xref: /qemu/target/xtensa/mmu_helper.c (revision b103cc6e74ac92f070a0e004bd84334e845c20b5)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "qemu/qemu-print.h"
31 #include "qemu/units.h"
32 #include "cpu.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/host-utils.h"
35 #include "exec/cputlb.h"
36 #include "accel/tcg/cpu-mmu-index.h"
37 #include "exec/exec-all.h"
38 #include "exec/page-protection.h"
39 
40 #define XTENSA_MPU_SEGMENT_MASK 0x0000001f
41 #define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
42 #define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
43 #define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
44 #define XTENSA_MPU_MEM_TYPE_SHIFT 12
45 #define XTENSA_MPU_ATTR_MASK 0x001fff00
46 
47 #define XTENSA_MPU_PROBE_B 0x40000000
48 #define XTENSA_MPU_PROBE_V 0x80000000
49 
50 #define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
51 #define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
52 #define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
53 #define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
54 
55 #define XTENSA_MPU_TYPE_SYS_C     0x0010
56 #define XTENSA_MPU_TYPE_SYS_W     0x0020
57 #define XTENSA_MPU_TYPE_SYS_R     0x0040
58 #define XTENSA_MPU_TYPE_CPU_C     0x0100
59 #define XTENSA_MPU_TYPE_CPU_W     0x0200
60 #define XTENSA_MPU_TYPE_CPU_R     0x0400
61 #define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
62 #define XTENSA_MPU_TYPE_B         0x1000
63 #define XTENSA_MPU_TYPE_INT       0x2000
64 
65 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
66 {
67     /*
68      * Probe the memory; we don't care about the result but
69      * only the side-effects (ie any MMU or other exception)
70      */
71     probe_access(env, vaddr, 1, MMU_INST_FETCH,
72                  cpu_mmu_index(env_cpu(env), true), GETPC());
73 }
74 
75 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
76 {
77     v = (v & 0xffffff00) | 0x1;
78     if (v != env->sregs[RASID]) {
79         env->sregs[RASID] = v;
80         tlb_flush(env_cpu(env));
81     }
82 }
83 
84 static uint32_t get_page_size(const CPUXtensaState *env,
85                               bool dtlb, uint32_t way)
86 {
87     uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
88 
89     switch (way) {
90     case 4:
91         return (tlbcfg >> 16) & 0x3;
92 
93     case 5:
94         return (tlbcfg >> 20) & 0x1;
95 
96     case 6:
97         return (tlbcfg >> 24) & 0x1;
98 
99     default:
100         return 0;
101     }
102 }
103 
104 /*!
105  * Get bit mask for the virtual address bits translated by the TLB way
106  */
107 static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
108                                          bool dtlb, uint32_t way)
109 {
110     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
111         bool varway56 = dtlb ?
112             env->config->dtlb.varway56 :
113             env->config->itlb.varway56;
114 
115         switch (way) {
116         case 4:
117             return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
118 
119         case 5:
120             if (varway56) {
121                 return 0xf8000000 << get_page_size(env, dtlb, way);
122             } else {
123                 return 0xf8000000;
124             }
125 
126         case 6:
127             if (varway56) {
128                 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
129             } else {
130                 return 0xf0000000;
131             }
132 
133         default:
134             return 0xfffff000;
135         }
136     } else {
137         return REGION_PAGE_MASK;
138     }
139 }
140 
141 /*!
142  * Get bit mask for the 'VPN without index' field.
143  * See ISA, 4.6.5.6, data format for RxTLB0
144  */
145 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
146 {
147     if (way < 4) {
148         bool is32 = (dtlb ?
149                 env->config->dtlb.nrefillentries :
150                 env->config->itlb.nrefillentries) == 32;
151         return is32 ? 0xffff8000 : 0xffffc000;
152     } else if (way == 4) {
153         return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
154     } else if (way <= 6) {
155         uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
156         bool varway56 = dtlb ?
157             env->config->dtlb.varway56 :
158             env->config->itlb.varway56;
159 
160         if (varway56) {
161             return mask << (way == 5 ? 2 : 3);
162         } else {
163             return mask << 1;
164         }
165     } else {
166         return 0xfffff000;
167     }
168 }
169 
170 /*!
171  * Split virtual address into VPN (with index) and entry index
172  * for the given TLB way
173  */
174 static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
175                                      bool dtlb, uint32_t *vpn,
176                                      uint32_t wi, uint32_t *ei)
177 {
178     bool varway56 = dtlb ?
179         env->config->dtlb.varway56 :
180         env->config->itlb.varway56;
181 
182     if (!dtlb) {
183         wi &= 7;
184     }
185 
186     if (wi < 4) {
187         bool is32 = (dtlb ?
188                 env->config->dtlb.nrefillentries :
189                 env->config->itlb.nrefillentries) == 32;
190         *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
191     } else {
192         switch (wi) {
193         case 4:
194             {
195                 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
196                 *ei = (v >> eibase) & 0x3;
197             }
198             break;
199 
200         case 5:
201             if (varway56) {
202                 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
203                 *ei = (v >> eibase) & 0x3;
204             } else {
205                 *ei = (v >> 27) & 0x1;
206             }
207             break;
208 
209         case 6:
210             if (varway56) {
211                 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
212                 *ei = (v >> eibase) & 0x7;
213             } else {
214                 *ei = (v >> 28) & 0x1;
215             }
216             break;
217 
218         default:
219             *ei = 0;
220             break;
221         }
222     }
223     *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
224 }
225 
226 /*!
227  * Split TLB address into TLB way, entry index and VPN (with index).
228  * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
229  */
230 static bool split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
231                                  uint32_t *vpn, uint32_t *wi, uint32_t *ei)
232 {
233     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
234         *wi = v & (dtlb ? 0xf : 0x7);
235         if (*wi < (dtlb ? env->config->dtlb.nways : env->config->itlb.nways)) {
236             split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
237             return true;
238         } else {
239             return false;
240         }
241     } else {
242         *vpn = v & REGION_PAGE_MASK;
243         *wi = 0;
244         *ei = (v >> 29) & 0x7;
245         return true;
246     }
247 }
248 
249 static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
250                                               unsigned wi, unsigned ei)
251 {
252     const xtensa_tlb *tlb = dtlb ? &env->config->dtlb : &env->config->itlb;
253 
254     assert(wi < tlb->nways && ei < tlb->way_size[wi]);
255     return dtlb ?
256         env->dtlb[wi] + ei :
257         env->itlb[wi] + ei;
258 }
259 
260 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
261         uint32_t v, bool dtlb, uint32_t *pwi)
262 {
263     uint32_t vpn;
264     uint32_t wi;
265     uint32_t ei;
266 
267     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
268         if (pwi) {
269             *pwi = wi;
270         }
271         return xtensa_tlb_get_entry(env, dtlb, wi, ei);
272     } else {
273         return NULL;
274     }
275 }
276 
277 static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
278                                      xtensa_tlb_entry *entry, bool dtlb,
279                                      unsigned wi, unsigned ei, uint32_t vpn,
280                                      uint32_t pte)
281 {
282     entry->vaddr = vpn;
283     entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
284     entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
285     entry->attr = pte & 0xf;
286 }
287 
288 static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
289                                  unsigned wi, unsigned ei,
290                                  uint32_t vpn, uint32_t pte)
291 {
292     CPUState *cs = env_cpu(env);
293     xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
294 
295     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
296         if (entry->variable) {
297             if (entry->asid) {
298                 tlb_flush_page(cs, entry->vaddr);
299             }
300             xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
301             tlb_flush_page(cs, entry->vaddr);
302         } else {
303             qemu_log_mask(LOG_GUEST_ERROR,
304                           "%s %d, %d, %d trying to set immutable entry\n",
305                           __func__, dtlb, wi, ei);
306         }
307     } else {
308         tlb_flush_page(cs, entry->vaddr);
309         if (xtensa_option_enabled(env->config,
310                     XTENSA_OPTION_REGION_TRANSLATION)) {
311             entry->paddr = pte & REGION_PAGE_MASK;
312         }
313         entry->attr = pte & 0xf;
314     }
315 }
316 
317 hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
318 {
319     XtensaCPU *cpu = XTENSA_CPU(cs);
320     uint32_t paddr;
321     uint32_t page_size;
322     unsigned access;
323 
324     if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
325                 &paddr, &page_size, &access) == 0) {
326         return paddr;
327     }
328     if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
329                 &paddr, &page_size, &access) == 0) {
330         return paddr;
331     }
332     return ~0;
333 }
334 
335 static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
336                                    const xtensa_tlb *tlb,
337                                    xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
338 {
339     unsigned wi, ei;
340 
341     for (wi = 0; wi < tlb->nways; ++wi) {
342         for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
343             entry[wi][ei].asid = 0;
344             entry[wi][ei].variable = true;
345         }
346     }
347 }
348 
349 static void reset_tlb_mmu_ways56(CPUXtensaState *env,
350                                  const xtensa_tlb *tlb,
351                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
352 {
353     if (!tlb->varway56) {
354         static const xtensa_tlb_entry way5[] = {
355             {
356                 .vaddr = 0xd0000000,
357                 .paddr = 0,
358                 .asid = 1,
359                 .attr = 7,
360                 .variable = false,
361             }, {
362                 .vaddr = 0xd8000000,
363                 .paddr = 0,
364                 .asid = 1,
365                 .attr = 3,
366                 .variable = false,
367             }
368         };
369         static const xtensa_tlb_entry way6[] = {
370             {
371                 .vaddr = 0xe0000000,
372                 .paddr = 0xf0000000,
373                 .asid = 1,
374                 .attr = 7,
375                 .variable = false,
376             }, {
377                 .vaddr = 0xf0000000,
378                 .paddr = 0xf0000000,
379                 .asid = 1,
380                 .attr = 3,
381                 .variable = false,
382             }
383         };
384         memcpy(entry[5], way5, sizeof(way5));
385         memcpy(entry[6], way6, sizeof(way6));
386     } else {
387         uint32_t ei;
388         for (ei = 0; ei < 8; ++ei) {
389             entry[6][ei].vaddr = ei << 29;
390             entry[6][ei].paddr = ei << 29;
391             entry[6][ei].asid = 1;
392             entry[6][ei].attr = 3;
393         }
394     }
395 }
396 
397 static void reset_tlb_region_way0(CPUXtensaState *env,
398                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
399 {
400     unsigned ei;
401 
402     for (ei = 0; ei < 8; ++ei) {
403         entry[0][ei].vaddr = ei << 29;
404         entry[0][ei].paddr = ei << 29;
405         entry[0][ei].asid = 1;
406         entry[0][ei].attr = 2;
407         entry[0][ei].variable = true;
408     }
409 }
410 
411 void reset_mmu(CPUXtensaState *env)
412 {
413     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
414         env->sregs[RASID] = 0x04030201;
415         env->sregs[ITLBCFG] = 0;
416         env->sregs[DTLBCFG] = 0;
417         env->autorefill_idx = 0;
418         reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
419         reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
420         reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
421         reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
422     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
423         unsigned i;
424 
425         env->sregs[MPUENB] = 0;
426         env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
427         env->sregs[CACHEADRDIS] = 0;
428         assert(env->config->n_mpu_bg_segments > 0 &&
429                env->config->mpu_bg[0].vaddr == 0);
430         for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
431             assert(env->config->mpu_bg[i].vaddr >=
432                    env->config->mpu_bg[i - 1].vaddr);
433         }
434     } else {
435         env->sregs[CACHEATTR] = 0x22222222;
436         reset_tlb_region_way0(env, env->itlb);
437         reset_tlb_region_way0(env, env->dtlb);
438     }
439 }
440 
441 static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
442 {
443     unsigned i;
444     for (i = 0; i < 4; ++i) {
445         if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
446             return i;
447         }
448     }
449     return 0xff;
450 }
451 
452 /*!
453  * Lookup xtensa TLB for the given virtual address.
454  * See ISA, 4.6.2.2
455  *
456  * \param pwi: [out] way index
457  * \param pei: [out] entry index
458  * \param pring: [out] access ring
459  * \return 0 if ok, exception cause code otherwise
460  */
461 static int xtensa_tlb_lookup(const CPUXtensaState *env,
462                              uint32_t addr, bool dtlb,
463                              uint32_t *pwi, uint32_t *pei, uint8_t *pring)
464 {
465     const xtensa_tlb *tlb = dtlb ?
466         &env->config->dtlb : &env->config->itlb;
467     const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
468         env->dtlb : env->itlb;
469 
470     int nhits = 0;
471     unsigned wi;
472 
473     for (wi = 0; wi < tlb->nways; ++wi) {
474         uint32_t vpn;
475         uint32_t ei;
476         split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
477         if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
478             unsigned ring = get_ring(env, entry[wi][ei].asid);
479             if (ring < 4) {
480                 if (++nhits > 1) {
481                     return dtlb ?
482                         LOAD_STORE_TLB_MULTI_HIT_CAUSE :
483                         INST_TLB_MULTI_HIT_CAUSE;
484                 }
485                 *pwi = wi;
486                 *pei = ei;
487                 *pring = ring;
488             }
489         }
490     }
491     return nhits ? 0 :
492         (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
493 }
494 
495 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
496 {
497     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
498         uint32_t wi;
499         const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
500 
501         if (entry) {
502             return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
503         } else {
504             return 0;
505         }
506     } else {
507         return v & REGION_PAGE_MASK;
508     }
509 }
510 
511 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
512 {
513     const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
514 
515     if (entry) {
516         return entry->paddr | entry->attr;
517     } else {
518         return 0;
519     }
520 }
521 
522 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
523 {
524     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
525         uint32_t wi;
526         xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
527         if (entry && entry->variable && entry->asid) {
528             tlb_flush_page(env_cpu(env), entry->vaddr);
529             entry->asid = 0;
530         }
531     }
532 }
533 
534 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
535 {
536     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
537         uint32_t wi;
538         uint32_t ei;
539         uint8_t ring;
540         int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
541 
542         switch (res) {
543         case 0:
544             if (ring >= xtensa_get_ring(env)) {
545                 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
546             }
547             break;
548 
549         case INST_TLB_MULTI_HIT_CAUSE:
550         case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
551             HELPER(exception_cause_vaddr)(env, env->pc, res, v);
552             break;
553         }
554         return 0;
555     } else {
556         return (v & REGION_PAGE_MASK) | 0x1;
557     }
558 }
559 
560 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
561 {
562     uint32_t vpn;
563     uint32_t wi;
564     uint32_t ei;
565     if (split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei)) {
566         xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
567     }
568 }
569 
570 /*!
571  * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
572  * See ISA, 4.6.5.10
573  */
574 static unsigned mmu_attr_to_access(uint32_t attr)
575 {
576     unsigned access = 0;
577 
578     if (attr < 12) {
579         access |= PAGE_READ;
580         if (attr & 0x1) {
581             access |= PAGE_EXEC;
582         }
583         if (attr & 0x2) {
584             access |= PAGE_WRITE;
585         }
586 
587         switch (attr & 0xc) {
588         case 0:
589             access |= PAGE_CACHE_BYPASS;
590             break;
591 
592         case 4:
593             access |= PAGE_CACHE_WB;
594             break;
595 
596         case 8:
597             access |= PAGE_CACHE_WT;
598             break;
599         }
600     } else if (attr == 13) {
601         access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
602     }
603     return access;
604 }
605 
606 /*!
607  * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
608  * See ISA, 4.6.3.3
609  */
610 static unsigned region_attr_to_access(uint32_t attr)
611 {
612     static const unsigned access[16] = {
613          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
614          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
615          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
616          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
617          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
618          [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
619         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
620     };
621 
622     return access[attr & 0xf];
623 }
624 
625 /*!
626  * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
627  * See ISA, A.2.14 The Cache Attribute Register
628  */
629 static unsigned cacheattr_attr_to_access(uint32_t attr)
630 {
631     static const unsigned access[16] = {
632          [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
633          [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
634          [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
635          [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
636          [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
637         [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
638     };
639 
640     return access[attr & 0xf];
641 }
642 
643 struct attr_pattern {
644     uint32_t mask;
645     uint32_t value;
646 };
647 
648 static int attr_pattern_match(uint32_t attr,
649                               const struct attr_pattern *pattern,
650                               size_t n)
651 {
652     size_t i;
653 
654     for (i = 0; i < n; ++i) {
655         if ((attr & pattern[i].mask) == pattern[i].value) {
656             return 1;
657         }
658     }
659     return 0;
660 }
661 
662 static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
663 {
664     static const struct attr_pattern cpu_c[] = {
665         { .mask = 0x18f, .value = 0x089 },
666         { .mask = 0x188, .value = 0x080 },
667         { .mask = 0x180, .value = 0x180 },
668     };
669 
670     unsigned type = 0;
671 
672     if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
673         type |= XTENSA_MPU_TYPE_CPU_CACHE;
674         if (attr & 0x10) {
675             type |= XTENSA_MPU_TYPE_CPU_C;
676         }
677         if (attr & 0x20) {
678             type |= XTENSA_MPU_TYPE_CPU_W;
679         }
680         if (attr & 0x40) {
681             type |= XTENSA_MPU_TYPE_CPU_R;
682         }
683     }
684     return type;
685 }
686 
687 static unsigned mpu_attr_to_type(uint32_t attr)
688 {
689     static const struct attr_pattern device_type[] = {
690         { .mask = 0x1f6, .value = 0x000 },
691         { .mask = 0x1f6, .value = 0x006 },
692     };
693     static const struct attr_pattern sys_nc_type[] = {
694         { .mask = 0x1fe, .value = 0x018 },
695         { .mask = 0x1fe, .value = 0x01e },
696         { .mask = 0x18f, .value = 0x089 },
697     };
698     static const struct attr_pattern sys_c_type[] = {
699         { .mask = 0x1f8, .value = 0x010 },
700         { .mask = 0x188, .value = 0x080 },
701         { .mask = 0x1f0, .value = 0x030 },
702         { .mask = 0x180, .value = 0x180 },
703     };
704     static const struct attr_pattern b[] = {
705         { .mask = 0x1f7, .value = 0x001 },
706         { .mask = 0x1f7, .value = 0x007 },
707         { .mask = 0x1ff, .value = 0x019 },
708         { .mask = 0x1ff, .value = 0x01f },
709     };
710 
711     unsigned type = 0;
712 
713     attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
714     if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
715         type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
716         if (attr & 0x80) {
717             type |= XTENSA_MPU_TYPE_INT;
718         }
719     }
720     if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
721         type |= XTENSA_MPU_SYSTEM_TYPE_NC;
722     }
723     if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
724         type |= XTENSA_MPU_SYSTEM_TYPE_C;
725         if (attr & 0x1) {
726             type |= XTENSA_MPU_TYPE_SYS_C;
727         }
728         if (attr & 0x2) {
729             type |= XTENSA_MPU_TYPE_SYS_W;
730         }
731         if (attr & 0x4) {
732             type |= XTENSA_MPU_TYPE_SYS_R;
733         }
734     }
735     if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
736         type |= XTENSA_MPU_TYPE_B;
737     }
738     type |= mpu_attr_to_cpu_cache(attr);
739 
740     return type;
741 }
742 
743 static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
744 {
745     static const unsigned access[2][16] = {
746         [0] = {
747              [4] = PAGE_READ,
748              [5] = PAGE_READ              | PAGE_EXEC,
749              [6] = PAGE_READ | PAGE_WRITE,
750              [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
751              [8] =             PAGE_WRITE,
752              [9] = PAGE_READ | PAGE_WRITE,
753             [10] = PAGE_READ | PAGE_WRITE,
754             [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
755             [12] = PAGE_READ,
756             [13] = PAGE_READ              | PAGE_EXEC,
757             [14] = PAGE_READ | PAGE_WRITE,
758             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
759         },
760         [1] = {
761              [8] =             PAGE_WRITE,
762              [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
763             [10] = PAGE_READ,
764             [11] = PAGE_READ              | PAGE_EXEC,
765             [12] = PAGE_READ,
766             [13] = PAGE_READ              | PAGE_EXEC,
767             [14] = PAGE_READ | PAGE_WRITE,
768             [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
769         },
770     };
771     unsigned rv;
772     unsigned type;
773 
774     type = mpu_attr_to_cpu_cache(attr);
775     rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
776         XTENSA_MPU_ACC_RIGHTS_SHIFT];
777 
778     if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
779         rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
780     } else {
781         rv |= PAGE_CACHE_BYPASS;
782     }
783     return rv;
784 }
785 
786 static bool is_access_granted(unsigned access, int is_write)
787 {
788     switch (is_write) {
789     case 0:
790         return access & PAGE_READ;
791 
792     case 1:
793         return access & PAGE_WRITE;
794 
795     case 2:
796         return access & PAGE_EXEC;
797 
798     default:
799         return 0;
800     }
801 }
802 
803 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
804 
805 static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
806                                  uint32_t vaddr, int is_write, int mmu_idx,
807                                  uint32_t *paddr, uint32_t *page_size,
808                                  unsigned *access, bool may_lookup_pt)
809 {
810     bool dtlb = is_write != 2;
811     uint32_t wi;
812     uint32_t ei;
813     uint8_t ring;
814     uint32_t vpn;
815     uint32_t pte;
816     const xtensa_tlb_entry *entry = NULL;
817     xtensa_tlb_entry tmp_entry;
818     int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
819 
820     if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
821         may_lookup_pt && get_pte(env, vaddr, &pte)) {
822         ring = (pte >> 4) & 0x3;
823         wi = 0;
824         split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
825 
826         if (update_tlb) {
827             wi = ++env->autorefill_idx & 0x3;
828             xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
829             env->sregs[EXCVADDR] = vaddr;
830             qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
831                           __func__, vaddr, vpn, pte);
832         } else {
833             xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
834             entry = &tmp_entry;
835         }
836         ret = 0;
837     }
838     if (ret != 0) {
839         return ret;
840     }
841 
842     if (entry == NULL) {
843         entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
844     }
845 
846     if (ring < mmu_idx) {
847         return dtlb ?
848             LOAD_STORE_PRIVILEGE_CAUSE :
849             INST_FETCH_PRIVILEGE_CAUSE;
850     }
851 
852     *access = mmu_attr_to_access(entry->attr) &
853         ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
854     if (!is_access_granted(*access, is_write)) {
855         return dtlb ?
856             (is_write ?
857              STORE_PROHIBITED_CAUSE :
858              LOAD_PROHIBITED_CAUSE) :
859             INST_FETCH_PROHIBITED_CAUSE;
860     }
861 
862     *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
863     *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
864 
865     return 0;
866 }
867 
868 static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
869 {
870     CPUState *cs = env_cpu(env);
871     uint32_t paddr;
872     uint32_t page_size;
873     unsigned access;
874     uint32_t pt_vaddr =
875         (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
876     int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
877                                     &paddr, &page_size, &access, false);
878 
879     if (ret == 0) {
880         qemu_log_mask(CPU_LOG_MMU,
881                       "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
882                       __func__, vaddr, pt_vaddr, paddr);
883     } else {
884         qemu_log_mask(CPU_LOG_MMU,
885                       "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
886                       __func__, vaddr, pt_vaddr, ret);
887     }
888 
889     if (ret == 0) {
890         MemTxResult result;
891 
892         *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
893                                  &result);
894         if (result != MEMTX_OK) {
895             qemu_log_mask(CPU_LOG_MMU,
896                           "%s: couldn't load PTE: transaction failed (%u)\n",
897                           __func__, (unsigned)result);
898             ret = 1;
899         }
900     }
901     return ret == 0;
902 }
903 
904 static int get_physical_addr_region(CPUXtensaState *env,
905                                     uint32_t vaddr, int is_write, int mmu_idx,
906                                     uint32_t *paddr, uint32_t *page_size,
907                                     unsigned *access)
908 {
909     bool dtlb = is_write != 2;
910     uint32_t wi = 0;
911     uint32_t ei = (vaddr >> 29) & 0x7;
912     const xtensa_tlb_entry *entry =
913         xtensa_tlb_get_entry(env, dtlb, wi, ei);
914 
915     *access = region_attr_to_access(entry->attr);
916     if (!is_access_granted(*access, is_write)) {
917         return dtlb ?
918             (is_write ?
919              STORE_PROHIBITED_CAUSE :
920              LOAD_PROHIBITED_CAUSE) :
921             INST_FETCH_PROHIBITED_CAUSE;
922     }
923 
924     *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
925     *page_size = ~REGION_PAGE_MASK + 1;
926 
927     return 0;
928 }
929 
930 static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
931                              uint32_t vaddr, unsigned *segment)
932 {
933     unsigned nhits = 0;
934     unsigned i;
935 
936     for (i = 0; i < n; ++i) {
937         if (vaddr >= entry[i].vaddr &&
938             (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
939             if (nhits++) {
940                 break;
941             }
942             *segment = i;
943         }
944     }
945     return nhits;
946 }
947 
948 void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
949 {
950     v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
951 
952     if (v != env->sregs[MPUENB]) {
953         env->sregs[MPUENB] = v;
954         tlb_flush(env_cpu(env));
955     }
956 }
957 
958 void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
959 {
960     unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
961 
962     if (segment < env->config->n_mpu_fg_segments) {
963         env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
964         env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
965         env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
966         tlb_flush(env_cpu(env));
967     }
968 }
969 
970 uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
971 {
972     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
973 
974     if (segment < env->config->n_mpu_fg_segments) {
975         return env->mpu_fg[segment].vaddr |
976             extract32(env->sregs[MPUENB], segment, 1);
977     } else {
978         return 0;
979     }
980 }
981 
982 uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
983 {
984     unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
985 
986     if (segment < env->config->n_mpu_fg_segments) {
987         return env->mpu_fg[segment].attr;
988     } else {
989         return 0;
990     }
991 }
992 
993 uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
994 {
995     unsigned nhits;
996     unsigned segment;
997     unsigned bg_segment;
998 
999     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1000                               v, &segment);
1001     if (nhits > 1) {
1002         HELPER(exception_cause_vaddr)(env, env->pc,
1003                                       LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
1004     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1005         return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
1006     } else {
1007         xtensa_mpu_lookup(env->config->mpu_bg,
1008                           env->config->n_mpu_bg_segments,
1009                           v, &bg_segment);
1010         return env->config->mpu_bg[bg_segment].attr | XTENSA_MPU_PROBE_B;
1011     }
1012 }
1013 
1014 static int get_physical_addr_mpu(CPUXtensaState *env,
1015                                  uint32_t vaddr, int is_write, int mmu_idx,
1016                                  uint32_t *paddr, uint32_t *page_size,
1017                                  unsigned *access)
1018 {
1019     unsigned nhits;
1020     unsigned segment;
1021     uint32_t attr;
1022 
1023     nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
1024                               vaddr, &segment);
1025     if (nhits > 1) {
1026         return is_write < 2 ?
1027             LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1028             INST_TLB_MULTI_HIT_CAUSE;
1029     } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1030         attr = env->mpu_fg[segment].attr;
1031     } else {
1032         xtensa_mpu_lookup(env->config->mpu_bg,
1033                           env->config->n_mpu_bg_segments,
1034                           vaddr, &segment);
1035         attr = env->config->mpu_bg[segment].attr;
1036     }
1037 
1038     *access = mpu_attr_to_access(attr, mmu_idx);
1039     if (!is_access_granted(*access, is_write)) {
1040         return is_write < 2 ?
1041             (is_write ?
1042              STORE_PROHIBITED_CAUSE :
1043              LOAD_PROHIBITED_CAUSE) :
1044             INST_FETCH_PROHIBITED_CAUSE;
1045     }
1046     *paddr = vaddr;
1047     *page_size = env->config->mpu_align;
1048     return 0;
1049 }
1050 
1051 /*!
1052  * Convert virtual address to physical addr.
1053  * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1054  *
1055  * \return 0 if ok, exception cause code otherwise
1056  */
1057 int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1058                              uint32_t vaddr, int is_write, int mmu_idx,
1059                              uint32_t *paddr, uint32_t *page_size,
1060                              unsigned *access)
1061 {
1062     if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1063         return get_physical_addr_mmu(env, update_tlb,
1064                                      vaddr, is_write, mmu_idx, paddr,
1065                                      page_size, access, true);
1066     } else if (xtensa_option_bits_enabled(env->config,
1067                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1068                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1069         return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1070                                         paddr, page_size, access);
1071     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1072         return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1073                                      paddr, page_size, access);
1074     } else {
1075         *paddr = vaddr;
1076         *page_size = TARGET_PAGE_SIZE;
1077         *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1078                                            ((vaddr & 0xe0000000) >> 27));
1079         return 0;
1080     }
1081 }
1082 
1083 static void dump_tlb(CPUXtensaState *env, bool dtlb)
1084 {
1085     unsigned wi, ei;
1086     const xtensa_tlb *conf =
1087         dtlb ? &env->config->dtlb : &env->config->itlb;
1088     unsigned (*attr_to_access)(uint32_t) =
1089         xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1090         mmu_attr_to_access : region_attr_to_access;
1091 
1092     for (wi = 0; wi < conf->nways; ++wi) {
1093         uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1094         const char *sz_text;
1095         bool print_header = true;
1096 
1097         if (sz >= 0x100000) {
1098             sz /= MiB;
1099             sz_text = "MB";
1100         } else {
1101             sz /= KiB;
1102             sz_text = "KB";
1103         }
1104 
1105         for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1106             const xtensa_tlb_entry *entry =
1107                 xtensa_tlb_get_entry(env, dtlb, wi, ei);
1108 
1109             if (entry->asid) {
1110                 static const char * const cache_text[8] = {
1111                     [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1112                     [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1113                     [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1114                     [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1115                 };
1116                 unsigned access = attr_to_access(entry->attr);
1117                 unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1118                     PAGE_CACHE_SHIFT;
1119 
1120                 if (print_header) {
1121                     print_header = false;
1122                     qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1123                     qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1124                                 "\t----------  ----------  ----  ---- --- -------\n");
1125                 }
1126                 qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %s\n",
1127                             entry->vaddr,
1128                             entry->paddr,
1129                             entry->asid,
1130                             entry->attr,
1131                             (access & PAGE_READ) ? 'R' : '-',
1132                             (access & PAGE_WRITE) ? 'W' : '-',
1133                             (access & PAGE_EXEC) ? 'X' : '-',
1134                             cache_text[cache_idx] ?
1135                             cache_text[cache_idx] : "Invalid");
1136             }
1137         }
1138     }
1139 }
1140 
1141 static void dump_mpu(CPUXtensaState *env,
1142                      const xtensa_mpu_entry *entry, unsigned n)
1143 {
1144     unsigned i;
1145 
1146     qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1147                 "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1148                 env ? "En" : "  ",
1149                 env ? "--" : "  ");
1150 
1151     for (i = 0; i < n; ++i) {
1152         uint32_t attr = entry[i].attr;
1153         unsigned access0 = mpu_attr_to_access(attr, 0);
1154         unsigned access1 = mpu_attr_to_access(attr, 1);
1155         unsigned type = mpu_attr_to_type(attr);
1156         char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1157 
1158         qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1159                     env ?
1160                     ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1161                     entry[i].vaddr, attr,
1162                     (access0 & PAGE_READ) ? 'R' : '-',
1163                     (access0 & PAGE_WRITE) ? 'W' : '-',
1164                     (access0 & PAGE_EXEC) ? 'X' : '-',
1165                     (access1 & PAGE_READ) ? 'R' : '-',
1166                     (access1 & PAGE_WRITE) ? 'W' : '-',
1167                     (access1 & PAGE_EXEC) ? 'X' : '-');
1168 
1169         switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1170         case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1171             qemu_printf("Device %cB %3s\n",
1172                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1173                         (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1174             break;
1175         case XTENSA_MPU_SYSTEM_TYPE_NC:
1176             qemu_printf("Sys NC %cB      %c%c%c\n",
1177                         (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1178                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1179                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1180                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1181             break;
1182         case XTENSA_MPU_SYSTEM_TYPE_C:
1183             qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1184                         (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1185                         (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1186                         (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1187                         (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1188                         (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1189                         (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1190             break;
1191         default:
1192             qemu_printf("Unknown\n");
1193             break;
1194         }
1195     }
1196 }
1197 
1198 void dump_mmu(CPUXtensaState *env)
1199 {
1200     if (xtensa_option_bits_enabled(env->config,
1201                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1202                 XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1203                 XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1204 
1205         qemu_printf("ITLB:\n");
1206         dump_tlb(env, false);
1207         qemu_printf("\nDTLB:\n");
1208         dump_tlb(env, true);
1209     } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1210         qemu_printf("Foreground map:\n");
1211         dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1212         qemu_printf("\nBackground map:\n");
1213         dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1214     } else {
1215         qemu_printf("No TLB for this CPU core\n");
1216     }
1217 }
1218