xref: /qemu/target/xtensa/mmu_helper.c (revision cc3d262aa93a42e19c38f6acb6d0f6012a71eb4b)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "qemu/qemu-print.h"
31 #include "qemu/units.h"
32 #include "cpu.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/host-utils.h"
35 #include "exec/cputlb.h"
36 #include "exec/exec-all.h"
37 #include "exec/page-protection.h"
38 
39 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
40 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
41 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
42 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
43 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
44 #define XTENSA_MPU_ATTR_MASK 0x001fff00
45 
46 #define XTENSA_MPU_PROBE_B 0x40000000
47 #define XTENSA_MPU_PROBE_V 0x80000000
48 
49 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
50 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
51 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
52 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
53 
54 #define XTENSA_MPU_TYPE_SYS_C     0x0010
55 #define XTENSA_MPU_TYPE_SYS_W     0x0020
56 #define XTENSA_MPU_TYPE_SYS_R     0x0040
57 #define XTENSA_MPU_TYPE_CPU_C     0x0100
58 #define XTENSA_MPU_TYPE_CPU_W     0x0200
59 #define XTENSA_MPU_TYPE_CPU_R     0x0400
60 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
61 #define XTENSA_MPU_TYPE_B         0x1000
62 #define XTENSA_MPU_TYPE_INT       0x2000
63 
64 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
65 {
66     /*
67      * Probe the memory; we don't care about the result but
68      * only the side-effects (ie any MMU or other exception)
69      */
70     probe_access(env, vaddr, 1, MMU_INST_FETCH,
71                  cpu_mmu_index(env_cpu(env), true), GETPC());
72 }
73 
74 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
75 {
76     v = (v & 0xffffff00) | 0x1;
77     if (v != env->sregs[RASID]) {
78         env->sregs[RASID] = v;
79         tlb_flush(env_cpu(env));
80     }
81 }
82 
83 static uint32_t get_page_size(const CPUXtensaState *env,
84                               bool dtlb, uint32_t way)
85 {
86     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
87 
88     switch (way) {
89     case 4:
90         return (tlbcfg >> 16) & 0x3;
91 
92     case 5:
93         return (tlbcfg >> 20) & 0x1;
94 
95     case 6:
96         return (tlbcfg >> 24) & 0x1;
97 
98     default:
99         return 0;
100     }
101 }
102 
103 /*!
104  * Get bit mask for the virtual address bits translated by the TLB way
105  */
106 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
107                                          bool dtlb, uint32_t way)
108 {
109     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
110         bool varway56 = dtlb ?
111             env->config->dtlb.varway56 :
112             env->config->itlb.varway56;
113 
114         switch (way) {
115         case 4:
116             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
117 
118         case 5:
119             if (varway56) {
120                 return 0xf8000000 << get_page_size(env, dtlb, way);
121             } else {
122                 return 0xf8000000;
123             }
124 
125         case 6:
126             if (varway56) {
127                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
128             } else {
129                 return 0xf0000000;
130             }
131 
132         default:
133             return 0xfffff000;
134         }
135     } else {
136         return REGION_PAGE_MASK;
137     }
138 }
139 
140 /*!
141  * Get bit mask for the 'VPN without index' field.
142  * See ISA, 4.6.5.6, data format for RxTLB0
143  */
144 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
145 {
146     if (way < 4) {
147         bool is32 = (dtlb ?
148                 env->config->dtlb.nrefillentries :
149                 env->config->itlb.nrefillentries) == 32;
150         return is32 ? 0xffff8000 : 0xffffc000;
151     } else if (way == 4) {
152         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
153     } else if (way <= 6) {
154         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
155         bool varway56 = dtlb ?
156             env->config->dtlb.varway56 :
157             env->config->itlb.varway56;
158 
159         if (varway56) {
160             return mask << (way == 5 ? 2 : 3);
161         } else {
162             return mask << 1;
163         }
164     } else {
165         return 0xfffff000;
166     }
167 }
168 
169 /*!
170  * Split virtual address into VPN (with index) and entry index
171  * for the given TLB way
172  */
173 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
174                                      bool dtlb, uint32_t *vpn,
175                                      uint32_t wi, uint32_t *ei)
176 {
177     bool varway56 = dtlb ?
178         env->config->dtlb.varway56 :
179         env->config->itlb.varway56;
180 
181     if (!dtlb) {
182         wi &= 7;
183     }
184 
185     if (wi < 4) {
186         bool is32 = (dtlb ?
187                 env->config->dtlb.nrefillentries :
188                 env->config->itlb.nrefillentries) == 32;
189         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
190     } else {
191         switch (wi) {
192         case 4:
193             {
194                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
195                 *ei = (v >> eibase) & 0x3;
196             }
197             break;
198 
199         case 5:
200             if (varway56) {
201                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
202                 *ei = (v >> eibase) & 0x3;
203             } else {
204                 *ei = (v >> 27) & 0x1;
205             }
206             break;
207 
208         case 6:
209             if (varway56) {
210                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
211                 *ei = (v >> eibase) & 0x7;
212             } else {
213                 *ei = (v >> 28) & 0x1;
214             }
215             break;
216 
217         default:
218             *ei = 0;
219             break;
220         }
221     }
222     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
223 }
224 
225 /*!
226  * Split TLB address into TLB way, entry index and VPN (with index).
227  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
228  */
229 static bool split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
230                                  uint32_t *vpn, uint32_t *wi, uint32_t *ei)
231 {
232     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
233         *wi = v & (dtlb ? 0xf : 0x7);
234         if (*wi < (dtlb ? env->config->dtlb.nways : env->config->itlb.nways)) {
235             split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
236             return true;
237         } else {
238             return false;
239         }
240     } else {
241         *vpn = v & REGION_PAGE_MASK;
242         *wi = 0;
243         *ei = (v >> 29) & 0x7;
244         return true;
245     }
246 }
247 
248 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
249                                               unsigned wi, unsigned ei)
250 {
251     const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb;
252 
253     assert(wi < tlb->nways && ei < tlb->way_size[wi]);
254     return dtlb ?
255         env->dtlb[wi] + ei :
256         env->itlb[wi] + ei;
257 }
258 
259 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
260         uint32_t v, bool dtlb, uint32_t *pwi)
261 {
262     uint32_t vpn;
263     uint32_t wi;
264     uint32_t ei;
265 
266     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
267         if (pwi) {
268             *pwi = wi;
269         }
270         return xtensa_tlb_get_entry(env, dtlb, wi, ei);
271     } else {
272         return NULL;
273     }
274 }
275 
276 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
277                                      xtensa_tlb_entry *entry, bool dtlb,
278                                      unsigned wi, unsigned ei, uint32_t vpn,
279                                      uint32_t pte)
280 {
281     entry->vaddr = vpn;
282     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
283     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
284     entry->attr = pte & 0xf;
285 }
286 
287 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
288                                  unsigned wi, unsigned ei,
289                                  uint32_t vpn, uint32_t pte)
290 {
291     CPUState *cs = env_cpu(env);
292     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
293 
294     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
295         if (entry->variable) {
296             if (entry->asid) {
297                 tlb_flush_page(cs, entry->vaddr);
298             }
299             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
300             tlb_flush_page(cs, entry->vaddr);
301         } else {
302             qemu_log_mask(LOG_GUEST_ERROR,
303                           "%s %d, %d, %d trying to set immutable entry\n",
304                           __func__, dtlb, wi, ei);
305         }
306     } else {
307         tlb_flush_page(cs, entry->vaddr);
308         if (xtensa_option_enabled(env->config,
309                     XTENSA_OPTION_REGION_TRANSLATION)) {
310             entry->paddr = pte & REGION_PAGE_MASK;
311         }
312         entry->attr = pte & 0xf;
313     }
314 }
315 
316 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
317 {
318     XtensaCPU *cpu = XTENSA_CPU(cs);
319     uint32_t paddr;
320     uint32_t page_size;
321     unsigned access;
322 
323     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
324                 &paddr, &page_size, &access) == 0) {
325         return paddr;
326     }
327     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
328                 &paddr, &page_size, &access) == 0) {
329         return paddr;
330     }
331     return ~0;
332 }
333 
334 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
335                                    const xtensa_tlb *tlb,
336                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
337 {
338     unsigned wi, ei;
339 
340     for (wi = 0; wi < tlb->nways; ++wi) {
341         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
342             entry[wi][ei].asid = 0;
343             entry[wi][ei].variable = true;
344         }
345     }
346 }
347 
348 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
349                                  const xtensa_tlb *tlb,
350                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
351 {
352     if (!tlb->varway56) {
353         static const xtensa_tlb_entry way5[] = {
354             {
355                 .vaddr = 0xd0000000,
356                 .paddr = 0,
357                 .asid = 1,
358                 .attr = 7,
359                 .variable = false,
360             }, {
361                 .vaddr = 0xd8000000,
362                 .paddr = 0,
363                 .asid = 1,
364                 .attr = 3,
365                 .variable = false,
366             }
367         };
368         static const xtensa_tlb_entry way6[] = {
369             {
370                 .vaddr = 0xe0000000,
371                 .paddr = 0xf0000000,
372                 .asid = 1,
373                 .attr = 7,
374                 .variable = false,
375             }, {
376                 .vaddr = 0xf0000000,
377                 .paddr = 0xf0000000,
378                 .asid = 1,
379                 .attr = 3,
380                 .variable = false,
381             }
382         };
383         memcpy(entry[5], way5, sizeof(way5));
384         memcpy(entry[6], way6, sizeof(way6));
385     } else {
386         uint32_t ei;
387         for (ei = 0; ei < 8; ++ei) {
388             entry[6][ei].vaddr = ei << 29;
389             entry[6][ei].paddr = ei << 29;
390             entry[6][ei].asid = 1;
391             entry[6][ei].attr = 3;
392         }
393     }
394 }
395 
396 static void reset_tlb_region_way0(CPUXtensaState *env,
397                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
398 {
399     unsigned ei;
400 
401     for (ei = 0; ei < 8; ++ei) {
402         entry[0][ei].vaddr = ei << 29;
403         entry[0][ei].paddr = ei << 29;
404         entry[0][ei].asid = 1;
405         entry[0][ei].attr = 2;
406         entry[0][ei].variable = true;
407     }
408 }
409 
410 void reset_mmu(CPUXtensaState *env)
411 {
412     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
413         env->sregs[RASID] = 0x04030201;
414         env->sregs[ITLBCFG] = 0;
415         env->sregs[DTLBCFG] = 0;
416         env->autorefill_idx = 0;
417         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
418         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
419         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
420         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
421     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
422         unsigned i;
423 
424         env->sregs[MPUENB] = 0;
425         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
426         env->sregs[CACHEADRDIS] = 0;
427         assert(env->config->n_mpu_bg_segments > 0 &&
428                env->config->mpu_bg[0].vaddr == 0);
429         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
430             assert(env->config->mpu_bg[i].vaddr >=
431                    env->config->mpu_bg[i - 1].vaddr);
432         }
433     } else {
434         env->sregs[CACHEATTR] = 0x22222222;
435         reset_tlb_region_way0(env, env->itlb);
436         reset_tlb_region_way0(env, env->dtlb);
437     }
438 }
439 
440 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
441 {
442     unsigned i;
443     for (i = 0; i < 4; ++i) {
444         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
445             return i;
446         }
447     }
448     return 0xff;
449 }
450 
451 /*!
452  * Lookup xtensa TLB for the given virtual address.
453  * See ISA, 4.6.2.2
454  *
455  * \param pwi: [out] way index
456  * \param pei: [out] entry index
457  * \param pring: [out] access ring
458  * \return 0 if ok, exception cause code otherwise
459  */
460 static int xtensa_tlb_lookup(const CPUXtensaState *env,
461                              uint32_t addr, bool dtlb,
462                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
463 {
464     const xtensa_tlb *tlb = dtlb ?
465         &env->config->dtlb : &env->config->itlb;
466     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
467         env->dtlb : env->itlb;
468 
469     int nhits = 0;
470     unsigned wi;
471 
472     for (wi = 0; wi < tlb->nways; ++wi) {
473         uint32_t vpn;
474         uint32_t ei;
475         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
476         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
477             unsigned ring = get_ring(env, entry[wi][ei].asid);
478             if (ring < 4) {
479                 if (++nhits > 1) {
480                     return dtlb ?
481                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
482                         INST_TLB_MULTI_HIT_CAUSE;
483                 }
484                 *pwi = wi;
485                 *pei = ei;
486                 *pring = ring;
487             }
488         }
489     }
490     return nhits ? 0 :
491         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
492 }
493 
494 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
495 {
496     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
497         uint32_t wi;
498         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
499 
500         if (entry) {
501             return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
502         } else {
503             return 0;
504         }
505     } else {
506         return v & REGION_PAGE_MASK;
507     }
508 }
509 
510 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
511 {
512     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
513 
514     if (entry) {
515         return entry->paddr | entry->attr;
516     } else {
517         return 0;
518     }
519 }
520 
521 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
522 {
523     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
524         uint32_t wi;
525         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
526         if (entry && entry->variable && entry->asid) {
527             tlb_flush_page(env_cpu(env), entry->vaddr);
528             entry->asid = 0;
529         }
530     }
531 }
532 
533 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
534 {
535     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
536         uint32_t wi;
537         uint32_t ei;
538         uint8_t ring;
539         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
540 
541         switch (res) {
542         case 0:
543             if (ring >= xtensa_get_ring(env)) {
544                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
545             }
546             break;
547 
548         case INST_TLB_MULTI_HIT_CAUSE:
549         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
550             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
551             break;
552         }
553         return 0;
554     } else {
555         return (v & REGION_PAGE_MASK) | 0x1;
556     }
557 }
558 
559 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
560 {
561     uint32_t vpn;
562     uint32_t wi;
563     uint32_t ei;
564     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
565         xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
566     }
567 }
568 
569 /*!
570  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
571  * See ISA, 4.6.5.10
572  */
573 static unsigned mmu_attr_to_access(uint32_t attr)
574 {
575     unsigned access = 0;
576 
577     if (attr < 12) {
578         access |= PAGE_READ;
579         if (attr & 0x1) {
580             access |= PAGE_EXEC;
581         }
582         if (attr & 0x2) {
583             access |= PAGE_WRITE;
584         }
585 
586         switch (attr & 0xc) {
587         case 0:
588             access |= PAGE_CACHE_BYPASS;
589             break;
590 
591         case 4:
592             access |= PAGE_CACHE_WB;
593             break;
594 
595         case 8:
596             access |= PAGE_CACHE_WT;
597             break;
598         }
599     } else if (attr == 13) {
600         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
601     }
602     return access;
603 }
604 
605 /*!
606  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
607  * See ISA, 4.6.3.3
608  */
609 static unsigned region_attr_to_access(uint32_t attr)
610 {
611     static const unsigned access[16] = {
612          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
613          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
614          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
615          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
616          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
617          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
618         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
619     };
620 
621     return access[attr & 0xf];
622 }
623 
624 /*!
625  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
626  * See ISA, A.2.14 The Cache Attribute Register
627  */
628 static unsigned cacheattr_attr_to_access(uint32_t attr)
629 {
630     static const unsigned access[16] = {
631          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
632          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
633          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
634          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
635          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
636         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
637     };
638 
639     return access[attr & 0xf];
640 }
641 
642 struct attr_pattern {
643     uint32_t mask;
644     uint32_t value;
645 };
646 
647 static int attr_pattern_match(uint32_t attr,
648                               const struct attr_pattern *pattern,
649                               size_t n)
650 {
651     size_t i;
652 
653     for (i = 0; i < n; ++i) {
654         if ((attr & pattern[i].mask) == pattern[i].value) {
655             return 1;
656         }
657     }
658     return 0;
659 }
660 
661 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
662 {
663     static const struct attr_pattern cpu_c[] = {
664         { .mask = 0x18f, .value = 0x089 },
665         { .mask = 0x188, .value = 0x080 },
666         { .mask = 0x180, .value = 0x180 },
667     };
668 
669     unsigned type = 0;
670 
671     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
672         type |= XTENSA_MPU_TYPE_CPU_CACHE;
673         if (attr & 0x10) {
674             type |= XTENSA_MPU_TYPE_CPU_C;
675         }
676         if (attr & 0x20) {
677             type |= XTENSA_MPU_TYPE_CPU_W;
678         }
679         if (attr & 0x40) {
680             type |= XTENSA_MPU_TYPE_CPU_R;
681         }
682     }
683     return type;
684 }
685 
686 static unsigned mpu_attr_to_type(uint32_t attr)
687 {
688     static const struct attr_pattern device_type[] = {
689         { .mask = 0x1f6, .value = 0x000 },
690         { .mask = 0x1f6, .value = 0x006 },
691     };
692     static const struct attr_pattern sys_nc_type[] = {
693         { .mask = 0x1fe, .value = 0x018 },
694         { .mask = 0x1fe, .value = 0x01e },
695         { .mask = 0x18f, .value = 0x089 },
696     };
697     static const struct attr_pattern sys_c_type[] = {
698         { .mask = 0x1f8, .value = 0x010 },
699         { .mask = 0x188, .value = 0x080 },
700         { .mask = 0x1f0, .value = 0x030 },
701         { .mask = 0x180, .value = 0x180 },
702     };
703     static const struct attr_pattern b[] = {
704         { .mask = 0x1f7, .value = 0x001 },
705         { .mask = 0x1f7, .value = 0x007 },
706         { .mask = 0x1ff, .value = 0x019 },
707         { .mask = 0x1ff, .value = 0x01f },
708     };
709 
710     unsigned type = 0;
711 
712     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
713     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
714         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
715         if (attr & 0x80) {
716             type |= XTENSA_MPU_TYPE_INT;
717         }
718     }
719     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
720         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
721     }
722     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
723         type |= XTENSA_MPU_SYSTEM_TYPE_C;
724         if (attr & 0x1) {
725             type |= XTENSA_MPU_TYPE_SYS_C;
726         }
727         if (attr & 0x2) {
728             type |= XTENSA_MPU_TYPE_SYS_W;
729         }
730         if (attr & 0x4) {
731             type |= XTENSA_MPU_TYPE_SYS_R;
732         }
733     }
734     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
735         type |= XTENSA_MPU_TYPE_B;
736     }
737     type |= mpu_attr_to_cpu_cache(attr);
738 
739     return type;
740 }
741 
742 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
743 {
744     static const unsigned access[2][16] = {
745         [0] = {
746              [4] = PAGE_READ,
747              [5] = PAGE_READ              | PAGE_EXEC,
748              [6] = PAGE_READ | PAGE_WRITE,
749              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
750              [8] =             PAGE_WRITE,
751              [9] = PAGE_READ | PAGE_WRITE,
752             [10] = PAGE_READ | PAGE_WRITE,
753             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
754             [12] = PAGE_READ,
755             [13] = PAGE_READ              | PAGE_EXEC,
756             [14] = PAGE_READ | PAGE_WRITE,
757             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
758         },
759         [1] = {
760              [8] =             PAGE_WRITE,
761              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
762             [10] = PAGE_READ,
763             [11] = PAGE_READ              | PAGE_EXEC,
764             [12] = PAGE_READ,
765             [13] = PAGE_READ              | PAGE_EXEC,
766             [14] = PAGE_READ | PAGE_WRITE,
767             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
768         },
769     };
770     unsigned rv;
771     unsigned type;
772 
773     type = mpu_attr_to_cpu_cache(attr);
774     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
775         XTENSA_MPU_ACC_RIGHTS_SHIFT];
776 
777     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
778         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
779     } else {
780         rv |= PAGE_CACHE_BYPASS;
781     }
782     return rv;
783 }
784 
785 static bool is_access_granted(unsigned access, int is_write)
786 {
787     switch (is_write) {
788     case 0:
789         return access & PAGE_READ;
790 
791     case 1:
792         return access & PAGE_WRITE;
793 
794     case 2:
795         return access & PAGE_EXEC;
796 
797     default:
798         return 0;
799     }
800 }
801 
802 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
803 
804 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
805                                  uint32_t vaddr, int is_write, int mmu_idx,
806                                  uint32_t *paddr, uint32_t *page_size,
807                                  unsigned *access, bool may_lookup_pt)
808 {
809     bool dtlb = is_write != 2;
810     uint32_t wi;
811     uint32_t ei;
812     uint8_t ring;
813     uint32_t vpn;
814     uint32_t pte;
815     const xtensa_tlb_entry *entry = NULL;
816     xtensa_tlb_entry tmp_entry;
817     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
818 
819     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
820         may_lookup_pt && get_pte(env, vaddr, &pte)) {
821         ring = (pte >> 4) & 0x3;
822         wi = 0;
823         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
824 
825         if (update_tlb) {
826             wi = ++env->autorefill_idx & 0x3;
827             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
828             env->sregs[EXCVADDR] = vaddr;
829             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
830                           __func__, vaddr, vpn, pte);
831         } else {
832             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
833             entry = &tmp_entry;
834         }
835         ret = 0;
836     }
837     if (ret != 0) {
838         return ret;
839     }
840 
841     if (entry == NULL) {
842         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
843     }
844 
845     if (ring < mmu_idx) {
846         return dtlb ?
847             LOAD_STORE_PRIVILEGE_CAUSE :
848             INST_FETCH_PRIVILEGE_CAUSE;
849     }
850 
851     *access = mmu_attr_to_access(entry->attr) &
852         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
853     if (!is_access_granted(*access, is_write)) {
854         return dtlb ?
855             (is_write ?
856              STORE_PROHIBITED_CAUSE :
857              LOAD_PROHIBITED_CAUSE) :
858             INST_FETCH_PROHIBITED_CAUSE;
859     }
860 
861     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
862     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
863 
864     return 0;
865 }
866 
867 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
868 {
869     CPUState *cs = env_cpu(env);
870     uint32_t paddr;
871     uint32_t page_size;
872     unsigned access;
873     uint32_t pt_vaddr =
874         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
875     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
876                                     &paddr, &page_size, &access, false);
877 
878     if (ret == 0) {
879         qemu_log_mask(CPU_LOG_MMU,
880                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
881                       __func__, vaddr, pt_vaddr, paddr);
882     } else {
883         qemu_log_mask(CPU_LOG_MMU,
884                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
885                       __func__, vaddr, pt_vaddr, ret);
886     }
887 
888     if (ret == 0) {
889         MemTxResult result;
890 
891         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
892                                  &result);
893         if (result != MEMTX_OK) {
894             qemu_log_mask(CPU_LOG_MMU,
895                           "%s: couldn't load PTE: transaction failed (%u)\n",
896                           __func__, (unsigned)result);
897             ret = 1;
898         }
899     }
900     return ret == 0;
901 }
902 
903 static int get_physical_addr_region(CPUXtensaState *env,
904                                     uint32_t vaddr, int is_write, int mmu_idx,
905                                     uint32_t *paddr, uint32_t *page_size,
906                                     unsigned *access)
907 {
908     bool dtlb = is_write != 2;
909     uint32_t wi = 0;
910     uint32_t ei = (vaddr >> 29) & 0x7;
911     const xtensa_tlb_entry *entry =
912         xtensa_tlb_get_entry(env, dtlb, wi, ei);
913 
914     *access = region_attr_to_access(entry->attr);
915     if (!is_access_granted(*access, is_write)) {
916         return dtlb ?
917             (is_write ?
918              STORE_PROHIBITED_CAUSE :
919              LOAD_PROHIBITED_CAUSE) :
920             INST_FETCH_PROHIBITED_CAUSE;
921     }
922 
923     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
924     *page_size = ~REGION_PAGE_MASK + 1;
925 
926     return 0;
927 }
928 
929 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
930                              uint32_t vaddr, unsigned *segment)
931 {
932     unsigned nhits = 0;
933     unsigned i;
934 
935     for (i = 0; i < n; ++i) {
936         if (vaddr >= entry[i].vaddr &&
937             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
938             if (nhits++) {
939                 break;
940             }
941             *segment = i;
942         }
943     }
944     return nhits;
945 }
946 
947 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
948 {
949     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
950 
951     if (v != env->sregs[MPUENB]) {
952         env->sregs[MPUENB] = v;
953         tlb_flush(env_cpu(env));
954     }
955 }
956 
957 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
958 {
959     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
960 
961     if (segment < env->config->n_mpu_fg_segments) {
962         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
963         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
964         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
965         tlb_flush(env_cpu(env));
966     }
967 }
968 
969 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
970 {
971     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
972 
973     if (segment < env->config->n_mpu_fg_segments) {
974         return env->mpu_fg[segment].vaddr |
975             extract32(env->sregs[MPUENB], segment, 1);
976     } else {
977         return 0;
978     }
979 }
980 
981 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
982 {
983     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
984 
985     if (segment < env->config->n_mpu_fg_segments) {
986         return env->mpu_fg[segment].attr;
987     } else {
988         return 0;
989     }
990 }
991 
992 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
993 {
994     unsigned nhits;
995     unsigned segment;
996     unsigned bg_segment;
997 
998     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
999                               v, &segment);
1000     if (nhits > 1) {
1001         HELPER(exception_cause_vaddr)(env, env->pc,
1002                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
1003     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1004         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
1005     } else {
1006         xtensa_mpu_lookup(env->config->mpu_bg,
1007                           env->config->n_mpu_bg_segments,
1008                           v, &bg_segment);
1009         return env->config->mpu_bg[bg_segment].attr | XTENSA_MPU_PROBE_B;
1010     }
1011 }
1012 
1013 static int get_physical_addr_mpu(CPUXtensaState *env,
1014                                  uint32_t vaddr, int is_write, int mmu_idx,
1015                                  uint32_t *paddr, uint32_t *page_size,
1016                                  unsigned *access)
1017 {
1018     unsigned nhits;
1019     unsigned segment;
1020     uint32_t attr;
1021 
1022     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1023                               vaddr, &segment);
1024     if (nhits > 1) {
1025         return is_write < 2 ?
1026             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1027             INST_TLB_MULTI_HIT_CAUSE;
1028     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1029         attr = env->mpu_fg[segment].attr;
1030     } else {
1031         xtensa_mpu_lookup(env->config->mpu_bg,
1032                           env->config->n_mpu_bg_segments,
1033                           vaddr, &segment);
1034         attr = env->config->mpu_bg[segment].attr;
1035     }
1036 
1037     *access = mpu_attr_to_access(attr, mmu_idx);
1038     if (!is_access_granted(*access, is_write)) {
1039         return is_write < 2 ?
1040             (is_write ?
1041              STORE_PROHIBITED_CAUSE :
1042              LOAD_PROHIBITED_CAUSE) :
1043             INST_FETCH_PROHIBITED_CAUSE;
1044     }
1045     *paddr = vaddr;
1046     *page_size = env->config->mpu_align;
1047     return 0;
1048 }
1049 
1050 /*!
1051  * Convert virtual address to physical addr.
1052  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1053  *
1054  * \return 0 if ok, exception cause code otherwise
1055  */
1056 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1057                              uint32_t vaddr, int is_write, int mmu_idx,
1058                              uint32_t *paddr, uint32_t *page_size,
1059                              unsigned *access)
1060 {
1061     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1062         return get_physical_addr_mmu(env, update_tlb,
1063                                      vaddr, is_write, mmu_idx, paddr,
1064                                      page_size, access, true);
1065     } else if (xtensa_option_bits_enabled(env->config,
1066                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1067                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1068         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1069                                         paddr, page_size, access);
1070     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1071         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1072                                      paddr, page_size, access);
1073     } else {
1074         *paddr = vaddr;
1075         *page_size = TARGET_PAGE_SIZE;
1076         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1077                                            ((vaddr & 0xe0000000) >> 27));
1078         return 0;
1079     }
1080 }
1081 
1082 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1083 {
1084     unsigned wi, ei;
1085     const xtensa_tlb *conf =
1086         dtlb ? &env->config->dtlb : &env->config->itlb;
1087     unsigned (*attr_to_access)(uint32_t) =
1088         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1089         mmu_attr_to_access : region_attr_to_access;
1090 
1091     for (wi = 0; wi < conf->nways; ++wi) {
1092         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1093         const char *sz_text;
1094         bool print_header = true;
1095 
1096         if (sz >= 0x100000) {
1097             sz /= MiB;
1098             sz_text = "MB";
1099         } else {
1100             sz /= KiB;
1101             sz_text = "KB";
1102         }
1103 
1104         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1105             const xtensa_tlb_entry *entry =
1106                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1107 
1108             if (entry->asid) {
1109                 static const char * const cache_text[8] = {
1110                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1111                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1112                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1113                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1114                 };
1115                 unsigned access = attr_to_access(entry->attr);
1116                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1117                     PAGE_CACHE_SHIFT;
1118 
1119                 if (print_header) {
1120                     print_header = false;
1121                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1122                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1123                                 "\t----------  ----------  ----  ---- --- -------\n");
1124                 }
1125                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1126                             entry->vaddr,
1127                             entry->paddr,
1128                             entry->asid,
1129                             entry->attr,
1130                             (access & PAGE_READ) ? 'R' : '-',
1131                             (access & PAGE_WRITE) ? 'W' : '-',
1132                             (access & PAGE_EXEC) ? 'X' : '-',
1133                             cache_text[cache_idx] ?
1134                             cache_text[cache_idx] : "Invalid");
1135             }
1136         }
1137     }
1138 }
1139 
1140 static void dump_mpu(CPUXtensaState *env,
1141                      const xtensa_mpu_entry *entry, unsigned n)
1142 {
1143     unsigned i;
1144 
1145     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1146                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1147                 env ? "En" : "  ",
1148                 env ? "--" : "  ");
1149 
1150     for (i = 0; i < n; ++i) {
1151         uint32_t attr = entry[i].attr;
1152         unsigned access0 = mpu_attr_to_access(attr, 0);
1153         unsigned access1 = mpu_attr_to_access(attr, 1);
1154         unsigned type = mpu_attr_to_type(attr);
1155         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1156 
1157         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1158                     env ?
1159                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1160                     entry[i].vaddr, attr,
1161                     (access0 & PAGE_READ) ? 'R' : '-',
1162                     (access0 & PAGE_WRITE) ? 'W' : '-',
1163                     (access0 & PAGE_EXEC) ? 'X' : '-',
1164                     (access1 & PAGE_READ) ? 'R' : '-',
1165                     (access1 & PAGE_WRITE) ? 'W' : '-',
1166                     (access1 & PAGE_EXEC) ? 'X' : '-');
1167 
1168         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1169         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1170             qemu_printf("Device %cB %3s\n",
1171                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1172                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1173             break;
1174         case XTENSA_MPU_SYSTEM_TYPE_NC:
1175             qemu_printf("Sys NC %cB      %c%c%c\n",
1176                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1177                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1178                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1179                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1180             break;
1181         case XTENSA_MPU_SYSTEM_TYPE_C:
1182             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1183                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1184                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1185                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1186                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1187                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1188                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1189             break;
1190         default:
1191             qemu_printf("Unknown\n");
1192             break;
1193         }
1194     }
1195 }
1196 
1197 void dump_mmu(CPUXtensaState *env)
1198 {
1199     if (xtensa_option_bits_enabled(env->config,
1200                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1201                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1202                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1203 
1204         qemu_printf("ITLB:\n");
1205         dump_tlb(env, false);
1206         qemu_printf("\nDTLB:\n");
1207         dump_tlb(env, true);
1208     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1209         qemu_printf("Foreground map:\n");
1210         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1211         qemu_printf("\nBackground map:\n");
1212         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1213     } else {
1214         qemu_printf("No TLB for this CPU core\n");
1215     }
1216 }
1217