1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 348 { 349 TCGTemp *dst_ts = arg_temp(dst); 350 TCGTemp *src_ts = arg_temp(src); 351 TempOptInfo *di; 352 TempOptInfo *si; 353 TCGOpcode new_op; 354 355 if (ts_are_copies(dst_ts, src_ts)) { 356 tcg_op_remove(ctx->tcg, op); 357 return true; 358 } 359 360 reset_ts(ctx, dst_ts); 361 di = ts_info(dst_ts); 362 si = ts_info(src_ts); 363 364 switch (ctx->type) { 365 case TCG_TYPE_I32: 366 new_op = INDEX_op_mov_i32; 367 break; 368 case TCG_TYPE_I64: 369 new_op = INDEX_op_mov_i64; 370 break; 371 case TCG_TYPE_V64: 372 case TCG_TYPE_V128: 373 case TCG_TYPE_V256: 374 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 375 new_op = INDEX_op_mov_vec; 376 break; 377 default: 378 g_assert_not_reached(); 379 } 380 op->opc = new_op; 381 op->args[0] = dst; 382 op->args[1] = src; 383 384 di->z_mask = si->z_mask; 385 di->s_mask = si->s_mask; 386 387 if (src_ts->type == dst_ts->type) { 388 TempOptInfo *ni = ts_info(si->next_copy); 389 390 di->next_copy = si->next_copy; 391 di->prev_copy = src_ts; 392 ni->prev_copy = dst_ts; 393 si->next_copy = dst_ts; 394 di->is_const = si->is_const; 395 di->val = si->val; 396 397 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 398 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 399 move_mem_copies(dst_ts, src_ts); 400 } 401 } 402 return true; 403 } 404 405 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 406 TCGArg dst, uint64_t val) 407 { 408 /* Convert movi to mov with constant temp. */ 409 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 410 } 411 412 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 413 { 414 uint64_t l64, h64; 415 416 switch (op) { 417 CASE_OP_32_64(add): 418 return x + y; 419 420 CASE_OP_32_64(sub): 421 return x - y; 422 423 CASE_OP_32_64(mul): 424 return x * y; 425 426 CASE_OP_32_64_VEC(and): 427 return x & y; 428 429 CASE_OP_32_64_VEC(or): 430 return x | y; 431 432 CASE_OP_32_64_VEC(xor): 433 return x ^ y; 434 435 case INDEX_op_shl_i32: 436 return (uint32_t)x << (y & 31); 437 438 case INDEX_op_shl_i64: 439 return (uint64_t)x << (y & 63); 440 441 case INDEX_op_shr_i32: 442 return (uint32_t)x >> (y & 31); 443 444 case INDEX_op_shr_i64: 445 return (uint64_t)x >> (y & 63); 446 447 case INDEX_op_sar_i32: 448 return (int32_t)x >> (y & 31); 449 450 case INDEX_op_sar_i64: 451 return (int64_t)x >> (y & 63); 452 453 case INDEX_op_rotr_i32: 454 return ror32(x, y & 31); 455 456 case INDEX_op_rotr_i64: 457 return ror64(x, y & 63); 458 459 case INDEX_op_rotl_i32: 460 return rol32(x, y & 31); 461 462 case INDEX_op_rotl_i64: 463 return rol64(x, y & 63); 464 465 CASE_OP_32_64_VEC(not): 466 return ~x; 467 468 CASE_OP_32_64(neg): 469 return -x; 470 471 CASE_OP_32_64_VEC(andc): 472 return x & ~y; 473 474 CASE_OP_32_64_VEC(orc): 475 return x | ~y; 476 477 CASE_OP_32_64_VEC(eqv): 478 return ~(x ^ y); 479 480 CASE_OP_32_64_VEC(nand): 481 return ~(x & y); 482 483 CASE_OP_32_64_VEC(nor): 484 return ~(x | y); 485 486 case INDEX_op_clz_i32: 487 return (uint32_t)x ? clz32(x) : y; 488 489 case INDEX_op_clz_i64: 490 return x ? clz64(x) : y; 491 492 case INDEX_op_ctz_i32: 493 return (uint32_t)x ? ctz32(x) : y; 494 495 case INDEX_op_ctz_i64: 496 return x ? ctz64(x) : y; 497 498 case INDEX_op_ctpop_i32: 499 return ctpop32(x); 500 501 case INDEX_op_ctpop_i64: 502 return ctpop64(x); 503 504 CASE_OP_32_64(ext8s): 505 return (int8_t)x; 506 507 CASE_OP_32_64(ext16s): 508 return (int16_t)x; 509 510 CASE_OP_32_64(ext8u): 511 return (uint8_t)x; 512 513 CASE_OP_32_64(ext16u): 514 return (uint16_t)x; 515 516 CASE_OP_32_64(bswap16): 517 x = bswap16(x); 518 return y & TCG_BSWAP_OS ? (int16_t)x : x; 519 520 CASE_OP_32_64(bswap32): 521 x = bswap32(x); 522 return y & TCG_BSWAP_OS ? (int32_t)x : x; 523 524 case INDEX_op_bswap64_i64: 525 return bswap64(x); 526 527 case INDEX_op_ext_i32_i64: 528 case INDEX_op_ext32s_i64: 529 return (int32_t)x; 530 531 case INDEX_op_extu_i32_i64: 532 case INDEX_op_extrl_i64_i32: 533 case INDEX_op_ext32u_i64: 534 return (uint32_t)x; 535 536 case INDEX_op_extrh_i64_i32: 537 return (uint64_t)x >> 32; 538 539 case INDEX_op_muluh_i32: 540 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 541 case INDEX_op_mulsh_i32: 542 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 543 544 case INDEX_op_muluh_i64: 545 mulu64(&l64, &h64, x, y); 546 return h64; 547 case INDEX_op_mulsh_i64: 548 muls64(&l64, &h64, x, y); 549 return h64; 550 551 case INDEX_op_div_i32: 552 /* Avoid crashing on divide by zero, otherwise undefined. */ 553 return (int32_t)x / ((int32_t)y ? : 1); 554 case INDEX_op_divu_i32: 555 return (uint32_t)x / ((uint32_t)y ? : 1); 556 case INDEX_op_div_i64: 557 return (int64_t)x / ((int64_t)y ? : 1); 558 case INDEX_op_divu_i64: 559 return (uint64_t)x / ((uint64_t)y ? : 1); 560 561 case INDEX_op_rem_i32: 562 return (int32_t)x % ((int32_t)y ? : 1); 563 case INDEX_op_remu_i32: 564 return (uint32_t)x % ((uint32_t)y ? : 1); 565 case INDEX_op_rem_i64: 566 return (int64_t)x % ((int64_t)y ? : 1); 567 case INDEX_op_remu_i64: 568 return (uint64_t)x % ((uint64_t)y ? : 1); 569 570 default: 571 g_assert_not_reached(); 572 } 573 } 574 575 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 576 uint64_t x, uint64_t y) 577 { 578 uint64_t res = do_constant_folding_2(op, x, y); 579 if (type == TCG_TYPE_I32) { 580 res = (int32_t)res; 581 } 582 return res; 583 } 584 585 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 586 { 587 switch (c) { 588 case TCG_COND_EQ: 589 return x == y; 590 case TCG_COND_NE: 591 return x != y; 592 case TCG_COND_LT: 593 return (int32_t)x < (int32_t)y; 594 case TCG_COND_GE: 595 return (int32_t)x >= (int32_t)y; 596 case TCG_COND_LE: 597 return (int32_t)x <= (int32_t)y; 598 case TCG_COND_GT: 599 return (int32_t)x > (int32_t)y; 600 case TCG_COND_LTU: 601 return x < y; 602 case TCG_COND_GEU: 603 return x >= y; 604 case TCG_COND_LEU: 605 return x <= y; 606 case TCG_COND_GTU: 607 return x > y; 608 case TCG_COND_TSTEQ: 609 return (x & y) == 0; 610 case TCG_COND_TSTNE: 611 return (x & y) != 0; 612 case TCG_COND_ALWAYS: 613 case TCG_COND_NEVER: 614 break; 615 } 616 g_assert_not_reached(); 617 } 618 619 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 620 { 621 switch (c) { 622 case TCG_COND_EQ: 623 return x == y; 624 case TCG_COND_NE: 625 return x != y; 626 case TCG_COND_LT: 627 return (int64_t)x < (int64_t)y; 628 case TCG_COND_GE: 629 return (int64_t)x >= (int64_t)y; 630 case TCG_COND_LE: 631 return (int64_t)x <= (int64_t)y; 632 case TCG_COND_GT: 633 return (int64_t)x > (int64_t)y; 634 case TCG_COND_LTU: 635 return x < y; 636 case TCG_COND_GEU: 637 return x >= y; 638 case TCG_COND_LEU: 639 return x <= y; 640 case TCG_COND_GTU: 641 return x > y; 642 case TCG_COND_TSTEQ: 643 return (x & y) == 0; 644 case TCG_COND_TSTNE: 645 return (x & y) != 0; 646 case TCG_COND_ALWAYS: 647 case TCG_COND_NEVER: 648 break; 649 } 650 g_assert_not_reached(); 651 } 652 653 static int do_constant_folding_cond_eq(TCGCond c) 654 { 655 switch (c) { 656 case TCG_COND_GT: 657 case TCG_COND_LTU: 658 case TCG_COND_LT: 659 case TCG_COND_GTU: 660 case TCG_COND_NE: 661 return 0; 662 case TCG_COND_GE: 663 case TCG_COND_GEU: 664 case TCG_COND_LE: 665 case TCG_COND_LEU: 666 case TCG_COND_EQ: 667 return 1; 668 case TCG_COND_TSTEQ: 669 case TCG_COND_TSTNE: 670 return -1; 671 case TCG_COND_ALWAYS: 672 case TCG_COND_NEVER: 673 break; 674 } 675 g_assert_not_reached(); 676 } 677 678 /* 679 * Return -1 if the condition can't be simplified, 680 * and the result of the condition (0 or 1) if it can. 681 */ 682 static int do_constant_folding_cond(TCGType type, TCGArg x, 683 TCGArg y, TCGCond c) 684 { 685 if (arg_is_const(x) && arg_is_const(y)) { 686 uint64_t xv = arg_info(x)->val; 687 uint64_t yv = arg_info(y)->val; 688 689 switch (type) { 690 case TCG_TYPE_I32: 691 return do_constant_folding_cond_32(xv, yv, c); 692 case TCG_TYPE_I64: 693 return do_constant_folding_cond_64(xv, yv, c); 694 default: 695 /* Only scalar comparisons are optimizable */ 696 return -1; 697 } 698 } else if (args_are_copies(x, y)) { 699 return do_constant_folding_cond_eq(c); 700 } else if (arg_is_const_val(y, 0)) { 701 switch (c) { 702 case TCG_COND_LTU: 703 case TCG_COND_TSTNE: 704 return 0; 705 case TCG_COND_GEU: 706 case TCG_COND_TSTEQ: 707 return 1; 708 default: 709 return -1; 710 } 711 } 712 return -1; 713 } 714 715 /** 716 * swap_commutative: 717 * @dest: TCGArg of the destination argument, or NO_DEST. 718 * @p1: first paired argument 719 * @p2: second paired argument 720 * 721 * If *@p1 is a constant and *@p2 is not, swap. 722 * If *@p2 matches @dest, swap. 723 * Return true if a swap was performed. 724 */ 725 726 #define NO_DEST temp_arg(NULL) 727 728 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 729 { 730 TCGArg a1 = *p1, a2 = *p2; 731 int sum = 0; 732 sum += arg_is_const(a1); 733 sum -= arg_is_const(a2); 734 735 /* Prefer the constant in second argument, and then the form 736 op a, a, b, which is better handled on non-RISC hosts. */ 737 if (sum > 0 || (sum == 0 && dest == a2)) { 738 *p1 = a2; 739 *p2 = a1; 740 return true; 741 } 742 return false; 743 } 744 745 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 746 { 747 int sum = 0; 748 sum += arg_is_const(p1[0]); 749 sum += arg_is_const(p1[1]); 750 sum -= arg_is_const(p2[0]); 751 sum -= arg_is_const(p2[1]); 752 if (sum > 0) { 753 TCGArg t; 754 t = p1[0], p1[0] = p2[0], p2[0] = t; 755 t = p1[1], p1[1] = p2[1], p2[1] = t; 756 return true; 757 } 758 return false; 759 } 760 761 /* 762 * Return -1 if the condition can't be simplified, 763 * and the result of the condition (0 or 1) if it can. 764 */ 765 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 766 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 767 { 768 TCGCond cond; 769 bool swap; 770 int r; 771 772 swap = swap_commutative(dest, p1, p2); 773 cond = *pcond; 774 if (swap) { 775 *pcond = cond = tcg_swap_cond(cond); 776 } 777 778 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 779 if (r >= 0) { 780 return r; 781 } 782 if (!is_tst_cond(cond)) { 783 return -1; 784 } 785 786 /* 787 * TSTNE x,x -> NE x,0 788 * TSTNE x,-1 -> NE x,0 789 */ 790 if (args_are_copies(*p1, *p2) || arg_is_const_val(*p2, -1)) { 791 *p2 = arg_new_constant(ctx, 0); 792 *pcond = tcg_tst_eqne_cond(cond); 793 return -1; 794 } 795 796 /* TSTNE x,sign -> LT x,0 */ 797 if (arg_is_const_val(*p2, (ctx->type == TCG_TYPE_I32 798 ? INT32_MIN : INT64_MIN))) { 799 *p2 = arg_new_constant(ctx, 0); 800 *pcond = tcg_tst_ltge_cond(cond); 801 return -1; 802 } 803 804 /* Expand to AND with a temporary if no backend support. */ 805 if (!TCG_TARGET_HAS_tst) { 806 TCGOpcode and_opc = (ctx->type == TCG_TYPE_I32 807 ? INDEX_op_and_i32 : INDEX_op_and_i64); 808 TCGOp *op2 = tcg_op_insert_before(ctx->tcg, op, and_opc, 3); 809 TCGArg tmp = arg_new_temp(ctx); 810 811 op2->args[0] = tmp; 812 op2->args[1] = *p1; 813 op2->args[2] = *p2; 814 815 *p1 = tmp; 816 *p2 = arg_new_constant(ctx, 0); 817 *pcond = tcg_tst_eqne_cond(cond); 818 } 819 return -1; 820 } 821 822 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 823 { 824 TCGArg al, ah, bl, bh; 825 TCGCond c; 826 bool swap; 827 int r; 828 829 swap = swap_commutative2(args, args + 2); 830 c = args[4]; 831 if (swap) { 832 args[4] = c = tcg_swap_cond(c); 833 } 834 835 al = args[0]; 836 ah = args[1]; 837 bl = args[2]; 838 bh = args[3]; 839 840 if (arg_is_const(bl) && arg_is_const(bh)) { 841 tcg_target_ulong blv = arg_info(bl)->val; 842 tcg_target_ulong bhv = arg_info(bh)->val; 843 uint64_t b = deposit64(blv, 32, 32, bhv); 844 845 if (arg_is_const(al) && arg_is_const(ah)) { 846 tcg_target_ulong alv = arg_info(al)->val; 847 tcg_target_ulong ahv = arg_info(ah)->val; 848 uint64_t a = deposit64(alv, 32, 32, ahv); 849 850 r = do_constant_folding_cond_64(a, b, c); 851 if (r >= 0) { 852 return r; 853 } 854 } 855 856 if (b == 0) { 857 switch (c) { 858 case TCG_COND_LTU: 859 case TCG_COND_TSTNE: 860 return 0; 861 case TCG_COND_GEU: 862 case TCG_COND_TSTEQ: 863 return 1; 864 default: 865 break; 866 } 867 } 868 869 /* TSTNE x,-1 -> NE x,0 */ 870 if (b == -1 && is_tst_cond(c)) { 871 args[3] = args[2] = arg_new_constant(ctx, 0); 872 args[4] = tcg_tst_eqne_cond(c); 873 return -1; 874 } 875 876 /* TSTNE x,sign -> LT x,0 */ 877 if (b == INT64_MIN && is_tst_cond(c)) { 878 /* bl must be 0, so copy that to bh */ 879 args[3] = bl; 880 args[4] = tcg_tst_ltge_cond(c); 881 return -1; 882 } 883 } 884 885 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 886 r = do_constant_folding_cond_eq(c); 887 if (r >= 0) { 888 return r; 889 } 890 891 /* TSTNE x,x -> NE x,0 */ 892 if (is_tst_cond(c)) { 893 args[3] = args[2] = arg_new_constant(ctx, 0); 894 args[4] = tcg_tst_eqne_cond(c); 895 return -1; 896 } 897 } 898 899 /* Expand to AND with a temporary if no backend support. */ 900 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 901 TCGOp *op1 = tcg_op_insert_before(ctx->tcg, op, INDEX_op_and_i32, 3); 902 TCGOp *op2 = tcg_op_insert_before(ctx->tcg, op, INDEX_op_and_i32, 3); 903 TCGArg t1 = arg_new_temp(ctx); 904 TCGArg t2 = arg_new_temp(ctx); 905 906 op1->args[0] = t1; 907 op1->args[1] = al; 908 op1->args[2] = bl; 909 op2->args[0] = t2; 910 op2->args[1] = ah; 911 op2->args[2] = bh; 912 913 args[0] = t1; 914 args[1] = t2; 915 args[3] = args[2] = arg_new_constant(ctx, 0); 916 args[4] = tcg_tst_eqne_cond(c); 917 } 918 return -1; 919 } 920 921 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 922 { 923 for (int i = 0; i < nb_args; i++) { 924 TCGTemp *ts = arg_temp(op->args[i]); 925 init_ts_info(ctx, ts); 926 } 927 } 928 929 static void copy_propagate(OptContext *ctx, TCGOp *op, 930 int nb_oargs, int nb_iargs) 931 { 932 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 933 TCGTemp *ts = arg_temp(op->args[i]); 934 if (ts_is_copy(ts)) { 935 op->args[i] = temp_arg(find_better_copy(ts)); 936 } 937 } 938 } 939 940 static void finish_bb(OptContext *ctx) 941 { 942 /* We only optimize memory barriers across basic blocks. */ 943 ctx->prev_mb = NULL; 944 } 945 946 static void finish_ebb(OptContext *ctx) 947 { 948 finish_bb(ctx); 949 /* We only optimize across extended basic blocks. */ 950 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 951 remove_mem_copy_all(ctx); 952 } 953 954 static bool finish_folding(OptContext *ctx, TCGOp *op) 955 { 956 const TCGOpDef *def = &tcg_op_defs[op->opc]; 957 int i, nb_oargs; 958 959 nb_oargs = def->nb_oargs; 960 for (i = 0; i < nb_oargs; i++) { 961 TCGTemp *ts = arg_temp(op->args[i]); 962 reset_ts(ctx, ts); 963 } 964 return true; 965 } 966 967 /* 968 * The fold_* functions return true when processing is complete, 969 * usually by folding the operation to a constant or to a copy, 970 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 971 * like collect information about the value produced, for use in 972 * optimizing a subsequent operation. 973 * 974 * These first fold_* functions are all helpers, used by other 975 * folders for more specific operations. 976 */ 977 978 static bool fold_const1(OptContext *ctx, TCGOp *op) 979 { 980 if (arg_is_const(op->args[1])) { 981 uint64_t t; 982 983 t = arg_info(op->args[1])->val; 984 t = do_constant_folding(op->opc, ctx->type, t, 0); 985 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 986 } 987 return false; 988 } 989 990 static bool fold_const2(OptContext *ctx, TCGOp *op) 991 { 992 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 993 uint64_t t1 = arg_info(op->args[1])->val; 994 uint64_t t2 = arg_info(op->args[2])->val; 995 996 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 997 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 998 } 999 return false; 1000 } 1001 1002 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1003 { 1004 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1005 return false; 1006 } 1007 1008 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1009 { 1010 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1011 return fold_const2(ctx, op); 1012 } 1013 1014 /* 1015 * Record "zero" and "sign" masks for the single output of @op. 1016 * See TempOptInfo definition of z_mask and s_mask. 1017 * If z_mask allows, fold the output to constant zero. 1018 * The passed s_mask may be augmented by z_mask. 1019 */ 1020 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1021 uint64_t z_mask, int64_t s_mask) 1022 { 1023 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1024 TCGTemp *ts; 1025 TempOptInfo *ti; 1026 int rep; 1027 1028 /* Only single-output opcodes are supported here. */ 1029 tcg_debug_assert(def->nb_oargs == 1); 1030 1031 /* 1032 * 32-bit ops generate 32-bit results, which for the purpose of 1033 * simplifying tcg are sign-extended. Certainly that's how we 1034 * represent our constants elsewhere. Note that the bits will 1035 * be reset properly for a 64-bit value when encountering the 1036 * type changing opcodes. 1037 */ 1038 if (ctx->type == TCG_TYPE_I32) { 1039 z_mask = (int32_t)z_mask; 1040 s_mask |= INT32_MIN; 1041 } 1042 1043 if (z_mask == 0) { 1044 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1045 } 1046 1047 ts = arg_temp(op->args[0]); 1048 reset_ts(ctx, ts); 1049 1050 ti = ts_info(ts); 1051 ti->z_mask = z_mask; 1052 1053 /* Canonicalize s_mask and incorporate data from z_mask. */ 1054 rep = clz64(~s_mask); 1055 rep = MAX(rep, clz64(z_mask)); 1056 rep = MAX(rep - 1, 0); 1057 ti->s_mask = INT64_MIN >> rep; 1058 1059 return true; 1060 } 1061 1062 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1063 { 1064 return fold_masks_zs(ctx, op, z_mask, 0); 1065 } 1066 1067 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1068 { 1069 return fold_masks_zs(ctx, op, -1, s_mask); 1070 } 1071 1072 /* 1073 * An "affected" mask bit is 0 if and only if the result is identical 1074 * to the first input. Thus if the entire mask is 0, the operation 1075 * is equivalent to a copy. 1076 */ 1077 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1078 { 1079 if (ctx->type == TCG_TYPE_I32) { 1080 a_mask = (uint32_t)a_mask; 1081 } 1082 if (a_mask == 0) { 1083 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1084 } 1085 return false; 1086 } 1087 1088 /* 1089 * Convert @op to NOT, if NOT is supported by the host. 1090 * Return true f the conversion is successful, which will still 1091 * indicate that the processing is complete. 1092 */ 1093 static bool fold_not(OptContext *ctx, TCGOp *op); 1094 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1095 { 1096 TCGOpcode not_op; 1097 bool have_not; 1098 1099 switch (ctx->type) { 1100 case TCG_TYPE_I32: 1101 not_op = INDEX_op_not_i32; 1102 have_not = TCG_TARGET_HAS_not_i32; 1103 break; 1104 case TCG_TYPE_I64: 1105 not_op = INDEX_op_not_i64; 1106 have_not = TCG_TARGET_HAS_not_i64; 1107 break; 1108 case TCG_TYPE_V64: 1109 case TCG_TYPE_V128: 1110 case TCG_TYPE_V256: 1111 not_op = INDEX_op_not_vec; 1112 have_not = TCG_TARGET_HAS_not_vec; 1113 break; 1114 default: 1115 g_assert_not_reached(); 1116 } 1117 if (have_not) { 1118 op->opc = not_op; 1119 op->args[1] = op->args[idx]; 1120 return fold_not(ctx, op); 1121 } 1122 return false; 1123 } 1124 1125 /* If the binary operation has first argument @i, fold to @i. */ 1126 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1127 { 1128 if (arg_is_const_val(op->args[1], i)) { 1129 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1130 } 1131 return false; 1132 } 1133 1134 /* If the binary operation has first argument @i, fold to NOT. */ 1135 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1136 { 1137 if (arg_is_const_val(op->args[1], i)) { 1138 return fold_to_not(ctx, op, 2); 1139 } 1140 return false; 1141 } 1142 1143 /* If the binary operation has second argument @i, fold to @i. */ 1144 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1145 { 1146 if (arg_is_const_val(op->args[2], i)) { 1147 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1148 } 1149 return false; 1150 } 1151 1152 /* If the binary operation has second argument @i, fold to identity. */ 1153 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1154 { 1155 if (arg_is_const_val(op->args[2], i)) { 1156 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1157 } 1158 return false; 1159 } 1160 1161 /* If the binary operation has second argument @i, fold to NOT. */ 1162 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1163 { 1164 if (arg_is_const_val(op->args[2], i)) { 1165 return fold_to_not(ctx, op, 1); 1166 } 1167 return false; 1168 } 1169 1170 /* If the binary operation has both arguments equal, fold to @i. */ 1171 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1172 { 1173 if (args_are_copies(op->args[1], op->args[2])) { 1174 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1175 } 1176 return false; 1177 } 1178 1179 /* If the binary operation has both arguments equal, fold to identity. */ 1180 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1181 { 1182 if (args_are_copies(op->args[1], op->args[2])) { 1183 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1184 } 1185 return false; 1186 } 1187 1188 /* 1189 * These outermost fold_<op> functions are sorted alphabetically. 1190 * 1191 * The ordering of the transformations should be: 1192 * 1) those that produce a constant 1193 * 2) those that produce a copy 1194 * 3) those that produce information about the result value. 1195 */ 1196 1197 static bool fold_or(OptContext *ctx, TCGOp *op); 1198 static bool fold_orc(OptContext *ctx, TCGOp *op); 1199 static bool fold_xor(OptContext *ctx, TCGOp *op); 1200 1201 static bool fold_add(OptContext *ctx, TCGOp *op) 1202 { 1203 if (fold_const2_commutative(ctx, op) || 1204 fold_xi_to_x(ctx, op, 0)) { 1205 return true; 1206 } 1207 return finish_folding(ctx, op); 1208 } 1209 1210 /* We cannot as yet do_constant_folding with vectors. */ 1211 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1212 { 1213 if (fold_commutative(ctx, op) || 1214 fold_xi_to_x(ctx, op, 0)) { 1215 return true; 1216 } 1217 return finish_folding(ctx, op); 1218 } 1219 1220 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1221 { 1222 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1223 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1224 1225 if (a_const && b_const) { 1226 uint64_t al = arg_info(op->args[2])->val; 1227 uint64_t ah = arg_info(op->args[3])->val; 1228 uint64_t bl = arg_info(op->args[4])->val; 1229 uint64_t bh = arg_info(op->args[5])->val; 1230 TCGArg rl, rh; 1231 TCGOp *op2; 1232 1233 if (ctx->type == TCG_TYPE_I32) { 1234 uint64_t a = deposit64(al, 32, 32, ah); 1235 uint64_t b = deposit64(bl, 32, 32, bh); 1236 1237 if (add) { 1238 a += b; 1239 } else { 1240 a -= b; 1241 } 1242 1243 al = sextract64(a, 0, 32); 1244 ah = sextract64(a, 32, 32); 1245 } else { 1246 Int128 a = int128_make128(al, ah); 1247 Int128 b = int128_make128(bl, bh); 1248 1249 if (add) { 1250 a = int128_add(a, b); 1251 } else { 1252 a = int128_sub(a, b); 1253 } 1254 1255 al = int128_getlo(a); 1256 ah = int128_gethi(a); 1257 } 1258 1259 rl = op->args[0]; 1260 rh = op->args[1]; 1261 1262 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1263 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 1264 1265 tcg_opt_gen_movi(ctx, op, rl, al); 1266 tcg_opt_gen_movi(ctx, op2, rh, ah); 1267 return true; 1268 } 1269 1270 /* Fold sub2 r,x,i to add2 r,x,-i */ 1271 if (!add && b_const) { 1272 uint64_t bl = arg_info(op->args[4])->val; 1273 uint64_t bh = arg_info(op->args[5])->val; 1274 1275 /* Negate the two parts without assembling and disassembling. */ 1276 bl = -bl; 1277 bh = ~bh + !bl; 1278 1279 op->opc = (ctx->type == TCG_TYPE_I32 1280 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1281 op->args[4] = arg_new_constant(ctx, bl); 1282 op->args[5] = arg_new_constant(ctx, bh); 1283 } 1284 return finish_folding(ctx, op); 1285 } 1286 1287 static bool fold_add2(OptContext *ctx, TCGOp *op) 1288 { 1289 /* Note that the high and low parts may be independently swapped. */ 1290 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1291 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1292 1293 return fold_addsub2(ctx, op, true); 1294 } 1295 1296 static bool fold_and(OptContext *ctx, TCGOp *op) 1297 { 1298 uint64_t z1, z2, z_mask, s_mask; 1299 TempOptInfo *t1, *t2; 1300 1301 if (fold_const2_commutative(ctx, op) || 1302 fold_xi_to_i(ctx, op, 0) || 1303 fold_xi_to_x(ctx, op, -1) || 1304 fold_xx_to_x(ctx, op)) { 1305 return true; 1306 } 1307 1308 t1 = arg_info(op->args[1]); 1309 t2 = arg_info(op->args[2]); 1310 z1 = t1->z_mask; 1311 z2 = t2->z_mask; 1312 1313 /* 1314 * Known-zeros does not imply known-ones. Therefore unless 1315 * arg2 is constant, we can't infer affected bits from it. 1316 */ 1317 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1318 return true; 1319 } 1320 1321 z_mask = z1 & z2; 1322 1323 /* 1324 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1325 * Bitwise operations preserve the relative quantity of the repetitions. 1326 */ 1327 s_mask = t1->s_mask & t2->s_mask; 1328 1329 return fold_masks_zs(ctx, op, z_mask, s_mask); 1330 } 1331 1332 static bool fold_andc(OptContext *ctx, TCGOp *op) 1333 { 1334 uint64_t z_mask, s_mask; 1335 TempOptInfo *t1, *t2; 1336 1337 if (fold_const2(ctx, op) || 1338 fold_xx_to_i(ctx, op, 0) || 1339 fold_xi_to_x(ctx, op, 0) || 1340 fold_ix_to_not(ctx, op, -1)) { 1341 return true; 1342 } 1343 1344 t1 = arg_info(op->args[1]); 1345 t2 = arg_info(op->args[2]); 1346 z_mask = t1->z_mask; 1347 1348 /* 1349 * Known-zeros does not imply known-ones. Therefore unless 1350 * arg2 is constant, we can't infer anything from it. 1351 */ 1352 if (ti_is_const(t2)) { 1353 uint64_t v2 = ti_const_val(t2); 1354 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1355 return true; 1356 } 1357 z_mask &= ~v2; 1358 } 1359 1360 s_mask = t1->s_mask & t2->s_mask; 1361 return fold_masks_zs(ctx, op, z_mask, s_mask); 1362 } 1363 1364 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1365 { 1366 /* If true and false values are the same, eliminate the cmp. */ 1367 if (args_are_copies(op->args[2], op->args[3])) { 1368 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1369 } 1370 1371 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1372 uint64_t tv = arg_info(op->args[2])->val; 1373 uint64_t fv = arg_info(op->args[3])->val; 1374 1375 if (tv == -1 && fv == 0) { 1376 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1377 } 1378 if (tv == 0 && fv == -1) { 1379 if (TCG_TARGET_HAS_not_vec) { 1380 op->opc = INDEX_op_not_vec; 1381 return fold_not(ctx, op); 1382 } else { 1383 op->opc = INDEX_op_xor_vec; 1384 op->args[2] = arg_new_constant(ctx, -1); 1385 return fold_xor(ctx, op); 1386 } 1387 } 1388 } 1389 if (arg_is_const(op->args[2])) { 1390 uint64_t tv = arg_info(op->args[2])->val; 1391 if (tv == -1) { 1392 op->opc = INDEX_op_or_vec; 1393 op->args[2] = op->args[3]; 1394 return fold_or(ctx, op); 1395 } 1396 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1397 op->opc = INDEX_op_andc_vec; 1398 op->args[2] = op->args[1]; 1399 op->args[1] = op->args[3]; 1400 return fold_andc(ctx, op); 1401 } 1402 } 1403 if (arg_is_const(op->args[3])) { 1404 uint64_t fv = arg_info(op->args[3])->val; 1405 if (fv == 0) { 1406 op->opc = INDEX_op_and_vec; 1407 return fold_and(ctx, op); 1408 } 1409 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1410 op->opc = INDEX_op_orc_vec; 1411 op->args[2] = op->args[1]; 1412 op->args[1] = op->args[3]; 1413 return fold_orc(ctx, op); 1414 } 1415 } 1416 return finish_folding(ctx, op); 1417 } 1418 1419 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1420 { 1421 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1422 &op->args[1], &op->args[2]); 1423 if (i == 0) { 1424 tcg_op_remove(ctx->tcg, op); 1425 return true; 1426 } 1427 if (i > 0) { 1428 op->opc = INDEX_op_br; 1429 op->args[0] = op->args[3]; 1430 finish_ebb(ctx); 1431 } else { 1432 finish_bb(ctx); 1433 } 1434 return true; 1435 } 1436 1437 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1438 { 1439 TCGCond cond; 1440 TCGArg label; 1441 int i, inv = 0; 1442 1443 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1444 cond = op->args[4]; 1445 label = op->args[5]; 1446 if (i >= 0) { 1447 goto do_brcond_const; 1448 } 1449 1450 switch (cond) { 1451 case TCG_COND_LT: 1452 case TCG_COND_GE: 1453 /* 1454 * Simplify LT/GE comparisons vs zero to a single compare 1455 * vs the high word of the input. 1456 */ 1457 if (arg_is_const_val(op->args[2], 0) && 1458 arg_is_const_val(op->args[3], 0)) { 1459 goto do_brcond_high; 1460 } 1461 break; 1462 1463 case TCG_COND_NE: 1464 inv = 1; 1465 QEMU_FALLTHROUGH; 1466 case TCG_COND_EQ: 1467 /* 1468 * Simplify EQ/NE comparisons where one of the pairs 1469 * can be simplified. 1470 */ 1471 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1472 op->args[2], cond); 1473 switch (i ^ inv) { 1474 case 0: 1475 goto do_brcond_const; 1476 case 1: 1477 goto do_brcond_high; 1478 } 1479 1480 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1481 op->args[3], cond); 1482 switch (i ^ inv) { 1483 case 0: 1484 goto do_brcond_const; 1485 case 1: 1486 goto do_brcond_low; 1487 } 1488 break; 1489 1490 case TCG_COND_TSTEQ: 1491 case TCG_COND_TSTNE: 1492 if (arg_is_const_val(op->args[2], 0)) { 1493 goto do_brcond_high; 1494 } 1495 if (arg_is_const_val(op->args[3], 0)) { 1496 goto do_brcond_low; 1497 } 1498 break; 1499 1500 default: 1501 break; 1502 1503 do_brcond_low: 1504 op->opc = INDEX_op_brcond_i32; 1505 op->args[1] = op->args[2]; 1506 op->args[2] = cond; 1507 op->args[3] = label; 1508 return fold_brcond(ctx, op); 1509 1510 do_brcond_high: 1511 op->opc = INDEX_op_brcond_i32; 1512 op->args[0] = op->args[1]; 1513 op->args[1] = op->args[3]; 1514 op->args[2] = cond; 1515 op->args[3] = label; 1516 return fold_brcond(ctx, op); 1517 1518 do_brcond_const: 1519 if (i == 0) { 1520 tcg_op_remove(ctx->tcg, op); 1521 return true; 1522 } 1523 op->opc = INDEX_op_br; 1524 op->args[0] = label; 1525 finish_ebb(ctx); 1526 return true; 1527 } 1528 1529 finish_bb(ctx); 1530 return true; 1531 } 1532 1533 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1534 { 1535 uint64_t z_mask, s_mask, sign; 1536 TempOptInfo *t1 = arg_info(op->args[1]); 1537 1538 if (ti_is_const(t1)) { 1539 return tcg_opt_gen_movi(ctx, op, op->args[0], 1540 do_constant_folding(op->opc, ctx->type, 1541 ti_const_val(t1), 1542 op->args[2])); 1543 } 1544 1545 z_mask = t1->z_mask; 1546 switch (op->opc) { 1547 case INDEX_op_bswap16_i32: 1548 case INDEX_op_bswap16_i64: 1549 z_mask = bswap16(z_mask); 1550 sign = INT16_MIN; 1551 break; 1552 case INDEX_op_bswap32_i32: 1553 case INDEX_op_bswap32_i64: 1554 z_mask = bswap32(z_mask); 1555 sign = INT32_MIN; 1556 break; 1557 case INDEX_op_bswap64_i64: 1558 z_mask = bswap64(z_mask); 1559 sign = INT64_MIN; 1560 break; 1561 default: 1562 g_assert_not_reached(); 1563 } 1564 1565 s_mask = 0; 1566 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1567 case TCG_BSWAP_OZ: 1568 break; 1569 case TCG_BSWAP_OS: 1570 /* If the sign bit may be 1, force all the bits above to 1. */ 1571 if (z_mask & sign) { 1572 z_mask |= sign; 1573 } 1574 /* The value and therefore s_mask is explicitly sign-extended. */ 1575 s_mask = sign; 1576 break; 1577 default: 1578 /* The high bits are undefined: force all bits above the sign to 1. */ 1579 z_mask |= sign << 1; 1580 break; 1581 } 1582 1583 return fold_masks_zs(ctx, op, z_mask, s_mask); 1584 } 1585 1586 static bool fold_call(OptContext *ctx, TCGOp *op) 1587 { 1588 TCGContext *s = ctx->tcg; 1589 int nb_oargs = TCGOP_CALLO(op); 1590 int nb_iargs = TCGOP_CALLI(op); 1591 int flags, i; 1592 1593 init_arguments(ctx, op, nb_oargs + nb_iargs); 1594 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1595 1596 /* If the function reads or writes globals, reset temp data. */ 1597 flags = tcg_call_flags(op); 1598 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1599 int nb_globals = s->nb_globals; 1600 1601 for (i = 0; i < nb_globals; i++) { 1602 if (test_bit(i, ctx->temps_used.l)) { 1603 reset_ts(ctx, &ctx->tcg->temps[i]); 1604 } 1605 } 1606 } 1607 1608 /* If the function has side effects, reset mem data. */ 1609 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1610 remove_mem_copy_all(ctx); 1611 } 1612 1613 /* Reset temp data for outputs. */ 1614 for (i = 0; i < nb_oargs; i++) { 1615 reset_temp(ctx, op->args[i]); 1616 } 1617 1618 /* Stop optimizing MB across calls. */ 1619 ctx->prev_mb = NULL; 1620 return true; 1621 } 1622 1623 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1624 { 1625 /* Canonicalize the comparison to put immediate second. */ 1626 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1627 op->args[3] = tcg_swap_cond(op->args[3]); 1628 } 1629 return finish_folding(ctx, op); 1630 } 1631 1632 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1633 { 1634 /* If true and false values are the same, eliminate the cmp. */ 1635 if (args_are_copies(op->args[3], op->args[4])) { 1636 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1637 } 1638 1639 /* Canonicalize the comparison to put immediate second. */ 1640 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1641 op->args[5] = tcg_swap_cond(op->args[5]); 1642 } 1643 /* 1644 * Canonicalize the "false" input reg to match the destination, 1645 * so that the tcg backend can implement "move if true". 1646 */ 1647 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1648 op->args[5] = tcg_invert_cond(op->args[5]); 1649 } 1650 return finish_folding(ctx, op); 1651 } 1652 1653 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1654 { 1655 uint64_t z_mask, s_mask; 1656 TempOptInfo *t1 = arg_info(op->args[1]); 1657 TempOptInfo *t2 = arg_info(op->args[2]); 1658 1659 if (ti_is_const(t1)) { 1660 uint64_t t = ti_const_val(t1); 1661 1662 if (t != 0) { 1663 t = do_constant_folding(op->opc, ctx->type, t, 0); 1664 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1665 } 1666 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1667 } 1668 1669 switch (ctx->type) { 1670 case TCG_TYPE_I32: 1671 z_mask = 31; 1672 break; 1673 case TCG_TYPE_I64: 1674 z_mask = 63; 1675 break; 1676 default: 1677 g_assert_not_reached(); 1678 } 1679 s_mask = ~z_mask; 1680 z_mask |= t2->z_mask; 1681 s_mask &= t2->s_mask; 1682 1683 return fold_masks_zs(ctx, op, z_mask, s_mask); 1684 } 1685 1686 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1687 { 1688 uint64_t z_mask; 1689 1690 if (fold_const1(ctx, op)) { 1691 return true; 1692 } 1693 1694 switch (ctx->type) { 1695 case TCG_TYPE_I32: 1696 z_mask = 32 | 31; 1697 break; 1698 case TCG_TYPE_I64: 1699 z_mask = 64 | 63; 1700 break; 1701 default: 1702 g_assert_not_reached(); 1703 } 1704 return fold_masks_z(ctx, op, z_mask); 1705 } 1706 1707 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1708 { 1709 TempOptInfo *t1 = arg_info(op->args[1]); 1710 TempOptInfo *t2 = arg_info(op->args[2]); 1711 int ofs = op->args[3]; 1712 int len = op->args[4]; 1713 int width; 1714 TCGOpcode and_opc; 1715 uint64_t z_mask, s_mask; 1716 1717 if (ti_is_const(t1) && ti_is_const(t2)) { 1718 return tcg_opt_gen_movi(ctx, op, op->args[0], 1719 deposit64(ti_const_val(t1), ofs, len, 1720 ti_const_val(t2))); 1721 } 1722 1723 switch (ctx->type) { 1724 case TCG_TYPE_I32: 1725 and_opc = INDEX_op_and_i32; 1726 width = 32; 1727 break; 1728 case TCG_TYPE_I64: 1729 and_opc = INDEX_op_and_i64; 1730 width = 64; 1731 break; 1732 default: 1733 g_assert_not_reached(); 1734 } 1735 1736 /* Inserting a value into zero at offset 0. */ 1737 if (ti_is_const_val(t1, 0) && ofs == 0) { 1738 uint64_t mask = MAKE_64BIT_MASK(0, len); 1739 1740 op->opc = and_opc; 1741 op->args[1] = op->args[2]; 1742 op->args[2] = arg_new_constant(ctx, mask); 1743 return fold_and(ctx, op); 1744 } 1745 1746 /* Inserting zero into a value. */ 1747 if (ti_is_const_val(t2, 0)) { 1748 uint64_t mask = deposit64(-1, ofs, len, 0); 1749 1750 op->opc = and_opc; 1751 op->args[2] = arg_new_constant(ctx, mask); 1752 return fold_and(ctx, op); 1753 } 1754 1755 /* The s_mask from the top portion of the deposit is still valid. */ 1756 if (ofs + len == width) { 1757 s_mask = t2->s_mask << ofs; 1758 } else { 1759 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1760 } 1761 1762 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1763 return fold_masks_zs(ctx, op, z_mask, s_mask); 1764 } 1765 1766 static bool fold_divide(OptContext *ctx, TCGOp *op) 1767 { 1768 if (fold_const2(ctx, op) || 1769 fold_xi_to_x(ctx, op, 1)) { 1770 return true; 1771 } 1772 return finish_folding(ctx, op); 1773 } 1774 1775 static bool fold_dup(OptContext *ctx, TCGOp *op) 1776 { 1777 if (arg_is_const(op->args[1])) { 1778 uint64_t t = arg_info(op->args[1])->val; 1779 t = dup_const(TCGOP_VECE(op), t); 1780 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1781 } 1782 return finish_folding(ctx, op); 1783 } 1784 1785 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1786 { 1787 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1788 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1789 arg_info(op->args[2])->val); 1790 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1791 } 1792 1793 if (args_are_copies(op->args[1], op->args[2])) { 1794 op->opc = INDEX_op_dup_vec; 1795 TCGOP_VECE(op) = MO_32; 1796 } 1797 return finish_folding(ctx, op); 1798 } 1799 1800 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1801 { 1802 uint64_t s_mask; 1803 1804 if (fold_const2_commutative(ctx, op) || 1805 fold_xi_to_x(ctx, op, -1) || 1806 fold_xi_to_not(ctx, op, 0)) { 1807 return true; 1808 } 1809 1810 s_mask = arg_info(op->args[1])->s_mask 1811 & arg_info(op->args[2])->s_mask; 1812 return fold_masks_s(ctx, op, s_mask); 1813 } 1814 1815 static bool fold_extract(OptContext *ctx, TCGOp *op) 1816 { 1817 uint64_t z_mask_old, z_mask; 1818 TempOptInfo *t1 = arg_info(op->args[1]); 1819 int pos = op->args[2]; 1820 int len = op->args[3]; 1821 1822 if (ti_is_const(t1)) { 1823 return tcg_opt_gen_movi(ctx, op, op->args[0], 1824 extract64(ti_const_val(t1), pos, len)); 1825 } 1826 1827 z_mask_old = t1->z_mask; 1828 z_mask = extract64(z_mask_old, pos, len); 1829 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1830 return true; 1831 } 1832 1833 return fold_masks_z(ctx, op, z_mask); 1834 } 1835 1836 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1837 { 1838 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1839 uint64_t v1 = arg_info(op->args[1])->val; 1840 uint64_t v2 = arg_info(op->args[2])->val; 1841 int shr = op->args[3]; 1842 1843 if (op->opc == INDEX_op_extract2_i64) { 1844 v1 >>= shr; 1845 v2 <<= 64 - shr; 1846 } else { 1847 v1 = (uint32_t)v1 >> shr; 1848 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1849 } 1850 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1851 } 1852 return finish_folding(ctx, op); 1853 } 1854 1855 static bool fold_exts(OptContext *ctx, TCGOp *op) 1856 { 1857 uint64_t s_mask_old, s_mask, z_mask; 1858 bool type_change = false; 1859 TempOptInfo *t1; 1860 1861 if (fold_const1(ctx, op)) { 1862 return true; 1863 } 1864 1865 t1 = arg_info(op->args[1]); 1866 z_mask = t1->z_mask; 1867 s_mask = t1->s_mask; 1868 s_mask_old = s_mask; 1869 1870 switch (op->opc) { 1871 CASE_OP_32_64(ext8s): 1872 s_mask |= INT8_MIN; 1873 z_mask = (int8_t)z_mask; 1874 break; 1875 CASE_OP_32_64(ext16s): 1876 s_mask |= INT16_MIN; 1877 z_mask = (int16_t)z_mask; 1878 break; 1879 case INDEX_op_ext_i32_i64: 1880 type_change = true; 1881 QEMU_FALLTHROUGH; 1882 case INDEX_op_ext32s_i64: 1883 s_mask |= INT32_MIN; 1884 z_mask = (int32_t)z_mask; 1885 break; 1886 default: 1887 g_assert_not_reached(); 1888 } 1889 1890 if (!type_change && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 1891 return true; 1892 } 1893 1894 return fold_masks_zs(ctx, op, z_mask, s_mask); 1895 } 1896 1897 static bool fold_extu(OptContext *ctx, TCGOp *op) 1898 { 1899 uint64_t z_mask_old, z_mask; 1900 bool type_change = false; 1901 1902 if (fold_const1(ctx, op)) { 1903 return true; 1904 } 1905 1906 z_mask_old = z_mask = arg_info(op->args[1])->z_mask; 1907 1908 switch (op->opc) { 1909 CASE_OP_32_64(ext8u): 1910 z_mask = (uint8_t)z_mask; 1911 break; 1912 CASE_OP_32_64(ext16u): 1913 z_mask = (uint16_t)z_mask; 1914 break; 1915 case INDEX_op_extrl_i64_i32: 1916 case INDEX_op_extu_i32_i64: 1917 type_change = true; 1918 QEMU_FALLTHROUGH; 1919 case INDEX_op_ext32u_i64: 1920 z_mask = (uint32_t)z_mask; 1921 break; 1922 case INDEX_op_extrh_i64_i32: 1923 type_change = true; 1924 z_mask >>= 32; 1925 break; 1926 default: 1927 g_assert_not_reached(); 1928 } 1929 1930 if (!type_change && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1931 return true; 1932 } 1933 1934 return fold_masks_z(ctx, op, z_mask); 1935 } 1936 1937 static bool fold_mb(OptContext *ctx, TCGOp *op) 1938 { 1939 /* Eliminate duplicate and redundant fence instructions. */ 1940 if (ctx->prev_mb) { 1941 /* 1942 * Merge two barriers of the same type into one, 1943 * or a weaker barrier into a stronger one, 1944 * or two weaker barriers into a stronger one. 1945 * mb X; mb Y => mb X|Y 1946 * mb; strl => mb; st 1947 * ldaq; mb => ld; mb 1948 * ldaq; strl => ld; mb; st 1949 * Other combinations are also merged into a strong 1950 * barrier. This is stricter than specified but for 1951 * the purposes of TCG is better than not optimizing. 1952 */ 1953 ctx->prev_mb->args[0] |= op->args[0]; 1954 tcg_op_remove(ctx->tcg, op); 1955 } else { 1956 ctx->prev_mb = op; 1957 } 1958 return true; 1959 } 1960 1961 static bool fold_mov(OptContext *ctx, TCGOp *op) 1962 { 1963 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1964 } 1965 1966 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1967 { 1968 uint64_t z_mask, s_mask; 1969 TempOptInfo *tt, *ft; 1970 int i; 1971 1972 /* If true and false values are the same, eliminate the cmp. */ 1973 if (args_are_copies(op->args[3], op->args[4])) { 1974 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1975 } 1976 1977 /* 1978 * Canonicalize the "false" input reg to match the destination reg so 1979 * that the tcg backend can implement a "move if true" operation. 1980 */ 1981 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1982 op->args[5] = tcg_invert_cond(op->args[5]); 1983 } 1984 1985 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1986 &op->args[2], &op->args[5]); 1987 if (i >= 0) { 1988 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1989 } 1990 1991 tt = arg_info(op->args[3]); 1992 ft = arg_info(op->args[4]); 1993 z_mask = tt->z_mask | ft->z_mask; 1994 s_mask = tt->s_mask & ft->s_mask; 1995 1996 if (ti_is_const(tt) && ti_is_const(ft)) { 1997 uint64_t tv = ti_const_val(tt); 1998 uint64_t fv = ti_const_val(ft); 1999 TCGOpcode opc, negopc = 0; 2000 TCGCond cond = op->args[5]; 2001 2002 switch (ctx->type) { 2003 case TCG_TYPE_I32: 2004 opc = INDEX_op_setcond_i32; 2005 if (TCG_TARGET_HAS_negsetcond_i32) { 2006 negopc = INDEX_op_negsetcond_i32; 2007 } 2008 tv = (int32_t)tv; 2009 fv = (int32_t)fv; 2010 break; 2011 case TCG_TYPE_I64: 2012 opc = INDEX_op_setcond_i64; 2013 if (TCG_TARGET_HAS_negsetcond_i64) { 2014 negopc = INDEX_op_negsetcond_i64; 2015 } 2016 break; 2017 default: 2018 g_assert_not_reached(); 2019 } 2020 2021 if (tv == 1 && fv == 0) { 2022 op->opc = opc; 2023 op->args[3] = cond; 2024 } else if (fv == 1 && tv == 0) { 2025 op->opc = opc; 2026 op->args[3] = tcg_invert_cond(cond); 2027 } else if (negopc) { 2028 if (tv == -1 && fv == 0) { 2029 op->opc = negopc; 2030 op->args[3] = cond; 2031 } else if (fv == -1 && tv == 0) { 2032 op->opc = negopc; 2033 op->args[3] = tcg_invert_cond(cond); 2034 } 2035 } 2036 } 2037 2038 return fold_masks_zs(ctx, op, z_mask, s_mask); 2039 } 2040 2041 static bool fold_mul(OptContext *ctx, TCGOp *op) 2042 { 2043 if (fold_const2(ctx, op) || 2044 fold_xi_to_i(ctx, op, 0) || 2045 fold_xi_to_x(ctx, op, 1)) { 2046 return true; 2047 } 2048 return finish_folding(ctx, op); 2049 } 2050 2051 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2052 { 2053 if (fold_const2_commutative(ctx, op) || 2054 fold_xi_to_i(ctx, op, 0)) { 2055 return true; 2056 } 2057 return finish_folding(ctx, op); 2058 } 2059 2060 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2061 { 2062 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2063 2064 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2065 uint64_t a = arg_info(op->args[2])->val; 2066 uint64_t b = arg_info(op->args[3])->val; 2067 uint64_t h, l; 2068 TCGArg rl, rh; 2069 TCGOp *op2; 2070 2071 switch (op->opc) { 2072 case INDEX_op_mulu2_i32: 2073 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2074 h = (int32_t)(l >> 32); 2075 l = (int32_t)l; 2076 break; 2077 case INDEX_op_muls2_i32: 2078 l = (int64_t)(int32_t)a * (int32_t)b; 2079 h = l >> 32; 2080 l = (int32_t)l; 2081 break; 2082 case INDEX_op_mulu2_i64: 2083 mulu64(&l, &h, a, b); 2084 break; 2085 case INDEX_op_muls2_i64: 2086 muls64(&l, &h, a, b); 2087 break; 2088 default: 2089 g_assert_not_reached(); 2090 } 2091 2092 rl = op->args[0]; 2093 rh = op->args[1]; 2094 2095 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2096 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 2097 2098 tcg_opt_gen_movi(ctx, op, rl, l); 2099 tcg_opt_gen_movi(ctx, op2, rh, h); 2100 return true; 2101 } 2102 return finish_folding(ctx, op); 2103 } 2104 2105 static bool fold_nand(OptContext *ctx, TCGOp *op) 2106 { 2107 uint64_t s_mask; 2108 2109 if (fold_const2_commutative(ctx, op) || 2110 fold_xi_to_not(ctx, op, -1)) { 2111 return true; 2112 } 2113 2114 s_mask = arg_info(op->args[1])->s_mask 2115 & arg_info(op->args[2])->s_mask; 2116 return fold_masks_s(ctx, op, s_mask); 2117 } 2118 2119 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2120 { 2121 /* Set to 1 all bits to the left of the rightmost. */ 2122 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2123 z_mask = -(z_mask & -z_mask); 2124 2125 return fold_masks_z(ctx, op, z_mask); 2126 } 2127 2128 static bool fold_neg(OptContext *ctx, TCGOp *op) 2129 { 2130 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2131 } 2132 2133 static bool fold_nor(OptContext *ctx, TCGOp *op) 2134 { 2135 uint64_t s_mask; 2136 2137 if (fold_const2_commutative(ctx, op) || 2138 fold_xi_to_not(ctx, op, 0)) { 2139 return true; 2140 } 2141 2142 s_mask = arg_info(op->args[1])->s_mask 2143 & arg_info(op->args[2])->s_mask; 2144 return fold_masks_s(ctx, op, s_mask); 2145 } 2146 2147 static bool fold_not(OptContext *ctx, TCGOp *op) 2148 { 2149 if (fold_const1(ctx, op)) { 2150 return true; 2151 } 2152 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2153 } 2154 2155 static bool fold_or(OptContext *ctx, TCGOp *op) 2156 { 2157 uint64_t z_mask, s_mask; 2158 TempOptInfo *t1, *t2; 2159 2160 if (fold_const2_commutative(ctx, op) || 2161 fold_xi_to_x(ctx, op, 0) || 2162 fold_xx_to_x(ctx, op)) { 2163 return true; 2164 } 2165 2166 t1 = arg_info(op->args[1]); 2167 t2 = arg_info(op->args[2]); 2168 z_mask = t1->z_mask | t2->z_mask; 2169 s_mask = t1->s_mask & t2->s_mask; 2170 return fold_masks_zs(ctx, op, z_mask, s_mask); 2171 } 2172 2173 static bool fold_orc(OptContext *ctx, TCGOp *op) 2174 { 2175 uint64_t s_mask; 2176 2177 if (fold_const2(ctx, op) || 2178 fold_xx_to_i(ctx, op, -1) || 2179 fold_xi_to_x(ctx, op, -1) || 2180 fold_ix_to_not(ctx, op, 0)) { 2181 return true; 2182 } 2183 2184 s_mask = arg_info(op->args[1])->s_mask 2185 & arg_info(op->args[2])->s_mask; 2186 return fold_masks_s(ctx, op, s_mask); 2187 } 2188 2189 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2190 { 2191 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2192 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2193 MemOp mop = get_memop(oi); 2194 int width = 8 * memop_size(mop); 2195 uint64_t z_mask = -1, s_mask = 0; 2196 2197 if (width < 64) { 2198 if (mop & MO_SIGN) { 2199 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2200 } else { 2201 z_mask = MAKE_64BIT_MASK(0, width); 2202 } 2203 } 2204 2205 /* Opcodes that touch guest memory stop the mb optimization. */ 2206 ctx->prev_mb = NULL; 2207 2208 return fold_masks_zs(ctx, op, z_mask, s_mask); 2209 } 2210 2211 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2212 { 2213 /* Opcodes that touch guest memory stop the mb optimization. */ 2214 ctx->prev_mb = NULL; 2215 return finish_folding(ctx, op); 2216 } 2217 2218 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2219 { 2220 /* Opcodes that touch guest memory stop the mb optimization. */ 2221 ctx->prev_mb = NULL; 2222 return true; 2223 } 2224 2225 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2226 { 2227 if (fold_const2(ctx, op) || 2228 fold_xx_to_i(ctx, op, 0)) { 2229 return true; 2230 } 2231 return finish_folding(ctx, op); 2232 } 2233 2234 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2235 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2236 { 2237 uint64_t a_zmask, b_val; 2238 TCGCond cond; 2239 2240 if (!arg_is_const(op->args[2])) { 2241 return false; 2242 } 2243 2244 a_zmask = arg_info(op->args[1])->z_mask; 2245 b_val = arg_info(op->args[2])->val; 2246 cond = op->args[3]; 2247 2248 if (ctx->type == TCG_TYPE_I32) { 2249 a_zmask = (uint32_t)a_zmask; 2250 b_val = (uint32_t)b_val; 2251 } 2252 2253 /* 2254 * A with only low bits set vs B with high bits set means that A < B. 2255 */ 2256 if (a_zmask < b_val) { 2257 bool inv = false; 2258 2259 switch (cond) { 2260 case TCG_COND_NE: 2261 case TCG_COND_LEU: 2262 case TCG_COND_LTU: 2263 inv = true; 2264 /* fall through */ 2265 case TCG_COND_GTU: 2266 case TCG_COND_GEU: 2267 case TCG_COND_EQ: 2268 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2269 default: 2270 break; 2271 } 2272 } 2273 2274 /* 2275 * A with only lsb set is already boolean. 2276 */ 2277 if (a_zmask <= 1) { 2278 bool convert = false; 2279 bool inv = false; 2280 2281 switch (cond) { 2282 case TCG_COND_EQ: 2283 inv = true; 2284 /* fall through */ 2285 case TCG_COND_NE: 2286 convert = (b_val == 0); 2287 break; 2288 case TCG_COND_LTU: 2289 case TCG_COND_TSTEQ: 2290 inv = true; 2291 /* fall through */ 2292 case TCG_COND_GEU: 2293 case TCG_COND_TSTNE: 2294 convert = (b_val == 1); 2295 break; 2296 default: 2297 break; 2298 } 2299 if (convert) { 2300 TCGOpcode add_opc, xor_opc, neg_opc; 2301 2302 if (!inv && !neg) { 2303 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2304 } 2305 2306 switch (ctx->type) { 2307 case TCG_TYPE_I32: 2308 add_opc = INDEX_op_add_i32; 2309 neg_opc = INDEX_op_neg_i32; 2310 xor_opc = INDEX_op_xor_i32; 2311 break; 2312 case TCG_TYPE_I64: 2313 add_opc = INDEX_op_add_i64; 2314 neg_opc = INDEX_op_neg_i64; 2315 xor_opc = INDEX_op_xor_i64; 2316 break; 2317 default: 2318 g_assert_not_reached(); 2319 } 2320 2321 if (!inv) { 2322 op->opc = neg_opc; 2323 } else if (neg) { 2324 op->opc = add_opc; 2325 op->args[2] = arg_new_constant(ctx, -1); 2326 } else { 2327 op->opc = xor_opc; 2328 op->args[2] = arg_new_constant(ctx, 1); 2329 } 2330 return -1; 2331 } 2332 } 2333 return 0; 2334 } 2335 2336 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2337 { 2338 TCGOpcode and_opc, sub_opc, xor_opc, neg_opc, shr_opc; 2339 TCGOpcode uext_opc = 0, sext_opc = 0; 2340 TCGCond cond = op->args[3]; 2341 TCGArg ret, src1, src2; 2342 TCGOp *op2; 2343 uint64_t val; 2344 int sh; 2345 bool inv; 2346 2347 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2348 return; 2349 } 2350 2351 src2 = op->args[2]; 2352 val = arg_info(src2)->val; 2353 if (!is_power_of_2(val)) { 2354 return; 2355 } 2356 sh = ctz64(val); 2357 2358 switch (ctx->type) { 2359 case TCG_TYPE_I32: 2360 and_opc = INDEX_op_and_i32; 2361 sub_opc = INDEX_op_sub_i32; 2362 xor_opc = INDEX_op_xor_i32; 2363 shr_opc = INDEX_op_shr_i32; 2364 neg_opc = INDEX_op_neg_i32; 2365 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2366 uext_opc = INDEX_op_extract_i32; 2367 } 2368 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2369 sext_opc = INDEX_op_sextract_i32; 2370 } 2371 break; 2372 case TCG_TYPE_I64: 2373 and_opc = INDEX_op_and_i64; 2374 sub_opc = INDEX_op_sub_i64; 2375 xor_opc = INDEX_op_xor_i64; 2376 shr_opc = INDEX_op_shr_i64; 2377 neg_opc = INDEX_op_neg_i64; 2378 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2379 uext_opc = INDEX_op_extract_i64; 2380 } 2381 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2382 sext_opc = INDEX_op_sextract_i64; 2383 } 2384 break; 2385 default: 2386 g_assert_not_reached(); 2387 } 2388 2389 ret = op->args[0]; 2390 src1 = op->args[1]; 2391 inv = cond == TCG_COND_TSTEQ; 2392 2393 if (sh && sext_opc && neg && !inv) { 2394 op->opc = sext_opc; 2395 op->args[1] = src1; 2396 op->args[2] = sh; 2397 op->args[3] = 1; 2398 return; 2399 } else if (sh && uext_opc) { 2400 op->opc = uext_opc; 2401 op->args[1] = src1; 2402 op->args[2] = sh; 2403 op->args[3] = 1; 2404 } else { 2405 if (sh) { 2406 op2 = tcg_op_insert_before(ctx->tcg, op, shr_opc, 3); 2407 op2->args[0] = ret; 2408 op2->args[1] = src1; 2409 op2->args[2] = arg_new_constant(ctx, sh); 2410 src1 = ret; 2411 } 2412 op->opc = and_opc; 2413 op->args[1] = src1; 2414 op->args[2] = arg_new_constant(ctx, 1); 2415 } 2416 2417 if (neg && inv) { 2418 op2 = tcg_op_insert_after(ctx->tcg, op, sub_opc, 3); 2419 op2->args[0] = ret; 2420 op2->args[1] = ret; 2421 op2->args[2] = arg_new_constant(ctx, 1); 2422 } else if (inv) { 2423 op2 = tcg_op_insert_after(ctx->tcg, op, xor_opc, 3); 2424 op2->args[0] = ret; 2425 op2->args[1] = ret; 2426 op2->args[2] = arg_new_constant(ctx, 1); 2427 } else if (neg) { 2428 op2 = tcg_op_insert_after(ctx->tcg, op, neg_opc, 2); 2429 op2->args[0] = ret; 2430 op2->args[1] = ret; 2431 } 2432 } 2433 2434 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2435 { 2436 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2437 &op->args[2], &op->args[3]); 2438 if (i >= 0) { 2439 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2440 } 2441 2442 i = fold_setcond_zmask(ctx, op, false); 2443 if (i > 0) { 2444 return true; 2445 } 2446 if (i == 0) { 2447 fold_setcond_tst_pow2(ctx, op, false); 2448 } 2449 2450 return fold_masks_z(ctx, op, 1); 2451 } 2452 2453 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2454 { 2455 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2456 &op->args[2], &op->args[3]); 2457 if (i >= 0) { 2458 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2459 } 2460 2461 i = fold_setcond_zmask(ctx, op, true); 2462 if (i > 0) { 2463 return true; 2464 } 2465 if (i == 0) { 2466 fold_setcond_tst_pow2(ctx, op, true); 2467 } 2468 2469 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2470 return fold_masks_s(ctx, op, -1); 2471 } 2472 2473 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2474 { 2475 TCGCond cond; 2476 int i, inv = 0; 2477 2478 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2479 cond = op->args[5]; 2480 if (i >= 0) { 2481 goto do_setcond_const; 2482 } 2483 2484 switch (cond) { 2485 case TCG_COND_LT: 2486 case TCG_COND_GE: 2487 /* 2488 * Simplify LT/GE comparisons vs zero to a single compare 2489 * vs the high word of the input. 2490 */ 2491 if (arg_is_const_val(op->args[3], 0) && 2492 arg_is_const_val(op->args[4], 0)) { 2493 goto do_setcond_high; 2494 } 2495 break; 2496 2497 case TCG_COND_NE: 2498 inv = 1; 2499 QEMU_FALLTHROUGH; 2500 case TCG_COND_EQ: 2501 /* 2502 * Simplify EQ/NE comparisons where one of the pairs 2503 * can be simplified. 2504 */ 2505 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2506 op->args[3], cond); 2507 switch (i ^ inv) { 2508 case 0: 2509 goto do_setcond_const; 2510 case 1: 2511 goto do_setcond_high; 2512 } 2513 2514 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2515 op->args[4], cond); 2516 switch (i ^ inv) { 2517 case 0: 2518 goto do_setcond_const; 2519 case 1: 2520 goto do_setcond_low; 2521 } 2522 break; 2523 2524 case TCG_COND_TSTEQ: 2525 case TCG_COND_TSTNE: 2526 if (arg_is_const_val(op->args[3], 0)) { 2527 goto do_setcond_high; 2528 } 2529 if (arg_is_const_val(op->args[4], 0)) { 2530 goto do_setcond_low; 2531 } 2532 break; 2533 2534 default: 2535 break; 2536 2537 do_setcond_low: 2538 op->args[2] = op->args[3]; 2539 op->args[3] = cond; 2540 op->opc = INDEX_op_setcond_i32; 2541 return fold_setcond(ctx, op); 2542 2543 do_setcond_high: 2544 op->args[1] = op->args[2]; 2545 op->args[2] = op->args[4]; 2546 op->args[3] = cond; 2547 op->opc = INDEX_op_setcond_i32; 2548 return fold_setcond(ctx, op); 2549 } 2550 2551 return fold_masks_z(ctx, op, 1); 2552 2553 do_setcond_const: 2554 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2555 } 2556 2557 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2558 { 2559 uint64_t z_mask, s_mask, s_mask_old; 2560 TempOptInfo *t1 = arg_info(op->args[1]); 2561 int pos = op->args[2]; 2562 int len = op->args[3]; 2563 2564 if (ti_is_const(t1)) { 2565 return tcg_opt_gen_movi(ctx, op, op->args[0], 2566 sextract64(ti_const_val(t1), pos, len)); 2567 } 2568 2569 s_mask_old = t1->s_mask; 2570 s_mask = s_mask_old >> pos; 2571 s_mask |= -1ull << (len - 1); 2572 2573 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2574 return true; 2575 } 2576 2577 z_mask = sextract64(t1->z_mask, pos, len); 2578 return fold_masks_zs(ctx, op, z_mask, s_mask); 2579 } 2580 2581 static bool fold_shift(OptContext *ctx, TCGOp *op) 2582 { 2583 uint64_t s_mask, z_mask; 2584 TempOptInfo *t1, *t2; 2585 2586 if (fold_const2(ctx, op) || 2587 fold_ix_to_i(ctx, op, 0) || 2588 fold_xi_to_x(ctx, op, 0)) { 2589 return true; 2590 } 2591 2592 t1 = arg_info(op->args[1]); 2593 t2 = arg_info(op->args[2]); 2594 s_mask = t1->s_mask; 2595 z_mask = t1->z_mask; 2596 2597 if (ti_is_const(t2)) { 2598 int sh = ti_const_val(t2); 2599 2600 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2601 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2602 2603 return fold_masks_zs(ctx, op, z_mask, s_mask); 2604 } 2605 2606 switch (op->opc) { 2607 CASE_OP_32_64(sar): 2608 /* 2609 * Arithmetic right shift will not reduce the number of 2610 * input sign repetitions. 2611 */ 2612 return fold_masks_s(ctx, op, s_mask); 2613 CASE_OP_32_64(shr): 2614 /* 2615 * If the sign bit is known zero, then logical right shift 2616 * will not reduce the number of input sign repetitions. 2617 */ 2618 if (~z_mask & -s_mask) { 2619 return fold_masks_s(ctx, op, s_mask); 2620 } 2621 break; 2622 default: 2623 break; 2624 } 2625 2626 return finish_folding(ctx, op); 2627 } 2628 2629 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2630 { 2631 TCGOpcode neg_op; 2632 bool have_neg; 2633 2634 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2635 return false; 2636 } 2637 2638 switch (ctx->type) { 2639 case TCG_TYPE_I32: 2640 neg_op = INDEX_op_neg_i32; 2641 have_neg = true; 2642 break; 2643 case TCG_TYPE_I64: 2644 neg_op = INDEX_op_neg_i64; 2645 have_neg = true; 2646 break; 2647 case TCG_TYPE_V64: 2648 case TCG_TYPE_V128: 2649 case TCG_TYPE_V256: 2650 neg_op = INDEX_op_neg_vec; 2651 have_neg = (TCG_TARGET_HAS_neg_vec && 2652 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2653 break; 2654 default: 2655 g_assert_not_reached(); 2656 } 2657 if (have_neg) { 2658 op->opc = neg_op; 2659 op->args[1] = op->args[2]; 2660 return fold_neg_no_const(ctx, op); 2661 } 2662 return false; 2663 } 2664 2665 /* We cannot as yet do_constant_folding with vectors. */ 2666 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2667 { 2668 if (fold_xx_to_i(ctx, op, 0) || 2669 fold_xi_to_x(ctx, op, 0) || 2670 fold_sub_to_neg(ctx, op)) { 2671 return true; 2672 } 2673 return finish_folding(ctx, op); 2674 } 2675 2676 static bool fold_sub(OptContext *ctx, TCGOp *op) 2677 { 2678 if (fold_const2(ctx, op) || 2679 fold_xx_to_i(ctx, op, 0) || 2680 fold_xi_to_x(ctx, op, 0) || 2681 fold_sub_to_neg(ctx, op)) { 2682 return true; 2683 } 2684 2685 /* Fold sub r,x,i to add r,x,-i */ 2686 if (arg_is_const(op->args[2])) { 2687 uint64_t val = arg_info(op->args[2])->val; 2688 2689 op->opc = (ctx->type == TCG_TYPE_I32 2690 ? INDEX_op_add_i32 : INDEX_op_add_i64); 2691 op->args[2] = arg_new_constant(ctx, -val); 2692 } 2693 return finish_folding(ctx, op); 2694 } 2695 2696 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2697 { 2698 return fold_addsub2(ctx, op, false); 2699 } 2700 2701 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2702 { 2703 uint64_t z_mask = -1, s_mask = 0; 2704 2705 /* We can't do any folding with a load, but we can record bits. */ 2706 switch (op->opc) { 2707 CASE_OP_32_64(ld8s): 2708 s_mask = INT8_MIN; 2709 break; 2710 CASE_OP_32_64(ld8u): 2711 z_mask = MAKE_64BIT_MASK(0, 8); 2712 break; 2713 CASE_OP_32_64(ld16s): 2714 s_mask = INT16_MIN; 2715 break; 2716 CASE_OP_32_64(ld16u): 2717 z_mask = MAKE_64BIT_MASK(0, 16); 2718 break; 2719 case INDEX_op_ld32s_i64: 2720 s_mask = INT32_MIN; 2721 break; 2722 case INDEX_op_ld32u_i64: 2723 z_mask = MAKE_64BIT_MASK(0, 32); 2724 break; 2725 default: 2726 g_assert_not_reached(); 2727 } 2728 return fold_masks_zs(ctx, op, z_mask, s_mask); 2729 } 2730 2731 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2732 { 2733 TCGTemp *dst, *src; 2734 intptr_t ofs; 2735 TCGType type; 2736 2737 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2738 return finish_folding(ctx, op); 2739 } 2740 2741 type = ctx->type; 2742 ofs = op->args[2]; 2743 dst = arg_temp(op->args[0]); 2744 src = find_mem_copy_for(ctx, type, ofs); 2745 if (src && src->base_type == type) { 2746 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2747 } 2748 2749 reset_ts(ctx, dst); 2750 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2751 return true; 2752 } 2753 2754 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2755 { 2756 intptr_t ofs = op->args[2]; 2757 intptr_t lm1; 2758 2759 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2760 remove_mem_copy_all(ctx); 2761 return true; 2762 } 2763 2764 switch (op->opc) { 2765 CASE_OP_32_64(st8): 2766 lm1 = 0; 2767 break; 2768 CASE_OP_32_64(st16): 2769 lm1 = 1; 2770 break; 2771 case INDEX_op_st32_i64: 2772 case INDEX_op_st_i32: 2773 lm1 = 3; 2774 break; 2775 case INDEX_op_st_i64: 2776 lm1 = 7; 2777 break; 2778 case INDEX_op_st_vec: 2779 lm1 = tcg_type_size(ctx->type) - 1; 2780 break; 2781 default: 2782 g_assert_not_reached(); 2783 } 2784 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2785 return true; 2786 } 2787 2788 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2789 { 2790 TCGTemp *src; 2791 intptr_t ofs, last; 2792 TCGType type; 2793 2794 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2795 return fold_tcg_st(ctx, op); 2796 } 2797 2798 src = arg_temp(op->args[0]); 2799 ofs = op->args[2]; 2800 type = ctx->type; 2801 2802 /* 2803 * Eliminate duplicate stores of a constant. 2804 * This happens frequently when the target ISA zero-extends. 2805 */ 2806 if (ts_is_const(src)) { 2807 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2808 if (src == prev) { 2809 tcg_op_remove(ctx->tcg, op); 2810 return true; 2811 } 2812 } 2813 2814 last = ofs + tcg_type_size(type) - 1; 2815 remove_mem_copy_in(ctx, ofs, last); 2816 record_mem_copy(ctx, type, src, ofs, last); 2817 return true; 2818 } 2819 2820 static bool fold_xor(OptContext *ctx, TCGOp *op) 2821 { 2822 uint64_t z_mask, s_mask; 2823 TempOptInfo *t1, *t2; 2824 2825 if (fold_const2_commutative(ctx, op) || 2826 fold_xx_to_i(ctx, op, 0) || 2827 fold_xi_to_x(ctx, op, 0) || 2828 fold_xi_to_not(ctx, op, -1)) { 2829 return true; 2830 } 2831 2832 t1 = arg_info(op->args[1]); 2833 t2 = arg_info(op->args[2]); 2834 z_mask = t1->z_mask | t2->z_mask; 2835 s_mask = t1->s_mask & t2->s_mask; 2836 return fold_masks_zs(ctx, op, z_mask, s_mask); 2837 } 2838 2839 /* Propagate constants and copies, fold constant expressions. */ 2840 void tcg_optimize(TCGContext *s) 2841 { 2842 int nb_temps, i; 2843 TCGOp *op, *op_next; 2844 OptContext ctx = { .tcg = s }; 2845 2846 QSIMPLEQ_INIT(&ctx.mem_free); 2847 2848 /* Array VALS has an element for each temp. 2849 If this temp holds a constant then its value is kept in VALS' element. 2850 If this temp is a copy of other ones then the other copies are 2851 available through the doubly linked circular list. */ 2852 2853 nb_temps = s->nb_temps; 2854 for (i = 0; i < nb_temps; ++i) { 2855 s->temps[i].state_ptr = NULL; 2856 } 2857 2858 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2859 TCGOpcode opc = op->opc; 2860 const TCGOpDef *def; 2861 bool done = false; 2862 2863 /* Calls are special. */ 2864 if (opc == INDEX_op_call) { 2865 fold_call(&ctx, op); 2866 continue; 2867 } 2868 2869 def = &tcg_op_defs[opc]; 2870 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2871 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2872 2873 /* Pre-compute the type of the operation. */ 2874 ctx.type = TCGOP_TYPE(op); 2875 2876 /* 2877 * Process each opcode. 2878 * Sorted alphabetically by opcode as much as possible. 2879 */ 2880 switch (opc) { 2881 CASE_OP_32_64(add): 2882 done = fold_add(&ctx, op); 2883 break; 2884 case INDEX_op_add_vec: 2885 done = fold_add_vec(&ctx, op); 2886 break; 2887 CASE_OP_32_64(add2): 2888 done = fold_add2(&ctx, op); 2889 break; 2890 CASE_OP_32_64_VEC(and): 2891 done = fold_and(&ctx, op); 2892 break; 2893 CASE_OP_32_64_VEC(andc): 2894 done = fold_andc(&ctx, op); 2895 break; 2896 CASE_OP_32_64(brcond): 2897 done = fold_brcond(&ctx, op); 2898 break; 2899 case INDEX_op_brcond2_i32: 2900 done = fold_brcond2(&ctx, op); 2901 break; 2902 CASE_OP_32_64(bswap16): 2903 CASE_OP_32_64(bswap32): 2904 case INDEX_op_bswap64_i64: 2905 done = fold_bswap(&ctx, op); 2906 break; 2907 CASE_OP_32_64(clz): 2908 CASE_OP_32_64(ctz): 2909 done = fold_count_zeros(&ctx, op); 2910 break; 2911 CASE_OP_32_64(ctpop): 2912 done = fold_ctpop(&ctx, op); 2913 break; 2914 CASE_OP_32_64(deposit): 2915 done = fold_deposit(&ctx, op); 2916 break; 2917 CASE_OP_32_64(div): 2918 CASE_OP_32_64(divu): 2919 done = fold_divide(&ctx, op); 2920 break; 2921 case INDEX_op_dup_vec: 2922 done = fold_dup(&ctx, op); 2923 break; 2924 case INDEX_op_dup2_vec: 2925 done = fold_dup2(&ctx, op); 2926 break; 2927 CASE_OP_32_64_VEC(eqv): 2928 done = fold_eqv(&ctx, op); 2929 break; 2930 CASE_OP_32_64(extract): 2931 done = fold_extract(&ctx, op); 2932 break; 2933 CASE_OP_32_64(extract2): 2934 done = fold_extract2(&ctx, op); 2935 break; 2936 CASE_OP_32_64(ext8s): 2937 CASE_OP_32_64(ext16s): 2938 case INDEX_op_ext32s_i64: 2939 case INDEX_op_ext_i32_i64: 2940 done = fold_exts(&ctx, op); 2941 break; 2942 CASE_OP_32_64(ext8u): 2943 CASE_OP_32_64(ext16u): 2944 case INDEX_op_ext32u_i64: 2945 case INDEX_op_extu_i32_i64: 2946 case INDEX_op_extrl_i64_i32: 2947 case INDEX_op_extrh_i64_i32: 2948 done = fold_extu(&ctx, op); 2949 break; 2950 CASE_OP_32_64(ld8s): 2951 CASE_OP_32_64(ld8u): 2952 CASE_OP_32_64(ld16s): 2953 CASE_OP_32_64(ld16u): 2954 case INDEX_op_ld32s_i64: 2955 case INDEX_op_ld32u_i64: 2956 done = fold_tcg_ld(&ctx, op); 2957 break; 2958 case INDEX_op_ld_i32: 2959 case INDEX_op_ld_i64: 2960 case INDEX_op_ld_vec: 2961 done = fold_tcg_ld_memcopy(&ctx, op); 2962 break; 2963 CASE_OP_32_64(st8): 2964 CASE_OP_32_64(st16): 2965 case INDEX_op_st32_i64: 2966 done = fold_tcg_st(&ctx, op); 2967 break; 2968 case INDEX_op_st_i32: 2969 case INDEX_op_st_i64: 2970 case INDEX_op_st_vec: 2971 done = fold_tcg_st_memcopy(&ctx, op); 2972 break; 2973 case INDEX_op_mb: 2974 done = fold_mb(&ctx, op); 2975 break; 2976 CASE_OP_32_64_VEC(mov): 2977 done = fold_mov(&ctx, op); 2978 break; 2979 CASE_OP_32_64(movcond): 2980 done = fold_movcond(&ctx, op); 2981 break; 2982 CASE_OP_32_64(mul): 2983 done = fold_mul(&ctx, op); 2984 break; 2985 CASE_OP_32_64(mulsh): 2986 CASE_OP_32_64(muluh): 2987 done = fold_mul_highpart(&ctx, op); 2988 break; 2989 CASE_OP_32_64(muls2): 2990 CASE_OP_32_64(mulu2): 2991 done = fold_multiply2(&ctx, op); 2992 break; 2993 CASE_OP_32_64_VEC(nand): 2994 done = fold_nand(&ctx, op); 2995 break; 2996 CASE_OP_32_64(neg): 2997 done = fold_neg(&ctx, op); 2998 break; 2999 CASE_OP_32_64_VEC(nor): 3000 done = fold_nor(&ctx, op); 3001 break; 3002 CASE_OP_32_64_VEC(not): 3003 done = fold_not(&ctx, op); 3004 break; 3005 CASE_OP_32_64_VEC(or): 3006 done = fold_or(&ctx, op); 3007 break; 3008 CASE_OP_32_64_VEC(orc): 3009 done = fold_orc(&ctx, op); 3010 break; 3011 case INDEX_op_qemu_ld_a32_i32: 3012 case INDEX_op_qemu_ld_a64_i32: 3013 done = fold_qemu_ld_1reg(&ctx, op); 3014 break; 3015 case INDEX_op_qemu_ld_a32_i64: 3016 case INDEX_op_qemu_ld_a64_i64: 3017 if (TCG_TARGET_REG_BITS == 64) { 3018 done = fold_qemu_ld_1reg(&ctx, op); 3019 break; 3020 } 3021 QEMU_FALLTHROUGH; 3022 case INDEX_op_qemu_ld_a32_i128: 3023 case INDEX_op_qemu_ld_a64_i128: 3024 done = fold_qemu_ld_2reg(&ctx, op); 3025 break; 3026 case INDEX_op_qemu_st8_a32_i32: 3027 case INDEX_op_qemu_st8_a64_i32: 3028 case INDEX_op_qemu_st_a32_i32: 3029 case INDEX_op_qemu_st_a64_i32: 3030 case INDEX_op_qemu_st_a32_i64: 3031 case INDEX_op_qemu_st_a64_i64: 3032 case INDEX_op_qemu_st_a32_i128: 3033 case INDEX_op_qemu_st_a64_i128: 3034 done = fold_qemu_st(&ctx, op); 3035 break; 3036 CASE_OP_32_64(rem): 3037 CASE_OP_32_64(remu): 3038 done = fold_remainder(&ctx, op); 3039 break; 3040 CASE_OP_32_64(rotl): 3041 CASE_OP_32_64(rotr): 3042 CASE_OP_32_64(sar): 3043 CASE_OP_32_64(shl): 3044 CASE_OP_32_64(shr): 3045 done = fold_shift(&ctx, op); 3046 break; 3047 CASE_OP_32_64(setcond): 3048 done = fold_setcond(&ctx, op); 3049 break; 3050 CASE_OP_32_64(negsetcond): 3051 done = fold_negsetcond(&ctx, op); 3052 break; 3053 case INDEX_op_setcond2_i32: 3054 done = fold_setcond2(&ctx, op); 3055 break; 3056 case INDEX_op_cmp_vec: 3057 done = fold_cmp_vec(&ctx, op); 3058 break; 3059 case INDEX_op_cmpsel_vec: 3060 done = fold_cmpsel_vec(&ctx, op); 3061 break; 3062 case INDEX_op_bitsel_vec: 3063 done = fold_bitsel_vec(&ctx, op); 3064 break; 3065 CASE_OP_32_64(sextract): 3066 done = fold_sextract(&ctx, op); 3067 break; 3068 CASE_OP_32_64(sub): 3069 done = fold_sub(&ctx, op); 3070 break; 3071 case INDEX_op_sub_vec: 3072 done = fold_sub_vec(&ctx, op); 3073 break; 3074 CASE_OP_32_64(sub2): 3075 done = fold_sub2(&ctx, op); 3076 break; 3077 CASE_OP_32_64_VEC(xor): 3078 done = fold_xor(&ctx, op); 3079 break; 3080 case INDEX_op_set_label: 3081 case INDEX_op_br: 3082 case INDEX_op_exit_tb: 3083 case INDEX_op_goto_tb: 3084 case INDEX_op_goto_ptr: 3085 finish_ebb(&ctx); 3086 done = true; 3087 break; 3088 default: 3089 done = finish_folding(&ctx, op); 3090 break; 3091 } 3092 tcg_debug_assert(done); 3093 } 3094 } 3095