1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * Contributions after 2012-10-29 are licensed under the terms of the 18 * GNU GPL, version 2 or (at your option) any later version. 19 * 20 * You should have received a copy of the GNU (Lesser) General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include <sys/ioctl.h> 26 27 #include <linux/kvm.h> 28 #include <asm/ptrace.h> 29 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "internal.h" 33 #include "kvm_s390x.h" 34 #include "qemu/error-report.h" 35 #include "qemu/timer.h" 36 #include "sysemu/sysemu.h" 37 #include "sysemu/hw_accel.h" 38 #include "hw/hw.h" 39 #include "sysemu/device_tree.h" 40 #include "qapi/qmp/qjson.h" 41 #include "exec/gdbstub.h" 42 #include "exec/address-spaces.h" 43 #include "trace.h" 44 #include "qapi-event.h" 45 #include "hw/s390x/s390-pci-inst.h" 46 #include "hw/s390x/s390-pci-bus.h" 47 #include "hw/s390x/ipl.h" 48 #include "hw/s390x/ebcdic.h" 49 #include "exec/memattrs.h" 50 #include "hw/s390x/s390-virtio-ccw.h" 51 #include "hw/s390x/s390-virtio-hcall.h" 52 53 #ifndef DEBUG_KVM 54 #define DEBUG_KVM 0 55 #endif 56 57 #define DPRINTF(fmt, ...) do { \ 58 if (DEBUG_KVM) { \ 59 fprintf(stderr, fmt, ## __VA_ARGS__); \ 60 } \ 61 } while (0); 62 63 #define kvm_vm_check_mem_attr(s, attr) \ 64 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 65 66 #define IPA0_DIAG 0x8300 67 #define IPA0_SIGP 0xae00 68 #define IPA0_B2 0xb200 69 #define IPA0_B9 0xb900 70 #define IPA0_EB 0xeb00 71 #define IPA0_E3 0xe300 72 73 #define PRIV_B2_SCLP_CALL 0x20 74 #define PRIV_B2_CSCH 0x30 75 #define PRIV_B2_HSCH 0x31 76 #define PRIV_B2_MSCH 0x32 77 #define PRIV_B2_SSCH 0x33 78 #define PRIV_B2_STSCH 0x34 79 #define PRIV_B2_TSCH 0x35 80 #define PRIV_B2_TPI 0x36 81 #define PRIV_B2_SAL 0x37 82 #define PRIV_B2_RSCH 0x38 83 #define PRIV_B2_STCRW 0x39 84 #define PRIV_B2_STCPS 0x3a 85 #define PRIV_B2_RCHP 0x3b 86 #define PRIV_B2_SCHM 0x3c 87 #define PRIV_B2_CHSC 0x5f 88 #define PRIV_B2_SIGA 0x74 89 #define PRIV_B2_XSCH 0x76 90 91 #define PRIV_EB_SQBS 0x8a 92 #define PRIV_EB_PCISTB 0xd0 93 #define PRIV_EB_SIC 0xd1 94 95 #define PRIV_B9_EQBS 0x9c 96 #define PRIV_B9_CLP 0xa0 97 #define PRIV_B9_PCISTG 0xd0 98 #define PRIV_B9_PCILG 0xd2 99 #define PRIV_B9_RPCIT 0xd3 100 101 #define PRIV_E3_MPCIFC 0xd0 102 #define PRIV_E3_STPCIFC 0xd4 103 104 #define DIAG_TIMEREVENT 0x288 105 #define DIAG_IPL 0x308 106 #define DIAG_KVM_HYPERCALL 0x500 107 #define DIAG_KVM_BREAKPOINT 0x501 108 109 #define ICPT_INSTRUCTION 0x04 110 #define ICPT_PROGRAM 0x08 111 #define ICPT_EXT_INT 0x14 112 #define ICPT_WAITPSW 0x1c 113 #define ICPT_SOFT_INTERCEPT 0x24 114 #define ICPT_CPU_STOP 0x28 115 #define ICPT_OPEREXC 0x2c 116 #define ICPT_IO 0x40 117 118 #define NR_LOCAL_IRQS 32 119 /* 120 * Needs to be big enough to contain max_cpus emergency signals 121 * and in addition NR_LOCAL_IRQS interrupts 122 */ 123 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \ 124 (max_cpus + NR_LOCAL_IRQS)) 125 126 static CPUWatchpoint hw_watchpoint; 127 /* 128 * We don't use a list because this structure is also used to transmit the 129 * hardware breakpoints to the kernel. 130 */ 131 static struct kvm_hw_breakpoint *hw_breakpoints; 132 static int nb_hw_breakpoints; 133 134 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 135 KVM_CAP_LAST_INFO 136 }; 137 138 static QemuMutex qemu_sigp_mutex; 139 140 static int cap_sync_regs; 141 static int cap_async_pf; 142 static int cap_mem_op; 143 static int cap_s390_irq; 144 static int cap_ri; 145 static int cap_gs; 146 147 static int active_cmma; 148 149 static void *legacy_s390_alloc(size_t size, uint64_t *align); 150 151 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 152 { 153 struct kvm_device_attr attr = { 154 .group = KVM_S390_VM_MEM_CTRL, 155 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 156 .addr = (uint64_t) memory_limit, 157 }; 158 159 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 160 } 161 162 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 163 { 164 int rc; 165 166 struct kvm_device_attr attr = { 167 .group = KVM_S390_VM_MEM_CTRL, 168 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 169 .addr = (uint64_t) &new_limit, 170 }; 171 172 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 173 return 0; 174 } 175 176 rc = kvm_s390_query_mem_limit(hw_limit); 177 if (rc) { 178 return rc; 179 } else if (*hw_limit < new_limit) { 180 return -E2BIG; 181 } 182 183 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 184 } 185 186 int kvm_s390_cmma_active(void) 187 { 188 return active_cmma; 189 } 190 191 static bool kvm_s390_cmma_available(void) 192 { 193 static bool initialized, value; 194 195 if (!initialized) { 196 initialized = true; 197 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 198 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 199 } 200 return value; 201 } 202 203 void kvm_s390_cmma_reset(void) 204 { 205 int rc; 206 struct kvm_device_attr attr = { 207 .group = KVM_S390_VM_MEM_CTRL, 208 .attr = KVM_S390_VM_MEM_CLR_CMMA, 209 }; 210 211 if (!kvm_s390_cmma_active()) { 212 return; 213 } 214 215 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 216 trace_kvm_clear_cmma(rc); 217 } 218 219 static void kvm_s390_enable_cmma(void) 220 { 221 int rc; 222 struct kvm_device_attr attr = { 223 .group = KVM_S390_VM_MEM_CTRL, 224 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 225 }; 226 227 if (mem_path) { 228 warn_report("CMM will not be enabled because it is not " 229 "compatible with hugetlbfs."); 230 return; 231 } 232 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 233 active_cmma = !rc; 234 trace_kvm_enable_cmma(rc); 235 } 236 237 static void kvm_s390_set_attr(uint64_t attr) 238 { 239 struct kvm_device_attr attribute = { 240 .group = KVM_S390_VM_CRYPTO, 241 .attr = attr, 242 }; 243 244 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 245 246 if (ret) { 247 error_report("Failed to set crypto device attribute %lu: %s", 248 attr, strerror(-ret)); 249 } 250 } 251 252 static void kvm_s390_init_aes_kw(void) 253 { 254 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 255 256 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 257 NULL)) { 258 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 259 } 260 261 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 262 kvm_s390_set_attr(attr); 263 } 264 } 265 266 static void kvm_s390_init_dea_kw(void) 267 { 268 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 269 270 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 271 NULL)) { 272 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 273 } 274 275 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 276 kvm_s390_set_attr(attr); 277 } 278 } 279 280 void kvm_s390_crypto_reset(void) 281 { 282 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 283 kvm_s390_init_aes_kw(); 284 kvm_s390_init_dea_kw(); 285 } 286 } 287 288 int kvm_arch_init(MachineState *ms, KVMState *s) 289 { 290 MachineClass *mc = MACHINE_GET_CLASS(ms); 291 292 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 293 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 294 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 295 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 296 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 297 298 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 299 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 300 phys_mem_set_alloc(legacy_s390_alloc); 301 } 302 303 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 304 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 305 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 306 if (ri_allowed()) { 307 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 308 cap_ri = 1; 309 } 310 } 311 if (gs_allowed()) { 312 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 313 cap_gs = 1; 314 } 315 } 316 317 /* 318 * The migration interface for ais was introduced with kernel 4.13 319 * but the capability itself had been active since 4.12. As migration 320 * support is considered necessary let's disable ais in the 2.10 321 * machine. 322 */ 323 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ 324 325 qemu_mutex_init(&qemu_sigp_mutex); 326 327 return 0; 328 } 329 330 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 331 { 332 return 0; 333 } 334 335 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 336 { 337 return cpu->cpu_index; 338 } 339 340 int kvm_arch_init_vcpu(CPUState *cs) 341 { 342 S390CPU *cpu = S390_CPU(cs); 343 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 344 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE); 345 return 0; 346 } 347 348 void kvm_s390_reset_vcpu(S390CPU *cpu) 349 { 350 CPUState *cs = CPU(cpu); 351 352 /* The initial reset call is needed here to reset in-kernel 353 * vcpu data that we can't access directly from QEMU 354 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 355 * Before this ioctl cpu_synchronize_state() is called in common kvm 356 * code (kvm-all) */ 357 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 358 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 359 } 360 } 361 362 static int can_sync_regs(CPUState *cs, int regs) 363 { 364 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 365 } 366 367 int kvm_arch_put_registers(CPUState *cs, int level) 368 { 369 S390CPU *cpu = S390_CPU(cs); 370 CPUS390XState *env = &cpu->env; 371 struct kvm_sregs sregs; 372 struct kvm_regs regs; 373 struct kvm_fpu fpu = {}; 374 int r; 375 int i; 376 377 /* always save the PSW and the GPRS*/ 378 cs->kvm_run->psw_addr = env->psw.addr; 379 cs->kvm_run->psw_mask = env->psw.mask; 380 381 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 382 for (i = 0; i < 16; i++) { 383 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 384 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 385 } 386 } else { 387 for (i = 0; i < 16; i++) { 388 regs.gprs[i] = env->regs[i]; 389 } 390 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 391 if (r < 0) { 392 return r; 393 } 394 } 395 396 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 397 for (i = 0; i < 32; i++) { 398 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll; 399 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll; 400 } 401 cs->kvm_run->s.regs.fpc = env->fpc; 402 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 403 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 404 for (i = 0; i < 16; i++) { 405 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll; 406 } 407 cs->kvm_run->s.regs.fpc = env->fpc; 408 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 409 } else { 410 /* Floating point */ 411 for (i = 0; i < 16; i++) { 412 fpu.fprs[i] = get_freg(env, i)->ll; 413 } 414 fpu.fpc = env->fpc; 415 416 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 417 if (r < 0) { 418 return r; 419 } 420 } 421 422 /* Do we need to save more than that? */ 423 if (level == KVM_PUT_RUNTIME_STATE) { 424 return 0; 425 } 426 427 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 428 cs->kvm_run->s.regs.cputm = env->cputm; 429 cs->kvm_run->s.regs.ckc = env->ckc; 430 cs->kvm_run->s.regs.todpr = env->todpr; 431 cs->kvm_run->s.regs.gbea = env->gbea; 432 cs->kvm_run->s.regs.pp = env->pp; 433 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 434 } else { 435 /* 436 * These ONE_REGS are not protected by a capability. As they are only 437 * necessary for migration we just trace a possible error, but don't 438 * return with an error return code. 439 */ 440 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 441 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 442 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 443 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 444 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 445 } 446 447 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 448 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 449 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 450 } 451 452 /* pfault parameters */ 453 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 454 cs->kvm_run->s.regs.pft = env->pfault_token; 455 cs->kvm_run->s.regs.pfs = env->pfault_select; 456 cs->kvm_run->s.regs.pfc = env->pfault_compare; 457 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 458 } else if (cap_async_pf) { 459 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 460 if (r < 0) { 461 return r; 462 } 463 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 464 if (r < 0) { 465 return r; 466 } 467 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 468 if (r < 0) { 469 return r; 470 } 471 } 472 473 /* access registers and control registers*/ 474 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 475 for (i = 0; i < 16; i++) { 476 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 477 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 478 } 479 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 480 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 481 } else { 482 for (i = 0; i < 16; i++) { 483 sregs.acrs[i] = env->aregs[i]; 484 sregs.crs[i] = env->cregs[i]; 485 } 486 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 487 if (r < 0) { 488 return r; 489 } 490 } 491 492 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 493 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 494 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 495 } 496 497 /* Finally the prefix */ 498 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 499 cs->kvm_run->s.regs.prefix = env->psa; 500 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 501 } else { 502 /* prefix is only supported via sync regs */ 503 } 504 return 0; 505 } 506 507 int kvm_arch_get_registers(CPUState *cs) 508 { 509 S390CPU *cpu = S390_CPU(cs); 510 CPUS390XState *env = &cpu->env; 511 struct kvm_sregs sregs; 512 struct kvm_regs regs; 513 struct kvm_fpu fpu; 514 int i, r; 515 516 /* get the PSW */ 517 env->psw.addr = cs->kvm_run->psw_addr; 518 env->psw.mask = cs->kvm_run->psw_mask; 519 520 /* the GPRS */ 521 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 522 for (i = 0; i < 16; i++) { 523 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 524 } 525 } else { 526 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 527 if (r < 0) { 528 return r; 529 } 530 for (i = 0; i < 16; i++) { 531 env->regs[i] = regs.gprs[i]; 532 } 533 } 534 535 /* The ACRS and CRS */ 536 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 537 for (i = 0; i < 16; i++) { 538 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 539 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 540 } 541 } else { 542 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 543 if (r < 0) { 544 return r; 545 } 546 for (i = 0; i < 16; i++) { 547 env->aregs[i] = sregs.acrs[i]; 548 env->cregs[i] = sregs.crs[i]; 549 } 550 } 551 552 /* Floating point and vector registers */ 553 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 554 for (i = 0; i < 32; i++) { 555 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0]; 556 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1]; 557 } 558 env->fpc = cs->kvm_run->s.regs.fpc; 559 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 560 for (i = 0; i < 16; i++) { 561 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i]; 562 } 563 env->fpc = cs->kvm_run->s.regs.fpc; 564 } else { 565 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 566 if (r < 0) { 567 return r; 568 } 569 for (i = 0; i < 16; i++) { 570 get_freg(env, i)->ll = fpu.fprs[i]; 571 } 572 env->fpc = fpu.fpc; 573 } 574 575 /* The prefix */ 576 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 577 env->psa = cs->kvm_run->s.regs.prefix; 578 } 579 580 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 581 env->cputm = cs->kvm_run->s.regs.cputm; 582 env->ckc = cs->kvm_run->s.regs.ckc; 583 env->todpr = cs->kvm_run->s.regs.todpr; 584 env->gbea = cs->kvm_run->s.regs.gbea; 585 env->pp = cs->kvm_run->s.regs.pp; 586 } else { 587 /* 588 * These ONE_REGS are not protected by a capability. As they are only 589 * necessary for migration we just trace a possible error, but don't 590 * return with an error return code. 591 */ 592 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 593 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 594 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 595 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 596 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 597 } 598 599 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 600 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 601 } 602 603 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 604 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 605 } 606 607 /* pfault parameters */ 608 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 609 env->pfault_token = cs->kvm_run->s.regs.pft; 610 env->pfault_select = cs->kvm_run->s.regs.pfs; 611 env->pfault_compare = cs->kvm_run->s.regs.pfc; 612 } else if (cap_async_pf) { 613 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 614 if (r < 0) { 615 return r; 616 } 617 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 618 if (r < 0) { 619 return r; 620 } 621 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 622 if (r < 0) { 623 return r; 624 } 625 } 626 627 return 0; 628 } 629 630 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 631 { 632 int r; 633 struct kvm_device_attr attr = { 634 .group = KVM_S390_VM_TOD, 635 .attr = KVM_S390_VM_TOD_LOW, 636 .addr = (uint64_t)tod_low, 637 }; 638 639 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 640 if (r) { 641 return r; 642 } 643 644 attr.attr = KVM_S390_VM_TOD_HIGH; 645 attr.addr = (uint64_t)tod_high; 646 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 647 } 648 649 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 650 { 651 int r; 652 struct kvm_s390_vm_tod_clock gtod; 653 struct kvm_device_attr attr = { 654 .group = KVM_S390_VM_TOD, 655 .attr = KVM_S390_VM_TOD_EXT, 656 .addr = (uint64_t)>od, 657 }; 658 659 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 660 *tod_high = gtod.epoch_idx; 661 *tod_low = gtod.tod; 662 663 return r; 664 } 665 666 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low) 667 { 668 int r; 669 struct kvm_device_attr attr = { 670 .group = KVM_S390_VM_TOD, 671 .attr = KVM_S390_VM_TOD_LOW, 672 .addr = (uint64_t)tod_low, 673 }; 674 675 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 676 if (r) { 677 return r; 678 } 679 680 attr.attr = KVM_S390_VM_TOD_HIGH; 681 attr.addr = (uint64_t)tod_high; 682 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 683 } 684 685 int kvm_s390_set_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 686 { 687 struct kvm_s390_vm_tod_clock gtod = { 688 .epoch_idx = *tod_high, 689 .tod = *tod_low, 690 }; 691 struct kvm_device_attr attr = { 692 .group = KVM_S390_VM_TOD, 693 .attr = KVM_S390_VM_TOD_EXT, 694 .addr = (uint64_t)>od, 695 }; 696 697 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 698 } 699 700 /** 701 * kvm_s390_mem_op: 702 * @addr: the logical start address in guest memory 703 * @ar: the access register number 704 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 705 * @len: length that should be transferred 706 * @is_write: true = write, false = read 707 * Returns: 0 on success, non-zero if an exception or error occurred 708 * 709 * Use KVM ioctl to read/write from/to guest memory. An access exception 710 * is injected into the vCPU in case of translation errors. 711 */ 712 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 713 int len, bool is_write) 714 { 715 struct kvm_s390_mem_op mem_op = { 716 .gaddr = addr, 717 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 718 .size = len, 719 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 720 : KVM_S390_MEMOP_LOGICAL_READ, 721 .buf = (uint64_t)hostbuf, 722 .ar = ar, 723 }; 724 int ret; 725 726 if (!cap_mem_op) { 727 return -ENOSYS; 728 } 729 if (!hostbuf) { 730 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 731 } 732 733 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 734 if (ret < 0) { 735 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret)); 736 } 737 return ret; 738 } 739 740 /* 741 * Legacy layout for s390: 742 * Older S390 KVM requires the topmost vma of the RAM to be 743 * smaller than an system defined value, which is at least 256GB. 744 * Larger systems have larger values. We put the guest between 745 * the end of data segment (system break) and this value. We 746 * use 32GB as a base to have enough room for the system break 747 * to grow. We also have to use MAP parameters that avoid 748 * read-only mapping of guest pages. 749 */ 750 static void *legacy_s390_alloc(size_t size, uint64_t *align) 751 { 752 void *mem; 753 754 mem = mmap((void *) 0x800000000ULL, size, 755 PROT_EXEC|PROT_READ|PROT_WRITE, 756 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 757 return mem == MAP_FAILED ? NULL : mem; 758 } 759 760 static uint8_t const *sw_bp_inst; 761 static uint8_t sw_bp_ilen; 762 763 static void determine_sw_breakpoint_instr(void) 764 { 765 /* DIAG 501 is used for sw breakpoints with old kernels */ 766 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 767 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 768 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 769 770 if (sw_bp_inst) { 771 return; 772 } 773 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 774 sw_bp_inst = diag_501; 775 sw_bp_ilen = sizeof(diag_501); 776 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 777 } else { 778 sw_bp_inst = instr_0x0000; 779 sw_bp_ilen = sizeof(instr_0x0000); 780 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 781 } 782 } 783 784 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 785 { 786 determine_sw_breakpoint_instr(); 787 788 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 789 sw_bp_ilen, 0) || 790 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 791 return -EINVAL; 792 } 793 return 0; 794 } 795 796 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 797 { 798 uint8_t t[MAX_ILEN]; 799 800 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 801 return -EINVAL; 802 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 803 return -EINVAL; 804 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 805 sw_bp_ilen, 1)) { 806 return -EINVAL; 807 } 808 809 return 0; 810 } 811 812 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 813 int len, int type) 814 { 815 int n; 816 817 for (n = 0; n < nb_hw_breakpoints; n++) { 818 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 819 (hw_breakpoints[n].len == len || len == -1)) { 820 return &hw_breakpoints[n]; 821 } 822 } 823 824 return NULL; 825 } 826 827 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 828 { 829 int size; 830 831 if (find_hw_breakpoint(addr, len, type)) { 832 return -EEXIST; 833 } 834 835 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 836 837 if (!hw_breakpoints) { 838 nb_hw_breakpoints = 0; 839 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 840 } else { 841 hw_breakpoints = 842 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 843 } 844 845 if (!hw_breakpoints) { 846 nb_hw_breakpoints = 0; 847 return -ENOMEM; 848 } 849 850 hw_breakpoints[nb_hw_breakpoints].addr = addr; 851 hw_breakpoints[nb_hw_breakpoints].len = len; 852 hw_breakpoints[nb_hw_breakpoints].type = type; 853 854 nb_hw_breakpoints++; 855 856 return 0; 857 } 858 859 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 860 target_ulong len, int type) 861 { 862 switch (type) { 863 case GDB_BREAKPOINT_HW: 864 type = KVM_HW_BP; 865 break; 866 case GDB_WATCHPOINT_WRITE: 867 if (len < 1) { 868 return -EINVAL; 869 } 870 type = KVM_HW_WP_WRITE; 871 break; 872 default: 873 return -ENOSYS; 874 } 875 return insert_hw_breakpoint(addr, len, type); 876 } 877 878 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 879 target_ulong len, int type) 880 { 881 int size; 882 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 883 884 if (bp == NULL) { 885 return -ENOENT; 886 } 887 888 nb_hw_breakpoints--; 889 if (nb_hw_breakpoints > 0) { 890 /* 891 * In order to trim the array, move the last element to the position to 892 * be removed - if necessary. 893 */ 894 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 895 *bp = hw_breakpoints[nb_hw_breakpoints]; 896 } 897 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 898 hw_breakpoints = 899 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 900 } else { 901 g_free(hw_breakpoints); 902 hw_breakpoints = NULL; 903 } 904 905 return 0; 906 } 907 908 void kvm_arch_remove_all_hw_breakpoints(void) 909 { 910 nb_hw_breakpoints = 0; 911 g_free(hw_breakpoints); 912 hw_breakpoints = NULL; 913 } 914 915 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 916 { 917 int i; 918 919 if (nb_hw_breakpoints > 0) { 920 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 921 dbg->arch.hw_bp = hw_breakpoints; 922 923 for (i = 0; i < nb_hw_breakpoints; ++i) { 924 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 925 hw_breakpoints[i].addr); 926 } 927 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 928 } else { 929 dbg->arch.nr_hw_bp = 0; 930 dbg->arch.hw_bp = NULL; 931 } 932 } 933 934 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 935 { 936 } 937 938 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 939 { 940 return MEMTXATTRS_UNSPECIFIED; 941 } 942 943 int kvm_arch_process_async_events(CPUState *cs) 944 { 945 return cs->halted; 946 } 947 948 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 949 struct kvm_s390_interrupt *interrupt) 950 { 951 int r = 0; 952 953 interrupt->type = irq->type; 954 switch (irq->type) { 955 case KVM_S390_INT_VIRTIO: 956 interrupt->parm = irq->u.ext.ext_params; 957 /* fall through */ 958 case KVM_S390_INT_PFAULT_INIT: 959 case KVM_S390_INT_PFAULT_DONE: 960 interrupt->parm64 = irq->u.ext.ext_params2; 961 break; 962 case KVM_S390_PROGRAM_INT: 963 interrupt->parm = irq->u.pgm.code; 964 break; 965 case KVM_S390_SIGP_SET_PREFIX: 966 interrupt->parm = irq->u.prefix.address; 967 break; 968 case KVM_S390_INT_SERVICE: 969 interrupt->parm = irq->u.ext.ext_params; 970 break; 971 case KVM_S390_MCHK: 972 interrupt->parm = irq->u.mchk.cr14; 973 interrupt->parm64 = irq->u.mchk.mcic; 974 break; 975 case KVM_S390_INT_EXTERNAL_CALL: 976 interrupt->parm = irq->u.extcall.code; 977 break; 978 case KVM_S390_INT_EMERGENCY: 979 interrupt->parm = irq->u.emerg.code; 980 break; 981 case KVM_S390_SIGP_STOP: 982 case KVM_S390_RESTART: 983 break; /* These types have no parameters */ 984 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 985 interrupt->parm = irq->u.io.subchannel_id << 16; 986 interrupt->parm |= irq->u.io.subchannel_nr; 987 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 988 interrupt->parm64 |= irq->u.io.io_int_word; 989 break; 990 default: 991 r = -EINVAL; 992 break; 993 } 994 return r; 995 } 996 997 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 998 { 999 struct kvm_s390_interrupt kvmint = {}; 1000 int r; 1001 1002 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1003 if (r < 0) { 1004 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1005 exit(1); 1006 } 1007 1008 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1009 if (r < 0) { 1010 fprintf(stderr, "KVM failed to inject interrupt\n"); 1011 exit(1); 1012 } 1013 } 1014 1015 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1016 { 1017 CPUState *cs = CPU(cpu); 1018 int r; 1019 1020 if (cap_s390_irq) { 1021 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1022 if (!r) { 1023 return; 1024 } 1025 error_report("KVM failed to inject interrupt %llx", irq->type); 1026 exit(1); 1027 } 1028 1029 inject_vcpu_irq_legacy(cs, irq); 1030 } 1031 1032 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) 1033 { 1034 struct kvm_s390_interrupt kvmint = {}; 1035 int r; 1036 1037 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1038 if (r < 0) { 1039 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1040 exit(1); 1041 } 1042 1043 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1044 if (r < 0) { 1045 fprintf(stderr, "KVM failed to inject interrupt\n"); 1046 exit(1); 1047 } 1048 } 1049 1050 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) 1051 { 1052 static bool use_flic = true; 1053 int r; 1054 1055 if (use_flic) { 1056 r = kvm_s390_inject_flic(irq); 1057 if (r == -ENOSYS) { 1058 use_flic = false; 1059 } 1060 if (!r) { 1061 return; 1062 } 1063 } 1064 __kvm_s390_floating_interrupt(irq); 1065 } 1066 1067 void kvm_s390_service_interrupt(uint32_t parm) 1068 { 1069 struct kvm_s390_irq irq = { 1070 .type = KVM_S390_INT_SERVICE, 1071 .u.ext.ext_params = parm, 1072 }; 1073 1074 kvm_s390_floating_interrupt(&irq); 1075 } 1076 1077 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1078 { 1079 struct kvm_s390_irq irq = { 1080 .type = KVM_S390_PROGRAM_INT, 1081 .u.pgm.code = code, 1082 }; 1083 1084 kvm_s390_vcpu_interrupt(cpu, &irq); 1085 } 1086 1087 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1088 { 1089 struct kvm_s390_irq irq = { 1090 .type = KVM_S390_PROGRAM_INT, 1091 .u.pgm.code = code, 1092 .u.pgm.trans_exc_code = te_code, 1093 .u.pgm.exc_access_id = te_code & 3, 1094 }; 1095 1096 kvm_s390_vcpu_interrupt(cpu, &irq); 1097 } 1098 1099 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1100 uint16_t ipbh0) 1101 { 1102 CPUS390XState *env = &cpu->env; 1103 uint64_t sccb; 1104 uint32_t code; 1105 int r = 0; 1106 1107 cpu_synchronize_state(CPU(cpu)); 1108 sccb = env->regs[ipbh0 & 0xf]; 1109 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1110 1111 r = sclp_service_call(env, sccb, code); 1112 if (r < 0) { 1113 kvm_s390_program_interrupt(cpu, -r); 1114 } else { 1115 setcc(cpu, r); 1116 } 1117 1118 return 0; 1119 } 1120 1121 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1122 { 1123 CPUS390XState *env = &cpu->env; 1124 int rc = 0; 1125 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1126 1127 cpu_synchronize_state(CPU(cpu)); 1128 1129 switch (ipa1) { 1130 case PRIV_B2_XSCH: 1131 ioinst_handle_xsch(cpu, env->regs[1]); 1132 break; 1133 case PRIV_B2_CSCH: 1134 ioinst_handle_csch(cpu, env->regs[1]); 1135 break; 1136 case PRIV_B2_HSCH: 1137 ioinst_handle_hsch(cpu, env->regs[1]); 1138 break; 1139 case PRIV_B2_MSCH: 1140 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb); 1141 break; 1142 case PRIV_B2_SSCH: 1143 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb); 1144 break; 1145 case PRIV_B2_STCRW: 1146 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb); 1147 break; 1148 case PRIV_B2_STSCH: 1149 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb); 1150 break; 1151 case PRIV_B2_TSCH: 1152 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1153 fprintf(stderr, "Spurious tsch intercept\n"); 1154 break; 1155 case PRIV_B2_CHSC: 1156 ioinst_handle_chsc(cpu, run->s390_sieic.ipb); 1157 break; 1158 case PRIV_B2_TPI: 1159 /* This should have been handled by kvm already. */ 1160 fprintf(stderr, "Spurious tpi intercept\n"); 1161 break; 1162 case PRIV_B2_SCHM: 1163 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1164 run->s390_sieic.ipb); 1165 break; 1166 case PRIV_B2_RSCH: 1167 ioinst_handle_rsch(cpu, env->regs[1]); 1168 break; 1169 case PRIV_B2_RCHP: 1170 ioinst_handle_rchp(cpu, env->regs[1]); 1171 break; 1172 case PRIV_B2_STCPS: 1173 /* We do not provide this instruction, it is suppressed. */ 1174 break; 1175 case PRIV_B2_SAL: 1176 ioinst_handle_sal(cpu, env->regs[1]); 1177 break; 1178 case PRIV_B2_SIGA: 1179 /* Not provided, set CC = 3 for subchannel not operational */ 1180 setcc(cpu, 3); 1181 break; 1182 case PRIV_B2_SCLP_CALL: 1183 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1184 break; 1185 default: 1186 rc = -1; 1187 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1188 break; 1189 } 1190 1191 return rc; 1192 } 1193 1194 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1195 uint8_t *ar) 1196 { 1197 CPUS390XState *env = &cpu->env; 1198 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1199 uint32_t base2 = run->s390_sieic.ipb >> 28; 1200 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1201 ((run->s390_sieic.ipb & 0xff00) << 4); 1202 1203 if (disp2 & 0x80000) { 1204 disp2 += 0xfff00000; 1205 } 1206 if (ar) { 1207 *ar = base2; 1208 } 1209 1210 return (base2 ? env->regs[base2] : 0) + 1211 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1212 } 1213 1214 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1215 uint8_t *ar) 1216 { 1217 CPUS390XState *env = &cpu->env; 1218 uint32_t base2 = run->s390_sieic.ipb >> 28; 1219 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1220 ((run->s390_sieic.ipb & 0xff00) << 4); 1221 1222 if (disp2 & 0x80000) { 1223 disp2 += 0xfff00000; 1224 } 1225 if (ar) { 1226 *ar = base2; 1227 } 1228 1229 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1230 } 1231 1232 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1233 { 1234 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1235 1236 if (s390_has_feat(S390_FEAT_ZPCI)) { 1237 return clp_service_call(cpu, r2); 1238 } else { 1239 return -1; 1240 } 1241 } 1242 1243 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1244 { 1245 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1246 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1247 1248 if (s390_has_feat(S390_FEAT_ZPCI)) { 1249 return pcilg_service_call(cpu, r1, r2); 1250 } else { 1251 return -1; 1252 } 1253 } 1254 1255 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1256 { 1257 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1258 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1259 1260 if (s390_has_feat(S390_FEAT_ZPCI)) { 1261 return pcistg_service_call(cpu, r1, r2); 1262 } else { 1263 return -1; 1264 } 1265 } 1266 1267 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1268 { 1269 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1270 uint64_t fiba; 1271 uint8_t ar; 1272 1273 if (s390_has_feat(S390_FEAT_ZPCI)) { 1274 cpu_synchronize_state(CPU(cpu)); 1275 fiba = get_base_disp_rxy(cpu, run, &ar); 1276 1277 return stpcifc_service_call(cpu, r1, fiba, ar); 1278 } else { 1279 return -1; 1280 } 1281 } 1282 1283 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1284 { 1285 CPUS390XState *env = &cpu->env; 1286 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1287 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1288 uint8_t isc; 1289 uint16_t mode; 1290 int r; 1291 1292 cpu_synchronize_state(CPU(cpu)); 1293 mode = env->regs[r1] & 0xffff; 1294 isc = (env->regs[r3] >> 27) & 0x7; 1295 r = css_do_sic(env, isc, mode); 1296 if (r) { 1297 kvm_s390_program_interrupt(cpu, -r); 1298 } 1299 1300 return 0; 1301 } 1302 1303 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1304 { 1305 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1306 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1307 1308 if (s390_has_feat(S390_FEAT_ZPCI)) { 1309 return rpcit_service_call(cpu, r1, r2); 1310 } else { 1311 return -1; 1312 } 1313 } 1314 1315 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1316 { 1317 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1318 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1319 uint64_t gaddr; 1320 uint8_t ar; 1321 1322 if (s390_has_feat(S390_FEAT_ZPCI)) { 1323 cpu_synchronize_state(CPU(cpu)); 1324 gaddr = get_base_disp_rsy(cpu, run, &ar); 1325 1326 return pcistb_service_call(cpu, r1, r3, gaddr, ar); 1327 } else { 1328 return -1; 1329 } 1330 } 1331 1332 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1333 { 1334 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1335 uint64_t fiba; 1336 uint8_t ar; 1337 1338 if (s390_has_feat(S390_FEAT_ZPCI)) { 1339 cpu_synchronize_state(CPU(cpu)); 1340 fiba = get_base_disp_rxy(cpu, run, &ar); 1341 1342 return mpcifc_service_call(cpu, r1, fiba, ar); 1343 } else { 1344 return -1; 1345 } 1346 } 1347 1348 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1349 { 1350 int r = 0; 1351 1352 switch (ipa1) { 1353 case PRIV_B9_CLP: 1354 r = kvm_clp_service_call(cpu, run); 1355 break; 1356 case PRIV_B9_PCISTG: 1357 r = kvm_pcistg_service_call(cpu, run); 1358 break; 1359 case PRIV_B9_PCILG: 1360 r = kvm_pcilg_service_call(cpu, run); 1361 break; 1362 case PRIV_B9_RPCIT: 1363 r = kvm_rpcit_service_call(cpu, run); 1364 break; 1365 case PRIV_B9_EQBS: 1366 /* just inject exception */ 1367 r = -1; 1368 break; 1369 default: 1370 r = -1; 1371 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1372 break; 1373 } 1374 1375 return r; 1376 } 1377 1378 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1379 { 1380 int r = 0; 1381 1382 switch (ipbl) { 1383 case PRIV_EB_PCISTB: 1384 r = kvm_pcistb_service_call(cpu, run); 1385 break; 1386 case PRIV_EB_SIC: 1387 r = kvm_sic_service_call(cpu, run); 1388 break; 1389 case PRIV_EB_SQBS: 1390 /* just inject exception */ 1391 r = -1; 1392 break; 1393 default: 1394 r = -1; 1395 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1396 break; 1397 } 1398 1399 return r; 1400 } 1401 1402 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1403 { 1404 int r = 0; 1405 1406 switch (ipbl) { 1407 case PRIV_E3_MPCIFC: 1408 r = kvm_mpcifc_service_call(cpu, run); 1409 break; 1410 case PRIV_E3_STPCIFC: 1411 r = kvm_stpcifc_service_call(cpu, run); 1412 break; 1413 default: 1414 r = -1; 1415 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1416 break; 1417 } 1418 1419 return r; 1420 } 1421 1422 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1423 { 1424 CPUS390XState *env = &cpu->env; 1425 int ret; 1426 1427 cpu_synchronize_state(CPU(cpu)); 1428 ret = s390_virtio_hypercall(env); 1429 if (ret == -EINVAL) { 1430 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1431 return 0; 1432 } 1433 1434 return ret; 1435 } 1436 1437 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1438 { 1439 uint64_t r1, r3; 1440 int rc; 1441 1442 cpu_synchronize_state(CPU(cpu)); 1443 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1444 r3 = run->s390_sieic.ipa & 0x000f; 1445 rc = handle_diag_288(&cpu->env, r1, r3); 1446 if (rc) { 1447 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1448 } 1449 } 1450 1451 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1452 { 1453 uint64_t r1, r3; 1454 1455 cpu_synchronize_state(CPU(cpu)); 1456 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1457 r3 = run->s390_sieic.ipa & 0x000f; 1458 handle_diag_308(&cpu->env, r1, r3); 1459 } 1460 1461 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1462 { 1463 CPUS390XState *env = &cpu->env; 1464 unsigned long pc; 1465 1466 cpu_synchronize_state(CPU(cpu)); 1467 1468 pc = env->psw.addr - sw_bp_ilen; 1469 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1470 env->psw.addr = pc; 1471 return EXCP_DEBUG; 1472 } 1473 1474 return -ENOENT; 1475 } 1476 1477 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1478 1479 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1480 { 1481 int r = 0; 1482 uint16_t func_code; 1483 1484 /* 1485 * For any diagnose call we support, bits 48-63 of the resulting 1486 * address specify the function code; the remainder is ignored. 1487 */ 1488 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1489 switch (func_code) { 1490 case DIAG_TIMEREVENT: 1491 kvm_handle_diag_288(cpu, run); 1492 break; 1493 case DIAG_IPL: 1494 kvm_handle_diag_308(cpu, run); 1495 break; 1496 case DIAG_KVM_HYPERCALL: 1497 r = handle_hypercall(cpu, run); 1498 break; 1499 case DIAG_KVM_BREAKPOINT: 1500 r = handle_sw_breakpoint(cpu, run); 1501 break; 1502 default: 1503 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1504 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1505 break; 1506 } 1507 1508 return r; 1509 } 1510 1511 typedef struct SigpInfo { 1512 uint64_t param; 1513 int cc; 1514 uint64_t *status_reg; 1515 } SigpInfo; 1516 1517 static void set_sigp_status(SigpInfo *si, uint64_t status) 1518 { 1519 *si->status_reg &= 0xffffffff00000000ULL; 1520 *si->status_reg |= status; 1521 si->cc = SIGP_CC_STATUS_STORED; 1522 } 1523 1524 static void sigp_start(CPUState *cs, run_on_cpu_data arg) 1525 { 1526 S390CPU *cpu = S390_CPU(cs); 1527 SigpInfo *si = arg.host_ptr; 1528 1529 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { 1530 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1531 return; 1532 } 1533 1534 s390_cpu_set_state(CPU_STATE_OPERATING, cpu); 1535 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1536 } 1537 1538 static void sigp_stop(CPUState *cs, run_on_cpu_data arg) 1539 { 1540 S390CPU *cpu = S390_CPU(cs); 1541 SigpInfo *si = arg.host_ptr; 1542 1543 if (s390_cpu_get_state(cpu) != CPU_STATE_OPERATING) { 1544 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1545 return; 1546 } 1547 1548 /* disabled wait - sleeping in user space */ 1549 if (cs->halted) { 1550 s390_cpu_set_state(CPU_STATE_STOPPED, cpu); 1551 } else { 1552 /* execute the stop function */ 1553 cpu->env.sigp_order = SIGP_STOP; 1554 cpu_inject_stop(cpu); 1555 } 1556 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1557 } 1558 1559 #define ADTL_GS_OFFSET 1024 /* offset of GS data in adtl save area */ 1560 #define ADTL_GS_MIN_SIZE 2048 /* minimal size of adtl save area for GS */ 1561 static int do_store_adtl_status(S390CPU *cpu, hwaddr addr, hwaddr len) 1562 { 1563 hwaddr save = len; 1564 void *mem; 1565 1566 mem = cpu_physical_memory_map(addr, &save, 1); 1567 if (!mem) { 1568 return -EFAULT; 1569 } 1570 if (save != len) { 1571 cpu_physical_memory_unmap(mem, len, 1, 0); 1572 return -EFAULT; 1573 } 1574 1575 if (s390_has_feat(S390_FEAT_VECTOR)) { 1576 memcpy(mem, &cpu->env.vregs, 512); 1577 } 1578 if (s390_has_feat(S390_FEAT_GUARDED_STORAGE) && len >= ADTL_GS_MIN_SIZE) { 1579 memcpy(mem + ADTL_GS_OFFSET, &cpu->env.gscb, 32); 1580 } 1581 1582 cpu_physical_memory_unmap(mem, len, 1, len); 1583 1584 return 0; 1585 } 1586 1587 static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg) 1588 { 1589 S390CPU *cpu = S390_CPU(cs); 1590 SigpInfo *si = arg.host_ptr; 1591 1592 /* disabled wait - sleeping in user space */ 1593 if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) { 1594 s390_cpu_set_state(CPU_STATE_STOPPED, cpu); 1595 } 1596 1597 switch (s390_cpu_get_state(cpu)) { 1598 case CPU_STATE_OPERATING: 1599 cpu->env.sigp_order = SIGP_STOP_STORE_STATUS; 1600 cpu_inject_stop(cpu); 1601 /* store will be performed when handling the stop intercept */ 1602 break; 1603 case CPU_STATE_STOPPED: 1604 /* already stopped, just store the status */ 1605 cpu_synchronize_state(cs); 1606 s390_store_status(cpu, S390_STORE_STATUS_DEF_ADDR, true); 1607 break; 1608 } 1609 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1610 } 1611 1612 static void sigp_store_status_at_address(CPUState *cs, run_on_cpu_data arg) 1613 { 1614 S390CPU *cpu = S390_CPU(cs); 1615 SigpInfo *si = arg.host_ptr; 1616 uint32_t address = si->param & 0x7ffffe00u; 1617 1618 /* cpu has to be stopped */ 1619 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { 1620 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); 1621 return; 1622 } 1623 1624 cpu_synchronize_state(cs); 1625 1626 if (s390_store_status(cpu, address, false)) { 1627 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1628 return; 1629 } 1630 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1631 } 1632 1633 #define ADTL_SAVE_LC_MASK 0xfUL 1634 static void sigp_store_adtl_status(CPUState *cs, run_on_cpu_data arg) 1635 { 1636 S390CPU *cpu = S390_CPU(cs); 1637 SigpInfo *si = arg.host_ptr; 1638 uint8_t lc = si->param & ADTL_SAVE_LC_MASK; 1639 hwaddr addr = si->param & ~ADTL_SAVE_LC_MASK; 1640 hwaddr len = 1UL << (lc ? lc : 10); 1641 1642 if (!s390_has_feat(S390_FEAT_VECTOR) && 1643 !s390_has_feat(S390_FEAT_GUARDED_STORAGE)) { 1644 set_sigp_status(si, SIGP_STAT_INVALID_ORDER); 1645 return; 1646 } 1647 1648 /* cpu has to be stopped */ 1649 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { 1650 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); 1651 return; 1652 } 1653 1654 /* address must be aligned to length */ 1655 if (addr & (len - 1)) { 1656 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1657 return; 1658 } 1659 1660 /* no GS: only lc == 0 is valid */ 1661 if (!s390_has_feat(S390_FEAT_GUARDED_STORAGE) && 1662 lc != 0) { 1663 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1664 return; 1665 } 1666 1667 /* GS: 0, 10, 11, 12 are valid */ 1668 if (s390_has_feat(S390_FEAT_GUARDED_STORAGE) && 1669 lc != 0 && 1670 lc != 10 && 1671 lc != 11 && 1672 lc != 12) { 1673 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1674 return; 1675 } 1676 1677 cpu_synchronize_state(cs); 1678 1679 if (do_store_adtl_status(cpu, addr, len)) { 1680 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1681 return; 1682 } 1683 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1684 } 1685 1686 static void sigp_restart(CPUState *cs, run_on_cpu_data arg) 1687 { 1688 S390CPU *cpu = S390_CPU(cs); 1689 SigpInfo *si = arg.host_ptr; 1690 1691 switch (s390_cpu_get_state(cpu)) { 1692 case CPU_STATE_STOPPED: 1693 /* the restart irq has to be delivered prior to any other pending irq */ 1694 cpu_synchronize_state(cs); 1695 do_restart_interrupt(&cpu->env); 1696 s390_cpu_set_state(CPU_STATE_OPERATING, cpu); 1697 break; 1698 case CPU_STATE_OPERATING: 1699 cpu_inject_restart(cpu); 1700 break; 1701 } 1702 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1703 } 1704 1705 int kvm_s390_cpu_restart(S390CPU *cpu) 1706 { 1707 SigpInfo si = {}; 1708 1709 run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si)); 1710 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env); 1711 return 0; 1712 } 1713 1714 static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg) 1715 { 1716 S390CPU *cpu = S390_CPU(cs); 1717 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu); 1718 SigpInfo *si = arg.host_ptr; 1719 1720 cpu_synchronize_state(cs); 1721 scc->initial_cpu_reset(cs); 1722 cpu_synchronize_post_reset(cs); 1723 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1724 } 1725 1726 static void sigp_cpu_reset(CPUState *cs, run_on_cpu_data arg) 1727 { 1728 S390CPU *cpu = S390_CPU(cs); 1729 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu); 1730 SigpInfo *si = arg.host_ptr; 1731 1732 cpu_synchronize_state(cs); 1733 scc->cpu_reset(cs); 1734 cpu_synchronize_post_reset(cs); 1735 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1736 } 1737 1738 static void sigp_set_prefix(CPUState *cs, run_on_cpu_data arg) 1739 { 1740 S390CPU *cpu = S390_CPU(cs); 1741 SigpInfo *si = arg.host_ptr; 1742 uint32_t addr = si->param & 0x7fffe000u; 1743 1744 cpu_synchronize_state(cs); 1745 1746 if (!address_space_access_valid(&address_space_memory, addr, 1747 sizeof(struct LowCore), false)) { 1748 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1749 return; 1750 } 1751 1752 /* cpu has to be stopped */ 1753 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { 1754 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); 1755 return; 1756 } 1757 1758 cpu->env.psa = addr; 1759 cpu_synchronize_post_init(cs); 1760 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1761 } 1762 1763 static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order, 1764 uint64_t param, uint64_t *status_reg) 1765 { 1766 SigpInfo si = { 1767 .param = param, 1768 .status_reg = status_reg, 1769 }; 1770 1771 /* cpu available? */ 1772 if (dst_cpu == NULL) { 1773 return SIGP_CC_NOT_OPERATIONAL; 1774 } 1775 1776 /* only resets can break pending orders */ 1777 if (dst_cpu->env.sigp_order != 0 && 1778 order != SIGP_CPU_RESET && 1779 order != SIGP_INITIAL_CPU_RESET) { 1780 return SIGP_CC_BUSY; 1781 } 1782 1783 switch (order) { 1784 case SIGP_START: 1785 run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si)); 1786 break; 1787 case SIGP_STOP: 1788 run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si)); 1789 break; 1790 case SIGP_RESTART: 1791 run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si)); 1792 break; 1793 case SIGP_STOP_STORE_STATUS: 1794 run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si)); 1795 break; 1796 case SIGP_STORE_STATUS_ADDR: 1797 run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si)); 1798 break; 1799 case SIGP_STORE_ADTL_STATUS: 1800 run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si)); 1801 break; 1802 case SIGP_SET_PREFIX: 1803 run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si)); 1804 break; 1805 case SIGP_INITIAL_CPU_RESET: 1806 run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si)); 1807 break; 1808 case SIGP_CPU_RESET: 1809 run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si)); 1810 break; 1811 default: 1812 DPRINTF("KVM: unknown SIGP: 0x%x\n", order); 1813 set_sigp_status(&si, SIGP_STAT_INVALID_ORDER); 1814 } 1815 1816 return si.cc; 1817 } 1818 1819 static int sigp_set_architecture(S390CPU *cpu, uint32_t param, 1820 uint64_t *status_reg) 1821 { 1822 CPUState *cur_cs; 1823 S390CPU *cur_cpu; 1824 bool all_stopped = true; 1825 1826 CPU_FOREACH(cur_cs) { 1827 cur_cpu = S390_CPU(cur_cs); 1828 1829 if (cur_cpu == cpu) { 1830 continue; 1831 } 1832 if (s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) { 1833 all_stopped = false; 1834 } 1835 } 1836 1837 *status_reg &= 0xffffffff00000000ULL; 1838 1839 /* Reject set arch order, with czam we're always in z/Arch mode. */ 1840 *status_reg |= (all_stopped ? SIGP_STAT_INVALID_PARAMETER : 1841 SIGP_STAT_INCORRECT_STATE); 1842 return SIGP_CC_STATUS_STORED; 1843 } 1844 1845 static int handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1846 { 1847 CPUS390XState *env = &cpu->env; 1848 const uint8_t r1 = ipa1 >> 4; 1849 const uint8_t r3 = ipa1 & 0x0f; 1850 int ret; 1851 uint8_t order; 1852 uint64_t *status_reg; 1853 uint64_t param; 1854 S390CPU *dst_cpu = NULL; 1855 1856 cpu_synchronize_state(CPU(cpu)); 1857 1858 /* get order code */ 1859 order = decode_basedisp_rs(env, ipb, NULL) 1860 & SIGP_ORDER_MASK; 1861 status_reg = &env->regs[r1]; 1862 param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1]; 1863 1864 if (qemu_mutex_trylock(&qemu_sigp_mutex)) { 1865 ret = SIGP_CC_BUSY; 1866 goto out; 1867 } 1868 1869 switch (order) { 1870 case SIGP_SET_ARCH: 1871 ret = sigp_set_architecture(cpu, param, status_reg); 1872 break; 1873 default: 1874 /* all other sigp orders target a single vcpu */ 1875 dst_cpu = s390_cpu_addr2state(env->regs[r3]); 1876 ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg); 1877 } 1878 qemu_mutex_unlock(&qemu_sigp_mutex); 1879 1880 out: 1881 trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index, 1882 dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret); 1883 1884 if (ret >= 0) { 1885 setcc(cpu, ret); 1886 return 0; 1887 } 1888 1889 return ret; 1890 } 1891 1892 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1893 { 1894 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1895 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1896 int r = -1; 1897 1898 DPRINTF("handle_instruction 0x%x 0x%x\n", 1899 run->s390_sieic.ipa, run->s390_sieic.ipb); 1900 switch (ipa0) { 1901 case IPA0_B2: 1902 r = handle_b2(cpu, run, ipa1); 1903 break; 1904 case IPA0_B9: 1905 r = handle_b9(cpu, run, ipa1); 1906 break; 1907 case IPA0_EB: 1908 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1909 break; 1910 case IPA0_E3: 1911 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1912 break; 1913 case IPA0_DIAG: 1914 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1915 break; 1916 case IPA0_SIGP: 1917 r = handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1918 break; 1919 } 1920 1921 if (r < 0) { 1922 r = 0; 1923 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1924 } 1925 1926 return r; 1927 } 1928 1929 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset) 1930 { 1931 CPUState *cs = CPU(cpu); 1932 1933 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx", 1934 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset), 1935 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8)); 1936 s390_cpu_halt(cpu); 1937 qemu_system_guest_panicked(NULL); 1938 } 1939 1940 /* try to detect pgm check loops */ 1941 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1942 { 1943 CPUState *cs = CPU(cpu); 1944 PSW oldpsw, newpsw; 1945 1946 cpu_synchronize_state(cs); 1947 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1948 offsetof(LowCore, program_new_psw)); 1949 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1950 offsetof(LowCore, program_new_psw) + 8); 1951 oldpsw.mask = run->psw_mask; 1952 oldpsw.addr = run->psw_addr; 1953 /* 1954 * Avoid endless loops of operation exceptions, if the pgm new 1955 * PSW will cause a new operation exception. 1956 * The heuristic checks if the pgm new psw is within 6 bytes before 1957 * the faulting psw address (with same DAT, AS settings) and the 1958 * new psw is not a wait psw and the fault was not triggered by 1959 * problem state. In that case go into crashed state. 1960 */ 1961 1962 if (oldpsw.addr - newpsw.addr <= 6 && 1963 !(newpsw.mask & PSW_MASK_WAIT) && 1964 !(oldpsw.mask & PSW_MASK_PSTATE) && 1965 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1966 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1967 unmanageable_intercept(cpu, "operation exception loop", 1968 offsetof(LowCore, program_new_psw)); 1969 return EXCP_HALTED; 1970 } 1971 return 0; 1972 } 1973 1974 static int handle_intercept(S390CPU *cpu) 1975 { 1976 CPUState *cs = CPU(cpu); 1977 struct kvm_run *run = cs->kvm_run; 1978 int icpt_code = run->s390_sieic.icptcode; 1979 int r = 0; 1980 1981 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1982 (long)cs->kvm_run->psw_addr); 1983 switch (icpt_code) { 1984 case ICPT_INSTRUCTION: 1985 r = handle_instruction(cpu, run); 1986 break; 1987 case ICPT_PROGRAM: 1988 unmanageable_intercept(cpu, "program interrupt", 1989 offsetof(LowCore, program_new_psw)); 1990 r = EXCP_HALTED; 1991 break; 1992 case ICPT_EXT_INT: 1993 unmanageable_intercept(cpu, "external interrupt", 1994 offsetof(LowCore, external_new_psw)); 1995 r = EXCP_HALTED; 1996 break; 1997 case ICPT_WAITPSW: 1998 /* disabled wait, since enabled wait is handled in kernel */ 1999 cpu_synchronize_state(cs); 2000 s390_handle_wait(cpu); 2001 r = EXCP_HALTED; 2002 break; 2003 case ICPT_CPU_STOP: 2004 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) { 2005 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); 2006 } 2007 if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) { 2008 s390_store_status(cpu, S390_STORE_STATUS_DEF_ADDR, true); 2009 } 2010 cpu->env.sigp_order = 0; 2011 r = EXCP_HALTED; 2012 break; 2013 case ICPT_OPEREXC: 2014 /* check for break points */ 2015 r = handle_sw_breakpoint(cpu, run); 2016 if (r == -ENOENT) { 2017 /* Then check for potential pgm check loops */ 2018 r = handle_oper_loop(cpu, run); 2019 if (r == 0) { 2020 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 2021 } 2022 } 2023 break; 2024 case ICPT_SOFT_INTERCEPT: 2025 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 2026 exit(1); 2027 break; 2028 case ICPT_IO: 2029 fprintf(stderr, "KVM unimplemented icpt IO\n"); 2030 exit(1); 2031 break; 2032 default: 2033 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 2034 exit(1); 2035 break; 2036 } 2037 2038 return r; 2039 } 2040 2041 static int handle_tsch(S390CPU *cpu) 2042 { 2043 CPUState *cs = CPU(cpu); 2044 struct kvm_run *run = cs->kvm_run; 2045 int ret; 2046 2047 cpu_synchronize_state(cs); 2048 2049 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb); 2050 if (ret < 0) { 2051 /* 2052 * Failure. 2053 * If an I/O interrupt had been dequeued, we have to reinject it. 2054 */ 2055 if (run->s390_tsch.dequeued) { 2056 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id, 2057 run->s390_tsch.subchannel_nr, 2058 run->s390_tsch.io_int_parm, 2059 run->s390_tsch.io_int_word); 2060 } 2061 ret = 0; 2062 } 2063 return ret; 2064 } 2065 2066 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 2067 { 2068 struct sysib_322 sysib; 2069 int del; 2070 2071 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 2072 return; 2073 } 2074 /* Shift the stack of Extended Names to prepare for our own data */ 2075 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 2076 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 2077 /* First virt level, that doesn't provide Ext Names delimits stack. It is 2078 * assumed it's not capable of managing Extended Names for lower levels. 2079 */ 2080 for (del = 1; del < sysib.count; del++) { 2081 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 2082 break; 2083 } 2084 } 2085 if (del < sysib.count) { 2086 memset(sysib.ext_names[del], 0, 2087 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 2088 } 2089 /* Insert short machine name in EBCDIC, padded with blanks */ 2090 if (qemu_name) { 2091 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 2092 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 2093 strlen(qemu_name))); 2094 } 2095 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 2096 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 2097 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 2098 * considered by s390 as not capable of providing any Extended Name. 2099 * Therefore if no name was specified on qemu invocation, we go with the 2100 * same "KVMguest" default, which KVM has filled into short name field. 2101 */ 2102 if (qemu_name) { 2103 strncpy((char *)sysib.ext_names[0], qemu_name, 2104 sizeof(sysib.ext_names[0])); 2105 } else { 2106 strcpy((char *)sysib.ext_names[0], "KVMguest"); 2107 } 2108 /* Insert UUID */ 2109 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 2110 2111 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 2112 } 2113 2114 static int handle_stsi(S390CPU *cpu) 2115 { 2116 CPUState *cs = CPU(cpu); 2117 struct kvm_run *run = cs->kvm_run; 2118 2119 switch (run->s390_stsi.fc) { 2120 case 3: 2121 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 2122 return 0; 2123 } 2124 /* Only sysib 3.2.2 needs post-handling for now. */ 2125 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 2126 return 0; 2127 default: 2128 return 0; 2129 } 2130 } 2131 2132 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 2133 { 2134 CPUState *cs = CPU(cpu); 2135 struct kvm_run *run = cs->kvm_run; 2136 2137 int ret = 0; 2138 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 2139 2140 switch (arch_info->type) { 2141 case KVM_HW_WP_WRITE: 2142 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 2143 cs->watchpoint_hit = &hw_watchpoint; 2144 hw_watchpoint.vaddr = arch_info->addr; 2145 hw_watchpoint.flags = BP_MEM_WRITE; 2146 ret = EXCP_DEBUG; 2147 } 2148 break; 2149 case KVM_HW_BP: 2150 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 2151 ret = EXCP_DEBUG; 2152 } 2153 break; 2154 case KVM_SINGLESTEP: 2155 if (cs->singlestep_enabled) { 2156 ret = EXCP_DEBUG; 2157 } 2158 break; 2159 default: 2160 ret = -ENOSYS; 2161 } 2162 2163 return ret; 2164 } 2165 2166 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 2167 { 2168 S390CPU *cpu = S390_CPU(cs); 2169 int ret = 0; 2170 2171 qemu_mutex_lock_iothread(); 2172 2173 switch (run->exit_reason) { 2174 case KVM_EXIT_S390_SIEIC: 2175 ret = handle_intercept(cpu); 2176 break; 2177 case KVM_EXIT_S390_RESET: 2178 s390_reipl_request(); 2179 break; 2180 case KVM_EXIT_S390_TSCH: 2181 ret = handle_tsch(cpu); 2182 break; 2183 case KVM_EXIT_S390_STSI: 2184 ret = handle_stsi(cpu); 2185 break; 2186 case KVM_EXIT_DEBUG: 2187 ret = kvm_arch_handle_debug_exit(cpu); 2188 break; 2189 default: 2190 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 2191 break; 2192 } 2193 qemu_mutex_unlock_iothread(); 2194 2195 if (ret == 0) { 2196 ret = EXCP_INTERRUPT; 2197 } 2198 return ret; 2199 } 2200 2201 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 2202 { 2203 return true; 2204 } 2205 2206 void kvm_s390_io_interrupt(uint16_t subchannel_id, 2207 uint16_t subchannel_nr, uint32_t io_int_parm, 2208 uint32_t io_int_word) 2209 { 2210 struct kvm_s390_irq irq = { 2211 .u.io.subchannel_id = subchannel_id, 2212 .u.io.subchannel_nr = subchannel_nr, 2213 .u.io.io_int_parm = io_int_parm, 2214 .u.io.io_int_word = io_int_word, 2215 }; 2216 2217 if (io_int_word & IO_INT_WORD_AI) { 2218 irq.type = KVM_S390_INT_IO(1, 0, 0, 0); 2219 } else { 2220 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8, 2221 (subchannel_id & 0x0006), 2222 subchannel_nr); 2223 } 2224 kvm_s390_floating_interrupt(&irq); 2225 } 2226 2227 static uint64_t build_channel_report_mcic(void) 2228 { 2229 uint64_t mcic; 2230 2231 /* subclass: indicate channel report pending */ 2232 mcic = MCIC_SC_CP | 2233 /* subclass modifiers: none */ 2234 /* storage errors: none */ 2235 /* validity bits: no damage */ 2236 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP | 2237 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR | 2238 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC; 2239 if (s390_has_feat(S390_FEAT_VECTOR)) { 2240 mcic |= MCIC_VB_VR; 2241 } 2242 if (s390_has_feat(S390_FEAT_GUARDED_STORAGE)) { 2243 mcic |= MCIC_VB_GS; 2244 } 2245 return mcic; 2246 } 2247 2248 void kvm_s390_crw_mchk(void) 2249 { 2250 struct kvm_s390_irq irq = { 2251 .type = KVM_S390_MCHK, 2252 .u.mchk.cr14 = 1 << 28, 2253 .u.mchk.mcic = build_channel_report_mcic(), 2254 }; 2255 kvm_s390_floating_interrupt(&irq); 2256 } 2257 2258 void kvm_s390_enable_css_support(S390CPU *cpu) 2259 { 2260 int r; 2261 2262 /* Activate host kernel channel subsystem support. */ 2263 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 2264 assert(r == 0); 2265 } 2266 2267 void kvm_arch_init_irq_routing(KVMState *s) 2268 { 2269 /* 2270 * Note that while irqchip capabilities generally imply that cpustates 2271 * are handled in-kernel, it is not true for s390 (yet); therefore, we 2272 * have to override the common code kvm_halt_in_kernel_allowed setting. 2273 */ 2274 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2275 kvm_gsi_routing_allowed = true; 2276 kvm_halt_in_kernel_allowed = false; 2277 } 2278 } 2279 2280 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 2281 int vq, bool assign) 2282 { 2283 struct kvm_ioeventfd kick = { 2284 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 2285 KVM_IOEVENTFD_FLAG_DATAMATCH, 2286 .fd = event_notifier_get_fd(notifier), 2287 .datamatch = vq, 2288 .addr = sch, 2289 .len = 8, 2290 }; 2291 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 2292 return -ENOSYS; 2293 } 2294 if (!assign) { 2295 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 2296 } 2297 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 2298 } 2299 2300 int kvm_s390_get_memslot_count(void) 2301 { 2302 return kvm_check_extension(kvm_state, KVM_CAP_NR_MEMSLOTS); 2303 } 2304 2305 int kvm_s390_get_ri(void) 2306 { 2307 return cap_ri; 2308 } 2309 2310 int kvm_s390_get_gs(void) 2311 { 2312 return cap_gs; 2313 } 2314 2315 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 2316 { 2317 struct kvm_mp_state mp_state = {}; 2318 int ret; 2319 2320 /* the kvm part might not have been initialized yet */ 2321 if (CPU(cpu)->kvm_state == NULL) { 2322 return 0; 2323 } 2324 2325 switch (cpu_state) { 2326 case CPU_STATE_STOPPED: 2327 mp_state.mp_state = KVM_MP_STATE_STOPPED; 2328 break; 2329 case CPU_STATE_CHECK_STOP: 2330 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 2331 break; 2332 case CPU_STATE_OPERATING: 2333 mp_state.mp_state = KVM_MP_STATE_OPERATING; 2334 break; 2335 case CPU_STATE_LOAD: 2336 mp_state.mp_state = KVM_MP_STATE_LOAD; 2337 break; 2338 default: 2339 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2340 cpu_state); 2341 exit(1); 2342 } 2343 2344 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2345 if (ret) { 2346 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2347 strerror(-ret)); 2348 } 2349 2350 return ret; 2351 } 2352 2353 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2354 { 2355 struct kvm_s390_irq_state irq_state; 2356 CPUState *cs = CPU(cpu); 2357 int32_t bytes; 2358 2359 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2360 return; 2361 } 2362 2363 irq_state.buf = (uint64_t) cpu->irqstate; 2364 irq_state.len = VCPU_IRQ_BUF_SIZE; 2365 2366 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2367 if (bytes < 0) { 2368 cpu->irqstate_saved_size = 0; 2369 error_report("Migration of interrupt state failed"); 2370 return; 2371 } 2372 2373 cpu->irqstate_saved_size = bytes; 2374 } 2375 2376 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2377 { 2378 CPUState *cs = CPU(cpu); 2379 struct kvm_s390_irq_state irq_state; 2380 int r; 2381 2382 if (cpu->irqstate_saved_size == 0) { 2383 return 0; 2384 } 2385 2386 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2387 return -ENOSYS; 2388 } 2389 2390 irq_state.buf = (uint64_t) cpu->irqstate; 2391 irq_state.len = cpu->irqstate_saved_size; 2392 2393 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2394 if (r) { 2395 error_report("Setting interrupt state failed %d", r); 2396 } 2397 return r; 2398 } 2399 2400 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2401 uint64_t address, uint32_t data, PCIDevice *dev) 2402 { 2403 S390PCIBusDevice *pbdev; 2404 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2405 2406 if (!dev) { 2407 DPRINTF("add_msi_route no pci device\n"); 2408 return -ENODEV; 2409 } 2410 2411 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2412 if (!pbdev) { 2413 DPRINTF("add_msi_route no zpci device\n"); 2414 return -ENODEV; 2415 } 2416 2417 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2418 route->flags = 0; 2419 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2420 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2421 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2422 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2423 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2424 return 0; 2425 } 2426 2427 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2428 int vector, PCIDevice *dev) 2429 { 2430 return 0; 2431 } 2432 2433 int kvm_arch_release_virq_post(int virq) 2434 { 2435 return 0; 2436 } 2437 2438 int kvm_arch_msi_data_to_gsi(uint32_t data) 2439 { 2440 abort(); 2441 } 2442 2443 static int query_cpu_subfunc(S390FeatBitmap features) 2444 { 2445 struct kvm_s390_vm_cpu_subfunc prop; 2446 struct kvm_device_attr attr = { 2447 .group = KVM_S390_VM_CPU_MODEL, 2448 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2449 .addr = (uint64_t) &prop, 2450 }; 2451 int rc; 2452 2453 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2454 if (rc) { 2455 return rc; 2456 } 2457 2458 /* 2459 * We're going to add all subfunctions now, if the corresponding feature 2460 * is available that unlocks the query functions. 2461 */ 2462 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2463 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2464 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2465 } 2466 if (test_bit(S390_FEAT_MSA, features)) { 2467 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2468 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2469 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2470 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2471 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2472 } 2473 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2474 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2475 } 2476 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2477 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2478 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2479 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2480 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2481 } 2482 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2483 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2484 } 2485 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2486 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2487 } 2488 return 0; 2489 } 2490 2491 static int configure_cpu_subfunc(const S390FeatBitmap features) 2492 { 2493 struct kvm_s390_vm_cpu_subfunc prop = {}; 2494 struct kvm_device_attr attr = { 2495 .group = KVM_S390_VM_CPU_MODEL, 2496 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2497 .addr = (uint64_t) &prop, 2498 }; 2499 2500 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2501 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2502 /* hardware support might be missing, IBC will handle most of this */ 2503 return 0; 2504 } 2505 2506 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2507 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2508 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2509 } 2510 if (test_bit(S390_FEAT_MSA, features)) { 2511 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2512 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2513 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2514 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2515 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2516 } 2517 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2518 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2519 } 2520 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2521 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2522 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2523 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2524 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2525 } 2526 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2527 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2528 } 2529 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2530 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2531 } 2532 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2533 } 2534 2535 static int kvm_to_feat[][2] = { 2536 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2537 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2538 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2539 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2540 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2541 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2542 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2543 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2544 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2545 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2546 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2547 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2548 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2549 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2550 }; 2551 2552 static int query_cpu_feat(S390FeatBitmap features) 2553 { 2554 struct kvm_s390_vm_cpu_feat prop; 2555 struct kvm_device_attr attr = { 2556 .group = KVM_S390_VM_CPU_MODEL, 2557 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2558 .addr = (uint64_t) &prop, 2559 }; 2560 int rc; 2561 int i; 2562 2563 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2564 if (rc) { 2565 return rc; 2566 } 2567 2568 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2569 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2570 set_bit(kvm_to_feat[i][1], features); 2571 } 2572 } 2573 return 0; 2574 } 2575 2576 static int configure_cpu_feat(const S390FeatBitmap features) 2577 { 2578 struct kvm_s390_vm_cpu_feat prop = {}; 2579 struct kvm_device_attr attr = { 2580 .group = KVM_S390_VM_CPU_MODEL, 2581 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2582 .addr = (uint64_t) &prop, 2583 }; 2584 int i; 2585 2586 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2587 if (test_bit(kvm_to_feat[i][1], features)) { 2588 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2589 } 2590 } 2591 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2592 } 2593 2594 bool kvm_s390_cpu_models_supported(void) 2595 { 2596 if (!cpu_model_allowed()) { 2597 /* compatibility machines interfere with the cpu model */ 2598 return false; 2599 } 2600 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2601 KVM_S390_VM_CPU_MACHINE) && 2602 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2603 KVM_S390_VM_CPU_PROCESSOR) && 2604 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2605 KVM_S390_VM_CPU_MACHINE_FEAT) && 2606 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2607 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2608 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2609 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2610 } 2611 2612 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2613 { 2614 struct kvm_s390_vm_cpu_machine prop = {}; 2615 struct kvm_device_attr attr = { 2616 .group = KVM_S390_VM_CPU_MODEL, 2617 .attr = KVM_S390_VM_CPU_MACHINE, 2618 .addr = (uint64_t) &prop, 2619 }; 2620 uint16_t unblocked_ibc = 0, cpu_type = 0; 2621 int rc; 2622 2623 memset(model, 0, sizeof(*model)); 2624 2625 if (!kvm_s390_cpu_models_supported()) { 2626 error_setg(errp, "KVM doesn't support CPU models"); 2627 return; 2628 } 2629 2630 /* query the basic cpu model properties */ 2631 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2632 if (rc) { 2633 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2634 return; 2635 } 2636 2637 cpu_type = cpuid_type(prop.cpuid); 2638 if (has_ibc(prop.ibc)) { 2639 model->lowest_ibc = lowest_ibc(prop.ibc); 2640 unblocked_ibc = unblocked_ibc(prop.ibc); 2641 } 2642 model->cpu_id = cpuid_id(prop.cpuid); 2643 model->cpu_id_format = cpuid_format(prop.cpuid); 2644 model->cpu_ver = 0xff; 2645 2646 /* get supported cpu features indicated via STFL(E) */ 2647 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2648 (uint8_t *) prop.fac_mask); 2649 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2650 if (test_bit(S390_FEAT_STFLE, model->features)) { 2651 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2652 } 2653 /* get supported cpu features indicated e.g. via SCLP */ 2654 rc = query_cpu_feat(model->features); 2655 if (rc) { 2656 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2657 return; 2658 } 2659 /* get supported cpu subfunctions indicated via query / test bit */ 2660 rc = query_cpu_subfunc(model->features); 2661 if (rc) { 2662 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2663 return; 2664 } 2665 2666 /* with cpu model support, CMM is only indicated if really available */ 2667 if (kvm_s390_cmma_available()) { 2668 set_bit(S390_FEAT_CMM, model->features); 2669 } else { 2670 /* no cmm -> no cmm nt */ 2671 clear_bit(S390_FEAT_CMM_NT, model->features); 2672 } 2673 2674 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2675 if (pci_available) { 2676 set_bit(S390_FEAT_ZPCI, model->features); 2677 } 2678 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2679 2680 if (s390_known_cpu_type(cpu_type)) { 2681 /* we want the exact model, even if some features are missing */ 2682 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2683 ibc_ec_ga(unblocked_ibc), NULL); 2684 } else { 2685 /* model unknown, e.g. too new - search using features */ 2686 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2687 ibc_ec_ga(unblocked_ibc), 2688 model->features); 2689 } 2690 if (!model->def) { 2691 error_setg(errp, "KVM: host CPU model could not be identified"); 2692 return; 2693 } 2694 /* strip of features that are not part of the maximum model */ 2695 bitmap_and(model->features, model->features, model->def->full_feat, 2696 S390_FEAT_MAX); 2697 } 2698 2699 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2700 { 2701 struct kvm_s390_vm_cpu_processor prop = { 2702 .fac_list = { 0 }, 2703 }; 2704 struct kvm_device_attr attr = { 2705 .group = KVM_S390_VM_CPU_MODEL, 2706 .attr = KVM_S390_VM_CPU_PROCESSOR, 2707 .addr = (uint64_t) &prop, 2708 }; 2709 int rc; 2710 2711 if (!model) { 2712 /* compatibility handling if cpu models are disabled */ 2713 if (kvm_s390_cmma_available()) { 2714 kvm_s390_enable_cmma(); 2715 } 2716 return; 2717 } 2718 if (!kvm_s390_cpu_models_supported()) { 2719 error_setg(errp, "KVM doesn't support CPU models"); 2720 return; 2721 } 2722 prop.cpuid = s390_cpuid_from_cpu_model(model); 2723 prop.ibc = s390_ibc_from_cpu_model(model); 2724 /* configure cpu features indicated via STFL(e) */ 2725 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2726 (uint8_t *) prop.fac_list); 2727 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2728 if (rc) { 2729 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2730 return; 2731 } 2732 /* configure cpu features indicated e.g. via SCLP */ 2733 rc = configure_cpu_feat(model->features); 2734 if (rc) { 2735 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2736 return; 2737 } 2738 /* configure cpu subfunctions indicated via query / test bit */ 2739 rc = configure_cpu_subfunc(model->features); 2740 if (rc) { 2741 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2742 return; 2743 } 2744 /* enable CMM via CMMA */ 2745 if (test_bit(S390_FEAT_CMM, model->features)) { 2746 kvm_s390_enable_cmma(); 2747 } 2748 } 2749 2750 void kvm_s390_restart_interrupt(S390CPU *cpu) 2751 { 2752 struct kvm_s390_irq irq = { 2753 .type = KVM_S390_RESTART, 2754 }; 2755 2756 kvm_s390_vcpu_interrupt(cpu, &irq); 2757 } 2758 2759 void kvm_s390_stop_interrupt(S390CPU *cpu) 2760 { 2761 struct kvm_s390_irq irq = { 2762 .type = KVM_S390_SIGP_STOP, 2763 }; 2764 2765 kvm_s390_vcpu_interrupt(cpu, &irq); 2766 } 2767