xref: /qemu/target/sh4/helper.c (revision 9c2ff9cdc9b33472333e9431cbf4417f5f228883)
1 /*
2  *  SH4 emulation
3  *
4  *  Copyright (c) 2005 Samuel Tardieu
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 
22 #include "cpu.h"
23 #include "exec/cputlb.h"
24 #include "exec/exec-all.h"
25 #include "exec/page-protection.h"
26 #include "exec/target_page.h"
27 #include "exec/log.h"
28 
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/sh4/sh_intc.h"
31 #include "system/runstate.h"
32 #endif
33 
34 #define MMU_OK                   0
35 #define MMU_ITLB_MISS            (-1)
36 #define MMU_ITLB_MULTIPLE        (-2)
37 #define MMU_ITLB_VIOLATION       (-3)
38 #define MMU_DTLB_MISS_READ       (-4)
39 #define MMU_DTLB_MISS_WRITE      (-5)
40 #define MMU_DTLB_INITIAL_WRITE   (-6)
41 #define MMU_DTLB_VIOLATION_READ  (-7)
42 #define MMU_DTLB_VIOLATION_WRITE (-8)
43 #define MMU_DTLB_MULTIPLE        (-9)
44 #define MMU_DTLB_MISS            (-10)
45 #define MMU_IADDR_ERROR          (-11)
46 #define MMU_DADDR_ERROR_READ     (-12)
47 #define MMU_DADDR_ERROR_WRITE    (-13)
48 
49 #if defined(CONFIG_USER_ONLY)
50 
51 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr)
52 {
53     /* For user mode, only U0 area is cacheable. */
54     return !(addr & 0x80000000);
55 }
56 
57 #else /* !CONFIG_USER_ONLY */
58 
59 void superh_cpu_do_interrupt(CPUState *cs)
60 {
61     CPUSH4State *env = cpu_env(cs);
62     int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD;
63     int do_exp, irq_vector = cs->exception_index;
64 
65     /* prioritize exceptions over interrupts */
66 
67     do_exp = cs->exception_index != -1;
68     do_irq = do_irq && (cs->exception_index == -1);
69 
70     if (env->sr & (1u << SR_BL)) {
71         if (do_exp && cs->exception_index != 0x1e0) {
72             /* In theory a masked exception generates a reset exception,
73                which in turn jumps to the reset vector. However this only
74                works when using a bootloader. When using a kernel and an
75                initrd, they need to be reloaded and the program counter
76                should be loaded with the kernel entry point.
77                qemu_system_reset_request takes care of that.  */
78             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
79             return;
80         }
81         if (do_irq && !env->in_sleep) {
82             return; /* masked */
83         }
84     }
85     env->in_sleep = 0;
86 
87     if (do_irq) {
88         irq_vector = sh_intc_get_pending_vector(env->intc_handle,
89                                                 (env->sr >> 4) & 0xf);
90         if (irq_vector == -1) {
91             return; /* masked */
92         }
93     }
94 
95     if (qemu_loglevel_mask(CPU_LOG_INT)) {
96         const char *expname;
97         switch (cs->exception_index) {
98         case 0x0e0:
99             expname = "addr_error";
100             break;
101         case 0x040:
102             expname = "tlb_miss";
103             break;
104         case 0x0a0:
105             expname = "tlb_violation";
106             break;
107         case 0x180:
108             expname = "illegal_instruction";
109             break;
110         case 0x1a0:
111             expname = "slot_illegal_instruction";
112             break;
113         case 0x800:
114             expname = "fpu_disable";
115             break;
116         case 0x820:
117             expname = "slot_fpu";
118             break;
119         case 0x100:
120             expname = "data_write";
121             break;
122         case 0x060:
123             expname = "dtlb_miss_write";
124             break;
125         case 0x0c0:
126             expname = "dtlb_violation_write";
127             break;
128         case 0x120:
129             expname = "fpu_exception";
130             break;
131         case 0x080:
132             expname = "initial_page_write";
133             break;
134         case 0x160:
135             expname = "trapa";
136             break;
137         default:
138             expname = do_irq ? "interrupt" : "???";
139             break;
140         }
141         qemu_log("exception 0x%03x [%s] raised\n",
142                   irq_vector, expname);
143         log_cpu_state(cs, 0);
144     }
145 
146     env->ssr = cpu_read_sr(env);
147     env->spc = env->pc;
148     env->sgr = env->gregs[15];
149     env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB);
150     env->lock_addr = -1;
151 
152     if (env->flags & TB_FLAG_DELAY_SLOT_MASK) {
153         /* Branch instruction should be executed again before delay slot. */
154         env->spc -= 2;
155         /* Clear flags for exception/interrupt routine. */
156         env->flags &= ~TB_FLAG_DELAY_SLOT_MASK;
157     }
158 
159     if (do_exp) {
160         env->expevt = cs->exception_index;
161         switch (cs->exception_index) {
162         case 0x000:
163         case 0x020:
164         case 0x140:
165             env->sr &= ~(1u << SR_FD);
166             env->sr |= 0xf << 4; /* IMASK */
167             env->pc = 0xa0000000;
168             break;
169         case 0x040:
170         case 0x060:
171             env->pc = env->vbr + 0x400;
172             break;
173         case 0x160:
174             env->spc += 2; /* special case for TRAPA */
175             /* fall through */
176         default:
177             env->pc = env->vbr + 0x100;
178             break;
179         }
180         return;
181     }
182 
183     if (do_irq) {
184         env->intevt = irq_vector;
185         env->pc = env->vbr + 0x600;
186         return;
187     }
188 }
189 
190 static void update_itlb_use(CPUSH4State * env, int itlbnb)
191 {
192     uint32_t or_mask = 0, and_mask = 0xff;
193 
194     switch (itlbnb) {
195     case 0:
196         and_mask = 0x1f;
197         break;
198     case 1:
199         and_mask = 0xe7;
200         or_mask = 0x80;
201         break;
202     case 2:
203         and_mask = 0xfb;
204         or_mask = 0x50;
205         break;
206     case 3:
207         or_mask = 0x2c;
208         break;
209     }
210 
211     env->mmucr &= (and_mask << 24) | 0x00ffffff;
212     env->mmucr |= (or_mask << 24);
213 }
214 
215 static int itlb_replacement(CPUSH4State * env)
216 {
217     if ((env->mmucr & 0xe0000000) == 0xe0000000) {
218         return 0;
219     }
220     if ((env->mmucr & 0x98000000) == 0x18000000) {
221         return 1;
222     }
223     if ((env->mmucr & 0x54000000) == 0x04000000) {
224         return 2;
225     }
226     if ((env->mmucr & 0x2c000000) == 0x00000000) {
227         return 3;
228     }
229     cpu_abort(env_cpu(env), "Unhandled itlb_replacement");
230 }
231 
232 /* Find the corresponding entry in the right TLB
233    Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE
234 */
235 static int find_tlb_entry(CPUSH4State * env, target_ulong address,
236                           tlb_t * entries, uint8_t nbtlb, int use_asid)
237 {
238     int match = MMU_DTLB_MISS;
239     uint32_t start, end;
240     uint8_t asid;
241     int i;
242 
243     asid = env->pteh & 0xff;
244 
245     for (i = 0; i < nbtlb; i++) {
246         if (!entries[i].v)
247             continue; /* Invalid entry */
248         if (!entries[i].sh && use_asid && entries[i].asid != asid)
249             continue; /* Bad ASID */
250         start = (entries[i].vpn << 10) & ~(entries[i].size - 1);
251         end = start + entries[i].size - 1;
252         if (address >= start && address <= end) { /* Match */
253             if (match != MMU_DTLB_MISS)
254                 return MMU_DTLB_MULTIPLE; /* Multiple match */
255             match = i;
256         }
257     }
258     return match;
259 }
260 
261 static void increment_urc(CPUSH4State * env)
262 {
263     uint8_t urb, urc;
264 
265     /* Increment URC */
266     urb = ((env->mmucr) >> 18) & 0x3f;
267     urc = ((env->mmucr) >> 10) & 0x3f;
268     urc++;
269     if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1))
270         urc = 0;
271     env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10);
272 }
273 
274 /* Copy and utlb entry into itlb
275    Return entry
276 */
277 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb)
278 {
279     int itlb;
280 
281     tlb_t * ientry;
282     itlb = itlb_replacement(env);
283     ientry = &env->itlb[itlb];
284     if (ientry->v) {
285         tlb_flush_page(env_cpu(env), ientry->vpn << 10);
286     }
287     *ientry = env->utlb[utlb];
288     update_itlb_use(env, itlb);
289     return itlb;
290 }
291 
292 /* Find itlb entry
293    Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE
294 */
295 static int find_itlb_entry(CPUSH4State * env, target_ulong address,
296                            int use_asid)
297 {
298     int e;
299 
300     e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid);
301     if (e == MMU_DTLB_MULTIPLE) {
302         e = MMU_ITLB_MULTIPLE;
303     } else if (e == MMU_DTLB_MISS) {
304         e = MMU_ITLB_MISS;
305     } else if (e >= 0) {
306         update_itlb_use(env, e);
307     }
308     return e;
309 }
310 
311 /* Find utlb entry
312    Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */
313 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid)
314 {
315     /* per utlb access */
316     increment_urc(env);
317 
318     /* Return entry */
319     return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid);
320 }
321 
322 /* Match address against MMU
323    Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE,
324    MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ,
325    MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS,
326    MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION,
327    MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE.
328 */
329 static int get_mmu_address(CPUSH4State * env, target_ulong * physical,
330                            int *prot, target_ulong address,
331                            MMUAccessType access_type)
332 {
333     int use_asid, n;
334     tlb_t *matching = NULL;
335 
336     use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
337 
338     if (access_type == MMU_INST_FETCH) {
339         n = find_itlb_entry(env, address, use_asid);
340         if (n >= 0) {
341             matching = &env->itlb[n];
342             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
343                 n = MMU_ITLB_VIOLATION;
344             } else {
345                 *prot = PAGE_EXEC;
346             }
347         } else {
348             n = find_utlb_entry(env, address, use_asid);
349             if (n >= 0) {
350                 n = copy_utlb_entry_itlb(env, n);
351                 matching = &env->itlb[n];
352                 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
353                     n = MMU_ITLB_VIOLATION;
354                 } else {
355                     *prot = PAGE_READ | PAGE_EXEC;
356                     if ((matching->pr & 1) && matching->d) {
357                         *prot |= PAGE_WRITE;
358                     }
359                 }
360             } else if (n == MMU_DTLB_MULTIPLE) {
361                 n = MMU_ITLB_MULTIPLE;
362             } else if (n == MMU_DTLB_MISS) {
363                 n = MMU_ITLB_MISS;
364             }
365         }
366     } else {
367         n = find_utlb_entry(env, address, use_asid);
368         if (n >= 0) {
369             matching = &env->utlb[n];
370             if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) {
371                 n = (access_type == MMU_DATA_STORE)
372                     ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ;
373             } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) {
374                 n = MMU_DTLB_VIOLATION_WRITE;
375             } else if ((access_type == MMU_DATA_STORE) && !matching->d) {
376                 n = MMU_DTLB_INITIAL_WRITE;
377             } else {
378                 *prot = PAGE_READ;
379                 if ((matching->pr & 1) && matching->d) {
380                     *prot |= PAGE_WRITE;
381                 }
382             }
383         } else if (n == MMU_DTLB_MISS) {
384             n = (access_type == MMU_DATA_STORE)
385                 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ;
386         }
387     }
388     if (n >= 0) {
389         n = MMU_OK;
390         *physical = ((matching->ppn << 10) & ~(matching->size - 1))
391                     | (address & (matching->size - 1));
392     }
393     return n;
394 }
395 
396 static int get_physical_address(CPUSH4State * env, target_ulong * physical,
397                                 int *prot, target_ulong address,
398                                 MMUAccessType access_type)
399 {
400     /* P1, P2 and P4 areas do not use translation */
401     if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) {
402         if (!(env->sr & (1u << SR_MD))
403                 && (address < 0xe0000000 || address >= 0xe4000000)) {
404             /* Unauthorized access in user mode (only store queues are available) */
405             qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n");
406             if (access_type == MMU_DATA_LOAD) {
407                 return MMU_DADDR_ERROR_READ;
408             } else if (access_type == MMU_DATA_STORE) {
409                 return MMU_DADDR_ERROR_WRITE;
410             } else {
411                 return MMU_IADDR_ERROR;
412             }
413         }
414         if (address >= 0x80000000 && address < 0xc0000000) {
415             /* Mask upper 3 bits for P1 and P2 areas */
416             *physical = address & 0x1fffffff;
417         } else {
418             *physical = address;
419         }
420         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
421         return MMU_OK;
422     }
423 
424     /* If MMU is disabled, return the corresponding physical page */
425     if (!(env->mmucr & MMUCR_AT)) {
426         *physical = address & 0x1FFFFFFF;
427         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
428         return MMU_OK;
429     }
430 
431     /* We need to resort to the MMU */
432     return get_mmu_address(env, physical, prot, address, access_type);
433 }
434 
435 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
436 {
437     target_ulong physical;
438     int prot;
439 
440     if (get_physical_address(cpu_env(cs), &physical, &prot, addr, MMU_DATA_LOAD)
441             == MMU_OK) {
442         return physical;
443     }
444 
445     return -1;
446 }
447 
448 void cpu_load_tlb(CPUSH4State * env)
449 {
450     CPUState *cs = env_cpu(env);
451     int n = cpu_mmucr_urc(env->mmucr);
452     tlb_t * entry = &env->utlb[n];
453 
454     if (entry->v) {
455         /* Overwriting valid entry in utlb. */
456         target_ulong address = entry->vpn << 10;
457         tlb_flush_page(cs, address);
458     }
459 
460     /* Take values into cpu status from registers. */
461     entry->asid = (uint8_t)cpu_pteh_asid(env->pteh);
462     entry->vpn  = cpu_pteh_vpn(env->pteh);
463     entry->v    = (uint8_t)cpu_ptel_v(env->ptel);
464     entry->ppn  = cpu_ptel_ppn(env->ptel);
465     entry->sz   = (uint8_t)cpu_ptel_sz(env->ptel);
466     switch (entry->sz) {
467     case 0: /* 00 */
468         entry->size = 1024; /* 1K */
469         break;
470     case 1: /* 01 */
471         entry->size = 1024 * 4; /* 4K */
472         break;
473     case 2: /* 10 */
474         entry->size = 1024 * 64; /* 64K */
475         break;
476     case 3: /* 11 */
477         entry->size = 1024 * 1024; /* 1M */
478         break;
479     default:
480         cpu_abort(cs, "Unhandled load_tlb");
481         break;
482     }
483     entry->sh   = (uint8_t)cpu_ptel_sh(env->ptel);
484     entry->c    = (uint8_t)cpu_ptel_c(env->ptel);
485     entry->pr   = (uint8_t)cpu_ptel_pr(env->ptel);
486     entry->d    = (uint8_t)cpu_ptel_d(env->ptel);
487     entry->wt   = (uint8_t)cpu_ptel_wt(env->ptel);
488     entry->sa   = (uint8_t)cpu_ptea_sa(env->ptea);
489     entry->tc   = (uint8_t)cpu_ptea_tc(env->ptea);
490 }
491 
492  void cpu_sh4_invalidate_tlb(CPUSH4State *s)
493 {
494     int i;
495 
496     /* UTLB */
497     for (i = 0; i < UTLB_SIZE; i++) {
498         tlb_t * entry = &s->utlb[i];
499         entry->v = 0;
500     }
501     /* ITLB */
502     for (i = 0; i < ITLB_SIZE; i++) {
503         tlb_t * entry = &s->itlb[i];
504         entry->v = 0;
505     }
506 
507     tlb_flush(env_cpu(s));
508 }
509 
510 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s,
511                                        hwaddr addr)
512 {
513     int index = (addr & 0x00000300) >> 8;
514     tlb_t * entry = &s->itlb[index];
515 
516     return (entry->vpn  << 10) |
517            (entry->v    <<  8) |
518            (entry->asid);
519 }
520 
521 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr,
522                                     uint32_t mem_value)
523 {
524     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
525     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
526     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
527 
528     int index = (addr & 0x00000300) >> 8;
529     tlb_t * entry = &s->itlb[index];
530     if (entry->v) {
531         /* Overwriting valid entry in itlb. */
532         target_ulong address = entry->vpn << 10;
533         tlb_flush_page(env_cpu(s), address);
534     }
535     entry->asid = asid;
536     entry->vpn = vpn;
537     entry->v = v;
538 }
539 
540 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s,
541                                        hwaddr addr)
542 {
543     int array = (addr & 0x00800000) >> 23;
544     int index = (addr & 0x00000300) >> 8;
545     tlb_t * entry = &s->itlb[index];
546 
547     if (array == 0) {
548         /* ITLB Data Array 1 */
549         return (entry->ppn << 10) |
550                (entry->v   <<  8) |
551                (entry->pr  <<  5) |
552                ((entry->sz & 1) <<  6) |
553                ((entry->sz & 2) <<  4) |
554                (entry->c   <<  3) |
555                (entry->sh  <<  1);
556     } else {
557         /* ITLB Data Array 2 */
558         return (entry->tc << 1) |
559                (entry->sa);
560     }
561 }
562 
563 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr,
564                                     uint32_t mem_value)
565 {
566     int array = (addr & 0x00800000) >> 23;
567     int index = (addr & 0x00000300) >> 8;
568     tlb_t * entry = &s->itlb[index];
569 
570     if (array == 0) {
571         /* ITLB Data Array 1 */
572         if (entry->v) {
573             /* Overwriting valid entry in utlb. */
574             target_ulong address = entry->vpn << 10;
575             tlb_flush_page(env_cpu(s), address);
576         }
577         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
578         entry->v   = (mem_value & 0x00000100) >> 8;
579         entry->sz  = (mem_value & 0x00000080) >> 6 |
580                      (mem_value & 0x00000010) >> 4;
581         entry->pr  = (mem_value & 0x00000040) >> 5;
582         entry->c   = (mem_value & 0x00000008) >> 3;
583         entry->sh  = (mem_value & 0x00000002) >> 1;
584     } else {
585         /* ITLB Data Array 2 */
586         entry->tc  = (mem_value & 0x00000008) >> 3;
587         entry->sa  = (mem_value & 0x00000007);
588     }
589 }
590 
591 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s,
592                                        hwaddr addr)
593 {
594     int index = (addr & 0x00003f00) >> 8;
595     tlb_t * entry = &s->utlb[index];
596 
597     increment_urc(s); /* per utlb access */
598 
599     return (entry->vpn  << 10) |
600            (entry->v    <<  8) |
601            (entry->asid);
602 }
603 
604 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr,
605                                     uint32_t mem_value)
606 {
607     int associate = addr & 0x0000080;
608     uint32_t vpn = (mem_value & 0xfffffc00) >> 10;
609     uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9);
610     uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8);
611     uint8_t asid = (uint8_t)(mem_value & 0x000000ff);
612     int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD));
613 
614     if (associate) {
615         int i;
616         tlb_t * utlb_match_entry = NULL;
617         int needs_tlb_flush = 0;
618 
619         /* search UTLB */
620         for (i = 0; i < UTLB_SIZE; i++) {
621             tlb_t * entry = &s->utlb[i];
622             if (!entry->v)
623                 continue;
624 
625             if (entry->vpn == vpn
626                 && (!use_asid || entry->asid == asid || entry->sh)) {
627                 if (utlb_match_entry) {
628                     CPUState *cs = env_cpu(s);
629 
630                     /* Multiple TLB Exception */
631                     cs->exception_index = 0x140;
632                     s->tea = addr;
633                     break;
634                 }
635                 if (entry->v && !v)
636                     needs_tlb_flush = 1;
637                 entry->v = v;
638                 entry->d = d;
639                 utlb_match_entry = entry;
640             }
641             increment_urc(s); /* per utlb access */
642         }
643 
644         /* search ITLB */
645         for (i = 0; i < ITLB_SIZE; i++) {
646             tlb_t * entry = &s->itlb[i];
647             if (entry->vpn == vpn
648                 && (!use_asid || entry->asid == asid || entry->sh)) {
649                 if (entry->v && !v)
650                     needs_tlb_flush = 1;
651                 if (utlb_match_entry)
652                     *entry = *utlb_match_entry;
653                 else
654                     entry->v = v;
655                 break;
656             }
657         }
658 
659         if (needs_tlb_flush) {
660             tlb_flush_page(env_cpu(s), vpn << 10);
661         }
662     } else {
663         int index = (addr & 0x00003f00) >> 8;
664         tlb_t * entry = &s->utlb[index];
665         if (entry->v) {
666             CPUState *cs = env_cpu(s);
667 
668             /* Overwriting valid entry in utlb. */
669             target_ulong address = entry->vpn << 10;
670             tlb_flush_page(cs, address);
671         }
672         entry->asid = asid;
673         entry->vpn = vpn;
674         entry->d = d;
675         entry->v = v;
676         increment_urc(s);
677     }
678 }
679 
680 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s,
681                                        hwaddr addr)
682 {
683     int array = (addr & 0x00800000) >> 23;
684     int index = (addr & 0x00003f00) >> 8;
685     tlb_t * entry = &s->utlb[index];
686 
687     increment_urc(s); /* per utlb access */
688 
689     if (array == 0) {
690         /* ITLB Data Array 1 */
691         return (entry->ppn << 10) |
692                (entry->v   <<  8) |
693                (entry->pr  <<  5) |
694                ((entry->sz & 1) <<  6) |
695                ((entry->sz & 2) <<  4) |
696                (entry->c   <<  3) |
697                (entry->d   <<  2) |
698                (entry->sh  <<  1) |
699                (entry->wt);
700     } else {
701         /* ITLB Data Array 2 */
702         return (entry->tc << 1) |
703                (entry->sa);
704     }
705 }
706 
707 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr,
708                                     uint32_t mem_value)
709 {
710     int array = (addr & 0x00800000) >> 23;
711     int index = (addr & 0x00003f00) >> 8;
712     tlb_t * entry = &s->utlb[index];
713 
714     increment_urc(s); /* per utlb access */
715 
716     if (array == 0) {
717         /* UTLB Data Array 1 */
718         if (entry->v) {
719             /* Overwriting valid entry in utlb. */
720             target_ulong address = entry->vpn << 10;
721             tlb_flush_page(env_cpu(s), address);
722         }
723         entry->ppn = (mem_value & 0x1ffffc00) >> 10;
724         entry->v   = (mem_value & 0x00000100) >> 8;
725         entry->sz  = (mem_value & 0x00000080) >> 6 |
726                      (mem_value & 0x00000010) >> 4;
727         entry->pr  = (mem_value & 0x00000060) >> 5;
728         entry->c   = (mem_value & 0x00000008) >> 3;
729         entry->d   = (mem_value & 0x00000004) >> 2;
730         entry->sh  = (mem_value & 0x00000002) >> 1;
731         entry->wt  = (mem_value & 0x00000001);
732     } else {
733         /* UTLB Data Array 2 */
734         entry->tc = (mem_value & 0x00000008) >> 3;
735         entry->sa = (mem_value & 0x00000007);
736     }
737 }
738 
739 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr)
740 {
741     int n;
742     int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD));
743 
744     /* check area */
745     if (env->sr & (1u << SR_MD)) {
746         /* For privileged mode, P2 and P4 area is not cacheable. */
747         if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr)
748             return 0;
749     } else {
750         /* For user mode, only U0 area is cacheable. */
751         if (0x80000000 <= addr)
752             return 0;
753     }
754 
755     /*
756      * TODO : Evaluate CCR and check if the cache is on or off.
757      *        Now CCR is not in CPUSH4State, but in SH7750State.
758      *        When you move the ccr into CPUSH4State, the code will be
759      *        as follows.
760      */
761 #if 0
762     /* check if operand cache is enabled or not. */
763     if (!(env->ccr & 1))
764         return 0;
765 #endif
766 
767     /* if MMU is off, no check for TLB. */
768     if (env->mmucr & MMUCR_AT)
769         return 1;
770 
771     /* check TLB */
772     n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid);
773     if (n >= 0)
774         return env->itlb[n].c;
775 
776     n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid);
777     if (n >= 0)
778         return env->utlb[n].c;
779 
780     return 0;
781 }
782 
783 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
784 {
785     if (interrupt_request & CPU_INTERRUPT_HARD) {
786         /* Delay slots are indivisible, ignore interrupts */
787         if (cpu_env(cs)->flags & TB_FLAG_DELAY_SLOT_MASK) {
788             return false;
789         } else {
790             superh_cpu_do_interrupt(cs);
791             return true;
792         }
793     }
794     return false;
795 }
796 
797 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
798                          MMUAccessType access_type, int mmu_idx,
799                          bool probe, uintptr_t retaddr)
800 {
801     CPUSH4State *env = cpu_env(cs);
802     int ret;
803 
804     target_ulong physical;
805     int prot;
806 
807     ret = get_physical_address(env, &physical, &prot, address, access_type);
808 
809     if (ret == MMU_OK) {
810         address &= TARGET_PAGE_MASK;
811         physical &= TARGET_PAGE_MASK;
812         tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE);
813         return true;
814     }
815     if (probe) {
816         return false;
817     }
818 
819     if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) {
820         env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK);
821     }
822 
823     env->tea = address;
824     switch (ret) {
825     case MMU_ITLB_MISS:
826     case MMU_DTLB_MISS_READ:
827         cs->exception_index = 0x040;
828         break;
829     case MMU_DTLB_MULTIPLE:
830     case MMU_ITLB_MULTIPLE:
831         cs->exception_index = 0x140;
832         break;
833     case MMU_ITLB_VIOLATION:
834         cs->exception_index = 0x0a0;
835         break;
836     case MMU_DTLB_MISS_WRITE:
837         cs->exception_index = 0x060;
838         break;
839     case MMU_DTLB_INITIAL_WRITE:
840         cs->exception_index = 0x080;
841         break;
842     case MMU_DTLB_VIOLATION_READ:
843         cs->exception_index = 0x0a0;
844         break;
845     case MMU_DTLB_VIOLATION_WRITE:
846         cs->exception_index = 0x0c0;
847         break;
848     case MMU_IADDR_ERROR:
849     case MMU_DADDR_ERROR_READ:
850         cs->exception_index = 0x0e0;
851         break;
852     case MMU_DADDR_ERROR_WRITE:
853         cs->exception_index = 0x100;
854         break;
855     default:
856         cpu_abort(cs, "Unhandled MMU fault");
857     }
858     cpu_loop_exit_restore(cs, retaddr);
859 }
860 #endif /* !CONFIG_USER_ONLY */
861