deposit(&ctx, op); 2917 break; 2918 CASE_OP_32_64(div): 2919 CASE_OP_32_64(divu): 2920 done = fold_divide(&ctx, op); 2921 break; 2922 case INDEX_op_dup_vec: 2923 done = fold_dup(&ctx, op); 2924 break; 2925 case INDEX_op_dup2_vec: 2926 done = fold_dup2(&ctx, op); 2927 break; 2928 CASE_OP_32_64_VEC(eqv): 2929 done = fold_eqv(&ctx, op); 2930 break; 2931 CASE_OP_32_64(extract): 2932 done = fold_extract(&ctx, op); 2933 break; 2934 CASE_OP_32_64(extract2): 2935 done = fold_extract2(&ctx, op); 2936 break; 2937 CASE_OP_32_64(ext8s): 2938 CASE_OP_32_64(ext16s): 2939 case INDEX_op_ext32s_i64: 2940 case INDEX_op_ext_i32_i64: 2941 done = fold_exts(&ctx, op); 2942 break; 2943 CASE_OP_32_64(ext8u): 2944 CASE_OP_32_64(ext16u): 2945 case INDEX_op_ext32u_i64: 2946 case INDEX_op_extu_i32_i64: 2947 case INDEX_op_extrl_i64_i32: 2948 case INDEX_op_extrh_i64_i32: 2949 done = fold_extu(&ctx, op); 2950 break; 2951 CASE_OP_32_64(ld8s): 2952 CASE_OP_32_64(ld8u): 2953 CASE_OP_32_64(ld16s): 2954 CASE_OP_32_64(ld16u): 2955 case INDEX_op_ld32s_i64: 2956 case INDEX_op_ld32u_i64: 2957 done = fold_tcg_ld(&ctx, op); 2958 break; 2959 case INDEX_op_ld_i32: 2960 case INDEX_op_ld_i64: 2961 case INDEX_op_ld_vec: 2962 done = fold_tcg_ld_memcopy(&ctx, op); 2963 break; 2964 CASE_OP_32_64(st8): 2965 CASE_OP_32_64(st16): 2966 case INDEX_op_st32_i64: 2967 done = fold_tcg_st(&ctx, op); 2968 break; 2969 case INDEX_op_st_i32: 2970 case INDEX_op_st_i64: 2971 case INDEX_op_st_vec: 2972 done = fold_tcg_st_memcopy(&ctx, op); 2973 break; 2974 case INDEX_op_mb: 2975 done = fold_mb(&ctx, op); 2976 break; 2977 CASE_OP_32_64_VEC(mov): 2978 done = fold_mov(&ctx, op); 2979 break; 2980 CASE_OP_32_64(movcond): 2981 done = fold_movcond(&ctx, op); 2982 break; 2983 CASE_OP_32_64(mul): 2984 done = fold_mul(&ctx, op); 2985 break; 2986 CASE_OP_32_64(mulsh): 2987 CASE_OP_32_64(muluh): 2988 done = fold_mul_highpart(&ctx, op); 2989 break; 2990 CASE_OP_32_64(muls2): 2991 CASE_OP_32_64(mulu2): 2992 done = fold_multiply2(&ctx, op); 2993 break; 2994 CASE_OP_32_64_VEC(nand): 2995 done = fold_nand(&ctx, op); 2996 break; 2997 CASE_OP_32_64(neg): 2998 done = fold_neg(&ctx, op); 2999 break; 3000 CASE_OP_32_64_VEC(nor): 3001 done = fold_nor(&ctx, op); 3002 break; 3003 CASE_OP_32_64_VEC(not): 3004 done = fold_not(&ctx, op); 3005 break; 3006 CASE_OP_32_64_VEC(or): 3007 done = fold_or(&ctx, op); 3008 break; 3009 CASE_OP_32_64_VEC(orc): 3010 done = fold_orc(&ctx, op); 3011 break; 3012 case INDEX_op_qemu_ld_a32_i32: 3013 case INDEX_op_qemu_ld_a64_i32: 3014 done = fold_qemu_ld_1reg(&ctx, op); 3015 break; 3016 case INDEX_op_qemu_ld_a32_i64: 3017 case INDEX_op_qemu_ld_a64_i64: 3018 if (TCG_TARGET_REG_BITS == 64) { 3019 done = fold_qemu_ld_1reg(&ctx, op); 3020 break; 3021 } 3022 QEMU_FALLTHROUGH; 3023 case INDEX_op_qemu_ld_a32_i128: 3024 case INDEX_op_qemu_ld_a64_i128: 3025 done = fold_qemu_ld_2reg(&ctx, op); 3026 break; 3027 case INDEX_op_qemu_st8_a32_i32: 3028 case INDEX_op_qemu_st8_a64_i32: 3029 case INDEX_op_qemu_st_a32_i32: 3030 case INDEX_op_qemu_st_a64_i32: 3031 case INDEX_op_qemu_st_a32_i64: 3032 case INDEX_op_qemu_st_a64_i64: 3033 case INDEX_op_qemu_st_a32_i128: 3034 case INDEX_op_qemu_st_a64_i128: 3035 done = fold_qemu_st(&ctx, op); 3036 break; 3037 CASE_OP_32_64(rem): 3038 CASE_OP_32_64(remu): 3039 done = fold_remainder(&ctx, op); 3040 break; 3041 CASE_OP_32_64(rotl): 3042 CASE_OP_32_64(rotr): 3043 CASE_OP_32_64(sar): 3044 CASE_OP_32_64(shl): 3045 CASE_OP_32_64(shr): 3046 done = fold_shift(&ctx, op); 3047 break; 3048 CASE_OP_32_64(setcond): 3049 done = fold_setcond(&ctx, op); 3050 break; 3051 CASE_OP_32_64(negsetcond): 3052 done = fold_negsetcond(&ctx, op); 3053 break; 3054 case INDEX_op_setcond2_i32: 3055 done = fold_setcond2(&ctx, op); 3056 break; 3057 case INDEX_op_cmp_vec: 3058 done = fold_cmp_vec(&ctx, op); 3059 break; 3060 case INDEX_op_cmpsel_vec: 3061 done = fold_cmpsel_vec(&ctx, op); 3062 break; 3063 case INDEX_op_bitsel_vec: 3064 done = fold_bitsel_vec(&ctx, op); 3065 break; 3066 CASE_OP_32_64(sextract): 3067 done = fold_sextract(&ctx, op); 3068 break; 3069 CASE_OP_32_64(sub): 3070 done = fold_sub(&ctx, op); 3071 break; 3072 case INDEX_op_sub_vec: 3073 done = fold_sub_vec(&ctx, op); 3074 break; 3075 CASE_OP_32_64(sub2): 3076 done = fold_sub2(&ctx, op); 3077 break; 3078 CASE_OP_32_64_VEC(xor): 3079 done = fold_xor(&ctx, op); 3080 break; 3081 case INDEX_op_set_label: 3082 case INDEX_op_br: 3083 case INDEX_op_exit_tb: 3084 case INDEX_op_goto_tb: 3085 case INDEX_op_goto_ptr: 3086 finish_ebb(&ctx); 3087 done = true; 3088 break; 3089 default: 3090 done = finish_folding(&ctx, op); 3091 break; 3092 } 3093 tcg_debug_assert(done); 3094 } 3095 } 3096