xref: /qemu/target/xtensa/fpu_helper.c (revision 513823e7521a09ed7ad1e32e6454bac3b2cbf52d)
1 /*
2  * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *     * Redistributions of source code must retain the above copyright
8  *       notice, this list of conditions and the following disclaimer.
9  *     * Redistributions in binary form must reproduce the above copyright
10  *       notice, this list of conditions and the following disclaimer in the
11  *       documentation and/or other materials provided with the distribution.
12  *     * Neither the name of the Open Source and Linux Lab nor the
13  *       names of its contributors may be used to endorse or promote products
14  *       derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "cpu.h"
31 #include "exec/helper-proto.h"
32 #include "qemu/host-utils.h"
33 #include "exec/exec-all.h"
34 #include "fpu/softfloat.h"
35 
36 enum {
37     XTENSA_FP_I = 0x1,
38     XTENSA_FP_U = 0x2,
39     XTENSA_FP_O = 0x4,
40     XTENSA_FP_Z = 0x8,
41     XTENSA_FP_V = 0x10,
42 };
43 
44 enum {
45     XTENSA_FCR_FLAGS_SHIFT = 2,
46     XTENSA_FSR_FLAGS_SHIFT = 7,
47 };
48 
49 static const struct {
50     uint32_t xtensa_fp_flag;
51     int softfloat_fp_flag;
52 } xtensa_fp_flag_map[] = {
53     { XTENSA_FP_I, float_flag_inexact, },
54     { XTENSA_FP_U, float_flag_underflow, },
55     { XTENSA_FP_O, float_flag_overflow, },
56     { XTENSA_FP_Z, float_flag_divbyzero, },
57     { XTENSA_FP_V, float_flag_invalid, },
58 };
59 
60 void xtensa_use_first_nan(CPUXtensaState *env, bool use_first)
61 {
62     set_float_2nan_prop_rule(use_first ? float_2nan_prop_ab : float_2nan_prop_ba,
63                              &env->fp_status);
64     set_float_3nan_prop_rule(use_first ? float_3nan_prop_abc : float_3nan_prop_cba,
65                              &env->fp_status);
66 }
67 
68 void HELPER(wur_fpu2k_fcr)(CPUXtensaState *env, uint32_t v)
69 {
70     static const int rounding_mode[] = {
71         float_round_nearest_even,
72         float_round_to_zero,
73         float_round_up,
74         float_round_down,
75     };
76 
77     env->uregs[FCR] = v & 0xfffff07f;
78     set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
79 }
80 
81 void HELPER(wur_fpu_fcr)(CPUXtensaState *env, uint32_t v)
82 {
83     static const int rounding_mode[] = {
84         float_round_nearest_even,
85         float_round_to_zero,
86         float_round_up,
87         float_round_down,
88     };
89 
90     if (v & 0xfffff000) {
91         qemu_log_mask(LOG_GUEST_ERROR,
92                       "MBZ field of FCR is written non-zero: %08x\n", v);
93     }
94     env->uregs[FCR] = v & 0x0000007f;
95     set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
96 }
97 
98 void HELPER(wur_fpu_fsr)(CPUXtensaState *env, uint32_t v)
99 {
100     uint32_t flags = v >> XTENSA_FSR_FLAGS_SHIFT;
101     int fef = 0;
102     unsigned i;
103 
104     if (v & 0xfffff000) {
105         qemu_log_mask(LOG_GUEST_ERROR,
106                       "MBZ field of FSR is written non-zero: %08x\n", v);
107     }
108     env->uregs[FSR] = v & 0x00000f80;
109     for (i = 0; i < ARRAY_SIZE(xtensa_fp_flag_map); ++i) {
110         if (flags & xtensa_fp_flag_map[i].xtensa_fp_flag) {
111             fef |= xtensa_fp_flag_map[i].softfloat_fp_flag;
112         }
113     }
114     set_float_exception_flags(fef, &env->fp_status);
115 }
116 
117 uint32_t HELPER(rur_fpu_fsr)(CPUXtensaState *env)
118 {
119     uint32_t flags = 0;
120     int fef = get_float_exception_flags(&env->fp_status);
121     unsigned i;
122 
123     for (i = 0; i < ARRAY_SIZE(xtensa_fp_flag_map); ++i) {
124         if (fef & xtensa_fp_flag_map[i].softfloat_fp_flag) {
125             flags |= xtensa_fp_flag_map[i].xtensa_fp_flag;
126         }
127     }
128     env->uregs[FSR] = flags << XTENSA_FSR_FLAGS_SHIFT;
129     return flags << XTENSA_FSR_FLAGS_SHIFT;
130 }
131 
132 float64 HELPER(abs_d)(float64 v)
133 {
134     return float64_abs(v);
135 }
136 
137 float32 HELPER(abs_s)(float32 v)
138 {
139     return float32_abs(v);
140 }
141 
142 float64 HELPER(neg_d)(float64 v)
143 {
144     return float64_chs(v);
145 }
146 
147 float32 HELPER(neg_s)(float32 v)
148 {
149     return float32_chs(v);
150 }
151 
152 float32 HELPER(fpu2k_add_s)(CPUXtensaState *env, float32 a, float32 b)
153 {
154     return float32_add(a, b, &env->fp_status);
155 }
156 
157 float32 HELPER(fpu2k_sub_s)(CPUXtensaState *env, float32 a, float32 b)
158 {
159     return float32_sub(a, b, &env->fp_status);
160 }
161 
162 float32 HELPER(fpu2k_mul_s)(CPUXtensaState *env, float32 a, float32 b)
163 {
164     return float32_mul(a, b, &env->fp_status);
165 }
166 
167 float32 HELPER(fpu2k_madd_s)(CPUXtensaState *env,
168                              float32 a, float32 b, float32 c)
169 {
170     return float32_muladd(b, c, a, 0, &env->fp_status);
171 }
172 
173 float32 HELPER(fpu2k_msub_s)(CPUXtensaState *env,
174                              float32 a, float32 b, float32 c)
175 {
176     return float32_muladd(b, c, a, float_muladd_negate_product,
177                           &env->fp_status);
178 }
179 
180 float64 HELPER(add_d)(CPUXtensaState *env, float64 a, float64 b)
181 {
182     xtensa_use_first_nan(env, true);
183     return float64_add(a, b, &env->fp_status);
184 }
185 
186 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
187 {
188     xtensa_use_first_nan(env, env->config->use_first_nan);
189     return float32_add(a, b, &env->fp_status);
190 }
191 
192 float64 HELPER(sub_d)(CPUXtensaState *env, float64 a, float64 b)
193 {
194     xtensa_use_first_nan(env, true);
195     return float64_sub(a, b, &env->fp_status);
196 }
197 
198 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
199 {
200     xtensa_use_first_nan(env, env->config->use_first_nan);
201     return float32_sub(a, b, &env->fp_status);
202 }
203 
204 float64 HELPER(mul_d)(CPUXtensaState *env, float64 a, float64 b)
205 {
206     xtensa_use_first_nan(env, true);
207     return float64_mul(a, b, &env->fp_status);
208 }
209 
210 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
211 {
212     xtensa_use_first_nan(env, env->config->use_first_nan);
213     return float32_mul(a, b, &env->fp_status);
214 }
215 
216 float64 HELPER(madd_d)(CPUXtensaState *env, float64 a, float64 b, float64 c)
217 {
218     xtensa_use_first_nan(env, env->config->use_first_nan);
219     return float64_muladd(b, c, a, 0, &env->fp_status);
220 }
221 
222 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
223 {
224     xtensa_use_first_nan(env, env->config->use_first_nan);
225     return float32_muladd(b, c, a, 0, &env->fp_status);
226 }
227 
228 float64 HELPER(msub_d)(CPUXtensaState *env, float64 a, float64 b, float64 c)
229 {
230     xtensa_use_first_nan(env, env->config->use_first_nan);
231     return float64_muladd(b, c, a, float_muladd_negate_product,
232                           &env->fp_status);
233 }
234 
235 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
236 {
237     xtensa_use_first_nan(env, env->config->use_first_nan);
238     return float32_muladd(b, c, a, float_muladd_negate_product,
239                           &env->fp_status);
240 }
241 
242 float64 HELPER(mkdadj_d)(CPUXtensaState *env, float64 a, float64 b)
243 {
244     xtensa_use_first_nan(env, true);
245     return float64_div(b, a, &env->fp_status);
246 }
247 
248 float32 HELPER(mkdadj_s)(CPUXtensaState *env, float32 a, float32 b)
249 {
250     xtensa_use_first_nan(env, env->config->use_first_nan);
251     return float32_div(b, a, &env->fp_status);
252 }
253 
254 float64 HELPER(mksadj_d)(CPUXtensaState *env, float64 v)
255 {
256     xtensa_use_first_nan(env, true);
257     return float64_sqrt(v, &env->fp_status);
258 }
259 
260 float32 HELPER(mksadj_s)(CPUXtensaState *env, float32 v)
261 {
262     xtensa_use_first_nan(env, env->config->use_first_nan);
263     return float32_sqrt(v, &env->fp_status);
264 }
265 
266 uint32_t HELPER(ftoi_d)(CPUXtensaState *env, float64 v,
267                         uint32_t rounding_mode, uint32_t scale)
268 {
269     float_status fp_status = env->fp_status;
270     uint32_t res;
271 
272     set_float_rounding_mode(rounding_mode, &fp_status);
273     res = float64_to_int32(float64_scalbn(v, scale, &fp_status), &fp_status);
274     set_float_exception_flags(get_float_exception_flags(&fp_status),
275                               &env->fp_status);
276     return res;
277 }
278 
279 uint32_t HELPER(ftoi_s)(CPUXtensaState *env, float32 v,
280                         uint32_t rounding_mode, uint32_t scale)
281 {
282     float_status fp_status = env->fp_status;
283     uint32_t res;
284 
285     set_float_rounding_mode(rounding_mode, &fp_status);
286     res = float32_to_int32(float32_scalbn(v, scale, &fp_status), &fp_status);
287     set_float_exception_flags(get_float_exception_flags(&fp_status),
288                               &env->fp_status);
289     return res;
290 }
291 
292 uint32_t HELPER(ftoui_d)(CPUXtensaState *env, float64 v,
293                          uint32_t rounding_mode, uint32_t scale)
294 {
295     float_status fp_status = env->fp_status;
296     float64 res;
297     uint32_t rv;
298 
299     set_float_rounding_mode(rounding_mode, &fp_status);
300 
301     res = float64_scalbn(v, scale, &fp_status);
302 
303     if (float64_is_neg(v) && !float64_is_any_nan(v)) {
304         set_float_exception_flags(float_flag_invalid, &fp_status);
305         rv = float64_to_int32(res, &fp_status);
306     } else {
307         rv = float64_to_uint32(res, &fp_status);
308     }
309     set_float_exception_flags(get_float_exception_flags(&fp_status),
310                               &env->fp_status);
311     return rv;
312 }
313 
314 uint32_t HELPER(ftoui_s)(CPUXtensaState *env, float32 v,
315                          uint32_t rounding_mode, uint32_t scale)
316 {
317     float_status fp_status = env->fp_status;
318     float32 res;
319     uint32_t rv;
320 
321     set_float_rounding_mode(rounding_mode, &fp_status);
322 
323     res = float32_scalbn(v, scale, &fp_status);
324 
325     if (float32_is_neg(v) && !float32_is_any_nan(v)) {
326         rv = float32_to_int32(res, &fp_status);
327         if (rv) {
328             set_float_exception_flags(float_flag_invalid, &fp_status);
329         }
330     } else {
331         rv = float32_to_uint32(res, &fp_status);
332     }
333     set_float_exception_flags(get_float_exception_flags(&fp_status),
334                               &env->fp_status);
335     return rv;
336 }
337 
338 float64 HELPER(itof_d)(CPUXtensaState *env, uint32_t v, uint32_t scale)
339 {
340     return float64_scalbn(int32_to_float64(v, &env->fp_status),
341                           (int32_t)scale, &env->fp_status);
342 }
343 
344 float32 HELPER(itof_s)(CPUXtensaState *env, uint32_t v, uint32_t scale)
345 {
346     return float32_scalbn(int32_to_float32(v, &env->fp_status),
347                           (int32_t)scale, &env->fp_status);
348 }
349 
350 float64 HELPER(uitof_d)(CPUXtensaState *env, uint32_t v, uint32_t scale)
351 {
352     return float64_scalbn(uint32_to_float64(v, &env->fp_status),
353                           (int32_t)scale, &env->fp_status);
354 }
355 
356 float32 HELPER(uitof_s)(CPUXtensaState *env, uint32_t v, uint32_t scale)
357 {
358     return float32_scalbn(uint32_to_float32(v, &env->fp_status),
359                           (int32_t)scale, &env->fp_status);
360 }
361 
362 float64 HELPER(cvtd_s)(CPUXtensaState *env, float32 v)
363 {
364     return float32_to_float64(v, &env->fp_status);
365 }
366 
367 float32 HELPER(cvts_d)(CPUXtensaState *env, float64 v)
368 {
369     return float64_to_float32(v, &env->fp_status);
370 }
371 
372 uint32_t HELPER(un_d)(CPUXtensaState *env, float64 a, float64 b)
373 {
374     return float64_unordered_quiet(a, b, &env->fp_status);
375 }
376 
377 uint32_t HELPER(un_s)(CPUXtensaState *env, float32 a, float32 b)
378 {
379     return float32_unordered_quiet(a, b, &env->fp_status);
380 }
381 
382 uint32_t HELPER(oeq_d)(CPUXtensaState *env, float64 a, float64 b)
383 {
384     return float64_eq_quiet(a, b, &env->fp_status);
385 }
386 
387 uint32_t HELPER(oeq_s)(CPUXtensaState *env, float32 a, float32 b)
388 {
389     return float32_eq_quiet(a, b, &env->fp_status);
390 }
391 
392 uint32_t HELPER(ueq_d)(CPUXtensaState *env, float64 a, float64 b)
393 {
394     FloatRelation v = float64_compare_quiet(a, b, &env->fp_status);
395 
396     return v == float_relation_equal ||
397            v == float_relation_unordered;
398 }
399 
400 uint32_t HELPER(ueq_s)(CPUXtensaState *env, float32 a, float32 b)
401 {
402     FloatRelation v = float32_compare_quiet(a, b, &env->fp_status);
403 
404     return v == float_relation_equal ||
405            v == float_relation_unordered;
406 }
407 
408 uint32_t HELPER(olt_d)(CPUXtensaState *env, float64 a, float64 b)
409 {
410     return float64_lt(a, b, &env->fp_status);
411 }
412 
413 uint32_t HELPER(olt_s)(CPUXtensaState *env, float32 a, float32 b)
414 {
415     return float32_lt(a, b, &env->fp_status);
416 }
417 
418 uint32_t HELPER(ult_d)(CPUXtensaState *env, float64 a, float64 b)
419 {
420     FloatRelation v = float64_compare_quiet(a, b, &env->fp_status);
421 
422     return v == float_relation_less ||
423            v == float_relation_unordered;
424 }
425 
426 uint32_t HELPER(ult_s)(CPUXtensaState *env, float32 a, float32 b)
427 {
428     FloatRelation v = float32_compare_quiet(a, b, &env->fp_status);
429 
430     return v == float_relation_less ||
431            v == float_relation_unordered;
432 }
433 
434 uint32_t HELPER(ole_d)(CPUXtensaState *env, float64 a, float64 b)
435 {
436     return float64_le(a, b, &env->fp_status);
437 }
438 
439 uint32_t HELPER(ole_s)(CPUXtensaState *env, float32 a, float32 b)
440 {
441     return float32_le(a, b, &env->fp_status);
442 }
443 
444 uint32_t HELPER(ule_d)(CPUXtensaState *env, float64 a, float64 b)
445 {
446     FloatRelation v = float64_compare_quiet(a, b, &env->fp_status);
447 
448     return v != float_relation_greater;
449 }
450 
451 uint32_t HELPER(ule_s)(CPUXtensaState *env, float32 a, float32 b)
452 {
453     FloatRelation v = float32_compare_quiet(a, b, &env->fp_status);
454 
455     return v != float_relation_greater;
456 }
457