1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "cpu.h" 28 #include "s390x-internal.h" 29 #include "kvm_s390x.h" 30 #include "system/kvm_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/units.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/mmap-alloc.h" 38 #include "qemu/log.h" 39 #include "system/system.h" 40 #include "system/hw_accel.h" 41 #include "system/runstate.h" 42 #include "system/device_tree.h" 43 #include "gdbstub/enums.h" 44 #include "exec/ram_addr.h" 45 #include "trace.h" 46 #include "hw/s390x/s390-pci-inst.h" 47 #include "hw/s390x/s390-pci-bus.h" 48 #include "hw/s390x/ipl.h" 49 #include "hw/s390x/ebcdic.h" 50 #include "exec/memattrs.h" 51 #include "hw/s390x/s390-virtio-ccw.h" 52 #include "hw/s390x/s390-hypercall.h" 53 #include "target/s390x/kvm/pv.h" 54 #include CONFIG_DEVICES 55 56 #define kvm_vm_check_mem_attr(s, attr) \ 57 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 58 59 #define IPA0_DIAG 0x8300 60 #define IPA0_SIGP 0xae00 61 #define IPA0_B2 0xb200 62 #define IPA0_B9 0xb900 63 #define IPA0_EB 0xeb00 64 #define IPA0_E3 0xe300 65 66 #define PRIV_B2_SCLP_CALL 0x20 67 #define PRIV_B2_CSCH 0x30 68 #define PRIV_B2_HSCH 0x31 69 #define PRIV_B2_MSCH 0x32 70 #define PRIV_B2_SSCH 0x33 71 #define PRIV_B2_STSCH 0x34 72 #define PRIV_B2_TSCH 0x35 73 #define PRIV_B2_TPI 0x36 74 #define PRIV_B2_SAL 0x37 75 #define PRIV_B2_RSCH 0x38 76 #define PRIV_B2_STCRW 0x39 77 #define PRIV_B2_STCPS 0x3a 78 #define PRIV_B2_RCHP 0x3b 79 #define PRIV_B2_SCHM 0x3c 80 #define PRIV_B2_CHSC 0x5f 81 #define PRIV_B2_SIGA 0x74 82 #define PRIV_B2_XSCH 0x76 83 84 #define PRIV_EB_SQBS 0x8a 85 #define PRIV_EB_PCISTB 0xd0 86 #define PRIV_EB_SIC 0xd1 87 88 #define PRIV_B9_EQBS 0x9c 89 #define PRIV_B9_CLP 0xa0 90 #define PRIV_B9_PTF 0xa2 91 #define PRIV_B9_PCISTG 0xd0 92 #define PRIV_B9_PCILG 0xd2 93 #define PRIV_B9_RPCIT 0xd3 94 95 #define PRIV_E3_MPCIFC 0xd0 96 #define PRIV_E3_STPCIFC 0xd4 97 98 #define DIAG_TIMEREVENT 0x288 99 #define DIAG_IPL 0x308 100 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318 101 #define DIAG_KVM_HYPERCALL 0x500 102 #define DIAG_KVM_BREAKPOINT 0x501 103 104 #define ICPT_INSTRUCTION 0x04 105 #define ICPT_PROGRAM 0x08 106 #define ICPT_EXT_INT 0x14 107 #define ICPT_WAITPSW 0x1c 108 #define ICPT_SOFT_INTERCEPT 0x24 109 #define ICPT_CPU_STOP 0x28 110 #define ICPT_OPEREXC 0x2c 111 #define ICPT_IO 0x40 112 #define ICPT_PV_INSTR 0x68 113 #define ICPT_PV_INSTR_NOTIFICATION 0x6c 114 115 #define NR_LOCAL_IRQS 32 116 /* 117 * Needs to be big enough to contain max_cpus emergency signals 118 * and in addition NR_LOCAL_IRQS interrupts 119 */ 120 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 121 (max_cpus + NR_LOCAL_IRQS)) 122 /* 123 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages 124 * as the dirty bitmap must be managed by bitops that take an int as 125 * position indicator. This would end at an unaligned address 126 * (0x7fffff00000). As future variants might provide larger pages 127 * and to make all addresses properly aligned, let us split at 4TB. 128 */ 129 #define KVM_SLOT_MAX_BYTES (4UL * TiB) 130 131 static CPUWatchpoint hw_watchpoint; 132 /* 133 * We don't use a list because this structure is also used to transmit the 134 * hardware breakpoints to the kernel. 135 */ 136 static struct kvm_hw_breakpoint *hw_breakpoints; 137 static int nb_hw_breakpoints; 138 139 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 140 KVM_CAP_LAST_INFO 141 }; 142 143 static int cap_async_pf; 144 static int cap_mem_op; 145 static int cap_mem_op_extension; 146 static int cap_s390_irq; 147 static int cap_ri; 148 static int cap_hpage_1m; 149 static int cap_vcpu_resets; 150 static int cap_protected; 151 static int cap_zpci_op; 152 static int cap_protected_dump; 153 154 static bool mem_op_storage_key_support; 155 156 static int active_cmma; 157 158 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 159 { 160 struct kvm_device_attr attr = { 161 .group = KVM_S390_VM_MEM_CTRL, 162 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 163 .addr = (uint64_t) memory_limit, 164 }; 165 166 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 167 } 168 169 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 170 { 171 int rc; 172 173 struct kvm_device_attr attr = { 174 .group = KVM_S390_VM_MEM_CTRL, 175 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 176 .addr = (uint64_t) &new_limit, 177 }; 178 179 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 180 return 0; 181 } 182 183 rc = kvm_s390_query_mem_limit(hw_limit); 184 if (rc) { 185 return rc; 186 } else if (*hw_limit < new_limit) { 187 return -E2BIG; 188 } 189 190 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 191 } 192 193 int kvm_s390_cmma_active(void) 194 { 195 return active_cmma; 196 } 197 198 static bool kvm_s390_cmma_available(void) 199 { 200 static bool initialized, value; 201 202 if (!initialized) { 203 initialized = true; 204 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 205 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 206 } 207 return value; 208 } 209 210 void kvm_s390_cmma_reset(void) 211 { 212 int rc; 213 struct kvm_device_attr attr = { 214 .group = KVM_S390_VM_MEM_CTRL, 215 .attr = KVM_S390_VM_MEM_CLR_CMMA, 216 }; 217 218 if (!kvm_s390_cmma_active()) { 219 return; 220 } 221 222 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 223 trace_kvm_clear_cmma(rc); 224 } 225 226 static void kvm_s390_enable_cmma(void) 227 { 228 int rc; 229 struct kvm_device_attr attr = { 230 .group = KVM_S390_VM_MEM_CTRL, 231 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 232 }; 233 234 if (cap_hpage_1m) { 235 warn_report("CMM will not be enabled because it is not " 236 "compatible with huge memory backings."); 237 return; 238 } 239 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 240 active_cmma = !rc; 241 trace_kvm_enable_cmma(rc); 242 } 243 244 static void kvm_s390_set_crypto_attr(uint64_t attr) 245 { 246 struct kvm_device_attr attribute = { 247 .group = KVM_S390_VM_CRYPTO, 248 .attr = attr, 249 }; 250 251 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 252 253 if (ret) { 254 error_report("Failed to set crypto device attribute %lu: %s", 255 attr, strerror(-ret)); 256 } 257 } 258 259 static void kvm_s390_init_aes_kw(void) 260 { 261 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 262 263 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 264 NULL)) { 265 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 266 } 267 268 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 269 kvm_s390_set_crypto_attr(attr); 270 } 271 } 272 273 static void kvm_s390_init_dea_kw(void) 274 { 275 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 276 277 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 278 NULL)) { 279 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 280 } 281 282 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 283 kvm_s390_set_crypto_attr(attr); 284 } 285 } 286 287 void kvm_s390_crypto_reset(void) 288 { 289 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 290 kvm_s390_init_aes_kw(); 291 kvm_s390_init_dea_kw(); 292 } 293 } 294 295 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 296 { 297 if (pagesize == 4 * KiB) { 298 return; 299 } 300 301 if (!hpage_1m_allowed()) { 302 error_setg(errp, "This QEMU machine does not support huge page " 303 "mappings"); 304 return; 305 } 306 307 if (pagesize != 1 * MiB) { 308 error_setg(errp, "Memory backing with 2G pages was specified, " 309 "but KVM does not support this memory backing"); 310 return; 311 } 312 313 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 314 error_setg(errp, "Memory backing with 1M pages was specified, " 315 "but KVM does not support this memory backing"); 316 return; 317 } 318 319 cap_hpage_1m = 1; 320 } 321 322 int kvm_s390_get_hpage_1m(void) 323 { 324 return cap_hpage_1m; 325 } 326 327 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque) 328 { 329 MachineClass *mc = MACHINE_CLASS(oc); 330 331 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 332 } 333 334 int kvm_arch_get_default_type(MachineState *ms) 335 { 336 return 0; 337 } 338 339 int kvm_arch_init(MachineState *ms, KVMState *s) 340 { 341 int required_caps[] = { 342 KVM_CAP_DEVICE_CTRL, 343 KVM_CAP_SYNC_REGS, 344 }; 345 346 for (int i = 0; i < ARRAY_SIZE(required_caps); i++) { 347 if (!kvm_check_extension(s, required_caps[i])) { 348 error_report("KVM is missing capability #%d - " 349 "please use kernel 3.15 or newer", required_caps[i]); 350 return -1; 351 } 352 } 353 354 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE, 355 false, NULL); 356 357 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) { 358 error_report("KVM is missing capability KVM_CAP_S390_COW - " 359 "unsupported environment"); 360 return -1; 361 } 362 363 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 364 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 365 cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION); 366 mem_op_storage_key_support = cap_mem_op_extension > 0; 367 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 368 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS); 369 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED); 370 cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP); 371 cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP); 372 373 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 374 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 375 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 376 kvm_vm_enable_cap(s, KVM_CAP_S390_CPU_TOPOLOGY, 0); 377 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 378 cap_ri = 1; 379 } 380 if (cpu_model_allowed()) { 381 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0); 382 } 383 384 /* 385 * The migration interface for ais was introduced with kernel 4.13 386 * but the capability itself had been active since 4.12. As migration 387 * support is considered necessary, we only try to enable this for 388 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available. 389 */ 390 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() && 391 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) { 392 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); 393 } 394 395 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); 396 return 0; 397 } 398 399 int kvm_arch_irqchip_create(KVMState *s) 400 { 401 return 0; 402 } 403 404 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 405 { 406 return cpu->cpu_index; 407 } 408 409 int kvm_arch_init_vcpu(CPUState *cs) 410 { 411 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 412 S390CPU *cpu = S390_CPU(cs); 413 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 414 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 415 return 0; 416 } 417 418 int kvm_arch_destroy_vcpu(CPUState *cs) 419 { 420 S390CPU *cpu = S390_CPU(cs); 421 422 g_free(cpu->irqstate); 423 cpu->irqstate = NULL; 424 425 return 0; 426 } 427 428 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type) 429 { 430 CPUState *cs = CPU(cpu); 431 432 /* 433 * The reset call is needed here to reset in-kernel vcpu data that 434 * we can't access directly from QEMU (i.e. with older kernels 435 * which don't support sync_regs/ONE_REG). Before this ioctl 436 * cpu_synchronize_state() is called in common kvm code 437 * (kvm-all). 438 */ 439 if (kvm_vcpu_ioctl(cs, type)) { 440 error_report("CPU reset failed on CPU %i type %lx", 441 cs->cpu_index, type); 442 } 443 } 444 445 void kvm_s390_reset_vcpu_initial(S390CPU *cpu) 446 { 447 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 448 } 449 450 void kvm_s390_reset_vcpu_clear(S390CPU *cpu) 451 { 452 if (cap_vcpu_resets) { 453 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET); 454 } else { 455 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 456 } 457 } 458 459 void kvm_s390_reset_vcpu_normal(S390CPU *cpu) 460 { 461 if (cap_vcpu_resets) { 462 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET); 463 } 464 } 465 466 static int can_sync_regs(CPUState *cs, int regs) 467 { 468 return (cs->kvm_run->kvm_valid_regs & regs) == regs; 469 } 470 471 #define KVM_SYNC_REQUIRED_REGS (KVM_SYNC_GPRS | KVM_SYNC_ACRS | \ 472 KVM_SYNC_CRS | KVM_SYNC_PREFIX) 473 474 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp) 475 { 476 CPUS390XState *env = cpu_env(cs); 477 struct kvm_fpu fpu = {}; 478 int r; 479 int i; 480 481 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS)); 482 483 /* always save the PSW and the GPRS*/ 484 cs->kvm_run->psw_addr = env->psw.addr; 485 cs->kvm_run->psw_mask = env->psw.mask; 486 487 memcpy(cs->kvm_run->s.regs.gprs, env->regs, sizeof(cs->kvm_run->s.regs.gprs)); 488 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 489 490 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 491 for (i = 0; i < 32; i++) { 492 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 493 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 494 } 495 cs->kvm_run->s.regs.fpc = env->fpc; 496 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 497 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 498 for (i = 0; i < 16; i++) { 499 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 500 } 501 cs->kvm_run->s.regs.fpc = env->fpc; 502 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 503 } else { 504 /* Floating point */ 505 for (i = 0; i < 16; i++) { 506 fpu.fprs[i] = *get_freg(env, i); 507 } 508 fpu.fpc = env->fpc; 509 510 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 511 if (r < 0) { 512 return r; 513 } 514 } 515 516 /* Do we need to save more than that? */ 517 if (level == KVM_PUT_RUNTIME_STATE) { 518 return 0; 519 } 520 521 /* 522 * Access registers, control registers and the prefix - these are 523 * always available via kvm_sync_regs in the kernels that we support 524 */ 525 memcpy(cs->kvm_run->s.regs.acrs, env->aregs, sizeof(cs->kvm_run->s.regs.acrs)); 526 memcpy(cs->kvm_run->s.regs.crs, env->cregs, sizeof(cs->kvm_run->s.regs.crs)); 527 cs->kvm_run->s.regs.prefix = env->psa; 528 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS | KVM_SYNC_CRS | KVM_SYNC_PREFIX; 529 530 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 531 cs->kvm_run->s.regs.cputm = env->cputm; 532 cs->kvm_run->s.regs.ckc = env->ckc; 533 cs->kvm_run->s.regs.todpr = env->todpr; 534 cs->kvm_run->s.regs.gbea = env->gbea; 535 cs->kvm_run->s.regs.pp = env->pp; 536 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 537 } else { 538 /* 539 * These ONE_REGS are not protected by a capability. As they are only 540 * necessary for migration we just trace a possible error, but don't 541 * return with an error return code. 542 */ 543 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 544 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 545 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 546 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 547 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 548 } 549 550 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 551 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 552 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 553 } 554 555 /* pfault parameters */ 556 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 557 cs->kvm_run->s.regs.pft = env->pfault_token; 558 cs->kvm_run->s.regs.pfs = env->pfault_select; 559 cs->kvm_run->s.regs.pfc = env->pfault_compare; 560 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 561 } else if (cap_async_pf) { 562 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 563 if (r < 0) { 564 return r; 565 } 566 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 567 if (r < 0) { 568 return r; 569 } 570 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 571 if (r < 0) { 572 return r; 573 } 574 } 575 576 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 577 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 578 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 579 } 580 581 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 582 cs->kvm_run->s.regs.bpbc = env->bpbc; 583 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 584 } 585 586 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 587 cs->kvm_run->s.regs.etoken = env->etoken; 588 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 589 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 590 } 591 592 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 593 cs->kvm_run->s.regs.diag318 = env->diag318_info; 594 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 595 } 596 597 return 0; 598 } 599 600 int kvm_arch_get_registers(CPUState *cs, Error **errp) 601 { 602 CPUS390XState *env = cpu_env(cs); 603 struct kvm_fpu fpu; 604 int i, r; 605 606 /* get the PSW */ 607 env->psw.addr = cs->kvm_run->psw_addr; 608 env->psw.mask = cs->kvm_run->psw_mask; 609 610 /* the GPRS, ACRS and CRS */ 611 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS)); 612 memcpy(env->regs, cs->kvm_run->s.regs.gprs, sizeof(env->regs)); 613 memcpy(env->aregs, cs->kvm_run->s.regs.acrs, sizeof(env->aregs)); 614 memcpy(env->cregs, cs->kvm_run->s.regs.crs, sizeof(env->cregs)); 615 616 /* The prefix */ 617 env->psa = cs->kvm_run->s.regs.prefix; 618 619 /* Floating point and vector registers */ 620 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 621 for (i = 0; i < 32; i++) { 622 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 623 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 624 } 625 env->fpc = cs->kvm_run->s.regs.fpc; 626 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 627 for (i = 0; i < 16; i++) { 628 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 629 } 630 env->fpc = cs->kvm_run->s.regs.fpc; 631 } else { 632 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 633 if (r < 0) { 634 return r; 635 } 636 for (i = 0; i < 16; i++) { 637 *get_freg(env, i) = fpu.fprs[i]; 638 } 639 env->fpc = fpu.fpc; 640 } 641 642 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 643 env->cputm = cs->kvm_run->s.regs.cputm; 644 env->ckc = cs->kvm_run->s.regs.ckc; 645 env->todpr = cs->kvm_run->s.regs.todpr; 646 env->gbea = cs->kvm_run->s.regs.gbea; 647 env->pp = cs->kvm_run->s.regs.pp; 648 } else { 649 /* 650 * These ONE_REGS are not protected by a capability. As they are only 651 * necessary for migration we just trace a possible error, but don't 652 * return with an error return code. 653 */ 654 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 655 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 656 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 657 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 658 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 659 } 660 661 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 662 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 663 } 664 665 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 666 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 667 } 668 669 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 670 env->bpbc = cs->kvm_run->s.regs.bpbc; 671 } 672 673 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 674 env->etoken = cs->kvm_run->s.regs.etoken; 675 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 676 } 677 678 /* pfault parameters */ 679 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 680 env->pfault_token = cs->kvm_run->s.regs.pft; 681 env->pfault_select = cs->kvm_run->s.regs.pfs; 682 env->pfault_compare = cs->kvm_run->s.regs.pfc; 683 } else if (cap_async_pf) { 684 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 685 if (r < 0) { 686 return r; 687 } 688 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 689 if (r < 0) { 690 return r; 691 } 692 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 693 if (r < 0) { 694 return r; 695 } 696 } 697 698 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 699 env->diag318_info = cs->kvm_run->s.regs.diag318; 700 } 701 702 return 0; 703 } 704 705 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 706 { 707 int r; 708 struct kvm_device_attr attr = { 709 .group = KVM_S390_VM_TOD, 710 .attr = KVM_S390_VM_TOD_LOW, 711 .addr = (uint64_t)tod_low, 712 }; 713 714 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 715 if (r) { 716 return r; 717 } 718 719 attr.attr = KVM_S390_VM_TOD_HIGH; 720 attr.addr = (uint64_t)tod_high; 721 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 722 } 723 724 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 725 { 726 int r; 727 struct kvm_s390_vm_tod_clock gtod; 728 struct kvm_device_attr attr = { 729 .group = KVM_S390_VM_TOD, 730 .attr = KVM_S390_VM_TOD_EXT, 731 .addr = (uint64_t)>od, 732 }; 733 734 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 735 *tod_high = gtod.epoch_idx; 736 *tod_low = gtod.tod; 737 738 return r; 739 } 740 741 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 742 { 743 int r; 744 struct kvm_device_attr attr = { 745 .group = KVM_S390_VM_TOD, 746 .attr = KVM_S390_VM_TOD_LOW, 747 .addr = (uint64_t)&tod_low, 748 }; 749 750 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 751 if (r) { 752 return r; 753 } 754 755 attr.attr = KVM_S390_VM_TOD_HIGH; 756 attr.addr = (uint64_t)&tod_high; 757 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 758 } 759 760 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 761 { 762 struct kvm_s390_vm_tod_clock gtod = { 763 .epoch_idx = tod_high, 764 .tod = tod_low, 765 }; 766 struct kvm_device_attr attr = { 767 .group = KVM_S390_VM_TOD, 768 .attr = KVM_S390_VM_TOD_EXT, 769 .addr = (uint64_t)>od, 770 }; 771 772 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 773 } 774 775 /** 776 * kvm_s390_mem_op: 777 * @addr: the logical start address in guest memory 778 * @ar: the access register number 779 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 780 * @len: length that should be transferred 781 * @is_write: true = write, false = read 782 * Returns: 0 on success, non-zero if an exception or error occurred 783 * 784 * Use KVM ioctl to read/write from/to guest memory. An access exception 785 * is injected into the vCPU in case of translation errors. 786 */ 787 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 788 int len, bool is_write) 789 { 790 struct kvm_s390_mem_op mem_op = { 791 .gaddr = addr, 792 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 793 .size = len, 794 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 795 : KVM_S390_MEMOP_LOGICAL_READ, 796 .buf = (uint64_t)hostbuf, 797 .ar = ar, 798 .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY, 799 }; 800 int ret; 801 802 if (!cap_mem_op) { 803 return -ENOSYS; 804 } 805 if (!hostbuf) { 806 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 807 } 808 if (mem_op_storage_key_support) { 809 mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION; 810 } 811 812 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 813 if (ret < 0) { 814 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 815 } 816 return ret; 817 } 818 819 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf, 820 int len, bool is_write) 821 { 822 struct kvm_s390_mem_op mem_op = { 823 .sida_offset = offset, 824 .size = len, 825 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE 826 : KVM_S390_MEMOP_SIDA_READ, 827 .buf = (uint64_t)hostbuf, 828 }; 829 int ret; 830 831 if (!cap_mem_op || !cap_protected) { 832 return -ENOSYS; 833 } 834 835 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 836 if (ret < 0) { 837 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 838 abort(); 839 } 840 return ret; 841 } 842 843 static uint8_t const *sw_bp_inst; 844 static uint8_t sw_bp_ilen; 845 846 static void determine_sw_breakpoint_instr(void) 847 { 848 /* DIAG 501 is used for sw breakpoints with old kernels */ 849 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 850 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 851 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 852 853 if (sw_bp_inst) { 854 return; 855 } 856 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 857 sw_bp_inst = diag_501; 858 sw_bp_ilen = sizeof(diag_501); 859 trace_kvm_sw_breakpoint(4); 860 } else { 861 sw_bp_inst = instr_0x0000; 862 sw_bp_ilen = sizeof(instr_0x0000); 863 trace_kvm_sw_breakpoint(2); 864 } 865 } 866 867 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 868 { 869 determine_sw_breakpoint_instr(); 870 871 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 872 sw_bp_ilen, 0) || 873 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 874 return -EINVAL; 875 } 876 return 0; 877 } 878 879 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 880 { 881 uint8_t t[MAX_ILEN]; 882 883 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 884 return -EINVAL; 885 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 886 return -EINVAL; 887 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 888 sw_bp_ilen, 1)) { 889 return -EINVAL; 890 } 891 892 return 0; 893 } 894 895 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 896 int len, int type) 897 { 898 int n; 899 900 for (n = 0; n < nb_hw_breakpoints; n++) { 901 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 902 (hw_breakpoints[n].len == len || len == -1)) { 903 return &hw_breakpoints[n]; 904 } 905 } 906 907 return NULL; 908 } 909 910 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 911 { 912 int size; 913 914 if (find_hw_breakpoint(addr, len, type)) { 915 return -EEXIST; 916 } 917 918 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 919 920 if (!hw_breakpoints) { 921 nb_hw_breakpoints = 0; 922 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 923 } else { 924 hw_breakpoints = 925 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 926 } 927 928 if (!hw_breakpoints) { 929 nb_hw_breakpoints = 0; 930 return -ENOMEM; 931 } 932 933 hw_breakpoints[nb_hw_breakpoints].addr = addr; 934 hw_breakpoints[nb_hw_breakpoints].len = len; 935 hw_breakpoints[nb_hw_breakpoints].type = type; 936 937 nb_hw_breakpoints++; 938 939 return 0; 940 } 941 942 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 943 { 944 switch (type) { 945 case GDB_BREAKPOINT_HW: 946 type = KVM_HW_BP; 947 break; 948 case GDB_WATCHPOINT_WRITE: 949 if (len < 1) { 950 return -EINVAL; 951 } 952 type = KVM_HW_WP_WRITE; 953 break; 954 default: 955 return -ENOSYS; 956 } 957 return insert_hw_breakpoint(addr, len, type); 958 } 959 960 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 961 { 962 int size; 963 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 964 965 if (bp == NULL) { 966 return -ENOENT; 967 } 968 969 nb_hw_breakpoints--; 970 if (nb_hw_breakpoints > 0) { 971 /* 972 * In order to trim the array, move the last element to the position to 973 * be removed - if necessary. 974 */ 975 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 976 *bp = hw_breakpoints[nb_hw_breakpoints]; 977 } 978 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 979 hw_breakpoints = 980 g_realloc(hw_breakpoints, size); 981 } else { 982 g_free(hw_breakpoints); 983 hw_breakpoints = NULL; 984 } 985 986 return 0; 987 } 988 989 void kvm_arch_remove_all_hw_breakpoints(void) 990 { 991 nb_hw_breakpoints = 0; 992 g_free(hw_breakpoints); 993 hw_breakpoints = NULL; 994 } 995 996 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 997 { 998 int i; 999 1000 if (nb_hw_breakpoints > 0) { 1001 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 1002 dbg->arch.hw_bp = hw_breakpoints; 1003 1004 for (i = 0; i < nb_hw_breakpoints; ++i) { 1005 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 1006 hw_breakpoints[i].addr); 1007 } 1008 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1009 } else { 1010 dbg->arch.nr_hw_bp = 0; 1011 dbg->arch.hw_bp = NULL; 1012 } 1013 } 1014 1015 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 1016 { 1017 } 1018 1019 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1020 { 1021 return MEMTXATTRS_UNSPECIFIED; 1022 } 1023 1024 int kvm_arch_process_async_events(CPUState *cs) 1025 { 1026 return cs->halted; 1027 } 1028 1029 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1030 struct kvm_s390_interrupt *interrupt) 1031 { 1032 int r = 0; 1033 1034 interrupt->type = irq->type; 1035 switch (irq->type) { 1036 case KVM_S390_INT_VIRTIO: 1037 interrupt->parm = irq->u.ext.ext_params; 1038 /* fall through */ 1039 case KVM_S390_INT_PFAULT_INIT: 1040 case KVM_S390_INT_PFAULT_DONE: 1041 interrupt->parm64 = irq->u.ext.ext_params2; 1042 break; 1043 case KVM_S390_PROGRAM_INT: 1044 interrupt->parm = irq->u.pgm.code; 1045 break; 1046 case KVM_S390_SIGP_SET_PREFIX: 1047 interrupt->parm = irq->u.prefix.address; 1048 break; 1049 case KVM_S390_INT_SERVICE: 1050 interrupt->parm = irq->u.ext.ext_params; 1051 break; 1052 case KVM_S390_MCHK: 1053 interrupt->parm = irq->u.mchk.cr14; 1054 interrupt->parm64 = irq->u.mchk.mcic; 1055 break; 1056 case KVM_S390_INT_EXTERNAL_CALL: 1057 interrupt->parm = irq->u.extcall.code; 1058 break; 1059 case KVM_S390_INT_EMERGENCY: 1060 interrupt->parm = irq->u.emerg.code; 1061 break; 1062 case KVM_S390_SIGP_STOP: 1063 case KVM_S390_RESTART: 1064 break; /* These types have no parameters */ 1065 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1066 interrupt->parm = irq->u.io.subchannel_id << 16; 1067 interrupt->parm |= irq->u.io.subchannel_nr; 1068 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1069 interrupt->parm64 |= irq->u.io.io_int_word; 1070 break; 1071 default: 1072 r = -EINVAL; 1073 break; 1074 } 1075 return r; 1076 } 1077 1078 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1079 { 1080 struct kvm_s390_interrupt kvmint = {}; 1081 int r; 1082 1083 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1084 if (r < 0) { 1085 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1086 exit(1); 1087 } 1088 1089 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1090 if (r < 0) { 1091 fprintf(stderr, "KVM failed to inject interrupt\n"); 1092 exit(1); 1093 } 1094 } 1095 1096 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1097 { 1098 CPUState *cs = CPU(cpu); 1099 int r; 1100 1101 if (cap_s390_irq) { 1102 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1103 if (!r) { 1104 return; 1105 } 1106 error_report("KVM failed to inject interrupt %llx", irq->type); 1107 exit(1); 1108 } 1109 1110 inject_vcpu_irq_legacy(cs, irq); 1111 } 1112 1113 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1114 { 1115 struct kvm_s390_interrupt kvmint = {}; 1116 int r; 1117 1118 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1119 if (r < 0) { 1120 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1121 exit(1); 1122 } 1123 1124 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1125 if (r < 0) { 1126 fprintf(stderr, "KVM failed to inject interrupt\n"); 1127 exit(1); 1128 } 1129 } 1130 1131 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1132 { 1133 struct kvm_s390_irq irq = { 1134 .type = KVM_S390_PROGRAM_INT, 1135 .u.pgm.code = code, 1136 }; 1137 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1138 cpu->env.psw.addr); 1139 kvm_s390_vcpu_interrupt(cpu, &irq); 1140 } 1141 1142 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1143 { 1144 struct kvm_s390_irq irq = { 1145 .type = KVM_S390_PROGRAM_INT, 1146 .u.pgm.code = code, 1147 .u.pgm.trans_exc_code = te_code, 1148 .u.pgm.exc_access_id = te_code & 3, 1149 }; 1150 1151 kvm_s390_vcpu_interrupt(cpu, &irq); 1152 } 1153 1154 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1155 uint16_t ipbh0) 1156 { 1157 CPUS390XState *env = &cpu->env; 1158 uint64_t sccb; 1159 uint32_t code; 1160 int r; 1161 1162 sccb = env->regs[ipbh0 & 0xf]; 1163 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1164 1165 switch (run->s390_sieic.icptcode) { 1166 case ICPT_PV_INSTR_NOTIFICATION: 1167 g_assert(s390_is_pv()); 1168 /* The notification intercepts are currently handled by KVM */ 1169 error_report("unexpected SCLP PV notification"); 1170 exit(1); 1171 break; 1172 case ICPT_PV_INSTR: 1173 g_assert(s390_is_pv()); 1174 sclp_service_call_protected(cpu, sccb, code); 1175 /* Setting the CC is done by the Ultravisor. */ 1176 break; 1177 case ICPT_INSTRUCTION: 1178 g_assert(!s390_is_pv()); 1179 r = sclp_service_call(cpu, sccb, code); 1180 if (r < 0) { 1181 kvm_s390_program_interrupt(cpu, -r); 1182 return; 1183 } 1184 setcc(cpu, r); 1185 } 1186 } 1187 1188 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1189 { 1190 CPUS390XState *env = &cpu->env; 1191 int rc = 0; 1192 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1193 1194 switch (ipa1) { 1195 case PRIV_B2_XSCH: 1196 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1197 break; 1198 case PRIV_B2_CSCH: 1199 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1200 break; 1201 case PRIV_B2_HSCH: 1202 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1203 break; 1204 case PRIV_B2_MSCH: 1205 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1206 break; 1207 case PRIV_B2_SSCH: 1208 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1209 break; 1210 case PRIV_B2_STCRW: 1211 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1212 break; 1213 case PRIV_B2_STSCH: 1214 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1215 break; 1216 case PRIV_B2_TSCH: 1217 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1218 fprintf(stderr, "Spurious tsch intercept\n"); 1219 break; 1220 case PRIV_B2_CHSC: 1221 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1222 break; 1223 case PRIV_B2_TPI: 1224 /* This should have been handled by kvm already. */ 1225 fprintf(stderr, "Spurious tpi intercept\n"); 1226 break; 1227 case PRIV_B2_SCHM: 1228 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1229 run->s390_sieic.ipb, RA_IGNORED); 1230 break; 1231 case PRIV_B2_RSCH: 1232 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1233 break; 1234 case PRIV_B2_RCHP: 1235 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1236 break; 1237 case PRIV_B2_STCPS: 1238 /* We do not provide this instruction, it is suppressed. */ 1239 break; 1240 case PRIV_B2_SAL: 1241 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1242 break; 1243 case PRIV_B2_SIGA: 1244 /* Not provided, set CC = 3 for subchannel not operational */ 1245 setcc(cpu, 3); 1246 break; 1247 case PRIV_B2_SCLP_CALL: 1248 kvm_sclp_service_call(cpu, run, ipbh0); 1249 break; 1250 default: 1251 rc = -1; 1252 trace_kvm_insn_unhandled_priv(ipa1); 1253 break; 1254 } 1255 1256 return rc; 1257 } 1258 1259 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1260 uint8_t *ar) 1261 { 1262 CPUS390XState *env = &cpu->env; 1263 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1264 uint32_t base2 = run->s390_sieic.ipb >> 28; 1265 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1266 ((run->s390_sieic.ipb & 0xff00) << 4); 1267 1268 if (disp2 & 0x80000) { 1269 disp2 += 0xfff00000; 1270 } 1271 if (ar) { 1272 *ar = base2; 1273 } 1274 1275 return (base2 ? env->regs[base2] : 0) + 1276 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1277 } 1278 1279 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1280 uint8_t *ar) 1281 { 1282 CPUS390XState *env = &cpu->env; 1283 uint32_t base2 = run->s390_sieic.ipb >> 28; 1284 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1285 ((run->s390_sieic.ipb & 0xff00) << 4); 1286 1287 if (disp2 & 0x80000) { 1288 disp2 += 0xfff00000; 1289 } 1290 if (ar) { 1291 *ar = base2; 1292 } 1293 1294 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1295 } 1296 1297 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1298 { 1299 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1300 1301 if (s390_has_feat(S390_FEAT_ZPCI)) { 1302 return clp_service_call(cpu, r2, RA_IGNORED); 1303 } else { 1304 return -1; 1305 } 1306 } 1307 1308 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1309 { 1310 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1311 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1312 1313 if (s390_has_feat(S390_FEAT_ZPCI)) { 1314 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1315 } else { 1316 return -1; 1317 } 1318 } 1319 1320 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1321 { 1322 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1323 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1324 1325 if (s390_has_feat(S390_FEAT_ZPCI)) { 1326 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1327 } else { 1328 return -1; 1329 } 1330 } 1331 1332 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1333 { 1334 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1335 uint64_t fiba; 1336 uint8_t ar; 1337 1338 if (s390_has_feat(S390_FEAT_ZPCI)) { 1339 fiba = get_base_disp_rxy(cpu, run, &ar); 1340 1341 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1342 } else { 1343 return -1; 1344 } 1345 } 1346 1347 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1348 { 1349 CPUS390XState *env = &cpu->env; 1350 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1351 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1352 uint8_t isc; 1353 uint16_t mode; 1354 int r; 1355 1356 mode = env->regs[r1] & 0xffff; 1357 isc = (env->regs[r3] >> 27) & 0x7; 1358 r = css_do_sic(cpu, isc, mode); 1359 if (r) { 1360 kvm_s390_program_interrupt(cpu, -r); 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1367 { 1368 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1369 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1370 1371 if (s390_has_feat(S390_FEAT_ZPCI)) { 1372 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1373 } else { 1374 return -1; 1375 } 1376 } 1377 1378 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1379 { 1380 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1381 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1382 uint64_t gaddr; 1383 uint8_t ar; 1384 1385 if (s390_has_feat(S390_FEAT_ZPCI)) { 1386 gaddr = get_base_disp_rsy(cpu, run, &ar); 1387 1388 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1389 } else { 1390 return -1; 1391 } 1392 } 1393 1394 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1395 { 1396 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1397 uint64_t fiba; 1398 uint8_t ar; 1399 1400 if (s390_has_feat(S390_FEAT_ZPCI)) { 1401 fiba = get_base_disp_rxy(cpu, run, &ar); 1402 1403 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1404 } else { 1405 return -1; 1406 } 1407 } 1408 1409 static void kvm_handle_ptf(S390CPU *cpu, struct kvm_run *run) 1410 { 1411 uint8_t r1 = (run->s390_sieic.ipb >> 20) & 0x0f; 1412 1413 s390_handle_ptf(cpu, r1, RA_IGNORED); 1414 } 1415 1416 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1417 { 1418 int r = 0; 1419 1420 switch (ipa1) { 1421 case PRIV_B9_CLP: 1422 r = kvm_clp_service_call(cpu, run); 1423 break; 1424 case PRIV_B9_PCISTG: 1425 r = kvm_pcistg_service_call(cpu, run); 1426 break; 1427 case PRIV_B9_PCILG: 1428 r = kvm_pcilg_service_call(cpu, run); 1429 break; 1430 case PRIV_B9_RPCIT: 1431 r = kvm_rpcit_service_call(cpu, run); 1432 break; 1433 case PRIV_B9_PTF: 1434 kvm_handle_ptf(cpu, run); 1435 break; 1436 case PRIV_B9_EQBS: 1437 /* just inject exception */ 1438 r = -1; 1439 break; 1440 default: 1441 r = -1; 1442 trace_kvm_insn_unhandled_priv(ipa1); 1443 break; 1444 } 1445 1446 return r; 1447 } 1448 1449 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1450 { 1451 int r = 0; 1452 1453 switch (ipbl) { 1454 case PRIV_EB_PCISTB: 1455 r = kvm_pcistb_service_call(cpu, run); 1456 break; 1457 case PRIV_EB_SIC: 1458 r = kvm_sic_service_call(cpu, run); 1459 break; 1460 case PRIV_EB_SQBS: 1461 /* just inject exception */ 1462 r = -1; 1463 break; 1464 default: 1465 r = -1; 1466 trace_kvm_insn_unhandled_priv(ipbl); 1467 break; 1468 } 1469 1470 return r; 1471 } 1472 1473 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1474 { 1475 int r = 0; 1476 1477 switch (ipbl) { 1478 case PRIV_E3_MPCIFC: 1479 r = kvm_mpcifc_service_call(cpu, run); 1480 break; 1481 case PRIV_E3_STPCIFC: 1482 r = kvm_stpcifc_service_call(cpu, run); 1483 break; 1484 default: 1485 r = -1; 1486 trace_kvm_insn_unhandled_priv(ipbl); 1487 break; 1488 } 1489 1490 return r; 1491 } 1492 1493 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1494 { 1495 uint64_t r1, r3; 1496 int rc; 1497 1498 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1499 r3 = run->s390_sieic.ipa & 0x000f; 1500 rc = handle_diag_288(&cpu->env, r1, r3); 1501 if (rc) { 1502 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1503 } 1504 } 1505 1506 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1507 { 1508 uint64_t r1, r3; 1509 1510 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1511 r3 = run->s390_sieic.ipa & 0x000f; 1512 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1513 } 1514 1515 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1516 { 1517 CPUS390XState *env = &cpu->env; 1518 unsigned long pc; 1519 1520 pc = env->psw.addr - sw_bp_ilen; 1521 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1522 env->psw.addr = pc; 1523 return EXCP_DEBUG; 1524 } 1525 1526 return -ENOENT; 1527 } 1528 1529 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info) 1530 { 1531 CPUS390XState *env = &S390_CPU(cs)->env; 1532 1533 /* Feat bit is set only if KVM supports sync for diag318 */ 1534 if (s390_has_feat(S390_FEAT_DIAG_318)) { 1535 env->diag318_info = diag318_info; 1536 cs->kvm_run->s.regs.diag318 = diag318_info; 1537 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 1538 /* 1539 * diag 318 info is zeroed during a clear reset and 1540 * diag 308 IPL subcodes. 1541 */ 1542 } 1543 } 1544 1545 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run) 1546 { 1547 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4; 1548 uint64_t diag318_info = run->s.regs.gprs[reg]; 1549 CPUState *t; 1550 1551 /* 1552 * DIAG 318 can only be enabled with KVM support. As such, let's 1553 * ensure a guest cannot execute this instruction erroneously. 1554 */ 1555 if (!s390_has_feat(S390_FEAT_DIAG_318)) { 1556 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1557 return; 1558 } 1559 1560 CPU_FOREACH(t) { 1561 run_on_cpu(t, s390_do_cpu_set_diag318, 1562 RUN_ON_CPU_HOST_ULONG(diag318_info)); 1563 } 1564 } 1565 1566 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1567 1568 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1569 { 1570 int r = 0; 1571 uint16_t func_code; 1572 1573 /* 1574 * For any diagnose call we support, bits 48-63 of the resulting 1575 * address specify the function code; the remainder is ignored. 1576 */ 1577 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1578 switch (func_code) { 1579 case DIAG_TIMEREVENT: 1580 kvm_handle_diag_288(cpu, run); 1581 break; 1582 case DIAG_IPL: 1583 kvm_handle_diag_308(cpu, run); 1584 break; 1585 case DIAG_SET_CONTROL_PROGRAM_CODES: 1586 handle_diag_318(cpu, run); 1587 break; 1588 #ifdef CONFIG_S390_CCW_VIRTIO 1589 case DIAG_KVM_HYPERCALL: 1590 handle_diag_500(cpu, RA_IGNORED); 1591 break; 1592 #endif /* CONFIG_S390_CCW_VIRTIO */ 1593 case DIAG_KVM_BREAKPOINT: 1594 r = handle_sw_breakpoint(cpu, run); 1595 break; 1596 default: 1597 trace_kvm_insn_diag(func_code); 1598 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1599 break; 1600 } 1601 1602 return r; 1603 } 1604 1605 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1606 { 1607 CPUS390XState *env = &cpu->env; 1608 const uint8_t r1 = ipa1 >> 4; 1609 const uint8_t r3 = ipa1 & 0x0f; 1610 int ret; 1611 uint8_t order; 1612 1613 /* get order code */ 1614 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1615 1616 ret = handle_sigp(env, order, r1, r3); 1617 setcc(cpu, ret); 1618 return 0; 1619 } 1620 1621 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1622 { 1623 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1624 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1625 int r = -1; 1626 1627 trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb); 1628 switch (ipa0) { 1629 case IPA0_B2: 1630 r = handle_b2(cpu, run, ipa1); 1631 break; 1632 case IPA0_B9: 1633 r = handle_b9(cpu, run, ipa1); 1634 break; 1635 case IPA0_EB: 1636 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1637 break; 1638 case IPA0_E3: 1639 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1640 break; 1641 case IPA0_DIAG: 1642 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1643 break; 1644 case IPA0_SIGP: 1645 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1646 break; 1647 } 1648 1649 if (r < 0) { 1650 r = 0; 1651 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1652 } 1653 1654 return r; 1655 } 1656 1657 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1658 int pswoffset) 1659 { 1660 CPUState *cs = CPU(cpu); 1661 1662 s390_cpu_halt(cpu); 1663 cpu->env.crash_reason = reason; 1664 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1665 } 1666 1667 /* try to detect pgm check loops */ 1668 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1669 { 1670 CPUState *cs = CPU(cpu); 1671 PSW oldpsw, newpsw; 1672 1673 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1674 offsetof(LowCore, program_new_psw)); 1675 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1676 offsetof(LowCore, program_new_psw) + 8); 1677 oldpsw.mask = run->psw_mask; 1678 oldpsw.addr = run->psw_addr; 1679 /* 1680 * Avoid endless loops of operation exceptions, if the pgm new 1681 * PSW will cause a new operation exception. 1682 * The heuristic checks if the pgm new psw is within 6 bytes before 1683 * the faulting psw address (with same DAT, AS settings) and the 1684 * new psw is not a wait psw and the fault was not triggered by 1685 * problem state. In that case go into crashed state. 1686 */ 1687 1688 if (oldpsw.addr - newpsw.addr <= 6 && 1689 !(newpsw.mask & PSW_MASK_WAIT) && 1690 !(oldpsw.mask & PSW_MASK_PSTATE) && 1691 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1692 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1693 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1694 offsetof(LowCore, program_new_psw)); 1695 return EXCP_HALTED; 1696 } 1697 return 0; 1698 } 1699 1700 static int handle_intercept(S390CPU *cpu) 1701 { 1702 CPUState *cs = CPU(cpu); 1703 struct kvm_run *run = cs->kvm_run; 1704 int icpt_code = run->s390_sieic.icptcode; 1705 int r = 0; 1706 1707 trace_kvm_intercept(icpt_code, (long)run->psw_addr); 1708 switch (icpt_code) { 1709 case ICPT_INSTRUCTION: 1710 case ICPT_PV_INSTR: 1711 case ICPT_PV_INSTR_NOTIFICATION: 1712 r = handle_instruction(cpu, run); 1713 break; 1714 case ICPT_PROGRAM: 1715 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1716 offsetof(LowCore, program_new_psw)); 1717 r = EXCP_HALTED; 1718 break; 1719 case ICPT_EXT_INT: 1720 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1721 offsetof(LowCore, external_new_psw)); 1722 r = EXCP_HALTED; 1723 break; 1724 case ICPT_WAITPSW: 1725 /* disabled wait, since enabled wait is handled in kernel */ 1726 s390_handle_wait(cpu); 1727 r = EXCP_HALTED; 1728 break; 1729 case ICPT_CPU_STOP: 1730 do_stop_interrupt(&cpu->env); 1731 r = EXCP_HALTED; 1732 break; 1733 case ICPT_OPEREXC: 1734 /* check for break points */ 1735 r = handle_sw_breakpoint(cpu, run); 1736 if (r == -ENOENT) { 1737 /* Then check for potential pgm check loops */ 1738 r = handle_oper_loop(cpu, run); 1739 if (r == 0) { 1740 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1741 } 1742 } 1743 break; 1744 case ICPT_SOFT_INTERCEPT: 1745 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1746 exit(1); 1747 break; 1748 case ICPT_IO: 1749 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1750 exit(1); 1751 break; 1752 default: 1753 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1754 exit(1); 1755 break; 1756 } 1757 1758 return r; 1759 } 1760 1761 static int handle_tsch(S390CPU *cpu) 1762 { 1763 CPUState *cs = CPU(cpu); 1764 struct kvm_run *run = cs->kvm_run; 1765 int ret; 1766 1767 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1768 RA_IGNORED); 1769 if (ret < 0) { 1770 /* 1771 * Failure. 1772 * If an I/O interrupt had been dequeued, we have to reinject it. 1773 */ 1774 if (run->s390_tsch.dequeued) { 1775 s390_io_interrupt(run->s390_tsch.subchannel_id, 1776 run->s390_tsch.subchannel_nr, 1777 run->s390_tsch.io_int_parm, 1778 run->s390_tsch.io_int_word); 1779 } 1780 ret = 0; 1781 } 1782 return ret; 1783 } 1784 1785 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1786 { 1787 const MachineState *ms = MACHINE(qdev_get_machine()); 1788 uint16_t conf_cpus = 0, reserved_cpus = 0; 1789 SysIB_322 sysib; 1790 int del, i; 1791 1792 if (s390_is_pv()) { 1793 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib)); 1794 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1795 return; 1796 } 1797 /* Shift the stack of Extended Names to prepare for our own data */ 1798 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1799 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1800 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1801 * assumed it's not capable of managing Extended Names for lower levels. 1802 */ 1803 for (del = 1; del < sysib.count; del++) { 1804 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1805 break; 1806 } 1807 } 1808 if (del < sysib.count) { 1809 memset(sysib.ext_names[del], 0, 1810 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1811 } 1812 1813 /* count the cpus and split them into configured and reserved ones */ 1814 for (i = 0; i < ms->possible_cpus->len; i++) { 1815 if (ms->possible_cpus->cpus[i].cpu) { 1816 conf_cpus++; 1817 } else { 1818 reserved_cpus++; 1819 } 1820 } 1821 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus; 1822 sysib.vm[0].conf_cpus = conf_cpus; 1823 sysib.vm[0].reserved_cpus = reserved_cpus; 1824 1825 /* Insert short machine name in EBCDIC, padded with blanks */ 1826 if (qemu_name) { 1827 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1828 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1829 strlen(qemu_name))); 1830 } 1831 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1832 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1833 * considered by s390 as not capable of providing any Extended Name. 1834 * Therefore if no name was specified on qemu invocation, we go with the 1835 * same "KVMguest" default, which KVM has filled into short name field. 1836 */ 1837 strpadcpy((char *)sysib.ext_names[0], 1838 sizeof(sysib.ext_names[0]), 1839 qemu_name ?: "KVMguest", '\0'); 1840 1841 /* Insert UUID */ 1842 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1843 1844 if (s390_is_pv()) { 1845 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib)); 1846 } else { 1847 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1848 } 1849 } 1850 1851 static int handle_stsi(S390CPU *cpu) 1852 { 1853 CPUState *cs = CPU(cpu); 1854 struct kvm_run *run = cs->kvm_run; 1855 1856 switch (run->s390_stsi.fc) { 1857 case 3: 1858 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1859 return 0; 1860 } 1861 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1862 return 0; 1863 case 15: 1864 insert_stsi_15_1_x(cpu, run->s390_stsi.sel2, run->s390_stsi.addr, 1865 run->s390_stsi.ar, RA_IGNORED); 1866 return 0; 1867 default: 1868 return 0; 1869 } 1870 } 1871 1872 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1873 { 1874 CPUState *cs = CPU(cpu); 1875 struct kvm_run *run = cs->kvm_run; 1876 1877 int ret = 0; 1878 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1879 1880 switch (arch_info->type) { 1881 case KVM_HW_WP_WRITE: 1882 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1883 cs->watchpoint_hit = &hw_watchpoint; 1884 hw_watchpoint.vaddr = arch_info->addr; 1885 hw_watchpoint.flags = BP_MEM_WRITE; 1886 ret = EXCP_DEBUG; 1887 } 1888 break; 1889 case KVM_HW_BP: 1890 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1891 ret = EXCP_DEBUG; 1892 } 1893 break; 1894 case KVM_SINGLESTEP: 1895 if (cs->singlestep_enabled) { 1896 ret = EXCP_DEBUG; 1897 } 1898 break; 1899 default: 1900 ret = -ENOSYS; 1901 } 1902 1903 return ret; 1904 } 1905 1906 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1907 { 1908 S390CPU *cpu = S390_CPU(cs); 1909 int ret = 0; 1910 1911 bql_lock(); 1912 1913 kvm_cpu_synchronize_state(cs); 1914 1915 switch (run->exit_reason) { 1916 case KVM_EXIT_S390_SIEIC: 1917 ret = handle_intercept(cpu); 1918 break; 1919 case KVM_EXIT_S390_RESET: 1920 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1921 break; 1922 case KVM_EXIT_S390_TSCH: 1923 ret = handle_tsch(cpu); 1924 break; 1925 case KVM_EXIT_S390_STSI: 1926 ret = handle_stsi(cpu); 1927 break; 1928 case KVM_EXIT_DEBUG: 1929 ret = kvm_arch_handle_debug_exit(cpu); 1930 break; 1931 default: 1932 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1933 break; 1934 } 1935 bql_unlock(); 1936 1937 if (ret == 0) { 1938 ret = EXCP_INTERRUPT; 1939 } 1940 return ret; 1941 } 1942 1943 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1944 { 1945 return true; 1946 } 1947 1948 void kvm_s390_enable_css_support(S390CPU *cpu) 1949 { 1950 int r; 1951 1952 /* Activate host kernel channel subsystem support. */ 1953 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1954 assert(r == 0); 1955 } 1956 1957 void kvm_arch_init_irq_routing(KVMState *s) 1958 { 1959 /* 1960 * Note that while irqchip capabilities generally imply that cpustates 1961 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1962 * have to override the common code kvm_halt_in_kernel_allowed setting. 1963 */ 1964 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1965 kvm_gsi_routing_allowed = true; 1966 kvm_halt_in_kernel_allowed = false; 1967 } 1968 } 1969 1970 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1971 int vq, bool assign) 1972 { 1973 struct kvm_ioeventfd kick = { 1974 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1975 KVM_IOEVENTFD_FLAG_DATAMATCH, 1976 .fd = event_notifier_get_fd(notifier), 1977 .datamatch = vq, 1978 .addr = sch, 1979 .len = 8, 1980 }; 1981 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 1982 kick.datamatch); 1983 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1984 return -ENOSYS; 1985 } 1986 if (!assign) { 1987 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1988 } 1989 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1990 } 1991 1992 int kvm_s390_get_protected_dump(void) 1993 { 1994 return cap_protected_dump; 1995 } 1996 1997 int kvm_s390_get_ri(void) 1998 { 1999 return cap_ri; 2000 } 2001 2002 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 2003 { 2004 struct kvm_mp_state mp_state = {}; 2005 int ret; 2006 2007 /* the kvm part might not have been initialized yet */ 2008 if (CPU(cpu)->kvm_state == NULL) { 2009 return 0; 2010 } 2011 2012 switch (cpu_state) { 2013 case S390_CPU_STATE_STOPPED: 2014 mp_state.mp_state = KVM_MP_STATE_STOPPED; 2015 break; 2016 case S390_CPU_STATE_CHECK_STOP: 2017 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 2018 break; 2019 case S390_CPU_STATE_OPERATING: 2020 mp_state.mp_state = KVM_MP_STATE_OPERATING; 2021 break; 2022 case S390_CPU_STATE_LOAD: 2023 mp_state.mp_state = KVM_MP_STATE_LOAD; 2024 break; 2025 default: 2026 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2027 cpu_state); 2028 exit(1); 2029 } 2030 2031 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2032 if (ret) { 2033 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2034 strerror(-ret)); 2035 } 2036 2037 return ret; 2038 } 2039 2040 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2041 { 2042 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 2043 struct kvm_s390_irq_state irq_state = { 2044 .buf = (uint64_t) cpu->irqstate, 2045 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 2046 }; 2047 CPUState *cs = CPU(cpu); 2048 int32_t bytes; 2049 2050 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2051 return; 2052 } 2053 2054 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2055 if (bytes < 0) { 2056 cpu->irqstate_saved_size = 0; 2057 error_report("Migration of interrupt state failed"); 2058 return; 2059 } 2060 2061 cpu->irqstate_saved_size = bytes; 2062 } 2063 2064 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2065 { 2066 CPUState *cs = CPU(cpu); 2067 struct kvm_s390_irq_state irq_state = { 2068 .buf = (uint64_t) cpu->irqstate, 2069 .len = cpu->irqstate_saved_size, 2070 }; 2071 int r; 2072 2073 if (cpu->irqstate_saved_size == 0) { 2074 return 0; 2075 } 2076 2077 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2078 return -ENOSYS; 2079 } 2080 2081 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2082 if (r) { 2083 error_report("Setting interrupt state failed %d", r); 2084 } 2085 return r; 2086 } 2087 2088 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2089 uint64_t address, uint32_t data, PCIDevice *dev) 2090 { 2091 S390PCIBusDevice *pbdev; 2092 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2093 2094 if (!dev) { 2095 trace_kvm_msi_route_fixup("no pci device"); 2096 return -ENODEV; 2097 } 2098 2099 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2100 if (!pbdev) { 2101 trace_kvm_msi_route_fixup("no zpci device"); 2102 return -ENODEV; 2103 } 2104 2105 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2106 route->flags = 0; 2107 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2108 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2109 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2110 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2111 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2112 return 0; 2113 } 2114 2115 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2116 int vector, PCIDevice *dev) 2117 { 2118 return 0; 2119 } 2120 2121 int kvm_arch_release_virq_post(int virq) 2122 { 2123 return 0; 2124 } 2125 2126 int kvm_arch_msi_data_to_gsi(uint32_t data) 2127 { 2128 abort(); 2129 } 2130 2131 static int query_cpu_subfunc(S390FeatBitmap features) 2132 { 2133 struct kvm_s390_vm_cpu_subfunc prop = {}; 2134 struct kvm_device_attr attr = { 2135 .group = KVM_S390_VM_CPU_MODEL, 2136 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2137 .addr = (uint64_t) &prop, 2138 }; 2139 int rc; 2140 2141 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2142 if (rc) { 2143 return rc; 2144 } 2145 2146 /* 2147 * We're going to add all subfunctions now, if the corresponding feature 2148 * is available that unlocks the query functions. 2149 */ 2150 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2151 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2152 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2153 } 2154 if (test_bit(S390_FEAT_MSA, features)) { 2155 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2156 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2157 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2158 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2159 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2160 } 2161 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2162 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2163 } 2164 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2165 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2166 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2167 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2168 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2169 } 2170 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2171 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2172 } 2173 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2174 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2175 } 2176 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2177 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2178 } 2179 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2180 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2181 } 2182 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2183 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2184 } 2185 if (test_bit(S390_FEAT_CCF_BASE, features)) { 2186 s390_add_from_feat_block(features, S390_FEAT_TYPE_PFCR, prop.pfcr); 2187 } 2188 return 0; 2189 } 2190 2191 static int configure_cpu_subfunc(const S390FeatBitmap features) 2192 { 2193 struct kvm_s390_vm_cpu_subfunc prop = {}; 2194 struct kvm_device_attr attr = { 2195 .group = KVM_S390_VM_CPU_MODEL, 2196 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2197 .addr = (uint64_t) &prop, 2198 }; 2199 2200 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2201 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2202 /* hardware support might be missing, IBC will handle most of this */ 2203 return 0; 2204 } 2205 2206 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2207 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2208 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2209 } 2210 if (test_bit(S390_FEAT_MSA, features)) { 2211 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2212 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2213 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2214 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2215 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2216 } 2217 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2218 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2219 } 2220 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2221 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2222 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2223 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2224 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2225 } 2226 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2227 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2228 } 2229 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2230 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2231 } 2232 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2233 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2234 } 2235 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2236 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2237 } 2238 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2239 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2240 } 2241 if (test_bit(S390_FEAT_CCF_BASE, features)) { 2242 s390_fill_feat_block(features, S390_FEAT_TYPE_PFCR, prop.pfcr); 2243 } 2244 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2245 } 2246 2247 static bool ap_available(void) 2248 { 2249 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2250 KVM_S390_VM_CRYPTO_ENABLE_APIE); 2251 } 2252 2253 static bool ap_enabled(const S390FeatBitmap features) 2254 { 2255 return test_bit(S390_FEAT_AP, features); 2256 } 2257 2258 static bool uv_feat_supported(void) 2259 { 2260 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2261 KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST); 2262 } 2263 2264 static int query_uv_feat_guest(S390FeatBitmap features) 2265 { 2266 struct kvm_s390_vm_cpu_uv_feat prop = {}; 2267 struct kvm_device_attr attr = { 2268 .group = KVM_S390_VM_CPU_MODEL, 2269 .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST, 2270 .addr = (uint64_t) &prop, 2271 }; 2272 int rc; 2273 2274 /* AP support check is currently the only user of the UV feature test */ 2275 if (!(uv_feat_supported() && ap_available())) { 2276 return 0; 2277 } 2278 2279 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2280 if (rc) { 2281 return rc; 2282 } 2283 2284 if (prop.ap) { 2285 set_bit(S390_FEAT_UV_FEAT_AP, features); 2286 } 2287 if (prop.ap_intr) { 2288 set_bit(S390_FEAT_UV_FEAT_AP_INTR, features); 2289 } 2290 2291 return 0; 2292 } 2293 2294 static int kvm_to_feat[][2] = { 2295 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2296 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2297 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2298 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2299 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2300 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2301 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2302 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2303 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2304 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2305 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2306 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2307 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2308 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2309 }; 2310 2311 static int query_cpu_feat(S390FeatBitmap features) 2312 { 2313 struct kvm_s390_vm_cpu_feat prop = {}; 2314 struct kvm_device_attr attr = { 2315 .group = KVM_S390_VM_CPU_MODEL, 2316 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2317 .addr = (uint64_t) &prop, 2318 }; 2319 int rc; 2320 int i; 2321 2322 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2323 if (rc) { 2324 return rc; 2325 } 2326 2327 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2328 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2329 set_bit(kvm_to_feat[i][1], features); 2330 } 2331 } 2332 return 0; 2333 } 2334 2335 static int configure_cpu_feat(const S390FeatBitmap features) 2336 { 2337 struct kvm_s390_vm_cpu_feat prop = {}; 2338 struct kvm_device_attr attr = { 2339 .group = KVM_S390_VM_CPU_MODEL, 2340 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2341 .addr = (uint64_t) &prop, 2342 }; 2343 int i; 2344 2345 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2346 if (test_bit(kvm_to_feat[i][1], features)) { 2347 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2348 } 2349 } 2350 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2351 } 2352 2353 bool kvm_s390_cpu_models_supported(void) 2354 { 2355 if (!cpu_model_allowed()) { 2356 /* compatibility machines interfere with the cpu model */ 2357 return false; 2358 } 2359 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2360 KVM_S390_VM_CPU_MACHINE) && 2361 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2362 KVM_S390_VM_CPU_PROCESSOR) && 2363 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2364 KVM_S390_VM_CPU_MACHINE_FEAT) && 2365 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2366 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2367 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2368 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2369 } 2370 2371 bool kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2372 { 2373 struct kvm_s390_vm_cpu_machine prop = {}; 2374 struct kvm_device_attr attr = { 2375 .group = KVM_S390_VM_CPU_MODEL, 2376 .attr = KVM_S390_VM_CPU_MACHINE, 2377 .addr = (uint64_t) &prop, 2378 }; 2379 uint16_t unblocked_ibc = 0, cpu_type = 0; 2380 int rc; 2381 2382 memset(model, 0, sizeof(*model)); 2383 2384 if (!kvm_s390_cpu_models_supported()) { 2385 error_setg(errp, "KVM doesn't support CPU models"); 2386 return false; 2387 } 2388 2389 /* query the basic cpu model properties */ 2390 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2391 if (rc) { 2392 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2393 return false; 2394 } 2395 2396 cpu_type = cpuid_type(prop.cpuid); 2397 if (has_ibc(prop.ibc)) { 2398 model->lowest_ibc = lowest_ibc(prop.ibc); 2399 unblocked_ibc = unblocked_ibc(prop.ibc); 2400 } 2401 model->cpu_id = cpuid_id(prop.cpuid); 2402 model->cpu_id_format = cpuid_format(prop.cpuid); 2403 model->cpu_ver = 0xff; 2404 2405 /* get supported cpu features indicated via STFL(E) */ 2406 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2407 (uint8_t *) prop.fac_mask); 2408 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2409 if (test_bit(S390_FEAT_STFLE, model->features)) { 2410 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2411 } 2412 /* get supported cpu features indicated e.g. via SCLP */ 2413 rc = query_cpu_feat(model->features); 2414 if (rc) { 2415 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2416 return false; 2417 } 2418 /* get supported cpu subfunctions indicated via query / test bit */ 2419 rc = query_cpu_subfunc(model->features); 2420 if (rc) { 2421 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2422 return false; 2423 } 2424 2425 /* PTFF subfunctions might be indicated although kernel support missing */ 2426 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2427 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2428 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2429 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2430 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2431 } 2432 2433 /* with cpu model support, CMM is only indicated if really available */ 2434 if (kvm_s390_cmma_available()) { 2435 set_bit(S390_FEAT_CMM, model->features); 2436 } else { 2437 /* no cmm -> no cmm nt */ 2438 clear_bit(S390_FEAT_CMM_NT, model->features); 2439 } 2440 2441 /* bpb needs kernel support for migration, VSIE and reset */ 2442 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2443 clear_bit(S390_FEAT_BPB, model->features); 2444 } 2445 2446 /* 2447 * If we have support for protected virtualization, indicate 2448 * the protected virtualization IPL unpack facility. 2449 */ 2450 if (cap_protected) { 2451 set_bit(S390_FEAT_UNPACK, model->features); 2452 } 2453 2454 /* 2455 * If we have kernel support for CPU Topology indicate the 2456 * configuration-topology facility. 2457 */ 2458 if (kvm_check_extension(kvm_state, KVM_CAP_S390_CPU_TOPOLOGY)) { 2459 set_bit(S390_FEAT_CONFIGURATION_TOPOLOGY, model->features); 2460 } 2461 2462 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2463 set_bit(S390_FEAT_ZPCI, model->features); 2464 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2465 2466 if (s390_known_cpu_type(cpu_type)) { 2467 /* we want the exact model, even if some features are missing */ 2468 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2469 ibc_ec_ga(unblocked_ibc), NULL); 2470 } else { 2471 /* model unknown, e.g. too new - search using features */ 2472 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2473 ibc_ec_ga(unblocked_ibc), 2474 model->features); 2475 } 2476 if (!model->def) { 2477 error_setg(errp, "KVM: host CPU model could not be identified"); 2478 return false; 2479 } 2480 /* for now, we can only provide the AP feature with HW support */ 2481 if (ap_available()) { 2482 set_bit(S390_FEAT_AP, model->features); 2483 } 2484 2485 /* 2486 * Extended-Length SCCB is handled entirely within QEMU. 2487 * For PV guests this is completely fenced by the Ultravisor, as Service 2488 * Call error checking and STFLE interpretation are handled via SIE. 2489 */ 2490 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features); 2491 2492 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) { 2493 set_bit(S390_FEAT_DIAG_318, model->features); 2494 } 2495 2496 /* Test for Ultravisor features that influence secure guest behavior */ 2497 query_uv_feat_guest(model->features); 2498 2499 /* strip of features that are not part of the maximum model */ 2500 bitmap_and(model->features, model->features, model->def->full_feat, 2501 S390_FEAT_MAX); 2502 return true; 2503 } 2504 2505 static int configure_uv_feat_guest(const S390FeatBitmap features) 2506 { 2507 struct kvm_s390_vm_cpu_uv_feat uv_feat = {}; 2508 struct kvm_device_attr attribute = { 2509 .group = KVM_S390_VM_CPU_MODEL, 2510 .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST, 2511 .addr = (__u64) &uv_feat, 2512 }; 2513 2514 /* AP support check is currently the only user of the UV feature test */ 2515 if (!(uv_feat_supported() && ap_enabled(features))) { 2516 return 0; 2517 } 2518 2519 if (test_bit(S390_FEAT_UV_FEAT_AP, features)) { 2520 uv_feat.ap = 1; 2521 } 2522 if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) { 2523 uv_feat.ap_intr = 1; 2524 } 2525 2526 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 2527 } 2528 2529 static void kvm_s390_configure_apie(bool interpret) 2530 { 2531 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2532 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2533 2534 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2535 kvm_s390_set_crypto_attr(attr); 2536 } 2537 } 2538 2539 bool kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2540 { 2541 struct kvm_s390_vm_cpu_processor prop = { 2542 .fac_list = { 0 }, 2543 }; 2544 struct kvm_device_attr attr = { 2545 .group = KVM_S390_VM_CPU_MODEL, 2546 .attr = KVM_S390_VM_CPU_PROCESSOR, 2547 .addr = (uint64_t) &prop, 2548 }; 2549 int rc; 2550 2551 if (!model) { 2552 /* compatibility handling if cpu models are disabled */ 2553 if (kvm_s390_cmma_available()) { 2554 kvm_s390_enable_cmma(); 2555 } 2556 return true; 2557 } 2558 if (!kvm_s390_cpu_models_supported()) { 2559 error_setg(errp, "KVM doesn't support CPU models"); 2560 return false; 2561 } 2562 prop.cpuid = s390_cpuid_from_cpu_model(model); 2563 prop.ibc = s390_ibc_from_cpu_model(model); 2564 /* configure cpu features indicated via STFL(e) */ 2565 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2566 (uint8_t *) prop.fac_list); 2567 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2568 if (rc) { 2569 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2570 return false; 2571 } 2572 /* configure cpu features indicated e.g. via SCLP */ 2573 rc = configure_cpu_feat(model->features); 2574 if (rc) { 2575 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2576 return false; 2577 } 2578 /* configure cpu subfunctions indicated via query / test bit */ 2579 rc = configure_cpu_subfunc(model->features); 2580 if (rc) { 2581 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2582 return false; 2583 } 2584 /* enable CMM via CMMA */ 2585 if (test_bit(S390_FEAT_CMM, model->features)) { 2586 kvm_s390_enable_cmma(); 2587 } 2588 2589 if (ap_enabled(model->features)) { 2590 kvm_s390_configure_apie(true); 2591 } 2592 2593 /* configure UV-features for the guest indicated via query / test_bit */ 2594 rc = configure_uv_feat_guest(model->features); 2595 if (rc) { 2596 error_setg(errp, "KVM: Error configuring CPU UV features %d", rc); 2597 return false; 2598 } 2599 return true; 2600 } 2601 2602 void kvm_s390_restart_interrupt(S390CPU *cpu) 2603 { 2604 struct kvm_s390_irq irq = { 2605 .type = KVM_S390_RESTART, 2606 }; 2607 2608 kvm_s390_vcpu_interrupt(cpu, &irq); 2609 } 2610 2611 void kvm_s390_stop_interrupt(S390CPU *cpu) 2612 { 2613 struct kvm_s390_irq irq = { 2614 .type = KVM_S390_SIGP_STOP, 2615 }; 2616 2617 kvm_s390_vcpu_interrupt(cpu, &irq); 2618 } 2619 2620 int kvm_s390_get_zpci_op(void) 2621 { 2622 return cap_zpci_op; 2623 } 2624 2625 int kvm_s390_topology_set_mtcr(uint64_t attr) 2626 { 2627 struct kvm_device_attr attribute = { 2628 .group = KVM_S390_VM_CPU_TOPOLOGY, 2629 .attr = attr, 2630 }; 2631 2632 if (!s390_has_feat(S390_FEAT_CONFIGURATION_TOPOLOGY)) { 2633 return 0; 2634 } 2635 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_TOPOLOGY, attr)) { 2636 return -ENOTSUP; 2637 } 2638 2639 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 2640 } 2641 2642 void kvm_arch_accel_class_init(ObjectClass *oc) 2643 { 2644 } 2645