1 /* 2 * QEMU Xtensa CPU 3 * 4 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. 5 * Copyright (c) 2012 SUSE LINUX Products GmbH 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions are met: 10 * * Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * * Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * * Neither the name of the Open Source and Linux Lab nor the 16 * names of its contributors may be used to endorse or promote products 17 * derived from this software without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 20 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY 23 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 25 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 28 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 #include "qemu/osdep.h" 32 #include "qapi/error.h" 33 #include "cpu.h" 34 #include "fpu/softfloat.h" 35 #include "qemu/module.h" 36 #include "migration/vmstate.h" 37 #include "hw/qdev-clock.h" 38 #include "accel/tcg/cpu-ops.h" 39 #ifndef CONFIG_USER_ONLY 40 #include "system/memory.h" 41 #endif 42 43 44 static void xtensa_cpu_set_pc(CPUState *cs, vaddr value) 45 { 46 XtensaCPU *cpu = XTENSA_CPU(cs); 47 48 cpu->env.pc = value; 49 } 50 51 static vaddr xtensa_cpu_get_pc(CPUState *cs) 52 { 53 XtensaCPU *cpu = XTENSA_CPU(cs); 54 55 return cpu->env.pc; 56 } 57 58 void cpu_get_tb_cpu_state(CPUXtensaState *env, vaddr *pc, 59 uint64_t *cs_base, uint32_t *flags) 60 { 61 *pc = env->pc; 62 *cs_base = 0; 63 *flags = 0; 64 *flags |= xtensa_get_ring(env); 65 if (env->sregs[PS] & PS_EXCM) { 66 *flags |= XTENSA_TBFLAG_EXCM; 67 } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_LOOP)) { 68 target_ulong lend_dist = 69 env->sregs[LEND] - (env->pc & -(1u << TARGET_PAGE_BITS)); 70 71 /* 72 * 0 in the csbase_lend field means that there may not be a loopback 73 * for any instruction that starts inside this page. Any other value 74 * means that an instruction that ends at this offset from the page 75 * start may loop back and will need loopback code to be generated. 76 * 77 * lend_dist is 0 when LEND points to the start of the page, but 78 * no instruction that starts inside this page may end at offset 0, 79 * so it's still correct. 80 * 81 * When an instruction ends at a page boundary it may only start in 82 * the previous page. lend_dist will be encoded as TARGET_PAGE_SIZE 83 * for the TB that contains this instruction. 84 */ 85 if (lend_dist < (1u << TARGET_PAGE_BITS) + env->config->max_insn_size) { 86 target_ulong lbeg_off = env->sregs[LEND] - env->sregs[LBEG]; 87 88 *cs_base = lend_dist; 89 if (lbeg_off < 256) { 90 *cs_base |= lbeg_off << XTENSA_CSBASE_LBEG_OFF_SHIFT; 91 } 92 } 93 } 94 if (xtensa_option_enabled(env->config, XTENSA_OPTION_EXTENDED_L32R) && 95 (env->sregs[LITBASE] & 1)) { 96 *flags |= XTENSA_TBFLAG_LITBASE; 97 } 98 if (xtensa_option_enabled(env->config, XTENSA_OPTION_DEBUG)) { 99 if (xtensa_get_cintlevel(env) < env->config->debug_level) { 100 *flags |= XTENSA_TBFLAG_DEBUG; 101 } 102 if (xtensa_get_cintlevel(env) < env->sregs[ICOUNTLEVEL]) { 103 *flags |= XTENSA_TBFLAG_ICOUNT; 104 } 105 } 106 if (xtensa_option_enabled(env->config, XTENSA_OPTION_COPROCESSOR)) { 107 *flags |= env->sregs[CPENABLE] << XTENSA_TBFLAG_CPENABLE_SHIFT; 108 } 109 if (xtensa_option_enabled(env->config, XTENSA_OPTION_WINDOWED_REGISTER) && 110 (env->sregs[PS] & (PS_WOE | PS_EXCM)) == PS_WOE) { 111 uint32_t windowstart = xtensa_replicate_windowstart(env) >> 112 (env->sregs[WINDOW_BASE] + 1); 113 uint32_t w = ctz32(windowstart | 0x8); 114 115 *flags |= (w << XTENSA_TBFLAG_WINDOW_SHIFT) | XTENSA_TBFLAG_CWOE; 116 *flags |= extract32(env->sregs[PS], PS_CALLINC_SHIFT, 117 PS_CALLINC_LEN) << XTENSA_TBFLAG_CALLINC_SHIFT; 118 } else { 119 *flags |= 3 << XTENSA_TBFLAG_WINDOW_SHIFT; 120 } 121 if (env->yield_needed) { 122 *flags |= XTENSA_TBFLAG_YIELD; 123 } 124 } 125 126 static void xtensa_restore_state_to_opc(CPUState *cs, 127 const TranslationBlock *tb, 128 const uint64_t *data) 129 { 130 XtensaCPU *cpu = XTENSA_CPU(cs); 131 132 cpu->env.pc = data[0]; 133 } 134 135 #ifndef CONFIG_USER_ONLY 136 static bool xtensa_cpu_has_work(CPUState *cs) 137 { 138 CPUXtensaState *env = cpu_env(cs); 139 140 return !env->runstall && env->pending_irq_level; 141 } 142 #endif /* !CONFIG_USER_ONLY */ 143 144 static int xtensa_cpu_mmu_index(CPUState *cs, bool ifetch) 145 { 146 return xtensa_get_cring(cpu_env(cs)); 147 } 148 149 #ifdef CONFIG_USER_ONLY 150 static bool abi_call0; 151 152 void xtensa_set_abi_call0(void) 153 { 154 abi_call0 = true; 155 } 156 157 bool xtensa_abi_call0(void) 158 { 159 return abi_call0; 160 } 161 #endif 162 163 static void xtensa_cpu_reset_hold(Object *obj, ResetType type) 164 { 165 CPUState *cs = CPU(obj); 166 XtensaCPUClass *xcc = XTENSA_CPU_GET_CLASS(obj); 167 CPUXtensaState *env = cpu_env(cs); 168 bool dfpu = xtensa_option_enabled(env->config, 169 XTENSA_OPTION_DFP_COPROCESSOR); 170 171 if (xcc->parent_phases.hold) { 172 xcc->parent_phases.hold(obj, type); 173 } 174 175 env->pc = env->config->exception_vector[EXC_RESET0 + env->static_vectors]; 176 env->sregs[LITBASE] &= ~1; 177 #ifndef CONFIG_USER_ONLY 178 env->sregs[PS] = xtensa_option_enabled(env->config, 179 XTENSA_OPTION_INTERRUPT) ? 0x1f : 0x10; 180 env->pending_irq_level = 0; 181 #else 182 env->sregs[PS] = PS_UM | (3 << PS_RING_SHIFT); 183 if (xtensa_option_enabled(env->config, 184 XTENSA_OPTION_WINDOWED_REGISTER) && 185 !xtensa_abi_call0()) { 186 env->sregs[PS] |= PS_WOE; 187 } 188 env->sregs[CPENABLE] = 0xff; 189 #endif 190 env->sregs[VECBASE] = env->config->vecbase; 191 env->sregs[IBREAKENABLE] = 0; 192 env->sregs[MEMCTL] = MEMCTL_IL0EN & env->config->memctl_mask; 193 env->sregs[ATOMCTL] = xtensa_option_enabled(env->config, 194 XTENSA_OPTION_ATOMCTL) ? 0x28 : 0x15; 195 env->sregs[CONFIGID0] = env->config->configid[0]; 196 env->sregs[CONFIGID1] = env->config->configid[1]; 197 env->exclusive_addr = -1; 198 199 #ifndef CONFIG_USER_ONLY 200 reset_mmu(env); 201 cs->halted = env->runstall; 202 #endif 203 /* For inf * 0 + NaN, return the input NaN */ 204 set_float_infzeronan_rule(float_infzeronan_dnan_never, &env->fp_status); 205 set_no_signaling_nans(!dfpu, &env->fp_status); 206 /* Default NaN value: sign bit clear, set frac msb */ 207 set_float_default_nan_pattern(0b01000000, &env->fp_status); 208 xtensa_use_first_nan(env, !dfpu); 209 } 210 211 static ObjectClass *xtensa_cpu_class_by_name(const char *cpu_model) 212 { 213 ObjectClass *oc; 214 char *typename; 215 216 typename = g_strdup_printf(XTENSA_CPU_TYPE_NAME("%s"), cpu_model); 217 oc = object_class_by_name(typename); 218 g_free(typename); 219 220 return oc; 221 } 222 223 static void xtensa_cpu_disas_set_info(CPUState *cs, disassemble_info *info) 224 { 225 XtensaCPU *cpu = XTENSA_CPU(cs); 226 227 info->private_data = cpu->env.config->isa; 228 info->print_insn = print_insn_xtensa; 229 info->endian = TARGET_BIG_ENDIAN ? BFD_ENDIAN_BIG 230 : BFD_ENDIAN_LITTLE; 231 } 232 233 static void xtensa_cpu_realizefn(DeviceState *dev, Error **errp) 234 { 235 CPUState *cs = CPU(dev); 236 XtensaCPUClass *xcc = XTENSA_CPU_GET_CLASS(dev); 237 Error *local_err = NULL; 238 239 #ifndef CONFIG_USER_ONLY 240 xtensa_irq_init(&XTENSA_CPU(dev)->env); 241 #endif 242 243 cpu_exec_realizefn(cs, &local_err); 244 if (local_err != NULL) { 245 error_propagate(errp, local_err); 246 return; 247 } 248 249 cs->gdb_num_regs = xcc->config->gdb_regmap.num_regs; 250 251 qemu_init_vcpu(cs); 252 253 xcc->parent_realize(dev, errp); 254 } 255 256 static void xtensa_cpu_initfn(Object *obj) 257 { 258 XtensaCPU *cpu = XTENSA_CPU(obj); 259 XtensaCPUClass *xcc = XTENSA_CPU_GET_CLASS(obj); 260 CPUXtensaState *env = &cpu->env; 261 262 env->config = xcc->config; 263 264 #ifndef CONFIG_USER_ONLY 265 env->address_space_er = g_malloc(sizeof(*env->address_space_er)); 266 env->system_er = g_malloc(sizeof(*env->system_er)); 267 memory_region_init_io(env->system_er, obj, NULL, env, "er", 268 UINT64_C(0x100000000)); 269 address_space_init(env->address_space_er, env->system_er, "ER"); 270 271 cpu->clock = qdev_init_clock_in(DEVICE(obj), "clk-in", NULL, cpu, 0); 272 clock_set_hz(cpu->clock, env->config->clock_freq_khz * 1000); 273 #endif 274 } 275 276 XtensaCPU *xtensa_cpu_create_with_clock(const char *cpu_type, Clock *cpu_refclk) 277 { 278 DeviceState *cpu; 279 280 cpu = qdev_new(cpu_type); 281 qdev_connect_clock_in(cpu, "clk-in", cpu_refclk); 282 qdev_realize(cpu, NULL, &error_abort); 283 284 return XTENSA_CPU(cpu); 285 } 286 287 #ifndef CONFIG_USER_ONLY 288 static const VMStateDescription vmstate_xtensa_cpu = { 289 .name = "cpu", 290 .unmigratable = 1, 291 }; 292 293 #include "hw/core/sysemu-cpu-ops.h" 294 295 static const struct SysemuCPUOps xtensa_sysemu_ops = { 296 .has_work = xtensa_cpu_has_work, 297 .get_phys_page_debug = xtensa_cpu_get_phys_page_debug, 298 }; 299 #endif 300 301 static const TCGCPUOps xtensa_tcg_ops = { 302 /* Xtensa processors have a weak memory model */ 303 .guest_default_memory_order = 0, 304 .mttcg_supported = true, 305 306 .initialize = xtensa_translate_init, 307 .translate_code = xtensa_translate_code, 308 .debug_excp_handler = xtensa_breakpoint_handler, 309 .restore_state_to_opc = xtensa_restore_state_to_opc, 310 .mmu_index = xtensa_cpu_mmu_index, 311 312 #ifndef CONFIG_USER_ONLY 313 .tlb_fill = xtensa_cpu_tlb_fill, 314 .cpu_exec_interrupt = xtensa_cpu_exec_interrupt, 315 .cpu_exec_halt = xtensa_cpu_has_work, 316 .cpu_exec_reset = cpu_reset, 317 .do_interrupt = xtensa_cpu_do_interrupt, 318 .do_transaction_failed = xtensa_cpu_do_transaction_failed, 319 .do_unaligned_access = xtensa_cpu_do_unaligned_access, 320 .debug_check_breakpoint = xtensa_debug_check_breakpoint, 321 #endif /* !CONFIG_USER_ONLY */ 322 }; 323 324 static void xtensa_cpu_class_init(ObjectClass *oc, const void *data) 325 { 326 DeviceClass *dc = DEVICE_CLASS(oc); 327 CPUClass *cc = CPU_CLASS(oc); 328 XtensaCPUClass *xcc = XTENSA_CPU_CLASS(cc); 329 ResettableClass *rc = RESETTABLE_CLASS(oc); 330 331 device_class_set_parent_realize(dc, xtensa_cpu_realizefn, 332 &xcc->parent_realize); 333 334 resettable_class_set_parent_phases(rc, NULL, xtensa_cpu_reset_hold, NULL, 335 &xcc->parent_phases); 336 337 cc->class_by_name = xtensa_cpu_class_by_name; 338 cc->dump_state = xtensa_cpu_dump_state; 339 cc->set_pc = xtensa_cpu_set_pc; 340 cc->get_pc = xtensa_cpu_get_pc; 341 cc->gdb_read_register = xtensa_cpu_gdb_read_register; 342 cc->gdb_write_register = xtensa_cpu_gdb_write_register; 343 cc->gdb_stop_before_watchpoint = true; 344 #ifndef CONFIG_USER_ONLY 345 cc->sysemu_ops = &xtensa_sysemu_ops; 346 dc->vmsd = &vmstate_xtensa_cpu; 347 #endif 348 cc->disas_set_info = xtensa_cpu_disas_set_info; 349 cc->tcg_ops = &xtensa_tcg_ops; 350 } 351 352 static const TypeInfo xtensa_cpu_type_info = { 353 .name = TYPE_XTENSA_CPU, 354 .parent = TYPE_CPU, 355 .instance_size = sizeof(XtensaCPU), 356 .instance_align = __alignof(XtensaCPU), 357 .instance_init = xtensa_cpu_initfn, 358 .abstract = true, 359 .class_size = sizeof(XtensaCPUClass), 360 .class_init = xtensa_cpu_class_init, 361 }; 362 363 static void xtensa_cpu_register_types(void) 364 { 365 type_register_static(&xtensa_cpu_type_info); 366 } 367 368 type_init(xtensa_cpu_register_types) 369