1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "cpu.h" 28 #include "s390x-internal.h" 29 #include "kvm_s390x.h" 30 #include "system/kvm_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/units.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/mmap-alloc.h" 38 #include "qemu/log.h" 39 #include "system/system.h" 40 #include "system/hw_accel.h" 41 #include "system/runstate.h" 42 #include "system/device_tree.h" 43 #include "gdbstub/enums.h" 44 #include "system/ram_addr.h" 45 #include "trace.h" 46 #include "hw/s390x/s390-pci-inst.h" 47 #include "hw/s390x/s390-pci-bus.h" 48 #include "hw/s390x/ipl.h" 49 #include "hw/s390x/ebcdic.h" 50 #include "exec/memattrs.h" 51 #include "hw/s390x/s390-virtio-ccw.h" 52 #include "hw/s390x/s390-hypercall.h" 53 #include "target/s390x/kvm/pv.h" 54 #include CONFIG_DEVICES 55 56 #define kvm_vm_check_mem_attr(s, attr) \ 57 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 58 59 #define IPA0_DIAG 0x8300 60 #define IPA0_SIGP 0xae00 61 #define IPA0_B2 0xb200 62 #define IPA0_B9 0xb900 63 #define IPA0_EB 0xeb00 64 #define IPA0_E3 0xe300 65 66 #define PRIV_B2_SCLP_CALL 0x20 67 #define PRIV_B2_CSCH 0x30 68 #define PRIV_B2_HSCH 0x31 69 #define PRIV_B2_MSCH 0x32 70 #define PRIV_B2_SSCH 0x33 71 #define PRIV_B2_STSCH 0x34 72 #define PRIV_B2_TSCH 0x35 73 #define PRIV_B2_TPI 0x36 74 #define PRIV_B2_SAL 0x37 75 #define PRIV_B2_RSCH 0x38 76 #define PRIV_B2_STCRW 0x39 77 #define PRIV_B2_STCPS 0x3a 78 #define PRIV_B2_RCHP 0x3b 79 #define PRIV_B2_SCHM 0x3c 80 #define PRIV_B2_CHSC 0x5f 81 #define PRIV_B2_SIGA 0x74 82 #define PRIV_B2_XSCH 0x76 83 84 #define PRIV_EB_SQBS 0x8a 85 #define PRIV_EB_PCISTB 0xd0 86 #define PRIV_EB_SIC 0xd1 87 88 #define PRIV_B9_EQBS 0x9c 89 #define PRIV_B9_CLP 0xa0 90 #define PRIV_B9_PTF 0xa2 91 #define PRIV_B9_PCISTG 0xd0 92 #define PRIV_B9_PCILG 0xd2 93 #define PRIV_B9_RPCIT 0xd3 94 95 #define PRIV_E3_MPCIFC 0xd0 96 #define PRIV_E3_STPCIFC 0xd4 97 98 #define DIAG_TIMEREVENT 0x288 99 #define DIAG_IPL 0x308 100 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318 101 #define DIAG_KVM_HYPERCALL 0x500 102 #define DIAG_KVM_BREAKPOINT 0x501 103 104 #define ICPT_INSTRUCTION 0x04 105 #define ICPT_PROGRAM 0x08 106 #define ICPT_EXT_INT 0x14 107 #define ICPT_WAITPSW 0x1c 108 #define ICPT_SOFT_INTERCEPT 0x24 109 #define ICPT_CPU_STOP 0x28 110 #define ICPT_OPEREXC 0x2c 111 #define ICPT_IO 0x40 112 #define ICPT_PV_INSTR 0x68 113 #define ICPT_PV_INSTR_NOTIFICATION 0x6c 114 115 #define NR_LOCAL_IRQS 32 116 /* 117 * Needs to be big enough to contain max_cpus emergency signals 118 * and in addition NR_LOCAL_IRQS interrupts 119 */ 120 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 121 (max_cpus + NR_LOCAL_IRQS)) 122 /* 123 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages 124 * as the dirty bitmap must be managed by bitops that take an int as 125 * position indicator. This would end at an unaligned address 126 * (0x7fffff00000). As future variants might provide larger pages 127 * and to make all addresses properly aligned, let us split at 4TB. 128 */ 129 #define KVM_SLOT_MAX_BYTES (4UL * TiB) 130 131 static CPUWatchpoint hw_watchpoint; 132 /* 133 * We don't use a list because this structure is also used to transmit the 134 * hardware breakpoints to the kernel. 135 */ 136 static struct kvm_hw_breakpoint *hw_breakpoints; 137 static int nb_hw_breakpoints; 138 139 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 140 KVM_CAP_LAST_INFO 141 }; 142 143 static int cap_async_pf; 144 static int cap_mem_op; 145 static int cap_mem_op_extension; 146 static int cap_s390_irq; 147 static int cap_ri; 148 static int cap_hpage_1m; 149 static int cap_vcpu_resets; 150 static int cap_protected; 151 static int cap_zpci_op; 152 static int cap_protected_dump; 153 154 static bool mem_op_storage_key_support; 155 156 static int active_cmma; 157 158 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 159 { 160 struct kvm_device_attr attr = { 161 .group = KVM_S390_VM_MEM_CTRL, 162 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 163 .addr = (uint64_t) memory_limit, 164 }; 165 166 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 167 } 168 169 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 170 { 171 int rc; 172 173 struct kvm_device_attr attr = { 174 .group = KVM_S390_VM_MEM_CTRL, 175 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 176 .addr = (uint64_t) &new_limit, 177 }; 178 179 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 180 return 0; 181 } 182 183 rc = kvm_s390_query_mem_limit(hw_limit); 184 if (rc) { 185 return rc; 186 } else if (*hw_limit < new_limit) { 187 return -E2BIG; 188 } 189 190 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 191 } 192 193 int kvm_s390_cmma_active(void) 194 { 195 return active_cmma; 196 } 197 198 static bool kvm_s390_cmma_available(void) 199 { 200 static bool initialized, value; 201 202 if (!initialized) { 203 initialized = true; 204 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 205 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 206 } 207 return value; 208 } 209 210 void kvm_s390_cmma_reset(void) 211 { 212 int rc; 213 struct kvm_device_attr attr = { 214 .group = KVM_S390_VM_MEM_CTRL, 215 .attr = KVM_S390_VM_MEM_CLR_CMMA, 216 }; 217 218 if (!kvm_s390_cmma_active()) { 219 return; 220 } 221 222 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 223 trace_kvm_clear_cmma(rc); 224 } 225 226 static void kvm_s390_enable_cmma(void) 227 { 228 int rc; 229 struct kvm_device_attr attr = { 230 .group = KVM_S390_VM_MEM_CTRL, 231 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 232 }; 233 234 if (cap_hpage_1m) { 235 warn_report("CMM will not be enabled because it is not " 236 "compatible with huge memory backings."); 237 return; 238 } 239 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 240 active_cmma = !rc; 241 trace_kvm_enable_cmma(rc); 242 } 243 244 static void kvm_s390_set_crypto_attr(uint64_t attr) 245 { 246 struct kvm_device_attr attribute = { 247 .group = KVM_S390_VM_CRYPTO, 248 .attr = attr, 249 }; 250 251 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 252 253 if (ret) { 254 error_report("Failed to set crypto device attribute %lu: %s", 255 attr, strerror(-ret)); 256 } 257 } 258 259 static void kvm_s390_init_aes_kw(void) 260 { 261 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 262 263 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 264 NULL)) { 265 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 266 } 267 268 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 269 kvm_s390_set_crypto_attr(attr); 270 } 271 } 272 273 static void kvm_s390_init_dea_kw(void) 274 { 275 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 276 277 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 278 NULL)) { 279 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 280 } 281 282 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 283 kvm_s390_set_crypto_attr(attr); 284 } 285 } 286 287 void kvm_s390_crypto_reset(void) 288 { 289 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 290 kvm_s390_init_aes_kw(); 291 kvm_s390_init_dea_kw(); 292 } 293 } 294 295 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 296 { 297 if (pagesize == 4 * KiB) { 298 return; 299 } 300 301 if (pagesize != 1 * MiB) { 302 error_setg(errp, "Memory backing with 2G pages was specified, " 303 "but KVM does not support this memory backing"); 304 return; 305 } 306 307 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 308 error_setg(errp, "Memory backing with 1M pages was specified, " 309 "but KVM does not support this memory backing"); 310 return; 311 } 312 313 cap_hpage_1m = 1; 314 } 315 316 int kvm_s390_get_hpage_1m(void) 317 { 318 return cap_hpage_1m; 319 } 320 321 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque) 322 { 323 MachineClass *mc = MACHINE_CLASS(oc); 324 325 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 326 } 327 328 int kvm_arch_get_default_type(MachineState *ms) 329 { 330 return 0; 331 } 332 333 int kvm_arch_init(MachineState *ms, KVMState *s) 334 { 335 int required_caps[] = { 336 KVM_CAP_DEVICE_CTRL, 337 KVM_CAP_SYNC_REGS, 338 }; 339 340 for (int i = 0; i < ARRAY_SIZE(required_caps); i++) { 341 if (!kvm_check_extension(s, required_caps[i])) { 342 error_report("KVM is missing capability #%d - " 343 "please use kernel 3.15 or newer", required_caps[i]); 344 return -1; 345 } 346 } 347 348 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE, 349 false, NULL); 350 351 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) { 352 error_report("KVM is missing capability KVM_CAP_S390_COW - " 353 "unsupported environment"); 354 return -1; 355 } 356 357 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 358 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 359 cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION); 360 mem_op_storage_key_support = cap_mem_op_extension > 0; 361 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 362 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS); 363 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED); 364 cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP); 365 cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP); 366 367 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 368 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 369 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 370 kvm_vm_enable_cap(s, KVM_CAP_S390_CPU_TOPOLOGY, 0); 371 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0); 372 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 373 cap_ri = 1; 374 } 375 376 /* 377 * The migration interface for ais was introduced with kernel 4.13 378 * but the capability itself had been active since 4.12. As migration 379 * support is considered necessary, we only try to enable this for 380 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available. 381 */ 382 if (kvm_kernel_irqchip_allowed() && 383 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) { 384 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); 385 } 386 387 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); 388 return 0; 389 } 390 391 int kvm_arch_irqchip_create(KVMState *s) 392 { 393 return 0; 394 } 395 396 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 397 { 398 return cpu->cpu_index; 399 } 400 401 int kvm_arch_init_vcpu(CPUState *cs) 402 { 403 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 404 S390CPU *cpu = S390_CPU(cs); 405 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 406 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 407 return 0; 408 } 409 410 int kvm_arch_destroy_vcpu(CPUState *cs) 411 { 412 S390CPU *cpu = S390_CPU(cs); 413 414 g_free(cpu->irqstate); 415 cpu->irqstate = NULL; 416 417 return 0; 418 } 419 420 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type) 421 { 422 CPUState *cs = CPU(cpu); 423 424 /* 425 * The reset call is needed here to reset in-kernel vcpu data that 426 * we can't access directly from QEMU (i.e. with older kernels 427 * which don't support sync_regs/ONE_REG). Before this ioctl 428 * cpu_synchronize_state() is called in common kvm code 429 * (kvm-all). 430 */ 431 if (kvm_vcpu_ioctl(cs, type)) { 432 error_report("CPU reset failed on CPU %i type %lx", 433 cs->cpu_index, type); 434 } 435 } 436 437 void kvm_s390_reset_vcpu_initial(S390CPU *cpu) 438 { 439 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 440 } 441 442 void kvm_s390_reset_vcpu_clear(S390CPU *cpu) 443 { 444 if (cap_vcpu_resets) { 445 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET); 446 } else { 447 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 448 } 449 } 450 451 void kvm_s390_reset_vcpu_normal(S390CPU *cpu) 452 { 453 if (cap_vcpu_resets) { 454 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET); 455 } 456 } 457 458 static int can_sync_regs(CPUState *cs, int regs) 459 { 460 return (cs->kvm_run->kvm_valid_regs & regs) == regs; 461 } 462 463 #define KVM_SYNC_REQUIRED_REGS (KVM_SYNC_GPRS | KVM_SYNC_ACRS | \ 464 KVM_SYNC_CRS | KVM_SYNC_PREFIX) 465 466 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp) 467 { 468 CPUS390XState *env = cpu_env(cs); 469 struct kvm_fpu fpu = {}; 470 int r; 471 int i; 472 473 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS)); 474 475 /* always save the PSW and the GPRS*/ 476 cs->kvm_run->psw_addr = env->psw.addr; 477 cs->kvm_run->psw_mask = env->psw.mask; 478 479 memcpy(cs->kvm_run->s.regs.gprs, env->regs, sizeof(cs->kvm_run->s.regs.gprs)); 480 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 481 482 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 483 for (i = 0; i < 32; i++) { 484 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 485 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 486 } 487 cs->kvm_run->s.regs.fpc = env->fpc; 488 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 489 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 490 for (i = 0; i < 16; i++) { 491 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 492 } 493 cs->kvm_run->s.regs.fpc = env->fpc; 494 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 495 } else { 496 /* Floating point */ 497 for (i = 0; i < 16; i++) { 498 fpu.fprs[i] = *get_freg(env, i); 499 } 500 fpu.fpc = env->fpc; 501 502 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 503 if (r < 0) { 504 return r; 505 } 506 } 507 508 /* Do we need to save more than that? */ 509 if (level == KVM_PUT_RUNTIME_STATE) { 510 return 0; 511 } 512 513 /* 514 * Access registers, control registers and the prefix - these are 515 * always available via kvm_sync_regs in the kernels that we support 516 */ 517 memcpy(cs->kvm_run->s.regs.acrs, env->aregs, sizeof(cs->kvm_run->s.regs.acrs)); 518 memcpy(cs->kvm_run->s.regs.crs, env->cregs, sizeof(cs->kvm_run->s.regs.crs)); 519 cs->kvm_run->s.regs.prefix = env->psa; 520 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS | KVM_SYNC_CRS | KVM_SYNC_PREFIX; 521 522 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 523 cs->kvm_run->s.regs.cputm = env->cputm; 524 cs->kvm_run->s.regs.ckc = env->ckc; 525 cs->kvm_run->s.regs.todpr = env->todpr; 526 cs->kvm_run->s.regs.gbea = env->gbea; 527 cs->kvm_run->s.regs.pp = env->pp; 528 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 529 } else { 530 /* 531 * These ONE_REGS are not protected by a capability. As they are only 532 * necessary for migration we just trace a possible error, but don't 533 * return with an error return code. 534 */ 535 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 536 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 537 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 538 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 539 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 540 } 541 542 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 543 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 544 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 545 } 546 547 /* pfault parameters */ 548 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 549 cs->kvm_run->s.regs.pft = env->pfault_token; 550 cs->kvm_run->s.regs.pfs = env->pfault_select; 551 cs->kvm_run->s.regs.pfc = env->pfault_compare; 552 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 553 } else if (cap_async_pf) { 554 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 555 if (r < 0) { 556 return r; 557 } 558 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 559 if (r < 0) { 560 return r; 561 } 562 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 563 if (r < 0) { 564 return r; 565 } 566 } 567 568 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 569 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 570 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 571 } 572 573 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 574 cs->kvm_run->s.regs.bpbc = env->bpbc; 575 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 576 } 577 578 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 579 cs->kvm_run->s.regs.etoken = env->etoken; 580 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 581 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 582 } 583 584 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 585 cs->kvm_run->s.regs.diag318 = env->diag318_info; 586 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 587 } 588 589 return 0; 590 } 591 592 int kvm_arch_get_registers(CPUState *cs, Error **errp) 593 { 594 CPUS390XState *env = cpu_env(cs); 595 struct kvm_fpu fpu; 596 int i, r; 597 598 /* get the PSW */ 599 env->psw.addr = cs->kvm_run->psw_addr; 600 env->psw.mask = cs->kvm_run->psw_mask; 601 602 /* the GPRS, ACRS and CRS */ 603 g_assert(can_sync_regs(cs, KVM_SYNC_REQUIRED_REGS)); 604 memcpy(env->regs, cs->kvm_run->s.regs.gprs, sizeof(env->regs)); 605 memcpy(env->aregs, cs->kvm_run->s.regs.acrs, sizeof(env->aregs)); 606 memcpy(env->cregs, cs->kvm_run->s.regs.crs, sizeof(env->cregs)); 607 608 /* The prefix */ 609 env->psa = cs->kvm_run->s.regs.prefix; 610 611 /* Floating point and vector registers */ 612 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 613 for (i = 0; i < 32; i++) { 614 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 615 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 616 } 617 env->fpc = cs->kvm_run->s.regs.fpc; 618 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 619 for (i = 0; i < 16; i++) { 620 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 621 } 622 env->fpc = cs->kvm_run->s.regs.fpc; 623 } else { 624 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 625 if (r < 0) { 626 return r; 627 } 628 for (i = 0; i < 16; i++) { 629 *get_freg(env, i) = fpu.fprs[i]; 630 } 631 env->fpc = fpu.fpc; 632 } 633 634 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 635 env->cputm = cs->kvm_run->s.regs.cputm; 636 env->ckc = cs->kvm_run->s.regs.ckc; 637 env->todpr = cs->kvm_run->s.regs.todpr; 638 env->gbea = cs->kvm_run->s.regs.gbea; 639 env->pp = cs->kvm_run->s.regs.pp; 640 } else { 641 /* 642 * These ONE_REGS are not protected by a capability. As they are only 643 * necessary for migration we just trace a possible error, but don't 644 * return with an error return code. 645 */ 646 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 647 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 648 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 649 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 650 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 651 } 652 653 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 654 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 655 } 656 657 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 658 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 659 } 660 661 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 662 env->bpbc = cs->kvm_run->s.regs.bpbc; 663 } 664 665 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 666 env->etoken = cs->kvm_run->s.regs.etoken; 667 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 668 } 669 670 /* pfault parameters */ 671 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 672 env->pfault_token = cs->kvm_run->s.regs.pft; 673 env->pfault_select = cs->kvm_run->s.regs.pfs; 674 env->pfault_compare = cs->kvm_run->s.regs.pfc; 675 } else if (cap_async_pf) { 676 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 677 if (r < 0) { 678 return r; 679 } 680 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 681 if (r < 0) { 682 return r; 683 } 684 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 685 if (r < 0) { 686 return r; 687 } 688 } 689 690 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 691 env->diag318_info = cs->kvm_run->s.regs.diag318; 692 } 693 694 return 0; 695 } 696 697 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 698 { 699 int r; 700 struct kvm_device_attr attr = { 701 .group = KVM_S390_VM_TOD, 702 .attr = KVM_S390_VM_TOD_LOW, 703 .addr = (uint64_t)tod_low, 704 }; 705 706 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 707 if (r) { 708 return r; 709 } 710 711 attr.attr = KVM_S390_VM_TOD_HIGH; 712 attr.addr = (uint64_t)tod_high; 713 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 714 } 715 716 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 717 { 718 int r; 719 struct kvm_s390_vm_tod_clock gtod; 720 struct kvm_device_attr attr = { 721 .group = KVM_S390_VM_TOD, 722 .attr = KVM_S390_VM_TOD_EXT, 723 .addr = (uint64_t)>od, 724 }; 725 726 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 727 *tod_high = gtod.epoch_idx; 728 *tod_low = gtod.tod; 729 730 return r; 731 } 732 733 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 734 { 735 int r; 736 struct kvm_device_attr attr = { 737 .group = KVM_S390_VM_TOD, 738 .attr = KVM_S390_VM_TOD_LOW, 739 .addr = (uint64_t)&tod_low, 740 }; 741 742 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 743 if (r) { 744 return r; 745 } 746 747 attr.attr = KVM_S390_VM_TOD_HIGH; 748 attr.addr = (uint64_t)&tod_high; 749 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 750 } 751 752 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 753 { 754 struct kvm_s390_vm_tod_clock gtod = { 755 .epoch_idx = tod_high, 756 .tod = tod_low, 757 }; 758 struct kvm_device_attr attr = { 759 .group = KVM_S390_VM_TOD, 760 .attr = KVM_S390_VM_TOD_EXT, 761 .addr = (uint64_t)>od, 762 }; 763 764 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 765 } 766 767 /** 768 * kvm_s390_mem_op: 769 * @addr: the logical start address in guest memory 770 * @ar: the access register number 771 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 772 * @len: length that should be transferred 773 * @is_write: true = write, false = read 774 * Returns: 0 on success, non-zero if an exception or error occurred 775 * 776 * Use KVM ioctl to read/write from/to guest memory. An access exception 777 * is injected into the vCPU in case of translation errors. 778 */ 779 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 780 int len, bool is_write) 781 { 782 struct kvm_s390_mem_op mem_op = { 783 .gaddr = addr, 784 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 785 .size = len, 786 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 787 : KVM_S390_MEMOP_LOGICAL_READ, 788 .buf = (uint64_t)hostbuf, 789 .ar = ar, 790 .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY, 791 }; 792 int ret; 793 794 if (!cap_mem_op) { 795 return -ENOSYS; 796 } 797 if (!hostbuf) { 798 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 799 } 800 if (mem_op_storage_key_support) { 801 mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION; 802 } 803 804 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 805 if (ret < 0) { 806 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 807 } 808 return ret; 809 } 810 811 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf, 812 int len, bool is_write) 813 { 814 struct kvm_s390_mem_op mem_op = { 815 .sida_offset = offset, 816 .size = len, 817 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE 818 : KVM_S390_MEMOP_SIDA_READ, 819 .buf = (uint64_t)hostbuf, 820 }; 821 int ret; 822 823 if (!cap_mem_op || !cap_protected) { 824 return -ENOSYS; 825 } 826 827 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 828 if (ret < 0) { 829 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 830 abort(); 831 } 832 return ret; 833 } 834 835 static uint8_t const *sw_bp_inst; 836 static uint8_t sw_bp_ilen; 837 838 static void determine_sw_breakpoint_instr(void) 839 { 840 /* DIAG 501 is used for sw breakpoints with old kernels */ 841 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 842 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 843 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 844 845 if (sw_bp_inst) { 846 return; 847 } 848 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 849 sw_bp_inst = diag_501; 850 sw_bp_ilen = sizeof(diag_501); 851 trace_kvm_sw_breakpoint(4); 852 } else { 853 sw_bp_inst = instr_0x0000; 854 sw_bp_ilen = sizeof(instr_0x0000); 855 trace_kvm_sw_breakpoint(2); 856 } 857 } 858 859 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 860 { 861 determine_sw_breakpoint_instr(); 862 863 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 864 sw_bp_ilen, 0) || 865 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 866 return -EINVAL; 867 } 868 return 0; 869 } 870 871 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 872 { 873 uint8_t t[MAX_ILEN]; 874 875 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 876 return -EINVAL; 877 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 878 return -EINVAL; 879 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 880 sw_bp_ilen, 1)) { 881 return -EINVAL; 882 } 883 884 return 0; 885 } 886 887 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 888 int len, int type) 889 { 890 int n; 891 892 for (n = 0; n < nb_hw_breakpoints; n++) { 893 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 894 (hw_breakpoints[n].len == len || len == -1)) { 895 return &hw_breakpoints[n]; 896 } 897 } 898 899 return NULL; 900 } 901 902 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 903 { 904 int size; 905 906 if (find_hw_breakpoint(addr, len, type)) { 907 return -EEXIST; 908 } 909 910 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 911 912 if (!hw_breakpoints) { 913 nb_hw_breakpoints = 0; 914 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 915 } else { 916 hw_breakpoints = 917 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 918 } 919 920 if (!hw_breakpoints) { 921 nb_hw_breakpoints = 0; 922 return -ENOMEM; 923 } 924 925 hw_breakpoints[nb_hw_breakpoints].addr = addr; 926 hw_breakpoints[nb_hw_breakpoints].len = len; 927 hw_breakpoints[nb_hw_breakpoints].type = type; 928 929 nb_hw_breakpoints++; 930 931 return 0; 932 } 933 934 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 935 { 936 switch (type) { 937 case GDB_BREAKPOINT_HW: 938 type = KVM_HW_BP; 939 break; 940 case GDB_WATCHPOINT_WRITE: 941 if (len < 1) { 942 return -EINVAL; 943 } 944 type = KVM_HW_WP_WRITE; 945 break; 946 default: 947 return -ENOSYS; 948 } 949 return insert_hw_breakpoint(addr, len, type); 950 } 951 952 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 953 { 954 int size; 955 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 956 957 if (bp == NULL) { 958 return -ENOENT; 959 } 960 961 nb_hw_breakpoints--; 962 if (nb_hw_breakpoints > 0) { 963 /* 964 * In order to trim the array, move the last element to the position to 965 * be removed - if necessary. 966 */ 967 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 968 *bp = hw_breakpoints[nb_hw_breakpoints]; 969 } 970 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 971 hw_breakpoints = 972 g_realloc(hw_breakpoints, size); 973 } else { 974 g_free(hw_breakpoints); 975 hw_breakpoints = NULL; 976 } 977 978 return 0; 979 } 980 981 void kvm_arch_remove_all_hw_breakpoints(void) 982 { 983 nb_hw_breakpoints = 0; 984 g_free(hw_breakpoints); 985 hw_breakpoints = NULL; 986 } 987 988 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 989 { 990 int i; 991 992 if (nb_hw_breakpoints > 0) { 993 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 994 dbg->arch.hw_bp = hw_breakpoints; 995 996 for (i = 0; i < nb_hw_breakpoints; ++i) { 997 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 998 hw_breakpoints[i].addr); 999 } 1000 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1001 } else { 1002 dbg->arch.nr_hw_bp = 0; 1003 dbg->arch.hw_bp = NULL; 1004 } 1005 } 1006 1007 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 1008 { 1009 } 1010 1011 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1012 { 1013 return MEMTXATTRS_UNSPECIFIED; 1014 } 1015 1016 int kvm_arch_process_async_events(CPUState *cs) 1017 { 1018 return cs->halted; 1019 } 1020 1021 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1022 struct kvm_s390_interrupt *interrupt) 1023 { 1024 int r = 0; 1025 1026 interrupt->type = irq->type; 1027 switch (irq->type) { 1028 case KVM_S390_INT_VIRTIO: 1029 interrupt->parm = irq->u.ext.ext_params; 1030 /* fall through */ 1031 case KVM_S390_INT_PFAULT_INIT: 1032 case KVM_S390_INT_PFAULT_DONE: 1033 interrupt->parm64 = irq->u.ext.ext_params2; 1034 break; 1035 case KVM_S390_PROGRAM_INT: 1036 interrupt->parm = irq->u.pgm.code; 1037 break; 1038 case KVM_S390_SIGP_SET_PREFIX: 1039 interrupt->parm = irq->u.prefix.address; 1040 break; 1041 case KVM_S390_INT_SERVICE: 1042 interrupt->parm = irq->u.ext.ext_params; 1043 break; 1044 case KVM_S390_MCHK: 1045 interrupt->parm = irq->u.mchk.cr14; 1046 interrupt->parm64 = irq->u.mchk.mcic; 1047 break; 1048 case KVM_S390_INT_EXTERNAL_CALL: 1049 interrupt->parm = irq->u.extcall.code; 1050 break; 1051 case KVM_S390_INT_EMERGENCY: 1052 interrupt->parm = irq->u.emerg.code; 1053 break; 1054 case KVM_S390_SIGP_STOP: 1055 case KVM_S390_RESTART: 1056 break; /* These types have no parameters */ 1057 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1058 interrupt->parm = irq->u.io.subchannel_id << 16; 1059 interrupt->parm |= irq->u.io.subchannel_nr; 1060 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1061 interrupt->parm64 |= irq->u.io.io_int_word; 1062 break; 1063 default: 1064 r = -EINVAL; 1065 break; 1066 } 1067 return r; 1068 } 1069 1070 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1071 { 1072 struct kvm_s390_interrupt kvmint = {}; 1073 int r; 1074 1075 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1076 if (r < 0) { 1077 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1078 exit(1); 1079 } 1080 1081 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1082 if (r < 0) { 1083 fprintf(stderr, "KVM failed to inject interrupt\n"); 1084 exit(1); 1085 } 1086 } 1087 1088 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1089 { 1090 CPUState *cs = CPU(cpu); 1091 int r; 1092 1093 if (cap_s390_irq) { 1094 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1095 if (!r) { 1096 return; 1097 } 1098 error_report("KVM failed to inject interrupt %llx", irq->type); 1099 exit(1); 1100 } 1101 1102 inject_vcpu_irq_legacy(cs, irq); 1103 } 1104 1105 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1106 { 1107 struct kvm_s390_interrupt kvmint = {}; 1108 int r; 1109 1110 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1111 if (r < 0) { 1112 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1113 exit(1); 1114 } 1115 1116 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1117 if (r < 0) { 1118 fprintf(stderr, "KVM failed to inject interrupt\n"); 1119 exit(1); 1120 } 1121 } 1122 1123 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1124 { 1125 struct kvm_s390_irq irq = { 1126 .type = KVM_S390_PROGRAM_INT, 1127 .u.pgm.code = code, 1128 }; 1129 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1130 cpu->env.psw.addr); 1131 kvm_s390_vcpu_interrupt(cpu, &irq); 1132 } 1133 1134 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1135 { 1136 struct kvm_s390_irq irq = { 1137 .type = KVM_S390_PROGRAM_INT, 1138 .u.pgm.code = code, 1139 .u.pgm.trans_exc_code = te_code, 1140 .u.pgm.exc_access_id = te_code & 3, 1141 }; 1142 1143 kvm_s390_vcpu_interrupt(cpu, &irq); 1144 } 1145 1146 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1147 uint16_t ipbh0) 1148 { 1149 CPUS390XState *env = &cpu->env; 1150 uint64_t sccb; 1151 uint32_t code; 1152 int r; 1153 1154 sccb = env->regs[ipbh0 & 0xf]; 1155 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1156 1157 switch (run->s390_sieic.icptcode) { 1158 case ICPT_PV_INSTR_NOTIFICATION: 1159 g_assert(s390_is_pv()); 1160 /* The notification intercepts are currently handled by KVM */ 1161 error_report("unexpected SCLP PV notification"); 1162 exit(1); 1163 break; 1164 case ICPT_PV_INSTR: 1165 g_assert(s390_is_pv()); 1166 sclp_service_call_protected(cpu, sccb, code); 1167 /* Setting the CC is done by the Ultravisor. */ 1168 break; 1169 case ICPT_INSTRUCTION: 1170 g_assert(!s390_is_pv()); 1171 r = sclp_service_call(cpu, sccb, code); 1172 if (r < 0) { 1173 kvm_s390_program_interrupt(cpu, -r); 1174 return; 1175 } 1176 setcc(cpu, r); 1177 } 1178 } 1179 1180 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1181 { 1182 CPUS390XState *env = &cpu->env; 1183 int rc = 0; 1184 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1185 1186 switch (ipa1) { 1187 case PRIV_B2_XSCH: 1188 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1189 break; 1190 case PRIV_B2_CSCH: 1191 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1192 break; 1193 case PRIV_B2_HSCH: 1194 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1195 break; 1196 case PRIV_B2_MSCH: 1197 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1198 break; 1199 case PRIV_B2_SSCH: 1200 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1201 break; 1202 case PRIV_B2_STCRW: 1203 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1204 break; 1205 case PRIV_B2_STSCH: 1206 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1207 break; 1208 case PRIV_B2_TSCH: 1209 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1210 fprintf(stderr, "Spurious tsch intercept\n"); 1211 break; 1212 case PRIV_B2_CHSC: 1213 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1214 break; 1215 case PRIV_B2_TPI: 1216 /* This should have been handled by kvm already. */ 1217 fprintf(stderr, "Spurious tpi intercept\n"); 1218 break; 1219 case PRIV_B2_SCHM: 1220 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1221 run->s390_sieic.ipb, RA_IGNORED); 1222 break; 1223 case PRIV_B2_RSCH: 1224 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1225 break; 1226 case PRIV_B2_RCHP: 1227 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1228 break; 1229 case PRIV_B2_STCPS: 1230 /* We do not provide this instruction, it is suppressed. */ 1231 break; 1232 case PRIV_B2_SAL: 1233 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1234 break; 1235 case PRIV_B2_SIGA: 1236 /* Not provided, set CC = 3 for subchannel not operational */ 1237 setcc(cpu, 3); 1238 break; 1239 case PRIV_B2_SCLP_CALL: 1240 kvm_sclp_service_call(cpu, run, ipbh0); 1241 break; 1242 default: 1243 rc = -1; 1244 trace_kvm_insn_unhandled_priv(ipa1); 1245 break; 1246 } 1247 1248 return rc; 1249 } 1250 1251 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1252 uint8_t *ar) 1253 { 1254 CPUS390XState *env = &cpu->env; 1255 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1256 uint32_t base2 = run->s390_sieic.ipb >> 28; 1257 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1258 ((run->s390_sieic.ipb & 0xff00) << 4); 1259 1260 if (disp2 & 0x80000) { 1261 disp2 += 0xfff00000; 1262 } 1263 if (ar) { 1264 *ar = base2; 1265 } 1266 1267 return (base2 ? env->regs[base2] : 0) + 1268 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1269 } 1270 1271 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1272 uint8_t *ar) 1273 { 1274 CPUS390XState *env = &cpu->env; 1275 uint32_t base2 = run->s390_sieic.ipb >> 28; 1276 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1277 ((run->s390_sieic.ipb & 0xff00) << 4); 1278 1279 if (disp2 & 0x80000) { 1280 disp2 += 0xfff00000; 1281 } 1282 if (ar) { 1283 *ar = base2; 1284 } 1285 1286 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1287 } 1288 1289 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1290 { 1291 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1292 1293 if (s390_has_feat(S390_FEAT_ZPCI)) { 1294 return clp_service_call(cpu, r2, RA_IGNORED); 1295 } else { 1296 return -1; 1297 } 1298 } 1299 1300 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1301 { 1302 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1303 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1304 1305 if (s390_has_feat(S390_FEAT_ZPCI)) { 1306 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1307 } else { 1308 return -1; 1309 } 1310 } 1311 1312 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1313 { 1314 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1315 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1316 1317 if (s390_has_feat(S390_FEAT_ZPCI)) { 1318 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1319 } else { 1320 return -1; 1321 } 1322 } 1323 1324 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1325 { 1326 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1327 uint64_t fiba; 1328 uint8_t ar; 1329 1330 if (s390_has_feat(S390_FEAT_ZPCI)) { 1331 fiba = get_base_disp_rxy(cpu, run, &ar); 1332 1333 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1334 } else { 1335 return -1; 1336 } 1337 } 1338 1339 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1340 { 1341 CPUS390XState *env = &cpu->env; 1342 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1343 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1344 uint8_t isc; 1345 uint16_t mode; 1346 int r; 1347 1348 mode = env->regs[r1] & 0xffff; 1349 isc = (env->regs[r3] >> 27) & 0x7; 1350 r = css_do_sic(cpu, isc, mode); 1351 if (r) { 1352 kvm_s390_program_interrupt(cpu, -r); 1353 } 1354 1355 return 0; 1356 } 1357 1358 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1359 { 1360 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1361 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1362 1363 if (s390_has_feat(S390_FEAT_ZPCI)) { 1364 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1365 } else { 1366 return -1; 1367 } 1368 } 1369 1370 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1371 { 1372 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1373 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1374 uint64_t gaddr; 1375 uint8_t ar; 1376 1377 if (s390_has_feat(S390_FEAT_ZPCI)) { 1378 gaddr = get_base_disp_rsy(cpu, run, &ar); 1379 1380 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1381 } else { 1382 return -1; 1383 } 1384 } 1385 1386 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1387 { 1388 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1389 uint64_t fiba; 1390 uint8_t ar; 1391 1392 if (s390_has_feat(S390_FEAT_ZPCI)) { 1393 fiba = get_base_disp_rxy(cpu, run, &ar); 1394 1395 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1396 } else { 1397 return -1; 1398 } 1399 } 1400 1401 static void kvm_handle_ptf(S390CPU *cpu, struct kvm_run *run) 1402 { 1403 uint8_t r1 = (run->s390_sieic.ipb >> 20) & 0x0f; 1404 1405 s390_handle_ptf(cpu, r1, RA_IGNORED); 1406 } 1407 1408 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1409 { 1410 int r = 0; 1411 1412 switch (ipa1) { 1413 case PRIV_B9_CLP: 1414 r = kvm_clp_service_call(cpu, run); 1415 break; 1416 case PRIV_B9_PCISTG: 1417 r = kvm_pcistg_service_call(cpu, run); 1418 break; 1419 case PRIV_B9_PCILG: 1420 r = kvm_pcilg_service_call(cpu, run); 1421 break; 1422 case PRIV_B9_RPCIT: 1423 r = kvm_rpcit_service_call(cpu, run); 1424 break; 1425 case PRIV_B9_PTF: 1426 kvm_handle_ptf(cpu, run); 1427 break; 1428 case PRIV_B9_EQBS: 1429 /* just inject exception */ 1430 r = -1; 1431 break; 1432 default: 1433 r = -1; 1434 trace_kvm_insn_unhandled_priv(ipa1); 1435 break; 1436 } 1437 1438 return r; 1439 } 1440 1441 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1442 { 1443 int r = 0; 1444 1445 switch (ipbl) { 1446 case PRIV_EB_PCISTB: 1447 r = kvm_pcistb_service_call(cpu, run); 1448 break; 1449 case PRIV_EB_SIC: 1450 r = kvm_sic_service_call(cpu, run); 1451 break; 1452 case PRIV_EB_SQBS: 1453 /* just inject exception */ 1454 r = -1; 1455 break; 1456 default: 1457 r = -1; 1458 trace_kvm_insn_unhandled_priv(ipbl); 1459 break; 1460 } 1461 1462 return r; 1463 } 1464 1465 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1466 { 1467 int r = 0; 1468 1469 switch (ipbl) { 1470 case PRIV_E3_MPCIFC: 1471 r = kvm_mpcifc_service_call(cpu, run); 1472 break; 1473 case PRIV_E3_STPCIFC: 1474 r = kvm_stpcifc_service_call(cpu, run); 1475 break; 1476 default: 1477 r = -1; 1478 trace_kvm_insn_unhandled_priv(ipbl); 1479 break; 1480 } 1481 1482 return r; 1483 } 1484 1485 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1486 { 1487 uint64_t r1, r3; 1488 int rc; 1489 1490 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1491 r3 = run->s390_sieic.ipa & 0x000f; 1492 rc = handle_diag_288(&cpu->env, r1, r3); 1493 if (rc) { 1494 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1495 } 1496 } 1497 1498 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1499 { 1500 uint64_t r1, r3; 1501 1502 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1503 r3 = run->s390_sieic.ipa & 0x000f; 1504 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1505 } 1506 1507 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1508 { 1509 CPUS390XState *env = &cpu->env; 1510 unsigned long pc; 1511 1512 pc = env->psw.addr - sw_bp_ilen; 1513 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1514 env->psw.addr = pc; 1515 return EXCP_DEBUG; 1516 } 1517 1518 return -ENOENT; 1519 } 1520 1521 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info) 1522 { 1523 CPUS390XState *env = &S390_CPU(cs)->env; 1524 1525 /* Feat bit is set only if KVM supports sync for diag318 */ 1526 if (s390_has_feat(S390_FEAT_DIAG_318)) { 1527 env->diag318_info = diag318_info; 1528 cs->kvm_run->s.regs.diag318 = diag318_info; 1529 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 1530 /* 1531 * diag 318 info is zeroed during a clear reset and 1532 * diag 308 IPL subcodes. 1533 */ 1534 } 1535 } 1536 1537 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run) 1538 { 1539 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4; 1540 uint64_t diag318_info = run->s.regs.gprs[reg]; 1541 CPUState *t; 1542 1543 /* 1544 * DIAG 318 can only be enabled with KVM support. As such, let's 1545 * ensure a guest cannot execute this instruction erroneously. 1546 */ 1547 if (!s390_has_feat(S390_FEAT_DIAG_318)) { 1548 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1549 return; 1550 } 1551 1552 CPU_FOREACH(t) { 1553 run_on_cpu(t, s390_do_cpu_set_diag318, 1554 RUN_ON_CPU_HOST_ULONG(diag318_info)); 1555 } 1556 } 1557 1558 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1559 1560 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1561 { 1562 int r = 0; 1563 uint16_t func_code; 1564 1565 /* 1566 * For any diagnose call we support, bits 48-63 of the resulting 1567 * address specify the function code; the remainder is ignored. 1568 */ 1569 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1570 switch (func_code) { 1571 case DIAG_TIMEREVENT: 1572 kvm_handle_diag_288(cpu, run); 1573 break; 1574 case DIAG_IPL: 1575 kvm_handle_diag_308(cpu, run); 1576 break; 1577 case DIAG_SET_CONTROL_PROGRAM_CODES: 1578 handle_diag_318(cpu, run); 1579 break; 1580 #ifdef CONFIG_S390_CCW_VIRTIO 1581 case DIAG_KVM_HYPERCALL: 1582 handle_diag_500(cpu, RA_IGNORED); 1583 break; 1584 #endif /* CONFIG_S390_CCW_VIRTIO */ 1585 case DIAG_KVM_BREAKPOINT: 1586 r = handle_sw_breakpoint(cpu, run); 1587 break; 1588 default: 1589 trace_kvm_insn_diag(func_code); 1590 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1591 break; 1592 } 1593 1594 return r; 1595 } 1596 1597 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1598 { 1599 CPUS390XState *env = &cpu->env; 1600 const uint8_t r1 = ipa1 >> 4; 1601 const uint8_t r3 = ipa1 & 0x0f; 1602 int ret; 1603 uint8_t order; 1604 1605 /* get order code */ 1606 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1607 1608 ret = handle_sigp(env, order, r1, r3); 1609 setcc(cpu, ret); 1610 return 0; 1611 } 1612 1613 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1614 { 1615 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1616 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1617 int r = -1; 1618 1619 trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb); 1620 switch (ipa0) { 1621 case IPA0_B2: 1622 r = handle_b2(cpu, run, ipa1); 1623 break; 1624 case IPA0_B9: 1625 r = handle_b9(cpu, run, ipa1); 1626 break; 1627 case IPA0_EB: 1628 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1629 break; 1630 case IPA0_E3: 1631 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1632 break; 1633 case IPA0_DIAG: 1634 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1635 break; 1636 case IPA0_SIGP: 1637 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1638 break; 1639 } 1640 1641 if (r < 0) { 1642 r = 0; 1643 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1644 } 1645 1646 return r; 1647 } 1648 1649 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1650 int pswoffset) 1651 { 1652 CPUState *cs = CPU(cpu); 1653 1654 s390_cpu_halt(cpu); 1655 cpu->env.crash_reason = reason; 1656 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1657 } 1658 1659 /* try to detect pgm check loops */ 1660 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1661 { 1662 CPUState *cs = CPU(cpu); 1663 PSW oldpsw, newpsw; 1664 1665 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1666 offsetof(LowCore, program_new_psw)); 1667 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1668 offsetof(LowCore, program_new_psw) + 8); 1669 oldpsw.mask = run->psw_mask; 1670 oldpsw.addr = run->psw_addr; 1671 /* 1672 * Avoid endless loops of operation exceptions, if the pgm new 1673 * PSW will cause a new operation exception. 1674 * The heuristic checks if the pgm new psw is within 6 bytes before 1675 * the faulting psw address (with same DAT, AS settings) and the 1676 * new psw is not a wait psw and the fault was not triggered by 1677 * problem state. In that case go into crashed state. 1678 */ 1679 1680 if (oldpsw.addr - newpsw.addr <= 6 && 1681 !(newpsw.mask & PSW_MASK_WAIT) && 1682 !(oldpsw.mask & PSW_MASK_PSTATE) && 1683 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1684 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1685 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1686 offsetof(LowCore, program_new_psw)); 1687 return EXCP_HALTED; 1688 } 1689 return 0; 1690 } 1691 1692 static int handle_intercept(S390CPU *cpu) 1693 { 1694 CPUState *cs = CPU(cpu); 1695 struct kvm_run *run = cs->kvm_run; 1696 int icpt_code = run->s390_sieic.icptcode; 1697 int r = 0; 1698 1699 trace_kvm_intercept(icpt_code, (long)run->psw_addr); 1700 switch (icpt_code) { 1701 case ICPT_INSTRUCTION: 1702 case ICPT_PV_INSTR: 1703 case ICPT_PV_INSTR_NOTIFICATION: 1704 r = handle_instruction(cpu, run); 1705 break; 1706 case ICPT_PROGRAM: 1707 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1708 offsetof(LowCore, program_new_psw)); 1709 r = EXCP_HALTED; 1710 break; 1711 case ICPT_EXT_INT: 1712 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1713 offsetof(LowCore, external_new_psw)); 1714 r = EXCP_HALTED; 1715 break; 1716 case ICPT_WAITPSW: 1717 /* disabled wait, since enabled wait is handled in kernel */ 1718 s390_handle_wait(cpu); 1719 r = EXCP_HALTED; 1720 break; 1721 case ICPT_CPU_STOP: 1722 do_stop_interrupt(&cpu->env); 1723 r = EXCP_HALTED; 1724 break; 1725 case ICPT_OPEREXC: 1726 /* check for break points */ 1727 r = handle_sw_breakpoint(cpu, run); 1728 if (r == -ENOENT) { 1729 /* Then check for potential pgm check loops */ 1730 r = handle_oper_loop(cpu, run); 1731 if (r == 0) { 1732 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1733 } 1734 } 1735 break; 1736 case ICPT_SOFT_INTERCEPT: 1737 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1738 exit(1); 1739 break; 1740 case ICPT_IO: 1741 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1742 exit(1); 1743 break; 1744 default: 1745 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1746 exit(1); 1747 break; 1748 } 1749 1750 return r; 1751 } 1752 1753 static int handle_tsch(S390CPU *cpu) 1754 { 1755 CPUState *cs = CPU(cpu); 1756 struct kvm_run *run = cs->kvm_run; 1757 int ret; 1758 1759 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1760 RA_IGNORED); 1761 if (ret < 0) { 1762 /* 1763 * Failure. 1764 * If an I/O interrupt had been dequeued, we have to reinject it. 1765 */ 1766 if (run->s390_tsch.dequeued) { 1767 s390_io_interrupt(run->s390_tsch.subchannel_id, 1768 run->s390_tsch.subchannel_nr, 1769 run->s390_tsch.io_int_parm, 1770 run->s390_tsch.io_int_word); 1771 } 1772 ret = 0; 1773 } 1774 return ret; 1775 } 1776 1777 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1778 { 1779 const MachineState *ms = MACHINE(qdev_get_machine()); 1780 uint16_t conf_cpus = 0, reserved_cpus = 0; 1781 SysIB_322 sysib; 1782 int del, i; 1783 1784 if (s390_is_pv()) { 1785 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib)); 1786 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1787 return; 1788 } 1789 /* Shift the stack of Extended Names to prepare for our own data */ 1790 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1791 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1792 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1793 * assumed it's not capable of managing Extended Names for lower levels. 1794 */ 1795 for (del = 1; del < sysib.count; del++) { 1796 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1797 break; 1798 } 1799 } 1800 if (del < sysib.count) { 1801 memset(sysib.ext_names[del], 0, 1802 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1803 } 1804 1805 /* count the cpus and split them into configured and reserved ones */ 1806 for (i = 0; i < ms->possible_cpus->len; i++) { 1807 if (ms->possible_cpus->cpus[i].cpu) { 1808 conf_cpus++; 1809 } else { 1810 reserved_cpus++; 1811 } 1812 } 1813 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus; 1814 sysib.vm[0].conf_cpus = conf_cpus; 1815 sysib.vm[0].reserved_cpus = reserved_cpus; 1816 1817 /* Insert short machine name in EBCDIC, padded with blanks */ 1818 if (qemu_name) { 1819 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1820 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1821 strlen(qemu_name))); 1822 } 1823 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1824 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1825 * considered by s390 as not capable of providing any Extended Name. 1826 * Therefore if no name was specified on qemu invocation, we go with the 1827 * same "KVMguest" default, which KVM has filled into short name field. 1828 */ 1829 strpadcpy((char *)sysib.ext_names[0], 1830 sizeof(sysib.ext_names[0]), 1831 qemu_name ?: "KVMguest", '\0'); 1832 1833 /* Insert UUID */ 1834 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1835 1836 if (s390_is_pv()) { 1837 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib)); 1838 } else { 1839 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1840 } 1841 } 1842 1843 static int handle_stsi(S390CPU *cpu) 1844 { 1845 CPUState *cs = CPU(cpu); 1846 struct kvm_run *run = cs->kvm_run; 1847 1848 switch (run->s390_stsi.fc) { 1849 case 3: 1850 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1851 return 0; 1852 } 1853 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1854 return 0; 1855 case 15: 1856 insert_stsi_15_1_x(cpu, run->s390_stsi.sel2, run->s390_stsi.addr, 1857 run->s390_stsi.ar, RA_IGNORED); 1858 return 0; 1859 default: 1860 return 0; 1861 } 1862 } 1863 1864 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1865 { 1866 CPUState *cs = CPU(cpu); 1867 struct kvm_run *run = cs->kvm_run; 1868 1869 int ret = 0; 1870 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1871 1872 switch (arch_info->type) { 1873 case KVM_HW_WP_WRITE: 1874 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1875 cs->watchpoint_hit = &hw_watchpoint; 1876 hw_watchpoint.vaddr = arch_info->addr; 1877 hw_watchpoint.flags = BP_MEM_WRITE; 1878 ret = EXCP_DEBUG; 1879 } 1880 break; 1881 case KVM_HW_BP: 1882 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1883 ret = EXCP_DEBUG; 1884 } 1885 break; 1886 case KVM_SINGLESTEP: 1887 if (cs->singlestep_enabled) { 1888 ret = EXCP_DEBUG; 1889 } 1890 break; 1891 default: 1892 ret = -ENOSYS; 1893 } 1894 1895 return ret; 1896 } 1897 1898 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1899 { 1900 S390CPU *cpu = S390_CPU(cs); 1901 int ret = 0; 1902 1903 bql_lock(); 1904 1905 kvm_cpu_synchronize_state(cs); 1906 1907 switch (run->exit_reason) { 1908 case KVM_EXIT_S390_SIEIC: 1909 ret = handle_intercept(cpu); 1910 break; 1911 case KVM_EXIT_S390_RESET: 1912 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1913 break; 1914 case KVM_EXIT_S390_TSCH: 1915 ret = handle_tsch(cpu); 1916 break; 1917 case KVM_EXIT_S390_STSI: 1918 ret = handle_stsi(cpu); 1919 break; 1920 case KVM_EXIT_DEBUG: 1921 ret = kvm_arch_handle_debug_exit(cpu); 1922 break; 1923 default: 1924 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1925 break; 1926 } 1927 bql_unlock(); 1928 1929 if (ret == 0) { 1930 ret = EXCP_INTERRUPT; 1931 } 1932 return ret; 1933 } 1934 1935 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1936 { 1937 return true; 1938 } 1939 1940 void kvm_s390_enable_css_support(S390CPU *cpu) 1941 { 1942 int r; 1943 1944 /* Activate host kernel channel subsystem support. */ 1945 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1946 assert(r == 0); 1947 } 1948 1949 void kvm_arch_init_irq_routing(KVMState *s) 1950 { 1951 /* 1952 * Note that while irqchip capabilities generally imply that cpustates 1953 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1954 * have to override the common code kvm_halt_in_kernel_allowed setting. 1955 */ 1956 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1957 kvm_gsi_routing_allowed = true; 1958 kvm_halt_in_kernel_allowed = false; 1959 } 1960 } 1961 1962 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1963 int vq, bool assign) 1964 { 1965 struct kvm_ioeventfd kick = { 1966 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1967 KVM_IOEVENTFD_FLAG_DATAMATCH, 1968 .fd = event_notifier_get_fd(notifier), 1969 .datamatch = vq, 1970 .addr = sch, 1971 .len = 8, 1972 }; 1973 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 1974 kick.datamatch); 1975 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1976 return -ENOSYS; 1977 } 1978 if (!assign) { 1979 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1980 } 1981 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1982 } 1983 1984 int kvm_s390_get_protected_dump(void) 1985 { 1986 return cap_protected_dump; 1987 } 1988 1989 int kvm_s390_get_ri(void) 1990 { 1991 return cap_ri; 1992 } 1993 1994 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1995 { 1996 struct kvm_mp_state mp_state = {}; 1997 int ret; 1998 1999 /* the kvm part might not have been initialized yet */ 2000 if (CPU(cpu)->kvm_state == NULL) { 2001 return 0; 2002 } 2003 2004 switch (cpu_state) { 2005 case S390_CPU_STATE_STOPPED: 2006 mp_state.mp_state = KVM_MP_STATE_STOPPED; 2007 break; 2008 case S390_CPU_STATE_CHECK_STOP: 2009 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 2010 break; 2011 case S390_CPU_STATE_OPERATING: 2012 mp_state.mp_state = KVM_MP_STATE_OPERATING; 2013 break; 2014 case S390_CPU_STATE_LOAD: 2015 mp_state.mp_state = KVM_MP_STATE_LOAD; 2016 break; 2017 default: 2018 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2019 cpu_state); 2020 exit(1); 2021 } 2022 2023 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2024 if (ret) { 2025 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2026 strerror(-ret)); 2027 } 2028 2029 return ret; 2030 } 2031 2032 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2033 { 2034 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 2035 struct kvm_s390_irq_state irq_state = { 2036 .buf = (uint64_t) cpu->irqstate, 2037 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 2038 }; 2039 CPUState *cs = CPU(cpu); 2040 int32_t bytes; 2041 2042 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2043 return; 2044 } 2045 2046 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2047 if (bytes < 0) { 2048 cpu->irqstate_saved_size = 0; 2049 error_report("Migration of interrupt state failed"); 2050 return; 2051 } 2052 2053 cpu->irqstate_saved_size = bytes; 2054 } 2055 2056 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2057 { 2058 CPUState *cs = CPU(cpu); 2059 struct kvm_s390_irq_state irq_state = { 2060 .buf = (uint64_t) cpu->irqstate, 2061 .len = cpu->irqstate_saved_size, 2062 }; 2063 int r; 2064 2065 if (cpu->irqstate_saved_size == 0) { 2066 return 0; 2067 } 2068 2069 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2070 return -ENOSYS; 2071 } 2072 2073 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2074 if (r) { 2075 error_report("Setting interrupt state failed %d", r); 2076 } 2077 return r; 2078 } 2079 2080 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2081 uint64_t address, uint32_t data, PCIDevice *dev) 2082 { 2083 S390PCIBusDevice *pbdev; 2084 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2085 2086 if (!dev) { 2087 trace_kvm_msi_route_fixup("no pci device"); 2088 return -ENODEV; 2089 } 2090 2091 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2092 if (!pbdev) { 2093 trace_kvm_msi_route_fixup("no zpci device"); 2094 return -ENODEV; 2095 } 2096 2097 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2098 route->flags = 0; 2099 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2100 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2101 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2102 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2103 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2104 return 0; 2105 } 2106 2107 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2108 int vector, PCIDevice *dev) 2109 { 2110 return 0; 2111 } 2112 2113 int kvm_arch_release_virq_post(int virq) 2114 { 2115 return 0; 2116 } 2117 2118 int kvm_arch_msi_data_to_gsi(uint32_t data) 2119 { 2120 abort(); 2121 } 2122 2123 static int query_cpu_subfunc(S390FeatBitmap features) 2124 { 2125 struct kvm_s390_vm_cpu_subfunc prop = {}; 2126 struct kvm_device_attr attr = { 2127 .group = KVM_S390_VM_CPU_MODEL, 2128 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2129 .addr = (uint64_t) &prop, 2130 }; 2131 int rc; 2132 2133 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2134 if (rc) { 2135 return rc; 2136 } 2137 2138 /* 2139 * We're going to add all subfunctions now, if the corresponding feature 2140 * is available that unlocks the query functions. 2141 */ 2142 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2143 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2144 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2145 } 2146 if (test_bit(S390_FEAT_MSA, features)) { 2147 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2148 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2149 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2150 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2151 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2152 } 2153 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2154 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2155 } 2156 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2157 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2158 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2159 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2160 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2161 } 2162 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2163 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2164 } 2165 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2166 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2167 } 2168 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2169 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2170 } 2171 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2172 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2173 } 2174 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2175 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2176 } 2177 if (test_bit(S390_FEAT_CCF_BASE, features)) { 2178 s390_add_from_feat_block(features, S390_FEAT_TYPE_PFCR, prop.pfcr); 2179 } 2180 return 0; 2181 } 2182 2183 static int configure_cpu_subfunc(const S390FeatBitmap features) 2184 { 2185 struct kvm_s390_vm_cpu_subfunc prop = {}; 2186 struct kvm_device_attr attr = { 2187 .group = KVM_S390_VM_CPU_MODEL, 2188 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2189 .addr = (uint64_t) &prop, 2190 }; 2191 2192 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2193 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2194 /* hardware support might be missing, IBC will handle most of this */ 2195 return 0; 2196 } 2197 2198 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2199 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2200 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2201 } 2202 if (test_bit(S390_FEAT_MSA, features)) { 2203 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2204 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2205 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2206 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2207 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2208 } 2209 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2210 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2211 } 2212 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2213 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2214 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2215 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2216 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2217 } 2218 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2219 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2220 } 2221 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2222 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2223 } 2224 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2225 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2226 } 2227 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2228 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2229 } 2230 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2231 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2232 } 2233 if (test_bit(S390_FEAT_CCF_BASE, features)) { 2234 s390_fill_feat_block(features, S390_FEAT_TYPE_PFCR, prop.pfcr); 2235 } 2236 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2237 } 2238 2239 static bool ap_available(void) 2240 { 2241 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2242 KVM_S390_VM_CRYPTO_ENABLE_APIE); 2243 } 2244 2245 static bool ap_enabled(const S390FeatBitmap features) 2246 { 2247 return test_bit(S390_FEAT_AP, features); 2248 } 2249 2250 static bool uv_feat_supported(void) 2251 { 2252 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2253 KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST); 2254 } 2255 2256 static int query_uv_feat_guest(S390FeatBitmap features) 2257 { 2258 struct kvm_s390_vm_cpu_uv_feat prop = {}; 2259 struct kvm_device_attr attr = { 2260 .group = KVM_S390_VM_CPU_MODEL, 2261 .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST, 2262 .addr = (uint64_t) &prop, 2263 }; 2264 int rc; 2265 2266 /* AP support check is currently the only user of the UV feature test */ 2267 if (!(uv_feat_supported() && ap_available())) { 2268 return 0; 2269 } 2270 2271 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2272 if (rc) { 2273 return rc; 2274 } 2275 2276 if (prop.ap) { 2277 set_bit(S390_FEAT_UV_FEAT_AP, features); 2278 } 2279 if (prop.ap_intr) { 2280 set_bit(S390_FEAT_UV_FEAT_AP_INTR, features); 2281 } 2282 2283 return 0; 2284 } 2285 2286 static int kvm_to_feat[][2] = { 2287 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2288 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2289 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2290 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2291 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2292 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2293 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2294 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2295 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2296 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2297 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2298 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2299 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2300 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2301 }; 2302 2303 static int query_cpu_feat(S390FeatBitmap features) 2304 { 2305 struct kvm_s390_vm_cpu_feat prop = {}; 2306 struct kvm_device_attr attr = { 2307 .group = KVM_S390_VM_CPU_MODEL, 2308 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2309 .addr = (uint64_t) &prop, 2310 }; 2311 int rc; 2312 int i; 2313 2314 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2315 if (rc) { 2316 return rc; 2317 } 2318 2319 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2320 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2321 set_bit(kvm_to_feat[i][1], features); 2322 } 2323 } 2324 return 0; 2325 } 2326 2327 static int configure_cpu_feat(const S390FeatBitmap features) 2328 { 2329 struct kvm_s390_vm_cpu_feat prop = {}; 2330 struct kvm_device_attr attr = { 2331 .group = KVM_S390_VM_CPU_MODEL, 2332 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2333 .addr = (uint64_t) &prop, 2334 }; 2335 int i; 2336 2337 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2338 if (test_bit(kvm_to_feat[i][1], features)) { 2339 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2340 } 2341 } 2342 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2343 } 2344 2345 bool kvm_s390_cpu_models_supported(void) 2346 { 2347 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2348 KVM_S390_VM_CPU_MACHINE) && 2349 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2350 KVM_S390_VM_CPU_PROCESSOR) && 2351 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2352 KVM_S390_VM_CPU_MACHINE_FEAT) && 2353 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2354 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2355 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2356 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2357 } 2358 2359 bool kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2360 { 2361 struct kvm_s390_vm_cpu_machine prop = {}; 2362 struct kvm_device_attr attr = { 2363 .group = KVM_S390_VM_CPU_MODEL, 2364 .attr = KVM_S390_VM_CPU_MACHINE, 2365 .addr = (uint64_t) &prop, 2366 }; 2367 uint16_t unblocked_ibc = 0, cpu_type = 0; 2368 int rc; 2369 2370 memset(model, 0, sizeof(*model)); 2371 2372 if (!kvm_s390_cpu_models_supported()) { 2373 error_setg(errp, "KVM doesn't support CPU models"); 2374 return false; 2375 } 2376 2377 /* query the basic cpu model properties */ 2378 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2379 if (rc) { 2380 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2381 return false; 2382 } 2383 2384 cpu_type = cpuid_type(prop.cpuid); 2385 if (has_ibc(prop.ibc)) { 2386 model->lowest_ibc = lowest_ibc(prop.ibc); 2387 unblocked_ibc = unblocked_ibc(prop.ibc); 2388 } 2389 model->cpu_id = cpuid_id(prop.cpuid); 2390 model->cpu_id_format = cpuid_format(prop.cpuid); 2391 model->cpu_ver = 0xff; 2392 2393 /* get supported cpu features indicated via STFL(E) */ 2394 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2395 (uint8_t *) prop.fac_mask); 2396 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2397 if (test_bit(S390_FEAT_STFLE, model->features)) { 2398 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2399 } 2400 /* get supported cpu features indicated e.g. via SCLP */ 2401 rc = query_cpu_feat(model->features); 2402 if (rc) { 2403 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2404 return false; 2405 } 2406 /* get supported cpu subfunctions indicated via query / test bit */ 2407 rc = query_cpu_subfunc(model->features); 2408 if (rc) { 2409 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2410 return false; 2411 } 2412 2413 /* PTFF subfunctions might be indicated although kernel support missing */ 2414 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2415 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2416 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2417 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2418 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2419 } 2420 2421 /* with cpu model support, CMM is only indicated if really available */ 2422 if (kvm_s390_cmma_available()) { 2423 set_bit(S390_FEAT_CMM, model->features); 2424 } else { 2425 /* no cmm -> no cmm nt */ 2426 clear_bit(S390_FEAT_CMM_NT, model->features); 2427 } 2428 2429 /* bpb needs kernel support for migration, VSIE and reset */ 2430 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2431 clear_bit(S390_FEAT_BPB, model->features); 2432 } 2433 2434 /* 2435 * If we have support for protected virtualization, indicate 2436 * the protected virtualization IPL unpack facility. 2437 */ 2438 if (cap_protected) { 2439 set_bit(S390_FEAT_UNPACK, model->features); 2440 } 2441 2442 /* 2443 * If we have kernel support for CPU Topology indicate the 2444 * configuration-topology facility. 2445 */ 2446 if (kvm_check_extension(kvm_state, KVM_CAP_S390_CPU_TOPOLOGY)) { 2447 set_bit(S390_FEAT_CONFIGURATION_TOPOLOGY, model->features); 2448 } 2449 2450 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2451 set_bit(S390_FEAT_ZPCI, model->features); 2452 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2453 2454 if (s390_known_cpu_type(cpu_type)) { 2455 /* we want the exact model, even if some features are missing */ 2456 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2457 ibc_ec_ga(unblocked_ibc), NULL); 2458 } else { 2459 /* model unknown, e.g. too new - search using features */ 2460 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2461 ibc_ec_ga(unblocked_ibc), 2462 model->features); 2463 } 2464 if (!model->def) { 2465 error_setg(errp, "KVM: host CPU model could not be identified"); 2466 return false; 2467 } 2468 /* for now, we can only provide the AP feature with HW support */ 2469 if (ap_available()) { 2470 set_bit(S390_FEAT_AP, model->features); 2471 } 2472 2473 /* 2474 * Extended-Length SCCB is handled entirely within QEMU. 2475 * For PV guests this is completely fenced by the Ultravisor, as Service 2476 * Call error checking and STFLE interpretation are handled via SIE. 2477 */ 2478 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features); 2479 2480 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) { 2481 set_bit(S390_FEAT_DIAG_318, model->features); 2482 } 2483 2484 /* Test for Ultravisor features that influence secure guest behavior */ 2485 query_uv_feat_guest(model->features); 2486 2487 /* strip of features that are not part of the maximum model */ 2488 bitmap_and(model->features, model->features, model->def->full_feat, 2489 S390_FEAT_MAX); 2490 return true; 2491 } 2492 2493 static int configure_uv_feat_guest(const S390FeatBitmap features) 2494 { 2495 struct kvm_s390_vm_cpu_uv_feat uv_feat = {}; 2496 struct kvm_device_attr attribute = { 2497 .group = KVM_S390_VM_CPU_MODEL, 2498 .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST, 2499 .addr = (__u64) &uv_feat, 2500 }; 2501 2502 /* AP support check is currently the only user of the UV feature test */ 2503 if (!(uv_feat_supported() && ap_enabled(features))) { 2504 return 0; 2505 } 2506 2507 if (test_bit(S390_FEAT_UV_FEAT_AP, features)) { 2508 uv_feat.ap = 1; 2509 } 2510 if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) { 2511 uv_feat.ap_intr = 1; 2512 } 2513 2514 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 2515 } 2516 2517 static void kvm_s390_configure_apie(bool interpret) 2518 { 2519 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2520 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2521 2522 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2523 kvm_s390_set_crypto_attr(attr); 2524 } 2525 } 2526 2527 bool kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2528 { 2529 struct kvm_s390_vm_cpu_processor prop = { 2530 .fac_list = { 0 }, 2531 }; 2532 struct kvm_device_attr attr = { 2533 .group = KVM_S390_VM_CPU_MODEL, 2534 .attr = KVM_S390_VM_CPU_PROCESSOR, 2535 .addr = (uint64_t) &prop, 2536 }; 2537 int rc; 2538 2539 if (!model) { 2540 /* compatibility handling if cpu models are disabled */ 2541 if (kvm_s390_cmma_available()) { 2542 kvm_s390_enable_cmma(); 2543 } 2544 return true; 2545 } 2546 if (!kvm_s390_cpu_models_supported()) { 2547 error_setg(errp, "KVM doesn't support CPU models"); 2548 return false; 2549 } 2550 prop.cpuid = s390_cpuid_from_cpu_model(model); 2551 prop.ibc = s390_ibc_from_cpu_model(model); 2552 /* configure cpu features indicated via STFL(e) */ 2553 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2554 (uint8_t *) prop.fac_list); 2555 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2556 if (rc) { 2557 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2558 return false; 2559 } 2560 /* configure cpu features indicated e.g. via SCLP */ 2561 rc = configure_cpu_feat(model->features); 2562 if (rc) { 2563 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2564 return false; 2565 } 2566 /* configure cpu subfunctions indicated via query / test bit */ 2567 rc = configure_cpu_subfunc(model->features); 2568 if (rc) { 2569 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2570 return false; 2571 } 2572 /* enable CMM via CMMA */ 2573 if (test_bit(S390_FEAT_CMM, model->features)) { 2574 kvm_s390_enable_cmma(); 2575 } 2576 2577 if (ap_enabled(model->features)) { 2578 kvm_s390_configure_apie(true); 2579 } 2580 2581 /* configure UV-features for the guest indicated via query / test_bit */ 2582 rc = configure_uv_feat_guest(model->features); 2583 if (rc) { 2584 error_setg(errp, "KVM: Error configuring CPU UV features %d", rc); 2585 return false; 2586 } 2587 return true; 2588 } 2589 2590 void kvm_s390_restart_interrupt(S390CPU *cpu) 2591 { 2592 struct kvm_s390_irq irq = { 2593 .type = KVM_S390_RESTART, 2594 }; 2595 2596 kvm_s390_vcpu_interrupt(cpu, &irq); 2597 } 2598 2599 void kvm_s390_stop_interrupt(S390CPU *cpu) 2600 { 2601 struct kvm_s390_irq irq = { 2602 .type = KVM_S390_SIGP_STOP, 2603 }; 2604 2605 kvm_s390_vcpu_interrupt(cpu, &irq); 2606 } 2607 2608 int kvm_s390_get_zpci_op(void) 2609 { 2610 return cap_zpci_op; 2611 } 2612 2613 int kvm_s390_topology_set_mtcr(uint64_t attr) 2614 { 2615 struct kvm_device_attr attribute = { 2616 .group = KVM_S390_VM_CPU_TOPOLOGY, 2617 .attr = attr, 2618 }; 2619 2620 if (!s390_has_feat(S390_FEAT_CONFIGURATION_TOPOLOGY)) { 2621 return 0; 2622 } 2623 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_TOPOLOGY, attr)) { 2624 return -ENOTSUP; 2625 } 2626 2627 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 2628 } 2629 2630 void kvm_arch_accel_class_init(ObjectClass *oc) 2631 { 2632 } 2633