1 /* 2 * SH4 emulation 3 * 4 * Copyright (c) 2005 Samuel Tardieu 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 22 #include "cpu.h" 23 #include "exec/cputlb.h" 24 #include "exec/exec-all.h" 25 #include "exec/page-protection.h" 26 #include "exec/log.h" 27 28 #if !defined(CONFIG_USER_ONLY) 29 #include "hw/sh4/sh_intc.h" 30 #include "system/runstate.h" 31 #endif 32 33 #define MMU_OK 0 34 #define MMU_ITLB_MISS (-1) 35 #define MMU_ITLB_MULTIPLE (-2) 36 #define MMU_ITLB_VIOLATION (-3) 37 #define MMU_DTLB_MISS_READ (-4) 38 #define MMU_DTLB_MISS_WRITE (-5) 39 #define MMU_DTLB_INITIAL_WRITE (-6) 40 #define MMU_DTLB_VIOLATION_READ (-7) 41 #define MMU_DTLB_VIOLATION_WRITE (-8) 42 #define MMU_DTLB_MULTIPLE (-9) 43 #define MMU_DTLB_MISS (-10) 44 #define MMU_IADDR_ERROR (-11) 45 #define MMU_DADDR_ERROR_READ (-12) 46 #define MMU_DADDR_ERROR_WRITE (-13) 47 48 #if defined(CONFIG_USER_ONLY) 49 50 int cpu_sh4_is_cached(CPUSH4State *env, target_ulong addr) 51 { 52 /* For user mode, only U0 area is cacheable. */ 53 return !(addr & 0x80000000); 54 } 55 56 #else /* !CONFIG_USER_ONLY */ 57 58 void superh_cpu_do_interrupt(CPUState *cs) 59 { 60 CPUSH4State *env = cpu_env(cs); 61 int do_irq = cs->interrupt_request & CPU_INTERRUPT_HARD; 62 int do_exp, irq_vector = cs->exception_index; 63 64 /* prioritize exceptions over interrupts */ 65 66 do_exp = cs->exception_index != -1; 67 do_irq = do_irq && (cs->exception_index == -1); 68 69 if (env->sr & (1u << SR_BL)) { 70 if (do_exp && cs->exception_index != 0x1e0) { 71 /* In theory a masked exception generates a reset exception, 72 which in turn jumps to the reset vector. However this only 73 works when using a bootloader. When using a kernel and an 74 initrd, they need to be reloaded and the program counter 75 should be loaded with the kernel entry point. 76 qemu_system_reset_request takes care of that. */ 77 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 78 return; 79 } 80 if (do_irq && !env->in_sleep) { 81 return; /* masked */ 82 } 83 } 84 env->in_sleep = 0; 85 86 if (do_irq) { 87 irq_vector = sh_intc_get_pending_vector(env->intc_handle, 88 (env->sr >> 4) & 0xf); 89 if (irq_vector == -1) { 90 return; /* masked */ 91 } 92 } 93 94 if (qemu_loglevel_mask(CPU_LOG_INT)) { 95 const char *expname; 96 switch (cs->exception_index) { 97 case 0x0e0: 98 expname = "addr_error"; 99 break; 100 case 0x040: 101 expname = "tlb_miss"; 102 break; 103 case 0x0a0: 104 expname = "tlb_violation"; 105 break; 106 case 0x180: 107 expname = "illegal_instruction"; 108 break; 109 case 0x1a0: 110 expname = "slot_illegal_instruction"; 111 break; 112 case 0x800: 113 expname = "fpu_disable"; 114 break; 115 case 0x820: 116 expname = "slot_fpu"; 117 break; 118 case 0x100: 119 expname = "data_write"; 120 break; 121 case 0x060: 122 expname = "dtlb_miss_write"; 123 break; 124 case 0x0c0: 125 expname = "dtlb_violation_write"; 126 break; 127 case 0x120: 128 expname = "fpu_exception"; 129 break; 130 case 0x080: 131 expname = "initial_page_write"; 132 break; 133 case 0x160: 134 expname = "trapa"; 135 break; 136 default: 137 expname = do_irq ? "interrupt" : "???"; 138 break; 139 } 140 qemu_log("exception 0x%03x [%s] raised\n", 141 irq_vector, expname); 142 log_cpu_state(cs, 0); 143 } 144 145 env->ssr = cpu_read_sr(env); 146 env->spc = env->pc; 147 env->sgr = env->gregs[15]; 148 env->sr |= (1u << SR_BL) | (1u << SR_MD) | (1u << SR_RB); 149 env->lock_addr = -1; 150 151 if (env->flags & TB_FLAG_DELAY_SLOT_MASK) { 152 /* Branch instruction should be executed again before delay slot. */ 153 env->spc -= 2; 154 /* Clear flags for exception/interrupt routine. */ 155 env->flags &= ~TB_FLAG_DELAY_SLOT_MASK; 156 } 157 158 if (do_exp) { 159 env->expevt = cs->exception_index; 160 switch (cs->exception_index) { 161 case 0x000: 162 case 0x020: 163 case 0x140: 164 env->sr &= ~(1u << SR_FD); 165 env->sr |= 0xf << 4; /* IMASK */ 166 env->pc = 0xa0000000; 167 break; 168 case 0x040: 169 case 0x060: 170 env->pc = env->vbr + 0x400; 171 break; 172 case 0x160: 173 env->spc += 2; /* special case for TRAPA */ 174 /* fall through */ 175 default: 176 env->pc = env->vbr + 0x100; 177 break; 178 } 179 return; 180 } 181 182 if (do_irq) { 183 env->intevt = irq_vector; 184 env->pc = env->vbr + 0x600; 185 return; 186 } 187 } 188 189 static void update_itlb_use(CPUSH4State * env, int itlbnb) 190 { 191 uint32_t or_mask = 0, and_mask = 0xff; 192 193 switch (itlbnb) { 194 case 0: 195 and_mask = 0x1f; 196 break; 197 case 1: 198 and_mask = 0xe7; 199 or_mask = 0x80; 200 break; 201 case 2: 202 and_mask = 0xfb; 203 or_mask = 0x50; 204 break; 205 case 3: 206 or_mask = 0x2c; 207 break; 208 } 209 210 env->mmucr &= (and_mask << 24) | 0x00ffffff; 211 env->mmucr |= (or_mask << 24); 212 } 213 214 static int itlb_replacement(CPUSH4State * env) 215 { 216 if ((env->mmucr & 0xe0000000) == 0xe0000000) { 217 return 0; 218 } 219 if ((env->mmucr & 0x98000000) == 0x18000000) { 220 return 1; 221 } 222 if ((env->mmucr & 0x54000000) == 0x04000000) { 223 return 2; 224 } 225 if ((env->mmucr & 0x2c000000) == 0x00000000) { 226 return 3; 227 } 228 cpu_abort(env_cpu(env), "Unhandled itlb_replacement"); 229 } 230 231 /* Find the corresponding entry in the right TLB 232 Return entry, MMU_DTLB_MISS or MMU_DTLB_MULTIPLE 233 */ 234 static int find_tlb_entry(CPUSH4State * env, target_ulong address, 235 tlb_t * entries, uint8_t nbtlb, int use_asid) 236 { 237 int match = MMU_DTLB_MISS; 238 uint32_t start, end; 239 uint8_t asid; 240 int i; 241 242 asid = env->pteh & 0xff; 243 244 for (i = 0; i < nbtlb; i++) { 245 if (!entries[i].v) 246 continue; /* Invalid entry */ 247 if (!entries[i].sh && use_asid && entries[i].asid != asid) 248 continue; /* Bad ASID */ 249 start = (entries[i].vpn << 10) & ~(entries[i].size - 1); 250 end = start + entries[i].size - 1; 251 if (address >= start && address <= end) { /* Match */ 252 if (match != MMU_DTLB_MISS) 253 return MMU_DTLB_MULTIPLE; /* Multiple match */ 254 match = i; 255 } 256 } 257 return match; 258 } 259 260 static void increment_urc(CPUSH4State * env) 261 { 262 uint8_t urb, urc; 263 264 /* Increment URC */ 265 urb = ((env->mmucr) >> 18) & 0x3f; 266 urc = ((env->mmucr) >> 10) & 0x3f; 267 urc++; 268 if ((urb > 0 && urc > urb) || urc > (UTLB_SIZE - 1)) 269 urc = 0; 270 env->mmucr = (env->mmucr & 0xffff03ff) | (urc << 10); 271 } 272 273 /* Copy and utlb entry into itlb 274 Return entry 275 */ 276 static int copy_utlb_entry_itlb(CPUSH4State *env, int utlb) 277 { 278 int itlb; 279 280 tlb_t * ientry; 281 itlb = itlb_replacement(env); 282 ientry = &env->itlb[itlb]; 283 if (ientry->v) { 284 tlb_flush_page(env_cpu(env), ientry->vpn << 10); 285 } 286 *ientry = env->utlb[utlb]; 287 update_itlb_use(env, itlb); 288 return itlb; 289 } 290 291 /* Find itlb entry 292 Return entry, MMU_ITLB_MISS, MMU_ITLB_MULTIPLE or MMU_DTLB_MULTIPLE 293 */ 294 static int find_itlb_entry(CPUSH4State * env, target_ulong address, 295 int use_asid) 296 { 297 int e; 298 299 e = find_tlb_entry(env, address, env->itlb, ITLB_SIZE, use_asid); 300 if (e == MMU_DTLB_MULTIPLE) { 301 e = MMU_ITLB_MULTIPLE; 302 } else if (e == MMU_DTLB_MISS) { 303 e = MMU_ITLB_MISS; 304 } else if (e >= 0) { 305 update_itlb_use(env, e); 306 } 307 return e; 308 } 309 310 /* Find utlb entry 311 Return entry, MMU_DTLB_MISS, MMU_DTLB_MULTIPLE */ 312 static int find_utlb_entry(CPUSH4State * env, target_ulong address, int use_asid) 313 { 314 /* per utlb access */ 315 increment_urc(env); 316 317 /* Return entry */ 318 return find_tlb_entry(env, address, env->utlb, UTLB_SIZE, use_asid); 319 } 320 321 /* Match address against MMU 322 Return MMU_OK, MMU_DTLB_MISS_READ, MMU_DTLB_MISS_WRITE, 323 MMU_DTLB_INITIAL_WRITE, MMU_DTLB_VIOLATION_READ, 324 MMU_DTLB_VIOLATION_WRITE, MMU_ITLB_MISS, 325 MMU_ITLB_MULTIPLE, MMU_ITLB_VIOLATION, 326 MMU_IADDR_ERROR, MMU_DADDR_ERROR_READ, MMU_DADDR_ERROR_WRITE. 327 */ 328 static int get_mmu_address(CPUSH4State * env, target_ulong * physical, 329 int *prot, target_ulong address, 330 MMUAccessType access_type) 331 { 332 int use_asid, n; 333 tlb_t *matching = NULL; 334 335 use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 336 337 if (access_type == MMU_INST_FETCH) { 338 n = find_itlb_entry(env, address, use_asid); 339 if (n >= 0) { 340 matching = &env->itlb[n]; 341 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 342 n = MMU_ITLB_VIOLATION; 343 } else { 344 *prot = PAGE_EXEC; 345 } 346 } else { 347 n = find_utlb_entry(env, address, use_asid); 348 if (n >= 0) { 349 n = copy_utlb_entry_itlb(env, n); 350 matching = &env->itlb[n]; 351 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 352 n = MMU_ITLB_VIOLATION; 353 } else { 354 *prot = PAGE_READ | PAGE_EXEC; 355 if ((matching->pr & 1) && matching->d) { 356 *prot |= PAGE_WRITE; 357 } 358 } 359 } else if (n == MMU_DTLB_MULTIPLE) { 360 n = MMU_ITLB_MULTIPLE; 361 } else if (n == MMU_DTLB_MISS) { 362 n = MMU_ITLB_MISS; 363 } 364 } 365 } else { 366 n = find_utlb_entry(env, address, use_asid); 367 if (n >= 0) { 368 matching = &env->utlb[n]; 369 if (!(env->sr & (1u << SR_MD)) && !(matching->pr & 2)) { 370 n = (access_type == MMU_DATA_STORE) 371 ? MMU_DTLB_VIOLATION_WRITE : MMU_DTLB_VIOLATION_READ; 372 } else if ((access_type == MMU_DATA_STORE) && !(matching->pr & 1)) { 373 n = MMU_DTLB_VIOLATION_WRITE; 374 } else if ((access_type == MMU_DATA_STORE) && !matching->d) { 375 n = MMU_DTLB_INITIAL_WRITE; 376 } else { 377 *prot = PAGE_READ; 378 if ((matching->pr & 1) && matching->d) { 379 *prot |= PAGE_WRITE; 380 } 381 } 382 } else if (n == MMU_DTLB_MISS) { 383 n = (access_type == MMU_DATA_STORE) 384 ? MMU_DTLB_MISS_WRITE : MMU_DTLB_MISS_READ; 385 } 386 } 387 if (n >= 0) { 388 n = MMU_OK; 389 *physical = ((matching->ppn << 10) & ~(matching->size - 1)) 390 | (address & (matching->size - 1)); 391 } 392 return n; 393 } 394 395 static int get_physical_address(CPUSH4State * env, target_ulong * physical, 396 int *prot, target_ulong address, 397 MMUAccessType access_type) 398 { 399 /* P1, P2 and P4 areas do not use translation */ 400 if ((address >= 0x80000000 && address < 0xc0000000) || address >= 0xe0000000) { 401 if (!(env->sr & (1u << SR_MD)) 402 && (address < 0xe0000000 || address >= 0xe4000000)) { 403 /* Unauthorized access in user mode (only store queues are available) */ 404 qemu_log_mask(LOG_GUEST_ERROR, "Unauthorized access\n"); 405 if (access_type == MMU_DATA_LOAD) { 406 return MMU_DADDR_ERROR_READ; 407 } else if (access_type == MMU_DATA_STORE) { 408 return MMU_DADDR_ERROR_WRITE; 409 } else { 410 return MMU_IADDR_ERROR; 411 } 412 } 413 if (address >= 0x80000000 && address < 0xc0000000) { 414 /* Mask upper 3 bits for P1 and P2 areas */ 415 *physical = address & 0x1fffffff; 416 } else { 417 *physical = address; 418 } 419 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 420 return MMU_OK; 421 } 422 423 /* If MMU is disabled, return the corresponding physical page */ 424 if (!(env->mmucr & MMUCR_AT)) { 425 *physical = address & 0x1FFFFFFF; 426 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 427 return MMU_OK; 428 } 429 430 /* We need to resort to the MMU */ 431 return get_mmu_address(env, physical, prot, address, access_type); 432 } 433 434 hwaddr superh_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 435 { 436 target_ulong physical; 437 int prot; 438 439 if (get_physical_address(cpu_env(cs), &physical, &prot, addr, MMU_DATA_LOAD) 440 == MMU_OK) { 441 return physical; 442 } 443 444 return -1; 445 } 446 447 void cpu_load_tlb(CPUSH4State * env) 448 { 449 CPUState *cs = env_cpu(env); 450 int n = cpu_mmucr_urc(env->mmucr); 451 tlb_t * entry = &env->utlb[n]; 452 453 if (entry->v) { 454 /* Overwriting valid entry in utlb. */ 455 target_ulong address = entry->vpn << 10; 456 tlb_flush_page(cs, address); 457 } 458 459 /* Take values into cpu status from registers. */ 460 entry->asid = (uint8_t)cpu_pteh_asid(env->pteh); 461 entry->vpn = cpu_pteh_vpn(env->pteh); 462 entry->v = (uint8_t)cpu_ptel_v(env->ptel); 463 entry->ppn = cpu_ptel_ppn(env->ptel); 464 entry->sz = (uint8_t)cpu_ptel_sz(env->ptel); 465 switch (entry->sz) { 466 case 0: /* 00 */ 467 entry->size = 1024; /* 1K */ 468 break; 469 case 1: /* 01 */ 470 entry->size = 1024 * 4; /* 4K */ 471 break; 472 case 2: /* 10 */ 473 entry->size = 1024 * 64; /* 64K */ 474 break; 475 case 3: /* 11 */ 476 entry->size = 1024 * 1024; /* 1M */ 477 break; 478 default: 479 cpu_abort(cs, "Unhandled load_tlb"); 480 break; 481 } 482 entry->sh = (uint8_t)cpu_ptel_sh(env->ptel); 483 entry->c = (uint8_t)cpu_ptel_c(env->ptel); 484 entry->pr = (uint8_t)cpu_ptel_pr(env->ptel); 485 entry->d = (uint8_t)cpu_ptel_d(env->ptel); 486 entry->wt = (uint8_t)cpu_ptel_wt(env->ptel); 487 entry->sa = (uint8_t)cpu_ptea_sa(env->ptea); 488 entry->tc = (uint8_t)cpu_ptea_tc(env->ptea); 489 } 490 491 void cpu_sh4_invalidate_tlb(CPUSH4State *s) 492 { 493 int i; 494 495 /* UTLB */ 496 for (i = 0; i < UTLB_SIZE; i++) { 497 tlb_t * entry = &s->utlb[i]; 498 entry->v = 0; 499 } 500 /* ITLB */ 501 for (i = 0; i < ITLB_SIZE; i++) { 502 tlb_t * entry = &s->itlb[i]; 503 entry->v = 0; 504 } 505 506 tlb_flush(env_cpu(s)); 507 } 508 509 uint32_t cpu_sh4_read_mmaped_itlb_addr(CPUSH4State *s, 510 hwaddr addr) 511 { 512 int index = (addr & 0x00000300) >> 8; 513 tlb_t * entry = &s->itlb[index]; 514 515 return (entry->vpn << 10) | 516 (entry->v << 8) | 517 (entry->asid); 518 } 519 520 void cpu_sh4_write_mmaped_itlb_addr(CPUSH4State *s, hwaddr addr, 521 uint32_t mem_value) 522 { 523 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 524 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 525 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 526 527 int index = (addr & 0x00000300) >> 8; 528 tlb_t * entry = &s->itlb[index]; 529 if (entry->v) { 530 /* Overwriting valid entry in itlb. */ 531 target_ulong address = entry->vpn << 10; 532 tlb_flush_page(env_cpu(s), address); 533 } 534 entry->asid = asid; 535 entry->vpn = vpn; 536 entry->v = v; 537 } 538 539 uint32_t cpu_sh4_read_mmaped_itlb_data(CPUSH4State *s, 540 hwaddr addr) 541 { 542 int array = (addr & 0x00800000) >> 23; 543 int index = (addr & 0x00000300) >> 8; 544 tlb_t * entry = &s->itlb[index]; 545 546 if (array == 0) { 547 /* ITLB Data Array 1 */ 548 return (entry->ppn << 10) | 549 (entry->v << 8) | 550 (entry->pr << 5) | 551 ((entry->sz & 1) << 6) | 552 ((entry->sz & 2) << 4) | 553 (entry->c << 3) | 554 (entry->sh << 1); 555 } else { 556 /* ITLB Data Array 2 */ 557 return (entry->tc << 1) | 558 (entry->sa); 559 } 560 } 561 562 void cpu_sh4_write_mmaped_itlb_data(CPUSH4State *s, hwaddr addr, 563 uint32_t mem_value) 564 { 565 int array = (addr & 0x00800000) >> 23; 566 int index = (addr & 0x00000300) >> 8; 567 tlb_t * entry = &s->itlb[index]; 568 569 if (array == 0) { 570 /* ITLB Data Array 1 */ 571 if (entry->v) { 572 /* Overwriting valid entry in utlb. */ 573 target_ulong address = entry->vpn << 10; 574 tlb_flush_page(env_cpu(s), address); 575 } 576 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 577 entry->v = (mem_value & 0x00000100) >> 8; 578 entry->sz = (mem_value & 0x00000080) >> 6 | 579 (mem_value & 0x00000010) >> 4; 580 entry->pr = (mem_value & 0x00000040) >> 5; 581 entry->c = (mem_value & 0x00000008) >> 3; 582 entry->sh = (mem_value & 0x00000002) >> 1; 583 } else { 584 /* ITLB Data Array 2 */ 585 entry->tc = (mem_value & 0x00000008) >> 3; 586 entry->sa = (mem_value & 0x00000007); 587 } 588 } 589 590 uint32_t cpu_sh4_read_mmaped_utlb_addr(CPUSH4State *s, 591 hwaddr addr) 592 { 593 int index = (addr & 0x00003f00) >> 8; 594 tlb_t * entry = &s->utlb[index]; 595 596 increment_urc(s); /* per utlb access */ 597 598 return (entry->vpn << 10) | 599 (entry->v << 8) | 600 (entry->asid); 601 } 602 603 void cpu_sh4_write_mmaped_utlb_addr(CPUSH4State *s, hwaddr addr, 604 uint32_t mem_value) 605 { 606 int associate = addr & 0x0000080; 607 uint32_t vpn = (mem_value & 0xfffffc00) >> 10; 608 uint8_t d = (uint8_t)((mem_value & 0x00000200) >> 9); 609 uint8_t v = (uint8_t)((mem_value & 0x00000100) >> 8); 610 uint8_t asid = (uint8_t)(mem_value & 0x000000ff); 611 int use_asid = !(s->mmucr & MMUCR_SV) || !(s->sr & (1u << SR_MD)); 612 613 if (associate) { 614 int i; 615 tlb_t * utlb_match_entry = NULL; 616 int needs_tlb_flush = 0; 617 618 /* search UTLB */ 619 for (i = 0; i < UTLB_SIZE; i++) { 620 tlb_t * entry = &s->utlb[i]; 621 if (!entry->v) 622 continue; 623 624 if (entry->vpn == vpn 625 && (!use_asid || entry->asid == asid || entry->sh)) { 626 if (utlb_match_entry) { 627 CPUState *cs = env_cpu(s); 628 629 /* Multiple TLB Exception */ 630 cs->exception_index = 0x140; 631 s->tea = addr; 632 break; 633 } 634 if (entry->v && !v) 635 needs_tlb_flush = 1; 636 entry->v = v; 637 entry->d = d; 638 utlb_match_entry = entry; 639 } 640 increment_urc(s); /* per utlb access */ 641 } 642 643 /* search ITLB */ 644 for (i = 0; i < ITLB_SIZE; i++) { 645 tlb_t * entry = &s->itlb[i]; 646 if (entry->vpn == vpn 647 && (!use_asid || entry->asid == asid || entry->sh)) { 648 if (entry->v && !v) 649 needs_tlb_flush = 1; 650 if (utlb_match_entry) 651 *entry = *utlb_match_entry; 652 else 653 entry->v = v; 654 break; 655 } 656 } 657 658 if (needs_tlb_flush) { 659 tlb_flush_page(env_cpu(s), vpn << 10); 660 } 661 } else { 662 int index = (addr & 0x00003f00) >> 8; 663 tlb_t * entry = &s->utlb[index]; 664 if (entry->v) { 665 CPUState *cs = env_cpu(s); 666 667 /* Overwriting valid entry in utlb. */ 668 target_ulong address = entry->vpn << 10; 669 tlb_flush_page(cs, address); 670 } 671 entry->asid = asid; 672 entry->vpn = vpn; 673 entry->d = d; 674 entry->v = v; 675 increment_urc(s); 676 } 677 } 678 679 uint32_t cpu_sh4_read_mmaped_utlb_data(CPUSH4State *s, 680 hwaddr addr) 681 { 682 int array = (addr & 0x00800000) >> 23; 683 int index = (addr & 0x00003f00) >> 8; 684 tlb_t * entry = &s->utlb[index]; 685 686 increment_urc(s); /* per utlb access */ 687 688 if (array == 0) { 689 /* ITLB Data Array 1 */ 690 return (entry->ppn << 10) | 691 (entry->v << 8) | 692 (entry->pr << 5) | 693 ((entry->sz & 1) << 6) | 694 ((entry->sz & 2) << 4) | 695 (entry->c << 3) | 696 (entry->d << 2) | 697 (entry->sh << 1) | 698 (entry->wt); 699 } else { 700 /* ITLB Data Array 2 */ 701 return (entry->tc << 1) | 702 (entry->sa); 703 } 704 } 705 706 void cpu_sh4_write_mmaped_utlb_data(CPUSH4State *s, hwaddr addr, 707 uint32_t mem_value) 708 { 709 int array = (addr & 0x00800000) >> 23; 710 int index = (addr & 0x00003f00) >> 8; 711 tlb_t * entry = &s->utlb[index]; 712 713 increment_urc(s); /* per utlb access */ 714 715 if (array == 0) { 716 /* UTLB Data Array 1 */ 717 if (entry->v) { 718 /* Overwriting valid entry in utlb. */ 719 target_ulong address = entry->vpn << 10; 720 tlb_flush_page(env_cpu(s), address); 721 } 722 entry->ppn = (mem_value & 0x1ffffc00) >> 10; 723 entry->v = (mem_value & 0x00000100) >> 8; 724 entry->sz = (mem_value & 0x00000080) >> 6 | 725 (mem_value & 0x00000010) >> 4; 726 entry->pr = (mem_value & 0x00000060) >> 5; 727 entry->c = (mem_value & 0x00000008) >> 3; 728 entry->d = (mem_value & 0x00000004) >> 2; 729 entry->sh = (mem_value & 0x00000002) >> 1; 730 entry->wt = (mem_value & 0x00000001); 731 } else { 732 /* UTLB Data Array 2 */ 733 entry->tc = (mem_value & 0x00000008) >> 3; 734 entry->sa = (mem_value & 0x00000007); 735 } 736 } 737 738 int cpu_sh4_is_cached(CPUSH4State * env, target_ulong addr) 739 { 740 int n; 741 int use_asid = !(env->mmucr & MMUCR_SV) || !(env->sr & (1u << SR_MD)); 742 743 /* check area */ 744 if (env->sr & (1u << SR_MD)) { 745 /* For privileged mode, P2 and P4 area is not cacheable. */ 746 if ((0xA0000000 <= addr && addr < 0xC0000000) || 0xE0000000 <= addr) 747 return 0; 748 } else { 749 /* For user mode, only U0 area is cacheable. */ 750 if (0x80000000 <= addr) 751 return 0; 752 } 753 754 /* 755 * TODO : Evaluate CCR and check if the cache is on or off. 756 * Now CCR is not in CPUSH4State, but in SH7750State. 757 * When you move the ccr into CPUSH4State, the code will be 758 * as follows. 759 */ 760 #if 0 761 /* check if operand cache is enabled or not. */ 762 if (!(env->ccr & 1)) 763 return 0; 764 #endif 765 766 /* if MMU is off, no check for TLB. */ 767 if (env->mmucr & MMUCR_AT) 768 return 1; 769 770 /* check TLB */ 771 n = find_tlb_entry(env, addr, env->itlb, ITLB_SIZE, use_asid); 772 if (n >= 0) 773 return env->itlb[n].c; 774 775 n = find_tlb_entry(env, addr, env->utlb, UTLB_SIZE, use_asid); 776 if (n >= 0) 777 return env->utlb[n].c; 778 779 return 0; 780 } 781 782 bool superh_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 783 { 784 if (interrupt_request & CPU_INTERRUPT_HARD) { 785 /* Delay slots are indivisible, ignore interrupts */ 786 if (cpu_env(cs)->flags & TB_FLAG_DELAY_SLOT_MASK) { 787 return false; 788 } else { 789 superh_cpu_do_interrupt(cs); 790 return true; 791 } 792 } 793 return false; 794 } 795 796 bool superh_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 797 MMUAccessType access_type, int mmu_idx, 798 bool probe, uintptr_t retaddr) 799 { 800 CPUSH4State *env = cpu_env(cs); 801 int ret; 802 803 target_ulong physical; 804 int prot; 805 806 ret = get_physical_address(env, &physical, &prot, address, access_type); 807 808 if (ret == MMU_OK) { 809 address &= TARGET_PAGE_MASK; 810 physical &= TARGET_PAGE_MASK; 811 tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE); 812 return true; 813 } 814 if (probe) { 815 return false; 816 } 817 818 if (ret != MMU_DTLB_MULTIPLE && ret != MMU_ITLB_MULTIPLE) { 819 env->pteh = (env->pteh & PTEH_ASID_MASK) | (address & PTEH_VPN_MASK); 820 } 821 822 env->tea = address; 823 switch (ret) { 824 case MMU_ITLB_MISS: 825 case MMU_DTLB_MISS_READ: 826 cs->exception_index = 0x040; 827 break; 828 case MMU_DTLB_MULTIPLE: 829 case MMU_ITLB_MULTIPLE: 830 cs->exception_index = 0x140; 831 break; 832 case MMU_ITLB_VIOLATION: 833 cs->exception_index = 0x0a0; 834 break; 835 case MMU_DTLB_MISS_WRITE: 836 cs->exception_index = 0x060; 837 break; 838 case MMU_DTLB_INITIAL_WRITE: 839 cs->exception_index = 0x080; 840 break; 841 case MMU_DTLB_VIOLATION_READ: 842 cs->exception_index = 0x0a0; 843 break; 844 case MMU_DTLB_VIOLATION_WRITE: 845 cs->exception_index = 0x0c0; 846 break; 847 case MMU_IADDR_ERROR: 848 case MMU_DADDR_ERROR_READ: 849 cs->exception_index = 0x0e0; 850 break; 851 case MMU_DADDR_ERROR_WRITE: 852 cs->exception_index = 0x100; 853 break; 854 default: 855 cpu_abort(cs, "Unhandled MMU fault"); 856 } 857 cpu_loop_exit_restore(cs, retaddr); 858 } 859 #endif /* !CONFIG_USER_ONLY */ 860