1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "internal.h" 30 #include "kvm_s390x.h" 31 #include "sysemu/kvm_int.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/units.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/mmap-alloc.h" 38 #include "qemu/log.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/hw_accel.h" 41 #include "sysemu/runstate.h" 42 #include "sysemu/device_tree.h" 43 #include "exec/gdbstub.h" 44 #include "exec/ram_addr.h" 45 #include "trace.h" 46 #include "hw/s390x/s390-pci-inst.h" 47 #include "hw/s390x/s390-pci-bus.h" 48 #include "hw/s390x/ipl.h" 49 #include "hw/s390x/ebcdic.h" 50 #include "exec/memattrs.h" 51 #include "hw/s390x/s390-virtio-ccw.h" 52 #include "hw/s390x/s390-virtio-hcall.h" 53 54 #ifndef DEBUG_KVM 55 #define DEBUG_KVM 0 56 #endif 57 58 #define DPRINTF(fmt, ...) do { \ 59 if (DEBUG_KVM) { \ 60 fprintf(stderr, fmt, ## __VA_ARGS__); \ 61 } \ 62 } while (0) 63 64 #define kvm_vm_check_mem_attr(s, attr) \ 65 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 66 67 #define IPA0_DIAG 0x8300 68 #define IPA0_SIGP 0xae00 69 #define IPA0_B2 0xb200 70 #define IPA0_B9 0xb900 71 #define IPA0_EB 0xeb00 72 #define IPA0_E3 0xe300 73 74 #define PRIV_B2_SCLP_CALL 0x20 75 #define PRIV_B2_CSCH 0x30 76 #define PRIV_B2_HSCH 0x31 77 #define PRIV_B2_MSCH 0x32 78 #define PRIV_B2_SSCH 0x33 79 #define PRIV_B2_STSCH 0x34 80 #define PRIV_B2_TSCH 0x35 81 #define PRIV_B2_TPI 0x36 82 #define PRIV_B2_SAL 0x37 83 #define PRIV_B2_RSCH 0x38 84 #define PRIV_B2_STCRW 0x39 85 #define PRIV_B2_STCPS 0x3a 86 #define PRIV_B2_RCHP 0x3b 87 #define PRIV_B2_SCHM 0x3c 88 #define PRIV_B2_CHSC 0x5f 89 #define PRIV_B2_SIGA 0x74 90 #define PRIV_B2_XSCH 0x76 91 92 #define PRIV_EB_SQBS 0x8a 93 #define PRIV_EB_PCISTB 0xd0 94 #define PRIV_EB_SIC 0xd1 95 96 #define PRIV_B9_EQBS 0x9c 97 #define PRIV_B9_CLP 0xa0 98 #define PRIV_B9_PCISTG 0xd0 99 #define PRIV_B9_PCILG 0xd2 100 #define PRIV_B9_RPCIT 0xd3 101 102 #define PRIV_E3_MPCIFC 0xd0 103 #define PRIV_E3_STPCIFC 0xd4 104 105 #define DIAG_TIMEREVENT 0x288 106 #define DIAG_IPL 0x308 107 #define DIAG_KVM_HYPERCALL 0x500 108 #define DIAG_KVM_BREAKPOINT 0x501 109 110 #define ICPT_INSTRUCTION 0x04 111 #define ICPT_PROGRAM 0x08 112 #define ICPT_EXT_INT 0x14 113 #define ICPT_WAITPSW 0x1c 114 #define ICPT_SOFT_INTERCEPT 0x24 115 #define ICPT_CPU_STOP 0x28 116 #define ICPT_OPEREXC 0x2c 117 #define ICPT_IO 0x40 118 119 #define NR_LOCAL_IRQS 32 120 /* 121 * Needs to be big enough to contain max_cpus emergency signals 122 * and in addition NR_LOCAL_IRQS interrupts 123 */ 124 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 125 (max_cpus + NR_LOCAL_IRQS)) 126 /* 127 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages 128 * as the dirty bitmap must be managed by bitops that take an int as 129 * position indicator. This would end at an unaligned address 130 * (0x7fffff00000). As future variants might provide larger pages 131 * and to make all addresses properly aligned, let us split at 4TB. 132 */ 133 #define KVM_SLOT_MAX_BYTES (4UL * TiB) 134 135 static CPUWatchpoint hw_watchpoint; 136 /* 137 * We don't use a list because this structure is also used to transmit the 138 * hardware breakpoints to the kernel. 139 */ 140 static struct kvm_hw_breakpoint *hw_breakpoints; 141 static int nb_hw_breakpoints; 142 143 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 144 KVM_CAP_LAST_INFO 145 }; 146 147 static int cap_sync_regs; 148 static int cap_async_pf; 149 static int cap_mem_op; 150 static int cap_s390_irq; 151 static int cap_ri; 152 static int cap_gs; 153 static int cap_hpage_1m; 154 static int cap_vcpu_resets; 155 156 static int active_cmma; 157 158 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared); 159 160 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 161 { 162 struct kvm_device_attr attr = { 163 .group = KVM_S390_VM_MEM_CTRL, 164 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 165 .addr = (uint64_t) memory_limit, 166 }; 167 168 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 169 } 170 171 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 172 { 173 int rc; 174 175 struct kvm_device_attr attr = { 176 .group = KVM_S390_VM_MEM_CTRL, 177 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 178 .addr = (uint64_t) &new_limit, 179 }; 180 181 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 182 return 0; 183 } 184 185 rc = kvm_s390_query_mem_limit(hw_limit); 186 if (rc) { 187 return rc; 188 } else if (*hw_limit < new_limit) { 189 return -E2BIG; 190 } 191 192 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 193 } 194 195 int kvm_s390_cmma_active(void) 196 { 197 return active_cmma; 198 } 199 200 static bool kvm_s390_cmma_available(void) 201 { 202 static bool initialized, value; 203 204 if (!initialized) { 205 initialized = true; 206 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 207 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 208 } 209 return value; 210 } 211 212 void kvm_s390_cmma_reset(void) 213 { 214 int rc; 215 struct kvm_device_attr attr = { 216 .group = KVM_S390_VM_MEM_CTRL, 217 .attr = KVM_S390_VM_MEM_CLR_CMMA, 218 }; 219 220 if (!kvm_s390_cmma_active()) { 221 return; 222 } 223 224 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 225 trace_kvm_clear_cmma(rc); 226 } 227 228 static void kvm_s390_enable_cmma(void) 229 { 230 int rc; 231 struct kvm_device_attr attr = { 232 .group = KVM_S390_VM_MEM_CTRL, 233 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 234 }; 235 236 if (cap_hpage_1m) { 237 warn_report("CMM will not be enabled because it is not " 238 "compatible with huge memory backings."); 239 return; 240 } 241 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 242 active_cmma = !rc; 243 trace_kvm_enable_cmma(rc); 244 } 245 246 static void kvm_s390_set_attr(uint64_t attr) 247 { 248 struct kvm_device_attr attribute = { 249 .group = KVM_S390_VM_CRYPTO, 250 .attr = attr, 251 }; 252 253 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 254 255 if (ret) { 256 error_report("Failed to set crypto device attribute %lu: %s", 257 attr, strerror(-ret)); 258 } 259 } 260 261 static void kvm_s390_init_aes_kw(void) 262 { 263 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 264 265 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 266 NULL)) { 267 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 268 } 269 270 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 271 kvm_s390_set_attr(attr); 272 } 273 } 274 275 static void kvm_s390_init_dea_kw(void) 276 { 277 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 278 279 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 280 NULL)) { 281 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 282 } 283 284 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 285 kvm_s390_set_attr(attr); 286 } 287 } 288 289 void kvm_s390_crypto_reset(void) 290 { 291 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 292 kvm_s390_init_aes_kw(); 293 kvm_s390_init_dea_kw(); 294 } 295 } 296 297 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 298 { 299 if (pagesize == 4 * KiB) { 300 return; 301 } 302 303 if (!hpage_1m_allowed()) { 304 error_setg(errp, "This QEMU machine does not support huge page " 305 "mappings"); 306 return; 307 } 308 309 if (pagesize != 1 * MiB) { 310 error_setg(errp, "Memory backing with 2G pages was specified, " 311 "but KVM does not support this memory backing"); 312 return; 313 } 314 315 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 316 error_setg(errp, "Memory backing with 1M pages was specified, " 317 "but KVM does not support this memory backing"); 318 return; 319 } 320 321 cap_hpage_1m = 1; 322 } 323 324 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque) 325 { 326 MachineClass *mc = MACHINE_CLASS(oc); 327 328 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 329 } 330 331 int kvm_arch_init(MachineState *ms, KVMState *s) 332 { 333 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE, 334 false, NULL); 335 336 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) { 337 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - " 338 "please use kernel 3.15 or newer"); 339 return -1; 340 } 341 342 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 343 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 344 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 345 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 346 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS); 347 348 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 349 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 350 phys_mem_set_alloc(legacy_s390_alloc); 351 } 352 353 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 354 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 355 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 356 if (ri_allowed()) { 357 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 358 cap_ri = 1; 359 } 360 } 361 if (cpu_model_allowed()) { 362 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 363 cap_gs = 1; 364 } 365 } 366 367 /* 368 * The migration interface for ais was introduced with kernel 4.13 369 * but the capability itself had been active since 4.12. As migration 370 * support is considered necessary, we only try to enable this for 371 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available. 372 */ 373 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() && 374 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) { 375 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); 376 } 377 378 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); 379 return 0; 380 } 381 382 int kvm_arch_irqchip_create(KVMState *s) 383 { 384 return 0; 385 } 386 387 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 388 { 389 return cpu->cpu_index; 390 } 391 392 int kvm_arch_init_vcpu(CPUState *cs) 393 { 394 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 395 S390CPU *cpu = S390_CPU(cs); 396 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 397 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 398 return 0; 399 } 400 401 int kvm_arch_destroy_vcpu(CPUState *cs) 402 { 403 S390CPU *cpu = S390_CPU(cs); 404 405 g_free(cpu->irqstate); 406 cpu->irqstate = NULL; 407 408 return 0; 409 } 410 411 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type) 412 { 413 CPUState *cs = CPU(cpu); 414 415 /* 416 * The reset call is needed here to reset in-kernel vcpu data that 417 * we can't access directly from QEMU (i.e. with older kernels 418 * which don't support sync_regs/ONE_REG). Before this ioctl 419 * cpu_synchronize_state() is called in common kvm code 420 * (kvm-all). 421 */ 422 if (kvm_vcpu_ioctl(cs, type)) { 423 error_report("CPU reset failed on CPU %i type %lx", 424 cs->cpu_index, type); 425 } 426 } 427 428 void kvm_s390_reset_vcpu_initial(S390CPU *cpu) 429 { 430 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 431 } 432 433 void kvm_s390_reset_vcpu_clear(S390CPU *cpu) 434 { 435 if (cap_vcpu_resets) { 436 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET); 437 } else { 438 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 439 } 440 } 441 442 void kvm_s390_reset_vcpu_normal(S390CPU *cpu) 443 { 444 if (cap_vcpu_resets) { 445 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET); 446 } 447 } 448 449 static int can_sync_regs(CPUState *cs, int regs) 450 { 451 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 452 } 453 454 int kvm_arch_put_registers(CPUState *cs, int level) 455 { 456 S390CPU *cpu = S390_CPU(cs); 457 CPUS390XState *env = &cpu->env; 458 struct kvm_sregs sregs; 459 struct kvm_regs regs; 460 struct kvm_fpu fpu = {}; 461 int r; 462 int i; 463 464 /* always save the PSW and the GPRS*/ 465 cs->kvm_run->psw_addr = env->psw.addr; 466 cs->kvm_run->psw_mask = env->psw.mask; 467 468 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 469 for (i = 0; i < 16; i++) { 470 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 471 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 472 } 473 } else { 474 for (i = 0; i < 16; i++) { 475 regs.gprs[i] = env->regs[i]; 476 } 477 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 478 if (r < 0) { 479 return r; 480 } 481 } 482 483 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 484 for (i = 0; i < 32; i++) { 485 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 486 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 487 } 488 cs->kvm_run->s.regs.fpc = env->fpc; 489 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 490 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 491 for (i = 0; i < 16; i++) { 492 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 493 } 494 cs->kvm_run->s.regs.fpc = env->fpc; 495 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 496 } else { 497 /* Floating point */ 498 for (i = 0; i < 16; i++) { 499 fpu.fprs[i] = *get_freg(env, i); 500 } 501 fpu.fpc = env->fpc; 502 503 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 504 if (r < 0) { 505 return r; 506 } 507 } 508 509 /* Do we need to save more than that? */ 510 if (level == KVM_PUT_RUNTIME_STATE) { 511 return 0; 512 } 513 514 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 515 cs->kvm_run->s.regs.cputm = env->cputm; 516 cs->kvm_run->s.regs.ckc = env->ckc; 517 cs->kvm_run->s.regs.todpr = env->todpr; 518 cs->kvm_run->s.regs.gbea = env->gbea; 519 cs->kvm_run->s.regs.pp = env->pp; 520 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 521 } else { 522 /* 523 * These ONE_REGS are not protected by a capability. As they are only 524 * necessary for migration we just trace a possible error, but don't 525 * return with an error return code. 526 */ 527 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 528 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 529 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 530 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 531 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 532 } 533 534 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 535 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 536 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 537 } 538 539 /* pfault parameters */ 540 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 541 cs->kvm_run->s.regs.pft = env->pfault_token; 542 cs->kvm_run->s.regs.pfs = env->pfault_select; 543 cs->kvm_run->s.regs.pfc = env->pfault_compare; 544 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 545 } else if (cap_async_pf) { 546 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 547 if (r < 0) { 548 return r; 549 } 550 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 551 if (r < 0) { 552 return r; 553 } 554 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 555 if (r < 0) { 556 return r; 557 } 558 } 559 560 /* access registers and control registers*/ 561 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 562 for (i = 0; i < 16; i++) { 563 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 564 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 565 } 566 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 567 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 568 } else { 569 for (i = 0; i < 16; i++) { 570 sregs.acrs[i] = env->aregs[i]; 571 sregs.crs[i] = env->cregs[i]; 572 } 573 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 574 if (r < 0) { 575 return r; 576 } 577 } 578 579 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 580 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 581 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 582 } 583 584 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 585 cs->kvm_run->s.regs.bpbc = env->bpbc; 586 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 587 } 588 589 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 590 cs->kvm_run->s.regs.etoken = env->etoken; 591 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 592 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 593 } 594 595 /* Finally the prefix */ 596 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 597 cs->kvm_run->s.regs.prefix = env->psa; 598 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 599 } else { 600 /* prefix is only supported via sync regs */ 601 } 602 return 0; 603 } 604 605 int kvm_arch_get_registers(CPUState *cs) 606 { 607 S390CPU *cpu = S390_CPU(cs); 608 CPUS390XState *env = &cpu->env; 609 struct kvm_sregs sregs; 610 struct kvm_regs regs; 611 struct kvm_fpu fpu; 612 int i, r; 613 614 /* get the PSW */ 615 env->psw.addr = cs->kvm_run->psw_addr; 616 env->psw.mask = cs->kvm_run->psw_mask; 617 618 /* the GPRS */ 619 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 620 for (i = 0; i < 16; i++) { 621 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 622 } 623 } else { 624 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 625 if (r < 0) { 626 return r; 627 } 628 for (i = 0; i < 16; i++) { 629 env->regs[i] = regs.gprs[i]; 630 } 631 } 632 633 /* The ACRS and CRS */ 634 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 635 for (i = 0; i < 16; i++) { 636 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 637 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 638 } 639 } else { 640 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 641 if (r < 0) { 642 return r; 643 } 644 for (i = 0; i < 16; i++) { 645 env->aregs[i] = sregs.acrs[i]; 646 env->cregs[i] = sregs.crs[i]; 647 } 648 } 649 650 /* Floating point and vector registers */ 651 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 652 for (i = 0; i < 32; i++) { 653 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 654 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 655 } 656 env->fpc = cs->kvm_run->s.regs.fpc; 657 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 658 for (i = 0; i < 16; i++) { 659 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 660 } 661 env->fpc = cs->kvm_run->s.regs.fpc; 662 } else { 663 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 664 if (r < 0) { 665 return r; 666 } 667 for (i = 0; i < 16; i++) { 668 *get_freg(env, i) = fpu.fprs[i]; 669 } 670 env->fpc = fpu.fpc; 671 } 672 673 /* The prefix */ 674 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 675 env->psa = cs->kvm_run->s.regs.prefix; 676 } 677 678 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 679 env->cputm = cs->kvm_run->s.regs.cputm; 680 env->ckc = cs->kvm_run->s.regs.ckc; 681 env->todpr = cs->kvm_run->s.regs.todpr; 682 env->gbea = cs->kvm_run->s.regs.gbea; 683 env->pp = cs->kvm_run->s.regs.pp; 684 } else { 685 /* 686 * These ONE_REGS are not protected by a capability. As they are only 687 * necessary for migration we just trace a possible error, but don't 688 * return with an error return code. 689 */ 690 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 691 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 692 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 693 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 694 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 695 } 696 697 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 698 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 699 } 700 701 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 702 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 703 } 704 705 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 706 env->bpbc = cs->kvm_run->s.regs.bpbc; 707 } 708 709 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 710 env->etoken = cs->kvm_run->s.regs.etoken; 711 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 712 } 713 714 /* pfault parameters */ 715 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 716 env->pfault_token = cs->kvm_run->s.regs.pft; 717 env->pfault_select = cs->kvm_run->s.regs.pfs; 718 env->pfault_compare = cs->kvm_run->s.regs.pfc; 719 } else if (cap_async_pf) { 720 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 721 if (r < 0) { 722 return r; 723 } 724 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 725 if (r < 0) { 726 return r; 727 } 728 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 729 if (r < 0) { 730 return r; 731 } 732 } 733 734 return 0; 735 } 736 737 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 738 { 739 int r; 740 struct kvm_device_attr attr = { 741 .group = KVM_S390_VM_TOD, 742 .attr = KVM_S390_VM_TOD_LOW, 743 .addr = (uint64_t)tod_low, 744 }; 745 746 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 747 if (r) { 748 return r; 749 } 750 751 attr.attr = KVM_S390_VM_TOD_HIGH; 752 attr.addr = (uint64_t)tod_high; 753 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 754 } 755 756 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 757 { 758 int r; 759 struct kvm_s390_vm_tod_clock gtod; 760 struct kvm_device_attr attr = { 761 .group = KVM_S390_VM_TOD, 762 .attr = KVM_S390_VM_TOD_EXT, 763 .addr = (uint64_t)>od, 764 }; 765 766 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 767 *tod_high = gtod.epoch_idx; 768 *tod_low = gtod.tod; 769 770 return r; 771 } 772 773 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 774 { 775 int r; 776 struct kvm_device_attr attr = { 777 .group = KVM_S390_VM_TOD, 778 .attr = KVM_S390_VM_TOD_LOW, 779 .addr = (uint64_t)&tod_low, 780 }; 781 782 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 783 if (r) { 784 return r; 785 } 786 787 attr.attr = KVM_S390_VM_TOD_HIGH; 788 attr.addr = (uint64_t)&tod_high; 789 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 790 } 791 792 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 793 { 794 struct kvm_s390_vm_tod_clock gtod = { 795 .epoch_idx = tod_high, 796 .tod = tod_low, 797 }; 798 struct kvm_device_attr attr = { 799 .group = KVM_S390_VM_TOD, 800 .attr = KVM_S390_VM_TOD_EXT, 801 .addr = (uint64_t)>od, 802 }; 803 804 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 805 } 806 807 /** 808 * kvm_s390_mem_op: 809 * @addr: the logical start address in guest memory 810 * @ar: the access register number 811 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 812 * @len: length that should be transferred 813 * @is_write: true = write, false = read 814 * Returns: 0 on success, non-zero if an exception or error occurred 815 * 816 * Use KVM ioctl to read/write from/to guest memory. An access exception 817 * is injected into the vCPU in case of translation errors. 818 */ 819 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 820 int len, bool is_write) 821 { 822 struct kvm_s390_mem_op mem_op = { 823 .gaddr = addr, 824 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 825 .size = len, 826 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 827 : KVM_S390_MEMOP_LOGICAL_READ, 828 .buf = (uint64_t)hostbuf, 829 .ar = ar, 830 }; 831 int ret; 832 833 if (!cap_mem_op) { 834 return -ENOSYS; 835 } 836 if (!hostbuf) { 837 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 838 } 839 840 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 841 if (ret < 0) { 842 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 843 } 844 return ret; 845 } 846 847 /* 848 * Legacy layout for s390: 849 * Older S390 KVM requires the topmost vma of the RAM to be 850 * smaller than an system defined value, which is at least 256GB. 851 * Larger systems have larger values. We put the guest between 852 * the end of data segment (system break) and this value. We 853 * use 32GB as a base to have enough room for the system break 854 * to grow. We also have to use MAP parameters that avoid 855 * read-only mapping of guest pages. 856 */ 857 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared) 858 { 859 static void *mem; 860 861 if (mem) { 862 /* we only support one allocation, which is enough for initial ram */ 863 return NULL; 864 } 865 866 mem = mmap((void *) 0x800000000ULL, size, 867 PROT_EXEC|PROT_READ|PROT_WRITE, 868 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 869 if (mem == MAP_FAILED) { 870 mem = NULL; 871 } 872 if (mem && align) { 873 *align = QEMU_VMALLOC_ALIGN; 874 } 875 return mem; 876 } 877 878 static uint8_t const *sw_bp_inst; 879 static uint8_t sw_bp_ilen; 880 881 static void determine_sw_breakpoint_instr(void) 882 { 883 /* DIAG 501 is used for sw breakpoints with old kernels */ 884 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 885 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 886 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 887 888 if (sw_bp_inst) { 889 return; 890 } 891 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 892 sw_bp_inst = diag_501; 893 sw_bp_ilen = sizeof(diag_501); 894 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 895 } else { 896 sw_bp_inst = instr_0x0000; 897 sw_bp_ilen = sizeof(instr_0x0000); 898 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 899 } 900 } 901 902 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 903 { 904 determine_sw_breakpoint_instr(); 905 906 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 907 sw_bp_ilen, 0) || 908 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 909 return -EINVAL; 910 } 911 return 0; 912 } 913 914 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 915 { 916 uint8_t t[MAX_ILEN]; 917 918 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 919 return -EINVAL; 920 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 921 return -EINVAL; 922 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 923 sw_bp_ilen, 1)) { 924 return -EINVAL; 925 } 926 927 return 0; 928 } 929 930 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 931 int len, int type) 932 { 933 int n; 934 935 for (n = 0; n < nb_hw_breakpoints; n++) { 936 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 937 (hw_breakpoints[n].len == len || len == -1)) { 938 return &hw_breakpoints[n]; 939 } 940 } 941 942 return NULL; 943 } 944 945 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 946 { 947 int size; 948 949 if (find_hw_breakpoint(addr, len, type)) { 950 return -EEXIST; 951 } 952 953 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 954 955 if (!hw_breakpoints) { 956 nb_hw_breakpoints = 0; 957 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 958 } else { 959 hw_breakpoints = 960 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 961 } 962 963 if (!hw_breakpoints) { 964 nb_hw_breakpoints = 0; 965 return -ENOMEM; 966 } 967 968 hw_breakpoints[nb_hw_breakpoints].addr = addr; 969 hw_breakpoints[nb_hw_breakpoints].len = len; 970 hw_breakpoints[nb_hw_breakpoints].type = type; 971 972 nb_hw_breakpoints++; 973 974 return 0; 975 } 976 977 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 978 target_ulong len, int type) 979 { 980 switch (type) { 981 case GDB_BREAKPOINT_HW: 982 type = KVM_HW_BP; 983 break; 984 case GDB_WATCHPOINT_WRITE: 985 if (len < 1) { 986 return -EINVAL; 987 } 988 type = KVM_HW_WP_WRITE; 989 break; 990 default: 991 return -ENOSYS; 992 } 993 return insert_hw_breakpoint(addr, len, type); 994 } 995 996 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 997 target_ulong len, int type) 998 { 999 int size; 1000 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 1001 1002 if (bp == NULL) { 1003 return -ENOENT; 1004 } 1005 1006 nb_hw_breakpoints--; 1007 if (nb_hw_breakpoints > 0) { 1008 /* 1009 * In order to trim the array, move the last element to the position to 1010 * be removed - if necessary. 1011 */ 1012 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 1013 *bp = hw_breakpoints[nb_hw_breakpoints]; 1014 } 1015 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 1016 hw_breakpoints = 1017 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 1018 } else { 1019 g_free(hw_breakpoints); 1020 hw_breakpoints = NULL; 1021 } 1022 1023 return 0; 1024 } 1025 1026 void kvm_arch_remove_all_hw_breakpoints(void) 1027 { 1028 nb_hw_breakpoints = 0; 1029 g_free(hw_breakpoints); 1030 hw_breakpoints = NULL; 1031 } 1032 1033 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 1034 { 1035 int i; 1036 1037 if (nb_hw_breakpoints > 0) { 1038 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 1039 dbg->arch.hw_bp = hw_breakpoints; 1040 1041 for (i = 0; i < nb_hw_breakpoints; ++i) { 1042 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 1043 hw_breakpoints[i].addr); 1044 } 1045 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1046 } else { 1047 dbg->arch.nr_hw_bp = 0; 1048 dbg->arch.hw_bp = NULL; 1049 } 1050 } 1051 1052 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 1053 { 1054 } 1055 1056 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1057 { 1058 return MEMTXATTRS_UNSPECIFIED; 1059 } 1060 1061 int kvm_arch_process_async_events(CPUState *cs) 1062 { 1063 return cs->halted; 1064 } 1065 1066 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1067 struct kvm_s390_interrupt *interrupt) 1068 { 1069 int r = 0; 1070 1071 interrupt->type = irq->type; 1072 switch (irq->type) { 1073 case KVM_S390_INT_VIRTIO: 1074 interrupt->parm = irq->u.ext.ext_params; 1075 /* fall through */ 1076 case KVM_S390_INT_PFAULT_INIT: 1077 case KVM_S390_INT_PFAULT_DONE: 1078 interrupt->parm64 = irq->u.ext.ext_params2; 1079 break; 1080 case KVM_S390_PROGRAM_INT: 1081 interrupt->parm = irq->u.pgm.code; 1082 break; 1083 case KVM_S390_SIGP_SET_PREFIX: 1084 interrupt->parm = irq->u.prefix.address; 1085 break; 1086 case KVM_S390_INT_SERVICE: 1087 interrupt->parm = irq->u.ext.ext_params; 1088 break; 1089 case KVM_S390_MCHK: 1090 interrupt->parm = irq->u.mchk.cr14; 1091 interrupt->parm64 = irq->u.mchk.mcic; 1092 break; 1093 case KVM_S390_INT_EXTERNAL_CALL: 1094 interrupt->parm = irq->u.extcall.code; 1095 break; 1096 case KVM_S390_INT_EMERGENCY: 1097 interrupt->parm = irq->u.emerg.code; 1098 break; 1099 case KVM_S390_SIGP_STOP: 1100 case KVM_S390_RESTART: 1101 break; /* These types have no parameters */ 1102 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1103 interrupt->parm = irq->u.io.subchannel_id << 16; 1104 interrupt->parm |= irq->u.io.subchannel_nr; 1105 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1106 interrupt->parm64 |= irq->u.io.io_int_word; 1107 break; 1108 default: 1109 r = -EINVAL; 1110 break; 1111 } 1112 return r; 1113 } 1114 1115 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1116 { 1117 struct kvm_s390_interrupt kvmint = {}; 1118 int r; 1119 1120 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1121 if (r < 0) { 1122 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1123 exit(1); 1124 } 1125 1126 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1127 if (r < 0) { 1128 fprintf(stderr, "KVM failed to inject interrupt\n"); 1129 exit(1); 1130 } 1131 } 1132 1133 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1134 { 1135 CPUState *cs = CPU(cpu); 1136 int r; 1137 1138 if (cap_s390_irq) { 1139 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1140 if (!r) { 1141 return; 1142 } 1143 error_report("KVM failed to inject interrupt %llx", irq->type); 1144 exit(1); 1145 } 1146 1147 inject_vcpu_irq_legacy(cs, irq); 1148 } 1149 1150 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1151 { 1152 struct kvm_s390_interrupt kvmint = {}; 1153 int r; 1154 1155 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1156 if (r < 0) { 1157 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1158 exit(1); 1159 } 1160 1161 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1162 if (r < 0) { 1163 fprintf(stderr, "KVM failed to inject interrupt\n"); 1164 exit(1); 1165 } 1166 } 1167 1168 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1169 { 1170 struct kvm_s390_irq irq = { 1171 .type = KVM_S390_PROGRAM_INT, 1172 .u.pgm.code = code, 1173 }; 1174 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1175 cpu->env.psw.addr); 1176 kvm_s390_vcpu_interrupt(cpu, &irq); 1177 } 1178 1179 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1180 { 1181 struct kvm_s390_irq irq = { 1182 .type = KVM_S390_PROGRAM_INT, 1183 .u.pgm.code = code, 1184 .u.pgm.trans_exc_code = te_code, 1185 .u.pgm.exc_access_id = te_code & 3, 1186 }; 1187 1188 kvm_s390_vcpu_interrupt(cpu, &irq); 1189 } 1190 1191 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1192 uint16_t ipbh0) 1193 { 1194 CPUS390XState *env = &cpu->env; 1195 uint64_t sccb; 1196 uint32_t code; 1197 int r; 1198 1199 sccb = env->regs[ipbh0 & 0xf]; 1200 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1201 1202 r = sclp_service_call(env, sccb, code); 1203 if (r < 0) { 1204 kvm_s390_program_interrupt(cpu, -r); 1205 return; 1206 } 1207 setcc(cpu, r); 1208 } 1209 1210 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1211 { 1212 CPUS390XState *env = &cpu->env; 1213 int rc = 0; 1214 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1215 1216 switch (ipa1) { 1217 case PRIV_B2_XSCH: 1218 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1219 break; 1220 case PRIV_B2_CSCH: 1221 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1222 break; 1223 case PRIV_B2_HSCH: 1224 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1225 break; 1226 case PRIV_B2_MSCH: 1227 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1228 break; 1229 case PRIV_B2_SSCH: 1230 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1231 break; 1232 case PRIV_B2_STCRW: 1233 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1234 break; 1235 case PRIV_B2_STSCH: 1236 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1237 break; 1238 case PRIV_B2_TSCH: 1239 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1240 fprintf(stderr, "Spurious tsch intercept\n"); 1241 break; 1242 case PRIV_B2_CHSC: 1243 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1244 break; 1245 case PRIV_B2_TPI: 1246 /* This should have been handled by kvm already. */ 1247 fprintf(stderr, "Spurious tpi intercept\n"); 1248 break; 1249 case PRIV_B2_SCHM: 1250 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1251 run->s390_sieic.ipb, RA_IGNORED); 1252 break; 1253 case PRIV_B2_RSCH: 1254 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1255 break; 1256 case PRIV_B2_RCHP: 1257 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1258 break; 1259 case PRIV_B2_STCPS: 1260 /* We do not provide this instruction, it is suppressed. */ 1261 break; 1262 case PRIV_B2_SAL: 1263 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1264 break; 1265 case PRIV_B2_SIGA: 1266 /* Not provided, set CC = 3 for subchannel not operational */ 1267 setcc(cpu, 3); 1268 break; 1269 case PRIV_B2_SCLP_CALL: 1270 kvm_sclp_service_call(cpu, run, ipbh0); 1271 break; 1272 default: 1273 rc = -1; 1274 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1275 break; 1276 } 1277 1278 return rc; 1279 } 1280 1281 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1282 uint8_t *ar) 1283 { 1284 CPUS390XState *env = &cpu->env; 1285 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1286 uint32_t base2 = run->s390_sieic.ipb >> 28; 1287 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1288 ((run->s390_sieic.ipb & 0xff00) << 4); 1289 1290 if (disp2 & 0x80000) { 1291 disp2 += 0xfff00000; 1292 } 1293 if (ar) { 1294 *ar = base2; 1295 } 1296 1297 return (base2 ? env->regs[base2] : 0) + 1298 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1299 } 1300 1301 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1302 uint8_t *ar) 1303 { 1304 CPUS390XState *env = &cpu->env; 1305 uint32_t base2 = run->s390_sieic.ipb >> 28; 1306 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1307 ((run->s390_sieic.ipb & 0xff00) << 4); 1308 1309 if (disp2 & 0x80000) { 1310 disp2 += 0xfff00000; 1311 } 1312 if (ar) { 1313 *ar = base2; 1314 } 1315 1316 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1317 } 1318 1319 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1320 { 1321 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1322 1323 if (s390_has_feat(S390_FEAT_ZPCI)) { 1324 return clp_service_call(cpu, r2, RA_IGNORED); 1325 } else { 1326 return -1; 1327 } 1328 } 1329 1330 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1331 { 1332 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1333 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1334 1335 if (s390_has_feat(S390_FEAT_ZPCI)) { 1336 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1337 } else { 1338 return -1; 1339 } 1340 } 1341 1342 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1343 { 1344 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1345 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1346 1347 if (s390_has_feat(S390_FEAT_ZPCI)) { 1348 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1349 } else { 1350 return -1; 1351 } 1352 } 1353 1354 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1355 { 1356 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1357 uint64_t fiba; 1358 uint8_t ar; 1359 1360 if (s390_has_feat(S390_FEAT_ZPCI)) { 1361 fiba = get_base_disp_rxy(cpu, run, &ar); 1362 1363 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1364 } else { 1365 return -1; 1366 } 1367 } 1368 1369 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1370 { 1371 CPUS390XState *env = &cpu->env; 1372 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1373 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1374 uint8_t isc; 1375 uint16_t mode; 1376 int r; 1377 1378 mode = env->regs[r1] & 0xffff; 1379 isc = (env->regs[r3] >> 27) & 0x7; 1380 r = css_do_sic(env, isc, mode); 1381 if (r) { 1382 kvm_s390_program_interrupt(cpu, -r); 1383 } 1384 1385 return 0; 1386 } 1387 1388 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1389 { 1390 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1391 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1392 1393 if (s390_has_feat(S390_FEAT_ZPCI)) { 1394 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1395 } else { 1396 return -1; 1397 } 1398 } 1399 1400 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1401 { 1402 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1403 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1404 uint64_t gaddr; 1405 uint8_t ar; 1406 1407 if (s390_has_feat(S390_FEAT_ZPCI)) { 1408 gaddr = get_base_disp_rsy(cpu, run, &ar); 1409 1410 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1411 } else { 1412 return -1; 1413 } 1414 } 1415 1416 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1417 { 1418 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1419 uint64_t fiba; 1420 uint8_t ar; 1421 1422 if (s390_has_feat(S390_FEAT_ZPCI)) { 1423 fiba = get_base_disp_rxy(cpu, run, &ar); 1424 1425 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1426 } else { 1427 return -1; 1428 } 1429 } 1430 1431 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1432 { 1433 int r = 0; 1434 1435 switch (ipa1) { 1436 case PRIV_B9_CLP: 1437 r = kvm_clp_service_call(cpu, run); 1438 break; 1439 case PRIV_B9_PCISTG: 1440 r = kvm_pcistg_service_call(cpu, run); 1441 break; 1442 case PRIV_B9_PCILG: 1443 r = kvm_pcilg_service_call(cpu, run); 1444 break; 1445 case PRIV_B9_RPCIT: 1446 r = kvm_rpcit_service_call(cpu, run); 1447 break; 1448 case PRIV_B9_EQBS: 1449 /* just inject exception */ 1450 r = -1; 1451 break; 1452 default: 1453 r = -1; 1454 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1455 break; 1456 } 1457 1458 return r; 1459 } 1460 1461 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1462 { 1463 int r = 0; 1464 1465 switch (ipbl) { 1466 case PRIV_EB_PCISTB: 1467 r = kvm_pcistb_service_call(cpu, run); 1468 break; 1469 case PRIV_EB_SIC: 1470 r = kvm_sic_service_call(cpu, run); 1471 break; 1472 case PRIV_EB_SQBS: 1473 /* just inject exception */ 1474 r = -1; 1475 break; 1476 default: 1477 r = -1; 1478 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1479 break; 1480 } 1481 1482 return r; 1483 } 1484 1485 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1486 { 1487 int r = 0; 1488 1489 switch (ipbl) { 1490 case PRIV_E3_MPCIFC: 1491 r = kvm_mpcifc_service_call(cpu, run); 1492 break; 1493 case PRIV_E3_STPCIFC: 1494 r = kvm_stpcifc_service_call(cpu, run); 1495 break; 1496 default: 1497 r = -1; 1498 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1499 break; 1500 } 1501 1502 return r; 1503 } 1504 1505 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1506 { 1507 CPUS390XState *env = &cpu->env; 1508 int ret; 1509 1510 ret = s390_virtio_hypercall(env); 1511 if (ret == -EINVAL) { 1512 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1513 return 0; 1514 } 1515 1516 return ret; 1517 } 1518 1519 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1520 { 1521 uint64_t r1, r3; 1522 int rc; 1523 1524 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1525 r3 = run->s390_sieic.ipa & 0x000f; 1526 rc = handle_diag_288(&cpu->env, r1, r3); 1527 if (rc) { 1528 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1529 } 1530 } 1531 1532 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1533 { 1534 uint64_t r1, r3; 1535 1536 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1537 r3 = run->s390_sieic.ipa & 0x000f; 1538 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1539 } 1540 1541 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1542 { 1543 CPUS390XState *env = &cpu->env; 1544 unsigned long pc; 1545 1546 pc = env->psw.addr - sw_bp_ilen; 1547 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1548 env->psw.addr = pc; 1549 return EXCP_DEBUG; 1550 } 1551 1552 return -ENOENT; 1553 } 1554 1555 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1556 1557 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1558 { 1559 int r = 0; 1560 uint16_t func_code; 1561 1562 /* 1563 * For any diagnose call we support, bits 48-63 of the resulting 1564 * address specify the function code; the remainder is ignored. 1565 */ 1566 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1567 switch (func_code) { 1568 case DIAG_TIMEREVENT: 1569 kvm_handle_diag_288(cpu, run); 1570 break; 1571 case DIAG_IPL: 1572 kvm_handle_diag_308(cpu, run); 1573 break; 1574 case DIAG_KVM_HYPERCALL: 1575 r = handle_hypercall(cpu, run); 1576 break; 1577 case DIAG_KVM_BREAKPOINT: 1578 r = handle_sw_breakpoint(cpu, run); 1579 break; 1580 default: 1581 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1582 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1583 break; 1584 } 1585 1586 return r; 1587 } 1588 1589 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1590 { 1591 CPUS390XState *env = &cpu->env; 1592 const uint8_t r1 = ipa1 >> 4; 1593 const uint8_t r3 = ipa1 & 0x0f; 1594 int ret; 1595 uint8_t order; 1596 1597 /* get order code */ 1598 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1599 1600 ret = handle_sigp(env, order, r1, r3); 1601 setcc(cpu, ret); 1602 return 0; 1603 } 1604 1605 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1606 { 1607 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1608 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1609 int r = -1; 1610 1611 DPRINTF("handle_instruction 0x%x 0x%x\n", 1612 run->s390_sieic.ipa, run->s390_sieic.ipb); 1613 switch (ipa0) { 1614 case IPA0_B2: 1615 r = handle_b2(cpu, run, ipa1); 1616 break; 1617 case IPA0_B9: 1618 r = handle_b9(cpu, run, ipa1); 1619 break; 1620 case IPA0_EB: 1621 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1622 break; 1623 case IPA0_E3: 1624 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1625 break; 1626 case IPA0_DIAG: 1627 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1628 break; 1629 case IPA0_SIGP: 1630 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1631 break; 1632 } 1633 1634 if (r < 0) { 1635 r = 0; 1636 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1637 } 1638 1639 return r; 1640 } 1641 1642 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1643 int pswoffset) 1644 { 1645 CPUState *cs = CPU(cpu); 1646 1647 s390_cpu_halt(cpu); 1648 cpu->env.crash_reason = reason; 1649 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1650 } 1651 1652 /* try to detect pgm check loops */ 1653 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1654 { 1655 CPUState *cs = CPU(cpu); 1656 PSW oldpsw, newpsw; 1657 1658 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1659 offsetof(LowCore, program_new_psw)); 1660 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1661 offsetof(LowCore, program_new_psw) + 8); 1662 oldpsw.mask = run->psw_mask; 1663 oldpsw.addr = run->psw_addr; 1664 /* 1665 * Avoid endless loops of operation exceptions, if the pgm new 1666 * PSW will cause a new operation exception. 1667 * The heuristic checks if the pgm new psw is within 6 bytes before 1668 * the faulting psw address (with same DAT, AS settings) and the 1669 * new psw is not a wait psw and the fault was not triggered by 1670 * problem state. In that case go into crashed state. 1671 */ 1672 1673 if (oldpsw.addr - newpsw.addr <= 6 && 1674 !(newpsw.mask & PSW_MASK_WAIT) && 1675 !(oldpsw.mask & PSW_MASK_PSTATE) && 1676 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1677 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1678 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1679 offsetof(LowCore, program_new_psw)); 1680 return EXCP_HALTED; 1681 } 1682 return 0; 1683 } 1684 1685 static int handle_intercept(S390CPU *cpu) 1686 { 1687 CPUState *cs = CPU(cpu); 1688 struct kvm_run *run = cs->kvm_run; 1689 int icpt_code = run->s390_sieic.icptcode; 1690 int r = 0; 1691 1692 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1693 (long)cs->kvm_run->psw_addr); 1694 switch (icpt_code) { 1695 case ICPT_INSTRUCTION: 1696 r = handle_instruction(cpu, run); 1697 break; 1698 case ICPT_PROGRAM: 1699 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1700 offsetof(LowCore, program_new_psw)); 1701 r = EXCP_HALTED; 1702 break; 1703 case ICPT_EXT_INT: 1704 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1705 offsetof(LowCore, external_new_psw)); 1706 r = EXCP_HALTED; 1707 break; 1708 case ICPT_WAITPSW: 1709 /* disabled wait, since enabled wait is handled in kernel */ 1710 s390_handle_wait(cpu); 1711 r = EXCP_HALTED; 1712 break; 1713 case ICPT_CPU_STOP: 1714 do_stop_interrupt(&cpu->env); 1715 r = EXCP_HALTED; 1716 break; 1717 case ICPT_OPEREXC: 1718 /* check for break points */ 1719 r = handle_sw_breakpoint(cpu, run); 1720 if (r == -ENOENT) { 1721 /* Then check for potential pgm check loops */ 1722 r = handle_oper_loop(cpu, run); 1723 if (r == 0) { 1724 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1725 } 1726 } 1727 break; 1728 case ICPT_SOFT_INTERCEPT: 1729 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1730 exit(1); 1731 break; 1732 case ICPT_IO: 1733 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1734 exit(1); 1735 break; 1736 default: 1737 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1738 exit(1); 1739 break; 1740 } 1741 1742 return r; 1743 } 1744 1745 static int handle_tsch(S390CPU *cpu) 1746 { 1747 CPUState *cs = CPU(cpu); 1748 struct kvm_run *run = cs->kvm_run; 1749 int ret; 1750 1751 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1752 RA_IGNORED); 1753 if (ret < 0) { 1754 /* 1755 * Failure. 1756 * If an I/O interrupt had been dequeued, we have to reinject it. 1757 */ 1758 if (run->s390_tsch.dequeued) { 1759 s390_io_interrupt(run->s390_tsch.subchannel_id, 1760 run->s390_tsch.subchannel_nr, 1761 run->s390_tsch.io_int_parm, 1762 run->s390_tsch.io_int_word); 1763 } 1764 ret = 0; 1765 } 1766 return ret; 1767 } 1768 1769 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1770 { 1771 const MachineState *ms = MACHINE(qdev_get_machine()); 1772 uint16_t conf_cpus = 0, reserved_cpus = 0; 1773 SysIB_322 sysib; 1774 int del, i; 1775 1776 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1777 return; 1778 } 1779 /* Shift the stack of Extended Names to prepare for our own data */ 1780 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1781 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1782 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1783 * assumed it's not capable of managing Extended Names for lower levels. 1784 */ 1785 for (del = 1; del < sysib.count; del++) { 1786 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1787 break; 1788 } 1789 } 1790 if (del < sysib.count) { 1791 memset(sysib.ext_names[del], 0, 1792 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1793 } 1794 1795 /* count the cpus and split them into configured and reserved ones */ 1796 for (i = 0; i < ms->possible_cpus->len; i++) { 1797 if (ms->possible_cpus->cpus[i].cpu) { 1798 conf_cpus++; 1799 } else { 1800 reserved_cpus++; 1801 } 1802 } 1803 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus; 1804 sysib.vm[0].conf_cpus = conf_cpus; 1805 sysib.vm[0].reserved_cpus = reserved_cpus; 1806 1807 /* Insert short machine name in EBCDIC, padded with blanks */ 1808 if (qemu_name) { 1809 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1810 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1811 strlen(qemu_name))); 1812 } 1813 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1814 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1815 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1816 * considered by s390 as not capable of providing any Extended Name. 1817 * Therefore if no name was specified on qemu invocation, we go with the 1818 * same "KVMguest" default, which KVM has filled into short name field. 1819 */ 1820 if (qemu_name) { 1821 strncpy((char *)sysib.ext_names[0], qemu_name, 1822 sizeof(sysib.ext_names[0])); 1823 } else { 1824 strcpy((char *)sysib.ext_names[0], "KVMguest"); 1825 } 1826 /* Insert UUID */ 1827 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1828 1829 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1830 } 1831 1832 static int handle_stsi(S390CPU *cpu) 1833 { 1834 CPUState *cs = CPU(cpu); 1835 struct kvm_run *run = cs->kvm_run; 1836 1837 switch (run->s390_stsi.fc) { 1838 case 3: 1839 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1840 return 0; 1841 } 1842 /* Only sysib 3.2.2 needs post-handling for now. */ 1843 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1844 return 0; 1845 default: 1846 return 0; 1847 } 1848 } 1849 1850 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1851 { 1852 CPUState *cs = CPU(cpu); 1853 struct kvm_run *run = cs->kvm_run; 1854 1855 int ret = 0; 1856 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1857 1858 switch (arch_info->type) { 1859 case KVM_HW_WP_WRITE: 1860 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1861 cs->watchpoint_hit = &hw_watchpoint; 1862 hw_watchpoint.vaddr = arch_info->addr; 1863 hw_watchpoint.flags = BP_MEM_WRITE; 1864 ret = EXCP_DEBUG; 1865 } 1866 break; 1867 case KVM_HW_BP: 1868 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1869 ret = EXCP_DEBUG; 1870 } 1871 break; 1872 case KVM_SINGLESTEP: 1873 if (cs->singlestep_enabled) { 1874 ret = EXCP_DEBUG; 1875 } 1876 break; 1877 default: 1878 ret = -ENOSYS; 1879 } 1880 1881 return ret; 1882 } 1883 1884 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1885 { 1886 S390CPU *cpu = S390_CPU(cs); 1887 int ret = 0; 1888 1889 qemu_mutex_lock_iothread(); 1890 1891 kvm_cpu_synchronize_state(cs); 1892 1893 switch (run->exit_reason) { 1894 case KVM_EXIT_S390_SIEIC: 1895 ret = handle_intercept(cpu); 1896 break; 1897 case KVM_EXIT_S390_RESET: 1898 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1899 break; 1900 case KVM_EXIT_S390_TSCH: 1901 ret = handle_tsch(cpu); 1902 break; 1903 case KVM_EXIT_S390_STSI: 1904 ret = handle_stsi(cpu); 1905 break; 1906 case KVM_EXIT_DEBUG: 1907 ret = kvm_arch_handle_debug_exit(cpu); 1908 break; 1909 default: 1910 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1911 break; 1912 } 1913 qemu_mutex_unlock_iothread(); 1914 1915 if (ret == 0) { 1916 ret = EXCP_INTERRUPT; 1917 } 1918 return ret; 1919 } 1920 1921 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1922 { 1923 return true; 1924 } 1925 1926 void kvm_s390_enable_css_support(S390CPU *cpu) 1927 { 1928 int r; 1929 1930 /* Activate host kernel channel subsystem support. */ 1931 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1932 assert(r == 0); 1933 } 1934 1935 void kvm_arch_init_irq_routing(KVMState *s) 1936 { 1937 /* 1938 * Note that while irqchip capabilities generally imply that cpustates 1939 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1940 * have to override the common code kvm_halt_in_kernel_allowed setting. 1941 */ 1942 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1943 kvm_gsi_routing_allowed = true; 1944 kvm_halt_in_kernel_allowed = false; 1945 } 1946 } 1947 1948 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1949 int vq, bool assign) 1950 { 1951 struct kvm_ioeventfd kick = { 1952 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1953 KVM_IOEVENTFD_FLAG_DATAMATCH, 1954 .fd = event_notifier_get_fd(notifier), 1955 .datamatch = vq, 1956 .addr = sch, 1957 .len = 8, 1958 }; 1959 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 1960 kick.datamatch); 1961 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1962 return -ENOSYS; 1963 } 1964 if (!assign) { 1965 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1966 } 1967 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1968 } 1969 1970 int kvm_s390_get_ri(void) 1971 { 1972 return cap_ri; 1973 } 1974 1975 int kvm_s390_get_gs(void) 1976 { 1977 return cap_gs; 1978 } 1979 1980 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1981 { 1982 struct kvm_mp_state mp_state = {}; 1983 int ret; 1984 1985 /* the kvm part might not have been initialized yet */ 1986 if (CPU(cpu)->kvm_state == NULL) { 1987 return 0; 1988 } 1989 1990 switch (cpu_state) { 1991 case S390_CPU_STATE_STOPPED: 1992 mp_state.mp_state = KVM_MP_STATE_STOPPED; 1993 break; 1994 case S390_CPU_STATE_CHECK_STOP: 1995 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 1996 break; 1997 case S390_CPU_STATE_OPERATING: 1998 mp_state.mp_state = KVM_MP_STATE_OPERATING; 1999 break; 2000 case S390_CPU_STATE_LOAD: 2001 mp_state.mp_state = KVM_MP_STATE_LOAD; 2002 break; 2003 default: 2004 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2005 cpu_state); 2006 exit(1); 2007 } 2008 2009 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2010 if (ret) { 2011 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2012 strerror(-ret)); 2013 } 2014 2015 return ret; 2016 } 2017 2018 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2019 { 2020 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 2021 struct kvm_s390_irq_state irq_state = { 2022 .buf = (uint64_t) cpu->irqstate, 2023 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 2024 }; 2025 CPUState *cs = CPU(cpu); 2026 int32_t bytes; 2027 2028 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2029 return; 2030 } 2031 2032 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2033 if (bytes < 0) { 2034 cpu->irqstate_saved_size = 0; 2035 error_report("Migration of interrupt state failed"); 2036 return; 2037 } 2038 2039 cpu->irqstate_saved_size = bytes; 2040 } 2041 2042 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2043 { 2044 CPUState *cs = CPU(cpu); 2045 struct kvm_s390_irq_state irq_state = { 2046 .buf = (uint64_t) cpu->irqstate, 2047 .len = cpu->irqstate_saved_size, 2048 }; 2049 int r; 2050 2051 if (cpu->irqstate_saved_size == 0) { 2052 return 0; 2053 } 2054 2055 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2056 return -ENOSYS; 2057 } 2058 2059 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2060 if (r) { 2061 error_report("Setting interrupt state failed %d", r); 2062 } 2063 return r; 2064 } 2065 2066 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2067 uint64_t address, uint32_t data, PCIDevice *dev) 2068 { 2069 S390PCIBusDevice *pbdev; 2070 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2071 2072 if (!dev) { 2073 DPRINTF("add_msi_route no pci device\n"); 2074 return -ENODEV; 2075 } 2076 2077 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2078 if (!pbdev) { 2079 DPRINTF("add_msi_route no zpci device\n"); 2080 return -ENODEV; 2081 } 2082 2083 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2084 route->flags = 0; 2085 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2086 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2087 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2088 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2089 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2090 return 0; 2091 } 2092 2093 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2094 int vector, PCIDevice *dev) 2095 { 2096 return 0; 2097 } 2098 2099 int kvm_arch_release_virq_post(int virq) 2100 { 2101 return 0; 2102 } 2103 2104 int kvm_arch_msi_data_to_gsi(uint32_t data) 2105 { 2106 abort(); 2107 } 2108 2109 static int query_cpu_subfunc(S390FeatBitmap features) 2110 { 2111 struct kvm_s390_vm_cpu_subfunc prop; 2112 struct kvm_device_attr attr = { 2113 .group = KVM_S390_VM_CPU_MODEL, 2114 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2115 .addr = (uint64_t) &prop, 2116 }; 2117 int rc; 2118 2119 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2120 if (rc) { 2121 return rc; 2122 } 2123 2124 /* 2125 * We're going to add all subfunctions now, if the corresponding feature 2126 * is available that unlocks the query functions. 2127 */ 2128 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2129 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2130 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2131 } 2132 if (test_bit(S390_FEAT_MSA, features)) { 2133 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2134 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2135 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2136 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2137 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2138 } 2139 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2140 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2141 } 2142 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2143 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2144 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2145 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2146 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2147 } 2148 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2149 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2150 } 2151 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2152 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2153 } 2154 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2155 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2156 } 2157 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2158 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2159 } 2160 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2161 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2162 } 2163 return 0; 2164 } 2165 2166 static int configure_cpu_subfunc(const S390FeatBitmap features) 2167 { 2168 struct kvm_s390_vm_cpu_subfunc prop = {}; 2169 struct kvm_device_attr attr = { 2170 .group = KVM_S390_VM_CPU_MODEL, 2171 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2172 .addr = (uint64_t) &prop, 2173 }; 2174 2175 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2176 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2177 /* hardware support might be missing, IBC will handle most of this */ 2178 return 0; 2179 } 2180 2181 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2182 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2183 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2184 } 2185 if (test_bit(S390_FEAT_MSA, features)) { 2186 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2187 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2188 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2189 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2190 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2191 } 2192 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2193 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2194 } 2195 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2196 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2197 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2198 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2199 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2200 } 2201 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2202 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2203 } 2204 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2205 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2206 } 2207 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2208 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2209 } 2210 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2211 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2212 } 2213 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2214 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2215 } 2216 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2217 } 2218 2219 static int kvm_to_feat[][2] = { 2220 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2221 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2222 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2223 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2224 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2225 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2226 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2227 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2228 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2229 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2230 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2231 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2232 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2233 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2234 }; 2235 2236 static int query_cpu_feat(S390FeatBitmap features) 2237 { 2238 struct kvm_s390_vm_cpu_feat prop; 2239 struct kvm_device_attr attr = { 2240 .group = KVM_S390_VM_CPU_MODEL, 2241 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2242 .addr = (uint64_t) &prop, 2243 }; 2244 int rc; 2245 int i; 2246 2247 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2248 if (rc) { 2249 return rc; 2250 } 2251 2252 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2253 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2254 set_bit(kvm_to_feat[i][1], features); 2255 } 2256 } 2257 return 0; 2258 } 2259 2260 static int configure_cpu_feat(const S390FeatBitmap features) 2261 { 2262 struct kvm_s390_vm_cpu_feat prop = {}; 2263 struct kvm_device_attr attr = { 2264 .group = KVM_S390_VM_CPU_MODEL, 2265 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2266 .addr = (uint64_t) &prop, 2267 }; 2268 int i; 2269 2270 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2271 if (test_bit(kvm_to_feat[i][1], features)) { 2272 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2273 } 2274 } 2275 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2276 } 2277 2278 bool kvm_s390_cpu_models_supported(void) 2279 { 2280 if (!cpu_model_allowed()) { 2281 /* compatibility machines interfere with the cpu model */ 2282 return false; 2283 } 2284 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2285 KVM_S390_VM_CPU_MACHINE) && 2286 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2287 KVM_S390_VM_CPU_PROCESSOR) && 2288 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2289 KVM_S390_VM_CPU_MACHINE_FEAT) && 2290 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2291 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2292 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2293 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2294 } 2295 2296 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2297 { 2298 struct kvm_s390_vm_cpu_machine prop = {}; 2299 struct kvm_device_attr attr = { 2300 .group = KVM_S390_VM_CPU_MODEL, 2301 .attr = KVM_S390_VM_CPU_MACHINE, 2302 .addr = (uint64_t) &prop, 2303 }; 2304 uint16_t unblocked_ibc = 0, cpu_type = 0; 2305 int rc; 2306 2307 memset(model, 0, sizeof(*model)); 2308 2309 if (!kvm_s390_cpu_models_supported()) { 2310 error_setg(errp, "KVM doesn't support CPU models"); 2311 return; 2312 } 2313 2314 /* query the basic cpu model properties */ 2315 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2316 if (rc) { 2317 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2318 return; 2319 } 2320 2321 cpu_type = cpuid_type(prop.cpuid); 2322 if (has_ibc(prop.ibc)) { 2323 model->lowest_ibc = lowest_ibc(prop.ibc); 2324 unblocked_ibc = unblocked_ibc(prop.ibc); 2325 } 2326 model->cpu_id = cpuid_id(prop.cpuid); 2327 model->cpu_id_format = cpuid_format(prop.cpuid); 2328 model->cpu_ver = 0xff; 2329 2330 /* get supported cpu features indicated via STFL(E) */ 2331 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2332 (uint8_t *) prop.fac_mask); 2333 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2334 if (test_bit(S390_FEAT_STFLE, model->features)) { 2335 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2336 } 2337 /* get supported cpu features indicated e.g. via SCLP */ 2338 rc = query_cpu_feat(model->features); 2339 if (rc) { 2340 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2341 return; 2342 } 2343 /* get supported cpu subfunctions indicated via query / test bit */ 2344 rc = query_cpu_subfunc(model->features); 2345 if (rc) { 2346 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2347 return; 2348 } 2349 2350 /* PTFF subfunctions might be indicated although kernel support missing */ 2351 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2352 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2353 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2354 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2355 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2356 } 2357 2358 /* with cpu model support, CMM is only indicated if really available */ 2359 if (kvm_s390_cmma_available()) { 2360 set_bit(S390_FEAT_CMM, model->features); 2361 } else { 2362 /* no cmm -> no cmm nt */ 2363 clear_bit(S390_FEAT_CMM_NT, model->features); 2364 } 2365 2366 /* bpb needs kernel support for migration, VSIE and reset */ 2367 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2368 clear_bit(S390_FEAT_BPB, model->features); 2369 } 2370 2371 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2372 set_bit(S390_FEAT_ZPCI, model->features); 2373 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2374 2375 if (s390_known_cpu_type(cpu_type)) { 2376 /* we want the exact model, even if some features are missing */ 2377 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2378 ibc_ec_ga(unblocked_ibc), NULL); 2379 } else { 2380 /* model unknown, e.g. too new - search using features */ 2381 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2382 ibc_ec_ga(unblocked_ibc), 2383 model->features); 2384 } 2385 if (!model->def) { 2386 error_setg(errp, "KVM: host CPU model could not be identified"); 2387 return; 2388 } 2389 /* for now, we can only provide the AP feature with HW support */ 2390 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2391 KVM_S390_VM_CRYPTO_ENABLE_APIE)) { 2392 set_bit(S390_FEAT_AP, model->features); 2393 } 2394 /* strip of features that are not part of the maximum model */ 2395 bitmap_and(model->features, model->features, model->def->full_feat, 2396 S390_FEAT_MAX); 2397 } 2398 2399 static void kvm_s390_configure_apie(bool interpret) 2400 { 2401 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2402 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2403 2404 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2405 kvm_s390_set_attr(attr); 2406 } 2407 } 2408 2409 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2410 { 2411 struct kvm_s390_vm_cpu_processor prop = { 2412 .fac_list = { 0 }, 2413 }; 2414 struct kvm_device_attr attr = { 2415 .group = KVM_S390_VM_CPU_MODEL, 2416 .attr = KVM_S390_VM_CPU_PROCESSOR, 2417 .addr = (uint64_t) &prop, 2418 }; 2419 int rc; 2420 2421 if (!model) { 2422 /* compatibility handling if cpu models are disabled */ 2423 if (kvm_s390_cmma_available()) { 2424 kvm_s390_enable_cmma(); 2425 } 2426 return; 2427 } 2428 if (!kvm_s390_cpu_models_supported()) { 2429 error_setg(errp, "KVM doesn't support CPU models"); 2430 return; 2431 } 2432 prop.cpuid = s390_cpuid_from_cpu_model(model); 2433 prop.ibc = s390_ibc_from_cpu_model(model); 2434 /* configure cpu features indicated via STFL(e) */ 2435 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2436 (uint8_t *) prop.fac_list); 2437 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2438 if (rc) { 2439 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2440 return; 2441 } 2442 /* configure cpu features indicated e.g. via SCLP */ 2443 rc = configure_cpu_feat(model->features); 2444 if (rc) { 2445 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2446 return; 2447 } 2448 /* configure cpu subfunctions indicated via query / test bit */ 2449 rc = configure_cpu_subfunc(model->features); 2450 if (rc) { 2451 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2452 return; 2453 } 2454 /* enable CMM via CMMA */ 2455 if (test_bit(S390_FEAT_CMM, model->features)) { 2456 kvm_s390_enable_cmma(); 2457 } 2458 2459 if (test_bit(S390_FEAT_AP, model->features)) { 2460 kvm_s390_configure_apie(true); 2461 } 2462 } 2463 2464 void kvm_s390_restart_interrupt(S390CPU *cpu) 2465 { 2466 struct kvm_s390_irq irq = { 2467 .type = KVM_S390_RESTART, 2468 }; 2469 2470 kvm_s390_vcpu_interrupt(cpu, &irq); 2471 } 2472 2473 void kvm_s390_stop_interrupt(S390CPU *cpu) 2474 { 2475 struct kvm_s390_irq irq = { 2476 .type = KVM_S390_SIGP_STOP, 2477 }; 2478 2479 kvm_s390_vcpu_interrupt(cpu, &irq); 2480 } 2481