xref: /qemu/target/sparc/ldst_helper.c (revision ffd5a60e9b67e14f7bac7ea29300ea46a944e508)
1 /*
2  * Helpers for loads and stores
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/range.h"
23 #include "cpu.h"
24 #include "tcg/tcg.h"
25 #include "exec/helper-proto.h"
26 #include "exec/exec-all.h"
27 #include "exec/cputlb.h"
28 #include "exec/page-protection.h"
29 #include "exec/target_page.h"
30 #include "accel/tcg/cpu-ldst.h"
31 #include "system/memory.h"
32 #ifdef CONFIG_USER_ONLY
33 #include "user/page-protection.h"
34 #endif
35 #include "asi.h"
36 
37 //#define DEBUG_MMU
38 //#define DEBUG_MXCC
39 //#define DEBUG_UNASSIGNED
40 //#define DEBUG_ASI
41 //#define DEBUG_CACHE_CONTROL
42 
43 #ifdef DEBUG_MMU
44 #define DPRINTF_MMU(fmt, ...)                                   \
45     do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
46 #else
47 #define DPRINTF_MMU(fmt, ...) do {} while (0)
48 #endif
49 
50 #ifdef DEBUG_MXCC
51 #define DPRINTF_MXCC(fmt, ...)                                  \
52     do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
53 #else
54 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
55 #endif
56 
57 #ifdef DEBUG_ASI
58 #define DPRINTF_ASI(fmt, ...)                                   \
59     do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
60 #endif
61 
62 #ifdef DEBUG_CACHE_CONTROL
63 #define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
64     do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
67 #endif
68 
69 #ifdef TARGET_SPARC64
70 #ifndef TARGET_ABI32
71 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
72 #else
73 #define AM_CHECK(env1) (1)
74 #endif
75 #endif
76 
77 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
78 /* Calculates TSB pointer value for fault page size
79  * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
80  * UA2005 holds the page size configuration in mmu_ctx registers */
81 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState *env,
82                                        const SparcV9MMU *mmu, const int idx)
83 {
84     uint64_t tsb_register;
85     int page_size;
86     if (cpu_has_hypervisor(env)) {
87         int tsb_index = 0;
88         int ctx = mmu->tag_access & 0x1fffULL;
89         uint64_t ctx_register = mmu->sun4v_ctx_config[ctx ? 1 : 0];
90         tsb_index = idx;
91         tsb_index |= ctx ? 2 : 0;
92         page_size = idx ? ctx_register >> 8 : ctx_register;
93         page_size &= 7;
94         tsb_register = mmu->sun4v_tsb_pointers[tsb_index];
95     } else {
96         page_size = idx;
97         tsb_register = mmu->tsb;
98     }
99     int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
100     int tsb_size  = tsb_register & 0xf;
101 
102     uint64_t tsb_base_mask = (~0x1fffULL) << tsb_size;
103 
104     /* move va bits to correct position,
105      * the context bits will be masked out later */
106     uint64_t va = mmu->tag_access >> (3 * page_size + 9);
107 
108     /* calculate tsb_base mask and adjust va if split is in use */
109     if (tsb_split) {
110         if (idx == 0) {
111             va &= ~(1ULL << (13 + tsb_size));
112         } else {
113             va |= (1ULL << (13 + tsb_size));
114         }
115         tsb_base_mask <<= 1;
116     }
117 
118     return ((tsb_register & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
119 }
120 
121 /* Calculates tag target register value by reordering bits
122    in tag access register */
123 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
124 {
125     return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
126 }
127 
128 static void replace_tlb_entry(SparcTLBEntry *tlb,
129                               uint64_t tlb_tag, uint64_t tlb_tte,
130                               CPUSPARCState *env)
131 {
132     target_ulong mask, size, va, offset;
133 
134     /* flush page range if translation is valid */
135     if (TTE_IS_VALID(tlb->tte)) {
136         CPUState *cs = env_cpu(env);
137 
138         size = 8192ULL << 3 * TTE_PGSIZE(tlb->tte);
139         mask = 1ULL + ~size;
140 
141         va = tlb->tag & mask;
142 
143         for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
144             tlb_flush_page(cs, va + offset);
145         }
146     }
147 
148     tlb->tag = tlb_tag;
149     tlb->tte = tlb_tte;
150 }
151 
152 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
153                       const char *strmmu, CPUSPARCState *env1)
154 {
155     unsigned int i;
156     target_ulong mask;
157     uint64_t context;
158 
159     int is_demap_context = (demap_addr >> 6) & 1;
160 
161     /* demap context */
162     switch ((demap_addr >> 4) & 3) {
163     case 0: /* primary */
164         context = env1->dmmu.mmu_primary_context;
165         break;
166     case 1: /* secondary */
167         context = env1->dmmu.mmu_secondary_context;
168         break;
169     case 2: /* nucleus */
170         context = 0;
171         break;
172     case 3: /* reserved */
173     default:
174         return;
175     }
176 
177     for (i = 0; i < 64; i++) {
178         if (TTE_IS_VALID(tlb[i].tte)) {
179 
180             if (is_demap_context) {
181                 /* will remove non-global entries matching context value */
182                 if (TTE_IS_GLOBAL(tlb[i].tte) ||
183                     !tlb_compare_context(&tlb[i], context)) {
184                     continue;
185                 }
186             } else {
187                 /* demap page
188                    will remove any entry matching VA */
189                 mask = 0xffffffffffffe000ULL;
190                 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
191 
192                 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
193                     continue;
194                 }
195 
196                 /* entry should be global or matching context value */
197                 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
198                     !tlb_compare_context(&tlb[i], context)) {
199                     continue;
200                 }
201             }
202 
203             replace_tlb_entry(&tlb[i], 0, 0, env1);
204 #ifdef DEBUG_MMU
205             DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
206             dump_mmu(env1);
207 #endif
208         }
209     }
210 }
211 
212 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState *env, uint64_t tag,
213                                    uint64_t sun4v_tte)
214 {
215     uint64_t sun4u_tte;
216     if (!(cpu_has_hypervisor(env) && (tag & TLB_UST1_IS_SUN4V_BIT))) {
217         /* is already in the sun4u format */
218         return sun4v_tte;
219     }
220     sun4u_tte = TTE_PA(sun4v_tte) | (sun4v_tte & TTE_VALID_BIT);
221     sun4u_tte |= (sun4v_tte & 3ULL) << 61; /* TTE_PGSIZE */
222     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_NFO_BIT_UA2005, TTE_NFO_BIT);
223     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_USED_BIT_UA2005, TTE_USED_BIT);
224     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_W_OK_BIT_UA2005, TTE_W_OK_BIT);
225     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_SIDEEFFECT_BIT_UA2005,
226                              TTE_SIDEEFFECT_BIT);
227     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_PRIV_BIT_UA2005, TTE_PRIV_BIT);
228     sun4u_tte |= CONVERT_BIT(sun4v_tte, TTE_LOCKED_BIT_UA2005, TTE_LOCKED_BIT);
229     return sun4u_tte;
230 }
231 
232 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
233                                  uint64_t tlb_tag, uint64_t tlb_tte,
234                                  const char *strmmu, CPUSPARCState *env1,
235                                  uint64_t addr)
236 {
237     unsigned int i, replace_used;
238 
239     tlb_tte = sun4v_tte_to_sun4u(env1, addr, tlb_tte);
240     if (cpu_has_hypervisor(env1)) {
241         uint64_t new_vaddr = tlb_tag & ~0x1fffULL;
242         uint64_t new_size = 8192ULL << 3 * TTE_PGSIZE(tlb_tte);
243         uint32_t new_ctx = tlb_tag & 0x1fffU;
244         for (i = 0; i < 64; i++) {
245             uint32_t ctx = tlb[i].tag & 0x1fffU;
246             /* check if new mapping overlaps an existing one */
247             if (new_ctx == ctx) {
248                 uint64_t vaddr = tlb[i].tag & ~0x1fffULL;
249                 uint64_t size = 8192ULL << 3 * TTE_PGSIZE(tlb[i].tte);
250                 if (ranges_overlap(new_vaddr, new_size, vaddr, size)) {
251                     DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i, vaddr,
252                                 new_vaddr);
253                     replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
254                     return;
255                 }
256             }
257 
258         }
259     }
260     /* Try replacing invalid entry */
261     for (i = 0; i < 64; i++) {
262         if (!TTE_IS_VALID(tlb[i].tte)) {
263             replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
264 #ifdef DEBUG_MMU
265             DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
266             dump_mmu(env1);
267 #endif
268             return;
269         }
270     }
271 
272     /* All entries are valid, try replacing unlocked entry */
273 
274     for (replace_used = 0; replace_used < 2; ++replace_used) {
275 
276         /* Used entries are not replaced on first pass */
277 
278         for (i = 0; i < 64; i++) {
279             if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
280 
281                 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
282 #ifdef DEBUG_MMU
283                 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
284                             strmmu, (replace_used ? "used" : "unused"), i);
285                 dump_mmu(env1);
286 #endif
287                 return;
288             }
289         }
290 
291         /* Now reset used bit and search for unused entries again */
292 
293         for (i = 0; i < 64; i++) {
294             TTE_SET_UNUSED(tlb[i].tte);
295         }
296     }
297 
298 #ifdef DEBUG_MMU
299     DPRINTF_MMU("%s lru replacement: no free entries available, "
300                 "replacing the last one\n", strmmu);
301 #endif
302     /* corner case: the last entry is replaced anyway */
303     replace_tlb_entry(&tlb[63], tlb_tag, tlb_tte, env1);
304 }
305 
306 #endif
307 
308 #ifdef TARGET_SPARC64
309 /* returns true if access using this ASI is to have address translated by MMU
310    otherwise access is to raw physical address */
311 /* TODO: check sparc32 bits */
312 static inline int is_translating_asi(int asi)
313 {
314     /* Ultrasparc IIi translating asi
315        - note this list is defined by cpu implementation
316     */
317     switch (asi) {
318     case 0x04 ... 0x11:
319     case 0x16 ... 0x19:
320     case 0x1E ... 0x1F:
321     case 0x24 ... 0x2C:
322     case 0x70 ... 0x73:
323     case 0x78 ... 0x79:
324     case 0x80 ... 0xFF:
325         return 1;
326 
327     default:
328         return 0;
329     }
330 }
331 
332 static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
333 {
334     if (AM_CHECK(env1)) {
335         addr &= 0xffffffffULL;
336     }
337     return addr;
338 }
339 
340 static inline target_ulong asi_address_mask(CPUSPARCState *env,
341                                             int asi, target_ulong addr)
342 {
343     if (is_translating_asi(asi)) {
344         addr = address_mask(env, addr);
345     }
346     return addr;
347 }
348 
349 #ifndef CONFIG_USER_ONLY
350 static inline void do_check_asi(CPUSPARCState *env, int asi, uintptr_t ra)
351 {
352     /* ASIs >= 0x80 are user mode.
353      * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
354      * ASIs <= 0x2f are super mode.
355      */
356     if (asi < 0x80
357         && !cpu_hypervisor_mode(env)
358         && (!cpu_supervisor_mode(env)
359             || (asi >= 0x30 && cpu_has_hypervisor(env)))) {
360         cpu_raise_exception_ra(env, TT_PRIV_ACT, ra);
361     }
362 }
363 #endif /* !CONFIG_USER_ONLY */
364 #endif
365 
366 #if defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)
367 static void do_check_align(CPUSPARCState *env, target_ulong addr,
368                            uint32_t align, uintptr_t ra)
369 {
370     if (addr & align) {
371         cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
372     }
373 }
374 #endif
375 
376 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
377     defined(DEBUG_MXCC)
378 static void dump_mxcc(CPUSPARCState *env)
379 {
380     printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
381            "\n",
382            env->mxccdata[0], env->mxccdata[1],
383            env->mxccdata[2], env->mxccdata[3]);
384     printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
385            "\n"
386            "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
387            "\n",
388            env->mxccregs[0], env->mxccregs[1],
389            env->mxccregs[2], env->mxccregs[3],
390            env->mxccregs[4], env->mxccregs[5],
391            env->mxccregs[6], env->mxccregs[7]);
392 }
393 #endif
394 
395 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
396     && defined(DEBUG_ASI)
397 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
398                      uint64_t r1)
399 {
400     switch (size) {
401     case 1:
402         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
403                     addr, asi, r1 & 0xff);
404         break;
405     case 2:
406         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
407                     addr, asi, r1 & 0xffff);
408         break;
409     case 4:
410         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
411                     addr, asi, r1 & 0xffffffff);
412         break;
413     case 8:
414         DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
415                     addr, asi, r1);
416         break;
417     }
418 }
419 #endif
420 
421 #ifndef CONFIG_USER_ONLY
422 #ifndef TARGET_SPARC64
423 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
424                                   bool is_write, bool is_exec, int is_asi,
425                                   unsigned size, uintptr_t retaddr)
426 {
427     CPUSPARCState *env = cpu_env(cs);
428     int fault_type;
429 
430 #ifdef DEBUG_UNASSIGNED
431     if (is_asi) {
432         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
433                " asi 0x%02x from " TARGET_FMT_lx "\n",
434                is_exec ? "exec" : is_write ? "write" : "read", size,
435                size == 1 ? "" : "s", addr, is_asi, env->pc);
436     } else {
437         printf("Unassigned mem %s access of %d byte%s to " HWADDR_FMT_plx
438                " from " TARGET_FMT_lx "\n",
439                is_exec ? "exec" : is_write ? "write" : "read", size,
440                size == 1 ? "" : "s", addr, env->pc);
441     }
442 #endif
443     /* Don't overwrite translation and access faults */
444     fault_type = (env->mmuregs[3] & 0x1c) >> 2;
445     if ((fault_type > 4) || (fault_type == 0)) {
446         env->mmuregs[3] = 0; /* Fault status register */
447         if (is_asi) {
448             env->mmuregs[3] |= 1 << 16;
449         }
450         if (env->psrs) {
451             env->mmuregs[3] |= 1 << 5;
452         }
453         if (is_exec) {
454             env->mmuregs[3] |= 1 << 6;
455         }
456         if (is_write) {
457             env->mmuregs[3] |= 1 << 7;
458         }
459         env->mmuregs[3] |= (5 << 2) | 2;
460         /* SuperSPARC will never place instruction fault addresses in the FAR */
461         if (!is_exec) {
462             env->mmuregs[4] = addr; /* Fault address register */
463         }
464     }
465     /* overflow (same type fault was not read before another fault) */
466     if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
467         env->mmuregs[3] |= 1;
468     }
469 
470     if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
471         int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
472         cpu_raise_exception_ra(env, tt, retaddr);
473     }
474 
475     /*
476      * flush neverland mappings created during no-fault mode,
477      * so the sequential MMU faults report proper fault types
478      */
479     if (env->mmuregs[0] & MMU_NF) {
480         tlb_flush(cs);
481     }
482 }
483 #else
484 static void sparc_raise_mmu_fault(CPUState *cs, hwaddr addr,
485                                   bool is_write, bool is_exec, int is_asi,
486                                   unsigned size, uintptr_t retaddr)
487 {
488     CPUSPARCState *env = cpu_env(cs);
489 
490 #ifdef DEBUG_UNASSIGNED
491     printf("Unassigned mem access to " HWADDR_FMT_plx " from " TARGET_FMT_lx
492            "\n", addr, env->pc);
493 #endif
494 
495     if (is_exec) { /* XXX has_hypervisor */
496         if (env->lsu & (IMMU_E)) {
497             cpu_raise_exception_ra(env, TT_CODE_ACCESS, retaddr);
498         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
499             cpu_raise_exception_ra(env, TT_INSN_REAL_TRANSLATION_MISS, retaddr);
500         }
501     } else {
502         if (env->lsu & (DMMU_E)) {
503             cpu_raise_exception_ra(env, TT_DATA_ACCESS, retaddr);
504         } else if (cpu_has_hypervisor(env) && !(env->hpstate & HS_PRIV)) {
505             cpu_raise_exception_ra(env, TT_DATA_REAL_TRANSLATION_MISS, retaddr);
506         }
507     }
508 }
509 #endif
510 #endif
511 
512 #ifndef TARGET_SPARC64
513 #ifndef CONFIG_USER_ONLY
514 
515 
516 /* Leon3 cache control */
517 
518 static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
519                                    uint64_t val, int size)
520 {
521     DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
522                           addr, val, size);
523 
524     if (size != 4) {
525         DPRINTF_CACHE_CONTROL("32bits only\n");
526         return;
527     }
528 
529     switch (addr) {
530     case 0x00:              /* Cache control */
531 
532         /* These values must always be read as zeros */
533         val &= ~CACHE_CTRL_FD;
534         val &= ~CACHE_CTRL_FI;
535         val &= ~CACHE_CTRL_IB;
536         val &= ~CACHE_CTRL_IP;
537         val &= ~CACHE_CTRL_DP;
538 
539         env->cache_control = val;
540         break;
541     case 0x04:              /* Instruction cache configuration */
542     case 0x08:              /* Data cache configuration */
543         /* Read Only */
544         break;
545     default:
546         DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
547         break;
548     };
549 }
550 
551 static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
552                                        int size)
553 {
554     uint64_t ret = 0;
555 
556     if (size != 4) {
557         DPRINTF_CACHE_CONTROL("32bits only\n");
558         return 0;
559     }
560 
561     switch (addr) {
562     case 0x00:              /* Cache control */
563         ret = env->cache_control;
564         break;
565 
566         /* Configuration registers are read and only always keep those
567            predefined values */
568 
569     case 0x04:              /* Instruction cache configuration */
570         ret = 0x10220000;
571         break;
572     case 0x08:              /* Data cache configuration */
573         ret = 0x18220000;
574         break;
575     default:
576         DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
577         break;
578     };
579     DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
580                           addr, ret, size);
581     return ret;
582 }
583 
584 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
585                        int asi, uint32_t memop)
586 {
587     int size = 1 << (memop & MO_SIZE);
588     int sign = memop & MO_SIGN;
589     CPUState *cs = env_cpu(env);
590     uint64_t ret = 0;
591 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
592     uint32_t last_addr = addr;
593 #endif
594 
595     do_check_align(env, addr, size - 1, GETPC());
596     switch (asi) {
597     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
598     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
599         switch (addr) {
600         case 0x00:          /* Leon3 Cache Control */
601         case 0x08:          /* Leon3 Instruction Cache config */
602         case 0x0C:          /* Leon3 Date Cache config */
603             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
604                 ret = leon3_cache_control_ld(env, addr, size);
605             } else {
606                 qemu_log_mask(LOG_UNIMP, "0x" TARGET_FMT_lx ": unimplemented"
607                                          " address, size: %d\n", addr, size);
608             }
609             break;
610         case 0x01c00a00: /* MXCC control register */
611             if (size == 8) {
612                 ret = env->mxccregs[3];
613             } else {
614                 qemu_log_mask(LOG_UNIMP,
615                               "%08x: unimplemented access size: %d\n", addr,
616                               size);
617             }
618             break;
619         case 0x01c00a04: /* MXCC control register */
620             if (size == 4) {
621                 ret = env->mxccregs[3];
622             } else {
623                 qemu_log_mask(LOG_UNIMP,
624                               "%08x: unimplemented access size: %d\n", addr,
625                               size);
626             }
627             break;
628         case 0x01c00c00: /* Module reset register */
629             if (size == 8) {
630                 ret = env->mxccregs[5];
631                 /* should we do something here? */
632             } else {
633                 qemu_log_mask(LOG_UNIMP,
634                               "%08x: unimplemented access size: %d\n", addr,
635                               size);
636             }
637             break;
638         case 0x01c00f00: /* MBus port address register */
639             if (size == 8) {
640                 ret = env->mxccregs[7];
641             } else {
642                 qemu_log_mask(LOG_UNIMP,
643                               "%08x: unimplemented access size: %d\n", addr,
644                               size);
645             }
646             break;
647         default:
648             qemu_log_mask(LOG_UNIMP,
649                           "%08x: unimplemented address, size: %d\n", addr,
650                           size);
651             break;
652         }
653         DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
654                      "addr = %08x -> ret = %" PRIx64 ","
655                      "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
656 #ifdef DEBUG_MXCC
657         dump_mxcc(env);
658 #endif
659         break;
660     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
661     case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
662         {
663             int mmulev;
664 
665             mmulev = (addr >> 8) & 15;
666             if (mmulev > 4) {
667                 ret = 0;
668             } else {
669                 ret = mmu_probe(env, addr, mmulev);
670             }
671             DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
672                         addr, mmulev, ret);
673         }
674         break;
675     case ASI_M_MMUREGS: /* SuperSparc MMU regs */
676     case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
677         {
678             int reg = (addr >> 8) & 0x1f;
679 
680             ret = env->mmuregs[reg];
681             if (reg == 3) { /* Fault status cleared on read */
682                 env->mmuregs[3] = 0;
683             } else if (reg == 0x13) { /* Fault status read */
684                 ret = env->mmuregs[3];
685             } else if (reg == 0x14) { /* Fault address read */
686                 ret = env->mmuregs[4];
687             }
688             DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
689         }
690         break;
691     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
692     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
693     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
694         break;
695     case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
696     case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
697     case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
698     case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
699         break;
700     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
701     {
702         MemTxResult result;
703         hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
704 
705         switch (size) {
706         case 1:
707             ret = address_space_ldub(cs->as, access_addr,
708                                      MEMTXATTRS_UNSPECIFIED, &result);
709             break;
710         case 2:
711             ret = address_space_lduw(cs->as, access_addr,
712                                      MEMTXATTRS_UNSPECIFIED, &result);
713             break;
714         default:
715         case 4:
716             ret = address_space_ldl(cs->as, access_addr,
717                                     MEMTXATTRS_UNSPECIFIED, &result);
718             break;
719         case 8:
720             ret = address_space_ldq(cs->as, access_addr,
721                                     MEMTXATTRS_UNSPECIFIED, &result);
722             break;
723         }
724 
725         if (result != MEMTX_OK) {
726             sparc_raise_mmu_fault(cs, access_addr, false, false, false,
727                                   size, GETPC());
728         }
729         break;
730     }
731     case 0x30: /* Turbosparc secondary cache diagnostic */
732     case 0x31: /* Turbosparc RAM snoop */
733     case 0x32: /* Turbosparc page table descriptor diagnostic */
734     case 0x39: /* data cache diagnostic register */
735         ret = 0;
736         break;
737     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
738         {
739             int reg = (addr >> 8) & 3;
740 
741             switch (reg) {
742             case 0: /* Breakpoint Value (Addr) */
743                 ret = env->mmubpregs[reg];
744                 break;
745             case 1: /* Breakpoint Mask */
746                 ret = env->mmubpregs[reg];
747                 break;
748             case 2: /* Breakpoint Control */
749                 ret = env->mmubpregs[reg];
750                 break;
751             case 3: /* Breakpoint Status */
752                 ret = env->mmubpregs[reg];
753                 env->mmubpregs[reg] = 0ULL;
754                 break;
755             }
756             DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
757                         ret);
758         }
759         break;
760     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
761         ret = env->mmubpctrv;
762         break;
763     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
764         ret = env->mmubpctrc;
765         break;
766     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
767         ret = env->mmubpctrs;
768         break;
769     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
770         ret = env->mmubpaction;
771         break;
772     default:
773         sparc_raise_mmu_fault(cs, addr, false, false, asi, size, GETPC());
774         ret = 0;
775         break;
776 
777     case ASI_USERDATA: /* User data access */
778     case ASI_KERNELDATA: /* Supervisor data access */
779     case ASI_USERTXT: /* User code access */
780     case ASI_KERNELTXT: /* Supervisor code access */
781     case ASI_P: /* Implicit primary context data access (v9 only?) */
782     case ASI_M_BYPASS:    /* MMU passthrough */
783     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
784         /* These are always handled inline.  */
785         g_assert_not_reached();
786     }
787     if (sign) {
788         switch (size) {
789         case 1:
790             ret = (int8_t) ret;
791             break;
792         case 2:
793             ret = (int16_t) ret;
794             break;
795         case 4:
796             ret = (int32_t) ret;
797             break;
798         default:
799             break;
800         }
801     }
802 #ifdef DEBUG_ASI
803     dump_asi("read ", last_addr, asi, size, ret);
804 #endif
805     return ret;
806 }
807 
808 void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
809                    int asi, uint32_t memop)
810 {
811     int size = 1 << (memop & MO_SIZE);
812     CPUState *cs = env_cpu(env);
813 
814     do_check_align(env, addr, size - 1, GETPC());
815     switch (asi) {
816     case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
817     /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
818         switch (addr) {
819         case 0x00:          /* Leon3 Cache Control */
820         case 0x08:          /* Leon3 Instruction Cache config */
821         case 0x0C:          /* Leon3 Date Cache config */
822             if (env->def.features & CPU_FEATURE_CACHE_CTRL) {
823                 leon3_cache_control_st(env, addr, val, size);
824             } else {
825                 qemu_log_mask(LOG_UNIMP, "0x" TARGET_FMT_lx ": unimplemented"
826                                          " address, size: %d\n", addr, size);
827             }
828             break;
829 
830         case 0x01c00000: /* MXCC stream data register 0 */
831             if (size == 8) {
832                 env->mxccdata[0] = val;
833             } else {
834                 qemu_log_mask(LOG_UNIMP,
835                               "%08x: unimplemented access size: %d\n", addr,
836                               size);
837             }
838             break;
839         case 0x01c00008: /* MXCC stream data register 1 */
840             if (size == 8) {
841                 env->mxccdata[1] = val;
842             } else {
843                 qemu_log_mask(LOG_UNIMP,
844                               "%08x: unimplemented access size: %d\n", addr,
845                               size);
846             }
847             break;
848         case 0x01c00010: /* MXCC stream data register 2 */
849             if (size == 8) {
850                 env->mxccdata[2] = val;
851             } else {
852                 qemu_log_mask(LOG_UNIMP,
853                               "%08x: unimplemented access size: %d\n", addr,
854                               size);
855             }
856             break;
857         case 0x01c00018: /* MXCC stream data register 3 */
858             if (size == 8) {
859                 env->mxccdata[3] = val;
860             } else {
861                 qemu_log_mask(LOG_UNIMP,
862                               "%08x: unimplemented access size: %d\n", addr,
863                               size);
864             }
865             break;
866         case 0x01c00100: /* MXCC stream source */
867         {
868             int i;
869 
870             if (size == 8) {
871                 env->mxccregs[0] = val;
872             } else {
873                 qemu_log_mask(LOG_UNIMP,
874                               "%08x: unimplemented access size: %d\n", addr,
875                               size);
876             }
877 
878             for (i = 0; i < 4; i++) {
879                 MemTxResult result;
880                 hwaddr access_addr = (env->mxccregs[0] & 0xffffffffULL) + 8 * i;
881 
882                 env->mxccdata[i] = address_space_ldq(cs->as,
883                                                      access_addr,
884                                                      MEMTXATTRS_UNSPECIFIED,
885                                                      &result);
886                 if (result != MEMTX_OK) {
887                     /* TODO: investigate whether this is the right behaviour */
888                     sparc_raise_mmu_fault(cs, access_addr, false, false,
889                                           false, size, GETPC());
890                 }
891             }
892             break;
893         }
894         case 0x01c00200: /* MXCC stream destination */
895         {
896             int i;
897 
898             if (size == 8) {
899                 env->mxccregs[1] = val;
900             } else {
901                 qemu_log_mask(LOG_UNIMP,
902                               "%08x: unimplemented access size: %d\n", addr,
903                               size);
904             }
905 
906             for (i = 0; i < 4; i++) {
907                 MemTxResult result;
908                 hwaddr access_addr = (env->mxccregs[1] & 0xffffffffULL) + 8 * i;
909 
910                 address_space_stq(cs->as, access_addr, env->mxccdata[i],
911                                   MEMTXATTRS_UNSPECIFIED, &result);
912 
913                 if (result != MEMTX_OK) {
914                     /* TODO: investigate whether this is the right behaviour */
915                     sparc_raise_mmu_fault(cs, access_addr, true, false,
916                                           false, size, GETPC());
917                 }
918             }
919             break;
920         }
921         case 0x01c00a00: /* MXCC control register */
922             if (size == 8) {
923                 env->mxccregs[3] = val;
924             } else {
925                 qemu_log_mask(LOG_UNIMP,
926                               "%08x: unimplemented access size: %d\n", addr,
927                               size);
928             }
929             break;
930         case 0x01c00a04: /* MXCC control register */
931             if (size == 4) {
932                 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
933                     | val;
934             } else {
935                 qemu_log_mask(LOG_UNIMP,
936                               "%08x: unimplemented access size: %d\n", addr,
937                               size);
938             }
939             break;
940         case 0x01c00e00: /* MXCC error register  */
941             /* writing a 1 bit clears the error */
942             if (size == 8) {
943                 env->mxccregs[6] &= ~val;
944             } else {
945                 qemu_log_mask(LOG_UNIMP,
946                               "%08x: unimplemented access size: %d\n", addr,
947                               size);
948             }
949             break;
950         case 0x01c00f00: /* MBus port address register */
951             if (size == 8) {
952                 env->mxccregs[7] = val;
953             } else {
954                 qemu_log_mask(LOG_UNIMP,
955                               "%08x: unimplemented access size: %d\n", addr,
956                               size);
957             }
958             break;
959         default:
960             qemu_log_mask(LOG_UNIMP,
961                           "%08x: unimplemented address, size: %d\n", addr,
962                           size);
963             break;
964         }
965         DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
966                      asi, size, addr, val);
967 #ifdef DEBUG_MXCC
968         dump_mxcc(env);
969 #endif
970         break;
971     case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
972     case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
973         {
974             int mmulev;
975 
976             mmulev = (addr >> 8) & 15;
977             DPRINTF_MMU("mmu flush level %d\n", mmulev);
978             switch (mmulev) {
979             case 0: /* flush page */
980                 tlb_flush_page(cs, addr & 0xfffff000);
981                 break;
982             case 1: /* flush segment (256k) */
983             case 2: /* flush region (16M) */
984             case 3: /* flush context (4G) */
985             case 4: /* flush entire */
986                 tlb_flush(cs);
987                 break;
988             default:
989                 break;
990             }
991 #ifdef DEBUG_MMU
992             dump_mmu(env);
993 #endif
994         }
995         break;
996     case ASI_M_MMUREGS: /* write MMU regs */
997     case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
998         {
999             int reg = (addr >> 8) & 0x1f;
1000             uint32_t oldreg;
1001 
1002             oldreg = env->mmuregs[reg];
1003             switch (reg) {
1004             case 0: /* Control Register */
1005                 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1006                     (val & 0x00ffffff);
1007                 /* Mappings generated during no-fault mode
1008                    are invalid in normal mode.  */
1009                 if ((oldreg ^ env->mmuregs[reg])
1010                     & (MMU_NF | env->def.mmu_bm)) {
1011                     tlb_flush(cs);
1012                 }
1013                 break;
1014             case 1: /* Context Table Pointer Register */
1015                 env->mmuregs[reg] = val & env->def.mmu_ctpr_mask;
1016                 break;
1017             case 2: /* Context Register */
1018                 env->mmuregs[reg] = val & env->def.mmu_cxr_mask;
1019                 if (oldreg != env->mmuregs[reg]) {
1020                     /* we flush when the MMU context changes because
1021                        QEMU has no MMU context support */
1022                     tlb_flush(cs);
1023                 }
1024                 break;
1025             case 3: /* Synchronous Fault Status Register with Clear */
1026             case 4: /* Synchronous Fault Address Register */
1027                 break;
1028             case 0x10: /* TLB Replacement Control Register */
1029                 env->mmuregs[reg] = val & env->def.mmu_trcr_mask;
1030                 break;
1031             case 0x13: /* Synchronous Fault Status Register with Read
1032                           and Clear */
1033                 env->mmuregs[3] = val & env->def.mmu_sfsr_mask;
1034                 break;
1035             case 0x14: /* Synchronous Fault Address Register */
1036                 env->mmuregs[4] = val;
1037                 break;
1038             default:
1039                 env->mmuregs[reg] = val;
1040                 break;
1041             }
1042             if (oldreg != env->mmuregs[reg]) {
1043                 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1044                             reg, oldreg, env->mmuregs[reg]);
1045             }
1046 #ifdef DEBUG_MMU
1047             dump_mmu(env);
1048 #endif
1049         }
1050         break;
1051     case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
1052     case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
1053     case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
1054         break;
1055     case ASI_M_TXTC_TAG:   /* I-cache tag */
1056     case ASI_M_TXTC_DATA:  /* I-cache data */
1057     case ASI_M_DATAC_TAG:  /* D-cache tag */
1058     case ASI_M_DATAC_DATA: /* D-cache data */
1059     case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
1060     case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
1061     case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
1062     case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
1063     case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
1064         break;
1065     case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1066         {
1067             MemTxResult result;
1068             hwaddr access_addr = (hwaddr)addr | ((hwaddr)(asi & 0xf) << 32);
1069 
1070             switch (size) {
1071             case 1:
1072                 address_space_stb(cs->as, access_addr, val,
1073                                   MEMTXATTRS_UNSPECIFIED, &result);
1074                 break;
1075             case 2:
1076                 address_space_stw(cs->as, access_addr, val,
1077                                   MEMTXATTRS_UNSPECIFIED, &result);
1078                 break;
1079             case 4:
1080             default:
1081                 address_space_stl(cs->as, access_addr, val,
1082                                   MEMTXATTRS_UNSPECIFIED, &result);
1083                 break;
1084             case 8:
1085                 address_space_stq(cs->as, access_addr, val,
1086                                   MEMTXATTRS_UNSPECIFIED, &result);
1087                 break;
1088             }
1089             if (result != MEMTX_OK) {
1090                 sparc_raise_mmu_fault(cs, access_addr, true, false, false,
1091                                       size, GETPC());
1092             }
1093         }
1094         break;
1095     case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
1096     case 0x31: /* store buffer data, Ross RT620 I-cache flush or
1097                   Turbosparc snoop RAM */
1098     case 0x32: /* store buffer control or Turbosparc page table
1099                   descriptor diagnostic */
1100     case 0x36: /* I-cache flash clear */
1101     case 0x37: /* D-cache flash clear */
1102         break;
1103     case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
1104         {
1105             int reg = (addr >> 8) & 3;
1106 
1107             switch (reg) {
1108             case 0: /* Breakpoint Value (Addr) */
1109                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1110                 break;
1111             case 1: /* Breakpoint Mask */
1112                 env->mmubpregs[reg] = (val & 0xfffffffffULL);
1113                 break;
1114             case 2: /* Breakpoint Control */
1115                 env->mmubpregs[reg] = (val & 0x7fULL);
1116                 break;
1117             case 3: /* Breakpoint Status */
1118                 env->mmubpregs[reg] = (val & 0xfULL);
1119                 break;
1120             }
1121             DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
1122                         env->mmuregs[reg]);
1123         }
1124         break;
1125     case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1126         env->mmubpctrv = val & 0xffffffff;
1127         break;
1128     case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1129         env->mmubpctrc = val & 0x3;
1130         break;
1131     case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1132         env->mmubpctrs = val & 0x3;
1133         break;
1134     case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1135         env->mmubpaction = val & 0x1fff;
1136         break;
1137     case ASI_USERTXT: /* User code access, XXX */
1138     case ASI_KERNELTXT: /* Supervisor code access, XXX */
1139     default:
1140         sparc_raise_mmu_fault(cs, addr, true, false, asi, size, GETPC());
1141         break;
1142 
1143     case ASI_USERDATA: /* User data access */
1144     case ASI_KERNELDATA: /* Supervisor data access */
1145     case ASI_P:
1146     case ASI_M_BYPASS:    /* MMU passthrough */
1147     case ASI_LEON_BYPASS: /* LEON MMU passthrough */
1148     case ASI_M_BCOPY: /* Block copy, sta access */
1149     case ASI_M_BFILL: /* Block fill, stda access */
1150         /* These are always handled inline.  */
1151         g_assert_not_reached();
1152     }
1153 #ifdef DEBUG_ASI
1154     dump_asi("write", addr, asi, size, val);
1155 #endif
1156 }
1157 
1158 uint64_t helper_ld_code(CPUSPARCState *env, target_ulong addr, uint32_t oi)
1159 {
1160     MemOp mop = get_memop(oi);
1161     uintptr_t ra = GETPC();
1162     uint64_t ret;
1163 
1164     switch (mop & MO_SIZE) {
1165     case MO_8:
1166         ret = cpu_ldb_code_mmu(env, addr, oi, ra);
1167         if (mop & MO_SIGN) {
1168             ret = (int8_t)ret;
1169         }
1170         break;
1171     case MO_16:
1172         ret = cpu_ldw_code_mmu(env, addr, oi, ra);
1173         if ((mop & MO_BSWAP) != MO_TE) {
1174             ret = bswap16(ret);
1175         }
1176         if (mop & MO_SIGN) {
1177             ret = (int16_t)ret;
1178         }
1179         break;
1180     case MO_32:
1181         ret = cpu_ldl_code_mmu(env, addr, oi, ra);
1182         if ((mop & MO_BSWAP) != MO_TE) {
1183             ret = bswap32(ret);
1184         }
1185         if (mop & MO_SIGN) {
1186             ret = (int32_t)ret;
1187         }
1188         break;
1189     case MO_64:
1190         ret = cpu_ldq_code_mmu(env, addr, oi, ra);
1191         if ((mop & MO_BSWAP) != MO_TE) {
1192             ret = bswap64(ret);
1193         }
1194         break;
1195     default:
1196         g_assert_not_reached();
1197     }
1198     return ret;
1199 }
1200 
1201 #endif /* CONFIG_USER_ONLY */
1202 #else /* TARGET_SPARC64 */
1203 
1204 #ifdef CONFIG_USER_ONLY
1205 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1206                        int asi, uint32_t memop)
1207 {
1208     int size = 1 << (memop & MO_SIZE);
1209     int sign = memop & MO_SIGN;
1210     uint64_t ret = 0;
1211 
1212     if (asi < 0x80) {
1213         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1214     }
1215     do_check_align(env, addr, size - 1, GETPC());
1216     addr = asi_address_mask(env, asi, addr);
1217 
1218     switch (asi) {
1219     case ASI_PNF:  /* Primary no-fault */
1220     case ASI_PNFL: /* Primary no-fault LE */
1221     case ASI_SNF:  /* Secondary no-fault */
1222     case ASI_SNFL: /* Secondary no-fault LE */
1223         if (!page_check_range(addr, size, PAGE_READ)) {
1224             ret = 0;
1225             break;
1226         }
1227         switch (size) {
1228         case 1:
1229             ret = cpu_ldub_data(env, addr);
1230             break;
1231         case 2:
1232             ret = cpu_lduw_data(env, addr);
1233             break;
1234         case 4:
1235             ret = cpu_ldl_data(env, addr);
1236             break;
1237         case 8:
1238             ret = cpu_ldq_data(env, addr);
1239             break;
1240         default:
1241             g_assert_not_reached();
1242         }
1243         break;
1244         break;
1245 
1246     case ASI_P: /* Primary */
1247     case ASI_PL: /* Primary LE */
1248     case ASI_S:  /* Secondary */
1249     case ASI_SL: /* Secondary LE */
1250         /* These are always handled inline.  */
1251         g_assert_not_reached();
1252 
1253     default:
1254         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1255     }
1256 
1257     /* Convert from little endian */
1258     switch (asi) {
1259     case ASI_PNFL: /* Primary no-fault LE */
1260     case ASI_SNFL: /* Secondary no-fault LE */
1261         switch (size) {
1262         case 2:
1263             ret = bswap16(ret);
1264             break;
1265         case 4:
1266             ret = bswap32(ret);
1267             break;
1268         case 8:
1269             ret = bswap64(ret);
1270             break;
1271         }
1272     }
1273 
1274     /* Convert to signed number */
1275     if (sign) {
1276         switch (size) {
1277         case 1:
1278             ret = (int8_t) ret;
1279             break;
1280         case 2:
1281             ret = (int16_t) ret;
1282             break;
1283         case 4:
1284             ret = (int32_t) ret;
1285             break;
1286         }
1287     }
1288 #ifdef DEBUG_ASI
1289     dump_asi("read", addr, asi, size, ret);
1290 #endif
1291     return ret;
1292 }
1293 
1294 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1295                    int asi, uint32_t memop)
1296 {
1297     int size = 1 << (memop & MO_SIZE);
1298 #ifdef DEBUG_ASI
1299     dump_asi("write", addr, asi, size, val);
1300 #endif
1301     if (asi < 0x80) {
1302         cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
1303     }
1304     do_check_align(env, addr, size - 1, GETPC());
1305 
1306     switch (asi) {
1307     case ASI_P:  /* Primary */
1308     case ASI_PL: /* Primary LE */
1309     case ASI_S:  /* Secondary */
1310     case ASI_SL: /* Secondary LE */
1311         /* These are always handled inline.  */
1312         g_assert_not_reached();
1313 
1314     case ASI_PNF:  /* Primary no-fault, RO */
1315     case ASI_SNF:  /* Secondary no-fault, RO */
1316     case ASI_PNFL: /* Primary no-fault LE, RO */
1317     case ASI_SNFL: /* Secondary no-fault LE, RO */
1318     default:
1319         cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
1320     }
1321 }
1322 
1323 #else /* CONFIG_USER_ONLY */
1324 
1325 uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
1326                        int asi, uint32_t memop)
1327 {
1328     int size = 1 << (memop & MO_SIZE);
1329     int sign = memop & MO_SIGN;
1330     CPUState *cs = env_cpu(env);
1331     uint64_t ret = 0;
1332 #if defined(DEBUG_ASI)
1333     target_ulong last_addr = addr;
1334 #endif
1335 
1336     asi &= 0xff;
1337 
1338     do_check_asi(env, asi, GETPC());
1339     do_check_align(env, addr, size - 1, GETPC());
1340     addr = asi_address_mask(env, asi, addr);
1341 
1342     switch (asi) {
1343     case ASI_PNF:
1344     case ASI_PNFL:
1345     case ASI_SNF:
1346     case ASI_SNFL:
1347         {
1348             MemOpIdx oi;
1349             int idx = (env->pstate & PS_PRIV
1350                        ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
1351                        : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
1352 
1353             if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
1354 #ifdef DEBUG_ASI
1355                 dump_asi("read ", last_addr, asi, size, ret);
1356 #endif
1357                 /* exception_index is set in get_physical_address_data. */
1358                 cpu_raise_exception_ra(env, cs->exception_index, GETPC());
1359             }
1360             oi = make_memop_idx(memop, idx);
1361             switch (size) {
1362             case 1:
1363                 ret = cpu_ldb_mmu(env, addr, oi, GETPC());
1364                 break;
1365             case 2:
1366                 ret = cpu_ldw_mmu(env, addr, oi, GETPC());
1367                 break;
1368             case 4:
1369                 ret = cpu_ldl_mmu(env, addr, oi, GETPC());
1370                 break;
1371             case 8:
1372                 ret = cpu_ldq_mmu(env, addr, oi, GETPC());
1373                 break;
1374             default:
1375                 g_assert_not_reached();
1376             }
1377         }
1378         break;
1379 
1380     case ASI_AIUP:  /* As if user primary */
1381     case ASI_AIUS:  /* As if user secondary */
1382     case ASI_AIUPL: /* As if user primary LE */
1383     case ASI_AIUSL: /* As if user secondary LE */
1384     case ASI_P:  /* Primary */
1385     case ASI_S:  /* Secondary */
1386     case ASI_PL: /* Primary LE */
1387     case ASI_SL: /* Secondary LE */
1388     case ASI_REAL:      /* Bypass */
1389     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1390     case ASI_REAL_L:    /* Bypass LE */
1391     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1392     case ASI_N:  /* Nucleus */
1393     case ASI_NL: /* Nucleus Little Endian (LE) */
1394     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1395     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1396     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1397     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1398     case ASI_TWINX_REAL:   /* Real address, twinx */
1399     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1400     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1401     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1402     case ASI_TWINX_N:  /* Nucleus, twinx */
1403     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1404     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1405     case ASI_TWINX_P:  /* Primary, twinx */
1406     case ASI_TWINX_PL: /* Primary, twinx, LE */
1407     case ASI_TWINX_S:  /* Secondary, twinx */
1408     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1409     case ASI_MON_P:
1410     case ASI_MON_S:
1411     case ASI_MON_AIUP:
1412     case ASI_MON_AIUS:
1413         /* These are always handled inline.  */
1414         g_assert_not_reached();
1415 
1416     case ASI_UPA_CONFIG: /* UPA config */
1417         /* XXX */
1418         break;
1419     case ASI_LSU_CONTROL: /* LSU */
1420         ret = env->lsu;
1421         break;
1422     case ASI_IMMU: /* I-MMU regs */
1423         {
1424             int reg = (addr >> 3) & 0xf;
1425             switch (reg) {
1426             case 0:
1427                 /* 0x00 I-TSB Tag Target register */
1428                 ret = ultrasparc_tag_target(env->immu.tag_access);
1429                 break;
1430             case 3: /* SFSR */
1431                 ret = env->immu.sfsr;
1432                 break;
1433             case 5: /* TSB access */
1434                 ret = env->immu.tsb;
1435                 break;
1436             case 6:
1437                 /* 0x30 I-TSB Tag Access register */
1438                 ret = env->immu.tag_access;
1439                 break;
1440             default:
1441                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1442                 ret = 0;
1443             }
1444             break;
1445         }
1446     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
1447         {
1448             /* env->immuregs[5] holds I-MMU TSB register value
1449                env->immuregs[6] holds I-MMU Tag Access register value */
1450             ret = ultrasparc_tsb_pointer(env, &env->immu, 0);
1451             break;
1452         }
1453     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
1454         {
1455             /* env->immuregs[5] holds I-MMU TSB register value
1456                env->immuregs[6] holds I-MMU Tag Access register value */
1457             ret = ultrasparc_tsb_pointer(env, &env->immu, 1);
1458             break;
1459         }
1460     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1461         {
1462             int reg = (addr >> 3) & 0x3f;
1463 
1464             ret = env->itlb[reg].tte;
1465             break;
1466         }
1467     case ASI_ITLB_TAG_READ: /* I-MMU tag read */
1468         {
1469             int reg = (addr >> 3) & 0x3f;
1470 
1471             ret = env->itlb[reg].tag;
1472             break;
1473         }
1474     case ASI_DMMU: /* D-MMU regs */
1475         {
1476             int reg = (addr >> 3) & 0xf;
1477             switch (reg) {
1478             case 0:
1479                 /* 0x00 D-TSB Tag Target register */
1480                 ret = ultrasparc_tag_target(env->dmmu.tag_access);
1481                 break;
1482             case 1: /* 0x08 Primary Context */
1483                 ret = env->dmmu.mmu_primary_context;
1484                 break;
1485             case 2: /* 0x10 Secondary Context */
1486                 ret = env->dmmu.mmu_secondary_context;
1487                 break;
1488             case 3: /* SFSR */
1489                 ret = env->dmmu.sfsr;
1490                 break;
1491             case 4: /* 0x20 SFAR */
1492                 ret = env->dmmu.sfar;
1493                 break;
1494             case 5: /* 0x28 TSB access */
1495                 ret = env->dmmu.tsb;
1496                 break;
1497             case 6: /* 0x30 D-TSB Tag Access register */
1498                 ret = env->dmmu.tag_access;
1499                 break;
1500             case 7:
1501                 ret = env->dmmu.virtual_watchpoint;
1502                 break;
1503             case 8:
1504                 ret = env->dmmu.physical_watchpoint;
1505                 break;
1506             default:
1507                 sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1508                 ret = 0;
1509             }
1510             break;
1511         }
1512     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
1513         {
1514             /* env->dmmuregs[5] holds D-MMU TSB register value
1515                env->dmmuregs[6] holds D-MMU Tag Access register value */
1516             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 0);
1517             break;
1518         }
1519     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
1520         {
1521             /* env->dmmuregs[5] holds D-MMU TSB register value
1522                env->dmmuregs[6] holds D-MMU Tag Access register value */
1523             ret = ultrasparc_tsb_pointer(env, &env->dmmu, 1);
1524             break;
1525         }
1526     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1527         {
1528             int reg = (addr >> 3) & 0x3f;
1529 
1530             ret = env->dtlb[reg].tte;
1531             break;
1532         }
1533     case ASI_DTLB_TAG_READ: /* D-MMU tag read */
1534         {
1535             int reg = (addr >> 3) & 0x3f;
1536 
1537             ret = env->dtlb[reg].tag;
1538             break;
1539         }
1540     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1541         break;
1542     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1543         ret = env->ivec_status;
1544         break;
1545     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1546         {
1547             int reg = (addr >> 4) & 0x3;
1548             if (reg < 3) {
1549                 ret = env->ivec_data[reg];
1550             }
1551             break;
1552         }
1553     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1554         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1555             /* Hyperprivileged access only */
1556             sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1557         }
1558         /* fall through */
1559     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1560         {
1561             unsigned int i = (addr >> 3) & 0x7;
1562             ret = env->scratch[i];
1563             break;
1564         }
1565     case ASI_MMU: /* UA2005 Context ID registers */
1566         switch ((addr >> 3) & 0x3) {
1567         case 1:
1568             ret = env->dmmu.mmu_primary_context;
1569             break;
1570         case 2:
1571             ret = env->dmmu.mmu_secondary_context;
1572             break;
1573         default:
1574           sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1575         }
1576         break;
1577     case ASI_DCACHE_DATA:     /* D-cache data */
1578     case ASI_DCACHE_TAG:      /* D-cache tag access */
1579     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1580     case ASI_AFSR:            /* E-cache asynchronous fault status */
1581     case ASI_AFAR:            /* E-cache asynchronous fault address */
1582     case ASI_EC_TAG_DATA:     /* E-cache tag data */
1583     case ASI_IC_INSTR:        /* I-cache instruction access */
1584     case ASI_IC_TAG:          /* I-cache tag access */
1585     case ASI_IC_PRE_DECODE:   /* I-cache predecode */
1586     case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
1587     case ASI_EC_W:            /* E-cache tag */
1588     case ASI_EC_R:            /* E-cache tag */
1589         break;
1590     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
1591     case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
1592     case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
1593     case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
1594     case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
1595     case ASI_INTR_W:              /* Interrupt vector, WO */
1596     default:
1597         sparc_raise_mmu_fault(cs, addr, false, false, 1, size, GETPC());
1598         ret = 0;
1599         break;
1600     }
1601 
1602     /* Convert to signed number */
1603     if (sign) {
1604         switch (size) {
1605         case 1:
1606             ret = (int8_t) ret;
1607             break;
1608         case 2:
1609             ret = (int16_t) ret;
1610             break;
1611         case 4:
1612             ret = (int32_t) ret;
1613             break;
1614         default:
1615             break;
1616         }
1617     }
1618 #ifdef DEBUG_ASI
1619     dump_asi("read ", last_addr, asi, size, ret);
1620 #endif
1621     return ret;
1622 }
1623 
1624 void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
1625                    int asi, uint32_t memop)
1626 {
1627     int size = 1 << (memop & MO_SIZE);
1628     CPUState *cs = env_cpu(env);
1629 
1630 #ifdef DEBUG_ASI
1631     dump_asi("write", addr, asi, size, val);
1632 #endif
1633 
1634     asi &= 0xff;
1635 
1636     do_check_asi(env, asi, GETPC());
1637     do_check_align(env, addr, size - 1, GETPC());
1638     addr = asi_address_mask(env, asi, addr);
1639 
1640     switch (asi) {
1641     case ASI_AIUP:  /* As if user primary */
1642     case ASI_AIUS:  /* As if user secondary */
1643     case ASI_AIUPL: /* As if user primary LE */
1644     case ASI_AIUSL: /* As if user secondary LE */
1645     case ASI_P:  /* Primary */
1646     case ASI_S:  /* Secondary */
1647     case ASI_PL: /* Primary LE */
1648     case ASI_SL: /* Secondary LE */
1649     case ASI_REAL:      /* Bypass */
1650     case ASI_REAL_IO:   /* Bypass, non-cacheable */
1651     case ASI_REAL_L:    /* Bypass LE */
1652     case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
1653     case ASI_N:  /* Nucleus */
1654     case ASI_NL: /* Nucleus Little Endian (LE) */
1655     case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
1656     case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
1657     case ASI_TWINX_AIUP:   /* As if user primary, twinx */
1658     case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
1659     case ASI_TWINX_REAL:   /* Real address, twinx */
1660     case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
1661     case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
1662     case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
1663     case ASI_TWINX_N:  /* Nucleus, twinx */
1664     case ASI_TWINX_NL: /* Nucleus, twinx, LE */
1665     /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1666     case ASI_TWINX_P:  /* Primary, twinx */
1667     case ASI_TWINX_PL: /* Primary, twinx, LE */
1668     case ASI_TWINX_S:  /* Secondary, twinx */
1669     case ASI_TWINX_SL: /* Secondary, twinx, LE */
1670         /* These are always handled inline.  */
1671         g_assert_not_reached();
1672     /* these ASIs have different functions on UltraSPARC-IIIi
1673      * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1674      */
1675     case 0x31:
1676     case 0x32:
1677     case 0x39:
1678     case 0x3a:
1679         if (cpu_has_hypervisor(env)) {
1680             /* UA2005
1681              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1682              * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1683              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1684              * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1685              */
1686             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1687             env->dmmu.sun4v_tsb_pointers[idx] = val;
1688         } else {
1689             goto illegal_insn;
1690         }
1691         break;
1692     case 0x33:
1693     case 0x3b:
1694         if (cpu_has_hypervisor(env)) {
1695             /* UA2005
1696              * ASI_DMMU_CTX_ZERO_CONFIG
1697              * ASI_DMMU_CTX_NONZERO_CONFIG
1698              */
1699             env->dmmu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1700         } else {
1701             goto illegal_insn;
1702         }
1703         break;
1704     case 0x35:
1705     case 0x36:
1706     case 0x3d:
1707     case 0x3e:
1708         if (cpu_has_hypervisor(env)) {
1709             /* UA2005
1710              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1711              * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1712              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1713              * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1714              */
1715             int idx = ((asi & 2) >> 1) | ((asi & 8) >> 2);
1716             env->immu.sun4v_tsb_pointers[idx] = val;
1717         } else {
1718             goto illegal_insn;
1719         }
1720       break;
1721     case 0x37:
1722     case 0x3f:
1723         if (cpu_has_hypervisor(env)) {
1724             /* UA2005
1725              * ASI_IMMU_CTX_ZERO_CONFIG
1726              * ASI_IMMU_CTX_NONZERO_CONFIG
1727              */
1728             env->immu.sun4v_ctx_config[(asi & 8) >> 3] = val;
1729         } else {
1730             goto illegal_insn;
1731         }
1732         break;
1733     case ASI_UPA_CONFIG: /* UPA config */
1734         /* XXX */
1735         return;
1736     case ASI_LSU_CONTROL: /* LSU */
1737         env->lsu = val & (DMMU_E | IMMU_E);
1738         return;
1739     case ASI_IMMU: /* I-MMU regs */
1740         {
1741             int reg = (addr >> 3) & 0xf;
1742             uint64_t oldreg;
1743 
1744             oldreg = env->immu.mmuregs[reg];
1745             switch (reg) {
1746             case 0: /* RO */
1747                 return;
1748             case 1: /* Not in I-MMU */
1749             case 2:
1750                 return;
1751             case 3: /* SFSR */
1752                 if ((val & 1) == 0) {
1753                     val = 0; /* Clear SFSR */
1754                 }
1755                 env->immu.sfsr = val;
1756                 break;
1757             case 4: /* RO */
1758                 return;
1759             case 5: /* TSB access */
1760                 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
1761                             PRIx64 "\n", env->immu.tsb, val);
1762                 env->immu.tsb = val;
1763                 break;
1764             case 6: /* Tag access */
1765                 env->immu.tag_access = val;
1766                 break;
1767             case 7:
1768             case 8:
1769                 return;
1770             default:
1771                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1772                 break;
1773             }
1774 
1775             if (oldreg != env->immu.mmuregs[reg]) {
1776                 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1777                             PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1778             }
1779 #ifdef DEBUG_MMU
1780             dump_mmu(env);
1781 #endif
1782             return;
1783         }
1784     case ASI_ITLB_DATA_IN: /* I-MMU data in */
1785         /* ignore real translation entries */
1786         if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1787             replace_tlb_1bit_lru(env->itlb, env->immu.tag_access,
1788                                  val, "immu", env, addr);
1789         }
1790         return;
1791     case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
1792         {
1793             /* TODO: auto demap */
1794 
1795             unsigned int i = (addr >> 3) & 0x3f;
1796 
1797             /* ignore real translation entries */
1798             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1799                 replace_tlb_entry(&env->itlb[i], env->immu.tag_access,
1800                                   sun4v_tte_to_sun4u(env, addr, val), env);
1801             }
1802 #ifdef DEBUG_MMU
1803             DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
1804             dump_mmu(env);
1805 #endif
1806             return;
1807         }
1808     case ASI_IMMU_DEMAP: /* I-MMU demap */
1809         demap_tlb(env->itlb, addr, "immu", env);
1810         return;
1811     case ASI_DMMU: /* D-MMU regs */
1812         {
1813             int reg = (addr >> 3) & 0xf;
1814             uint64_t oldreg;
1815 
1816             oldreg = env->dmmu.mmuregs[reg];
1817             switch (reg) {
1818             case 0: /* RO */
1819             case 4:
1820                 return;
1821             case 3: /* SFSR */
1822                 if ((val & 1) == 0) {
1823                     val = 0; /* Clear SFSR, Fault address */
1824                     env->dmmu.sfar = 0;
1825                 }
1826                 env->dmmu.sfsr = val;
1827                 break;
1828             case 1: /* Primary context */
1829                 env->dmmu.mmu_primary_context = val;
1830                 /* can be optimized to only flush MMU_USER_IDX
1831                    and MMU_KERNEL_IDX entries */
1832                 tlb_flush(cs);
1833                 break;
1834             case 2: /* Secondary context */
1835                 env->dmmu.mmu_secondary_context = val;
1836                 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1837                    and MMU_KERNEL_SECONDARY_IDX entries */
1838                 tlb_flush(cs);
1839                 break;
1840             case 5: /* TSB access */
1841                 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
1842                             PRIx64 "\n", env->dmmu.tsb, val);
1843                 env->dmmu.tsb = val;
1844                 break;
1845             case 6: /* Tag access */
1846                 env->dmmu.tag_access = val;
1847                 break;
1848             case 7: /* Virtual Watchpoint */
1849                 env->dmmu.virtual_watchpoint = val;
1850                 break;
1851             case 8: /* Physical Watchpoint */
1852                 env->dmmu.physical_watchpoint = val;
1853                 break;
1854             default:
1855                 sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1856                 break;
1857             }
1858 
1859             if (oldreg != env->dmmu.mmuregs[reg]) {
1860                 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
1861                             PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1862             }
1863 #ifdef DEBUG_MMU
1864             dump_mmu(env);
1865 #endif
1866             return;
1867         }
1868     case ASI_DTLB_DATA_IN: /* D-MMU data in */
1869       /* ignore real translation entries */
1870       if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1871           replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access,
1872                                val, "dmmu", env, addr);
1873       }
1874       return;
1875     case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
1876         {
1877             unsigned int i = (addr >> 3) & 0x3f;
1878 
1879             /* ignore real translation entries */
1880             if (!(addr & TLB_UST1_IS_REAL_BIT)) {
1881                 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access,
1882                                   sun4v_tte_to_sun4u(env, addr, val), env);
1883             }
1884 #ifdef DEBUG_MMU
1885             DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
1886             dump_mmu(env);
1887 #endif
1888             return;
1889         }
1890     case ASI_DMMU_DEMAP: /* D-MMU demap */
1891         demap_tlb(env->dtlb, addr, "dmmu", env);
1892         return;
1893     case ASI_INTR_RECEIVE: /* Interrupt data receive */
1894         env->ivec_status = val & 0x20;
1895         return;
1896     case ASI_SCRATCHPAD: /* UA2005 privileged scratchpad */
1897         if (unlikely((addr >= 0x20) && (addr < 0x30))) {
1898             /* Hyperprivileged access only */
1899             sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1900         }
1901         /* fall through */
1902     case ASI_HYP_SCRATCHPAD: /* UA2005 hyperprivileged scratchpad */
1903         {
1904             unsigned int i = (addr >> 3) & 0x7;
1905             env->scratch[i] = val;
1906             return;
1907         }
1908     case ASI_MMU: /* UA2005 Context ID registers */
1909         {
1910           switch ((addr >> 3) & 0x3) {
1911           case 1:
1912               env->dmmu.mmu_primary_context = val;
1913               env->immu.mmu_primary_context = val;
1914               tlb_flush_by_mmuidx(cs,
1915                                   (1 << MMU_USER_IDX) | (1 << MMU_KERNEL_IDX));
1916               break;
1917           case 2:
1918               env->dmmu.mmu_secondary_context = val;
1919               env->immu.mmu_secondary_context = val;
1920               tlb_flush_by_mmuidx(cs,
1921                                   (1 << MMU_USER_SECONDARY_IDX) |
1922                                   (1 << MMU_KERNEL_SECONDARY_IDX));
1923               break;
1924           default:
1925               sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1926           }
1927         }
1928         return;
1929     case ASI_QUEUE: /* UA2005 CPU mondo queue */
1930     case ASI_DCACHE_DATA: /* D-cache data */
1931     case ASI_DCACHE_TAG: /* D-cache tag access */
1932     case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
1933     case ASI_AFSR: /* E-cache asynchronous fault status */
1934     case ASI_AFAR: /* E-cache asynchronous fault address */
1935     case ASI_EC_TAG_DATA: /* E-cache tag data */
1936     case ASI_IC_INSTR: /* I-cache instruction access */
1937     case ASI_IC_TAG: /* I-cache tag access */
1938     case ASI_IC_PRE_DECODE: /* I-cache predecode */
1939     case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
1940     case ASI_EC_W: /* E-cache tag */
1941     case ASI_EC_R: /* E-cache tag */
1942         return;
1943     case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
1944     case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
1945     case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
1946     case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
1947     case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
1948     case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
1949     case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
1950     case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
1951     case ASI_INTR_R: /* Incoming interrupt vector, RO */
1952     case ASI_PNF: /* Primary no-fault, RO */
1953     case ASI_SNF: /* Secondary no-fault, RO */
1954     case ASI_PNFL: /* Primary no-fault LE, RO */
1955     case ASI_SNFL: /* Secondary no-fault LE, RO */
1956     default:
1957         sparc_raise_mmu_fault(cs, addr, true, false, 1, size, GETPC());
1958         return;
1959     illegal_insn:
1960         cpu_raise_exception_ra(env, TT_ILL_INSN, GETPC());
1961     }
1962 }
1963 #endif /* CONFIG_USER_ONLY */
1964 #endif /* TARGET_SPARC64 */
1965 
1966 #if !defined(CONFIG_USER_ONLY)
1967 
1968 void sparc_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1969                                      vaddr addr, unsigned size,
1970                                      MMUAccessType access_type,
1971                                      int mmu_idx, MemTxAttrs attrs,
1972                                      MemTxResult response, uintptr_t retaddr)
1973 {
1974     bool is_write = access_type == MMU_DATA_STORE;
1975     bool is_exec = access_type == MMU_INST_FETCH;
1976     bool is_asi = false;
1977 
1978     sparc_raise_mmu_fault(cs, physaddr, is_write, is_exec,
1979                           is_asi, size, retaddr);
1980 }
1981 #endif
1982