1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "internal.h" 30 #include "kvm_s390x.h" 31 #include "sysemu/kvm_int.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/units.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/mmap-alloc.h" 38 #include "qemu/log.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/hw_accel.h" 41 #include "sysemu/runstate.h" 42 #include "sysemu/device_tree.h" 43 #include "exec/gdbstub.h" 44 #include "exec/ram_addr.h" 45 #include "trace.h" 46 #include "hw/s390x/s390-pci-inst.h" 47 #include "hw/s390x/s390-pci-bus.h" 48 #include "hw/s390x/ipl.h" 49 #include "hw/s390x/ebcdic.h" 50 #include "exec/memattrs.h" 51 #include "hw/s390x/s390-virtio-ccw.h" 52 #include "hw/s390x/s390-virtio-hcall.h" 53 54 #ifndef DEBUG_KVM 55 #define DEBUG_KVM 0 56 #endif 57 58 #define DPRINTF(fmt, ...) do { \ 59 if (DEBUG_KVM) { \ 60 fprintf(stderr, fmt, ## __VA_ARGS__); \ 61 } \ 62 } while (0) 63 64 #define kvm_vm_check_mem_attr(s, attr) \ 65 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 66 67 #define IPA0_DIAG 0x8300 68 #define IPA0_SIGP 0xae00 69 #define IPA0_B2 0xb200 70 #define IPA0_B9 0xb900 71 #define IPA0_EB 0xeb00 72 #define IPA0_E3 0xe300 73 74 #define PRIV_B2_SCLP_CALL 0x20 75 #define PRIV_B2_CSCH 0x30 76 #define PRIV_B2_HSCH 0x31 77 #define PRIV_B2_MSCH 0x32 78 #define PRIV_B2_SSCH 0x33 79 #define PRIV_B2_STSCH 0x34 80 #define PRIV_B2_TSCH 0x35 81 #define PRIV_B2_TPI 0x36 82 #define PRIV_B2_SAL 0x37 83 #define PRIV_B2_RSCH 0x38 84 #define PRIV_B2_STCRW 0x39 85 #define PRIV_B2_STCPS 0x3a 86 #define PRIV_B2_RCHP 0x3b 87 #define PRIV_B2_SCHM 0x3c 88 #define PRIV_B2_CHSC 0x5f 89 #define PRIV_B2_SIGA 0x74 90 #define PRIV_B2_XSCH 0x76 91 92 #define PRIV_EB_SQBS 0x8a 93 #define PRIV_EB_PCISTB 0xd0 94 #define PRIV_EB_SIC 0xd1 95 96 #define PRIV_B9_EQBS 0x9c 97 #define PRIV_B9_CLP 0xa0 98 #define PRIV_B9_PCISTG 0xd0 99 #define PRIV_B9_PCILG 0xd2 100 #define PRIV_B9_RPCIT 0xd3 101 102 #define PRIV_E3_MPCIFC 0xd0 103 #define PRIV_E3_STPCIFC 0xd4 104 105 #define DIAG_TIMEREVENT 0x288 106 #define DIAG_IPL 0x308 107 #define DIAG_KVM_HYPERCALL 0x500 108 #define DIAG_KVM_BREAKPOINT 0x501 109 110 #define ICPT_INSTRUCTION 0x04 111 #define ICPT_PROGRAM 0x08 112 #define ICPT_EXT_INT 0x14 113 #define ICPT_WAITPSW 0x1c 114 #define ICPT_SOFT_INTERCEPT 0x24 115 #define ICPT_CPU_STOP 0x28 116 #define ICPT_OPEREXC 0x2c 117 #define ICPT_IO 0x40 118 119 #define NR_LOCAL_IRQS 32 120 /* 121 * Needs to be big enough to contain max_cpus emergency signals 122 * and in addition NR_LOCAL_IRQS interrupts 123 */ 124 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 125 (max_cpus + NR_LOCAL_IRQS)) 126 /* 127 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages 128 * as the dirty bitmap must be managed by bitops that take an int as 129 * position indicator. This would end at an unaligned address 130 * (0x7fffff00000). As future variants might provide larger pages 131 * and to make all addresses properly aligned, let us split at 4TB. 132 */ 133 #define KVM_SLOT_MAX_BYTES (4UL * TiB) 134 135 static CPUWatchpoint hw_watchpoint; 136 /* 137 * We don't use a list because this structure is also used to transmit the 138 * hardware breakpoints to the kernel. 139 */ 140 static struct kvm_hw_breakpoint *hw_breakpoints; 141 static int nb_hw_breakpoints; 142 143 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 144 KVM_CAP_LAST_INFO 145 }; 146 147 static int cap_sync_regs; 148 static int cap_async_pf; 149 static int cap_mem_op; 150 static int cap_s390_irq; 151 static int cap_ri; 152 static int cap_gs; 153 static int cap_hpage_1m; 154 155 static int active_cmma; 156 157 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared); 158 159 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 160 { 161 struct kvm_device_attr attr = { 162 .group = KVM_S390_VM_MEM_CTRL, 163 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 164 .addr = (uint64_t) memory_limit, 165 }; 166 167 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 168 } 169 170 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 171 { 172 int rc; 173 174 struct kvm_device_attr attr = { 175 .group = KVM_S390_VM_MEM_CTRL, 176 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 177 .addr = (uint64_t) &new_limit, 178 }; 179 180 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 181 return 0; 182 } 183 184 rc = kvm_s390_query_mem_limit(hw_limit); 185 if (rc) { 186 return rc; 187 } else if (*hw_limit < new_limit) { 188 return -E2BIG; 189 } 190 191 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 192 } 193 194 int kvm_s390_cmma_active(void) 195 { 196 return active_cmma; 197 } 198 199 static bool kvm_s390_cmma_available(void) 200 { 201 static bool initialized, value; 202 203 if (!initialized) { 204 initialized = true; 205 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 206 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 207 } 208 return value; 209 } 210 211 void kvm_s390_cmma_reset(void) 212 { 213 int rc; 214 struct kvm_device_attr attr = { 215 .group = KVM_S390_VM_MEM_CTRL, 216 .attr = KVM_S390_VM_MEM_CLR_CMMA, 217 }; 218 219 if (!kvm_s390_cmma_active()) { 220 return; 221 } 222 223 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 224 trace_kvm_clear_cmma(rc); 225 } 226 227 static void kvm_s390_enable_cmma(void) 228 { 229 int rc; 230 struct kvm_device_attr attr = { 231 .group = KVM_S390_VM_MEM_CTRL, 232 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 233 }; 234 235 if (cap_hpage_1m) { 236 warn_report("CMM will not be enabled because it is not " 237 "compatible with huge memory backings."); 238 return; 239 } 240 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 241 active_cmma = !rc; 242 trace_kvm_enable_cmma(rc); 243 } 244 245 static void kvm_s390_set_attr(uint64_t attr) 246 { 247 struct kvm_device_attr attribute = { 248 .group = KVM_S390_VM_CRYPTO, 249 .attr = attr, 250 }; 251 252 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 253 254 if (ret) { 255 error_report("Failed to set crypto device attribute %lu: %s", 256 attr, strerror(-ret)); 257 } 258 } 259 260 static void kvm_s390_init_aes_kw(void) 261 { 262 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 263 264 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 265 NULL)) { 266 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 267 } 268 269 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 270 kvm_s390_set_attr(attr); 271 } 272 } 273 274 static void kvm_s390_init_dea_kw(void) 275 { 276 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 277 278 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 279 NULL)) { 280 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 281 } 282 283 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 284 kvm_s390_set_attr(attr); 285 } 286 } 287 288 void kvm_s390_crypto_reset(void) 289 { 290 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 291 kvm_s390_init_aes_kw(); 292 kvm_s390_init_dea_kw(); 293 } 294 } 295 296 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 297 { 298 if (pagesize == 4 * KiB) { 299 return; 300 } 301 302 if (!hpage_1m_allowed()) { 303 error_setg(errp, "This QEMU machine does not support huge page " 304 "mappings"); 305 return; 306 } 307 308 if (pagesize != 1 * MiB) { 309 error_setg(errp, "Memory backing with 2G pages was specified, " 310 "but KVM does not support this memory backing"); 311 return; 312 } 313 314 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 315 error_setg(errp, "Memory backing with 1M pages was specified, " 316 "but KVM does not support this memory backing"); 317 return; 318 } 319 320 cap_hpage_1m = 1; 321 } 322 323 int kvm_arch_init(MachineState *ms, KVMState *s) 324 { 325 MachineClass *mc = MACHINE_GET_CLASS(ms); 326 327 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 328 329 if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) { 330 error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - " 331 "please use kernel 3.15 or newer"); 332 return -1; 333 } 334 335 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 336 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 337 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 338 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 339 340 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 341 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 342 phys_mem_set_alloc(legacy_s390_alloc); 343 } 344 345 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 346 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 347 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 348 if (ri_allowed()) { 349 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 350 cap_ri = 1; 351 } 352 } 353 if (cpu_model_allowed()) { 354 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 355 cap_gs = 1; 356 } 357 } 358 359 /* 360 * The migration interface for ais was introduced with kernel 4.13 361 * but the capability itself had been active since 4.12. As migration 362 * support is considered necessary let's disable ais in the 2.10 363 * machine. 364 */ 365 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ 366 367 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); 368 return 0; 369 } 370 371 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 372 { 373 return 0; 374 } 375 376 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 377 { 378 return cpu->cpu_index; 379 } 380 381 int kvm_arch_init_vcpu(CPUState *cs) 382 { 383 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 384 S390CPU *cpu = S390_CPU(cs); 385 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 386 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 387 return 0; 388 } 389 390 int kvm_arch_destroy_vcpu(CPUState *cs) 391 { 392 S390CPU *cpu = S390_CPU(cs); 393 394 g_free(cpu->irqstate); 395 cpu->irqstate = NULL; 396 397 return 0; 398 } 399 400 void kvm_s390_reset_vcpu(S390CPU *cpu) 401 { 402 CPUState *cs = CPU(cpu); 403 404 /* The initial reset call is needed here to reset in-kernel 405 * vcpu data that we can't access directly from QEMU 406 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 407 * Before this ioctl cpu_synchronize_state() is called in common kvm 408 * code (kvm-all) */ 409 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 410 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 411 } 412 } 413 414 static int can_sync_regs(CPUState *cs, int regs) 415 { 416 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 417 } 418 419 int kvm_arch_put_registers(CPUState *cs, int level) 420 { 421 S390CPU *cpu = S390_CPU(cs); 422 CPUS390XState *env = &cpu->env; 423 struct kvm_sregs sregs; 424 struct kvm_regs regs; 425 struct kvm_fpu fpu = {}; 426 int r; 427 int i; 428 429 /* always save the PSW and the GPRS*/ 430 cs->kvm_run->psw_addr = env->psw.addr; 431 cs->kvm_run->psw_mask = env->psw.mask; 432 433 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 434 for (i = 0; i < 16; i++) { 435 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 436 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 437 } 438 } else { 439 for (i = 0; i < 16; i++) { 440 regs.gprs[i] = env->regs[i]; 441 } 442 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 443 if (r < 0) { 444 return r; 445 } 446 } 447 448 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 449 for (i = 0; i < 32; i++) { 450 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 451 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 452 } 453 cs->kvm_run->s.regs.fpc = env->fpc; 454 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 455 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 456 for (i = 0; i < 16; i++) { 457 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 458 } 459 cs->kvm_run->s.regs.fpc = env->fpc; 460 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 461 } else { 462 /* Floating point */ 463 for (i = 0; i < 16; i++) { 464 fpu.fprs[i] = *get_freg(env, i); 465 } 466 fpu.fpc = env->fpc; 467 468 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 469 if (r < 0) { 470 return r; 471 } 472 } 473 474 /* Do we need to save more than that? */ 475 if (level == KVM_PUT_RUNTIME_STATE) { 476 return 0; 477 } 478 479 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 480 cs->kvm_run->s.regs.cputm = env->cputm; 481 cs->kvm_run->s.regs.ckc = env->ckc; 482 cs->kvm_run->s.regs.todpr = env->todpr; 483 cs->kvm_run->s.regs.gbea = env->gbea; 484 cs->kvm_run->s.regs.pp = env->pp; 485 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 486 } else { 487 /* 488 * These ONE_REGS are not protected by a capability. As they are only 489 * necessary for migration we just trace a possible error, but don't 490 * return with an error return code. 491 */ 492 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 493 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 494 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 495 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 496 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 497 } 498 499 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 500 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 501 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 502 } 503 504 /* pfault parameters */ 505 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 506 cs->kvm_run->s.regs.pft = env->pfault_token; 507 cs->kvm_run->s.regs.pfs = env->pfault_select; 508 cs->kvm_run->s.regs.pfc = env->pfault_compare; 509 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 510 } else if (cap_async_pf) { 511 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 512 if (r < 0) { 513 return r; 514 } 515 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 516 if (r < 0) { 517 return r; 518 } 519 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 520 if (r < 0) { 521 return r; 522 } 523 } 524 525 /* access registers and control registers*/ 526 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 527 for (i = 0; i < 16; i++) { 528 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 529 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 530 } 531 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 532 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 533 } else { 534 for (i = 0; i < 16; i++) { 535 sregs.acrs[i] = env->aregs[i]; 536 sregs.crs[i] = env->cregs[i]; 537 } 538 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 539 if (r < 0) { 540 return r; 541 } 542 } 543 544 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 545 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 546 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 547 } 548 549 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 550 cs->kvm_run->s.regs.bpbc = env->bpbc; 551 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 552 } 553 554 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 555 cs->kvm_run->s.regs.etoken = env->etoken; 556 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 557 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 558 } 559 560 /* Finally the prefix */ 561 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 562 cs->kvm_run->s.regs.prefix = env->psa; 563 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 564 } else { 565 /* prefix is only supported via sync regs */ 566 } 567 return 0; 568 } 569 570 int kvm_arch_get_registers(CPUState *cs) 571 { 572 S390CPU *cpu = S390_CPU(cs); 573 CPUS390XState *env = &cpu->env; 574 struct kvm_sregs sregs; 575 struct kvm_regs regs; 576 struct kvm_fpu fpu; 577 int i, r; 578 579 /* get the PSW */ 580 env->psw.addr = cs->kvm_run->psw_addr; 581 env->psw.mask = cs->kvm_run->psw_mask; 582 583 /* the GPRS */ 584 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 585 for (i = 0; i < 16; i++) { 586 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 587 } 588 } else { 589 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 590 if (r < 0) { 591 return r; 592 } 593 for (i = 0; i < 16; i++) { 594 env->regs[i] = regs.gprs[i]; 595 } 596 } 597 598 /* The ACRS and CRS */ 599 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 600 for (i = 0; i < 16; i++) { 601 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 602 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 603 } 604 } else { 605 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 606 if (r < 0) { 607 return r; 608 } 609 for (i = 0; i < 16; i++) { 610 env->aregs[i] = sregs.acrs[i]; 611 env->cregs[i] = sregs.crs[i]; 612 } 613 } 614 615 /* Floating point and vector registers */ 616 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 617 for (i = 0; i < 32; i++) { 618 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 619 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 620 } 621 env->fpc = cs->kvm_run->s.regs.fpc; 622 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 623 for (i = 0; i < 16; i++) { 624 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 625 } 626 env->fpc = cs->kvm_run->s.regs.fpc; 627 } else { 628 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 629 if (r < 0) { 630 return r; 631 } 632 for (i = 0; i < 16; i++) { 633 *get_freg(env, i) = fpu.fprs[i]; 634 } 635 env->fpc = fpu.fpc; 636 } 637 638 /* The prefix */ 639 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 640 env->psa = cs->kvm_run->s.regs.prefix; 641 } 642 643 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 644 env->cputm = cs->kvm_run->s.regs.cputm; 645 env->ckc = cs->kvm_run->s.regs.ckc; 646 env->todpr = cs->kvm_run->s.regs.todpr; 647 env->gbea = cs->kvm_run->s.regs.gbea; 648 env->pp = cs->kvm_run->s.regs.pp; 649 } else { 650 /* 651 * These ONE_REGS are not protected by a capability. As they are only 652 * necessary for migration we just trace a possible error, but don't 653 * return with an error return code. 654 */ 655 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 656 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 657 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 658 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 659 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 660 } 661 662 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 663 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 664 } 665 666 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 667 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 668 } 669 670 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 671 env->bpbc = cs->kvm_run->s.regs.bpbc; 672 } 673 674 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 675 env->etoken = cs->kvm_run->s.regs.etoken; 676 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 677 } 678 679 /* pfault parameters */ 680 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 681 env->pfault_token = cs->kvm_run->s.regs.pft; 682 env->pfault_select = cs->kvm_run->s.regs.pfs; 683 env->pfault_compare = cs->kvm_run->s.regs.pfc; 684 } else if (cap_async_pf) { 685 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 686 if (r < 0) { 687 return r; 688 } 689 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 690 if (r < 0) { 691 return r; 692 } 693 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 694 if (r < 0) { 695 return r; 696 } 697 } 698 699 return 0; 700 } 701 702 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 703 { 704 int r; 705 struct kvm_device_attr attr = { 706 .group = KVM_S390_VM_TOD, 707 .attr = KVM_S390_VM_TOD_LOW, 708 .addr = (uint64_t)tod_low, 709 }; 710 711 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 712 if (r) { 713 return r; 714 } 715 716 attr.attr = KVM_S390_VM_TOD_HIGH; 717 attr.addr = (uint64_t)tod_high; 718 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 719 } 720 721 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 722 { 723 int r; 724 struct kvm_s390_vm_tod_clock gtod; 725 struct kvm_device_attr attr = { 726 .group = KVM_S390_VM_TOD, 727 .attr = KVM_S390_VM_TOD_EXT, 728 .addr = (uint64_t)>od, 729 }; 730 731 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 732 *tod_high = gtod.epoch_idx; 733 *tod_low = gtod.tod; 734 735 return r; 736 } 737 738 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 739 { 740 int r; 741 struct kvm_device_attr attr = { 742 .group = KVM_S390_VM_TOD, 743 .attr = KVM_S390_VM_TOD_LOW, 744 .addr = (uint64_t)&tod_low, 745 }; 746 747 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 748 if (r) { 749 return r; 750 } 751 752 attr.attr = KVM_S390_VM_TOD_HIGH; 753 attr.addr = (uint64_t)&tod_high; 754 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 755 } 756 757 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 758 { 759 struct kvm_s390_vm_tod_clock gtod = { 760 .epoch_idx = tod_high, 761 .tod = tod_low, 762 }; 763 struct kvm_device_attr attr = { 764 .group = KVM_S390_VM_TOD, 765 .attr = KVM_S390_VM_TOD_EXT, 766 .addr = (uint64_t)>od, 767 }; 768 769 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 770 } 771 772 /** 773 * kvm_s390_mem_op: 774 * @addr: the logical start address in guest memory 775 * @ar: the access register number 776 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 777 * @len: length that should be transferred 778 * @is_write: true = write, false = read 779 * Returns: 0 on success, non-zero if an exception or error occurred 780 * 781 * Use KVM ioctl to read/write from/to guest memory. An access exception 782 * is injected into the vCPU in case of translation errors. 783 */ 784 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 785 int len, bool is_write) 786 { 787 struct kvm_s390_mem_op mem_op = { 788 .gaddr = addr, 789 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 790 .size = len, 791 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 792 : KVM_S390_MEMOP_LOGICAL_READ, 793 .buf = (uint64_t)hostbuf, 794 .ar = ar, 795 }; 796 int ret; 797 798 if (!cap_mem_op) { 799 return -ENOSYS; 800 } 801 if (!hostbuf) { 802 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 803 } 804 805 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 806 if (ret < 0) { 807 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 808 } 809 return ret; 810 } 811 812 /* 813 * Legacy layout for s390: 814 * Older S390 KVM requires the topmost vma of the RAM to be 815 * smaller than an system defined value, which is at least 256GB. 816 * Larger systems have larger values. We put the guest between 817 * the end of data segment (system break) and this value. We 818 * use 32GB as a base to have enough room for the system break 819 * to grow. We also have to use MAP parameters that avoid 820 * read-only mapping of guest pages. 821 */ 822 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared) 823 { 824 static void *mem; 825 826 if (mem) { 827 /* we only support one allocation, which is enough for initial ram */ 828 return NULL; 829 } 830 831 mem = mmap((void *) 0x800000000ULL, size, 832 PROT_EXEC|PROT_READ|PROT_WRITE, 833 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 834 if (mem == MAP_FAILED) { 835 mem = NULL; 836 } 837 if (mem && align) { 838 *align = QEMU_VMALLOC_ALIGN; 839 } 840 return mem; 841 } 842 843 static uint8_t const *sw_bp_inst; 844 static uint8_t sw_bp_ilen; 845 846 static void determine_sw_breakpoint_instr(void) 847 { 848 /* DIAG 501 is used for sw breakpoints with old kernels */ 849 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 850 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 851 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 852 853 if (sw_bp_inst) { 854 return; 855 } 856 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 857 sw_bp_inst = diag_501; 858 sw_bp_ilen = sizeof(diag_501); 859 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 860 } else { 861 sw_bp_inst = instr_0x0000; 862 sw_bp_ilen = sizeof(instr_0x0000); 863 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 864 } 865 } 866 867 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 868 { 869 determine_sw_breakpoint_instr(); 870 871 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 872 sw_bp_ilen, 0) || 873 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 874 return -EINVAL; 875 } 876 return 0; 877 } 878 879 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 880 { 881 uint8_t t[MAX_ILEN]; 882 883 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 884 return -EINVAL; 885 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 886 return -EINVAL; 887 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 888 sw_bp_ilen, 1)) { 889 return -EINVAL; 890 } 891 892 return 0; 893 } 894 895 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 896 int len, int type) 897 { 898 int n; 899 900 for (n = 0; n < nb_hw_breakpoints; n++) { 901 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 902 (hw_breakpoints[n].len == len || len == -1)) { 903 return &hw_breakpoints[n]; 904 } 905 } 906 907 return NULL; 908 } 909 910 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 911 { 912 int size; 913 914 if (find_hw_breakpoint(addr, len, type)) { 915 return -EEXIST; 916 } 917 918 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 919 920 if (!hw_breakpoints) { 921 nb_hw_breakpoints = 0; 922 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 923 } else { 924 hw_breakpoints = 925 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 926 } 927 928 if (!hw_breakpoints) { 929 nb_hw_breakpoints = 0; 930 return -ENOMEM; 931 } 932 933 hw_breakpoints[nb_hw_breakpoints].addr = addr; 934 hw_breakpoints[nb_hw_breakpoints].len = len; 935 hw_breakpoints[nb_hw_breakpoints].type = type; 936 937 nb_hw_breakpoints++; 938 939 return 0; 940 } 941 942 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 943 target_ulong len, int type) 944 { 945 switch (type) { 946 case GDB_BREAKPOINT_HW: 947 type = KVM_HW_BP; 948 break; 949 case GDB_WATCHPOINT_WRITE: 950 if (len < 1) { 951 return -EINVAL; 952 } 953 type = KVM_HW_WP_WRITE; 954 break; 955 default: 956 return -ENOSYS; 957 } 958 return insert_hw_breakpoint(addr, len, type); 959 } 960 961 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 962 target_ulong len, int type) 963 { 964 int size; 965 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 966 967 if (bp == NULL) { 968 return -ENOENT; 969 } 970 971 nb_hw_breakpoints--; 972 if (nb_hw_breakpoints > 0) { 973 /* 974 * In order to trim the array, move the last element to the position to 975 * be removed - if necessary. 976 */ 977 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 978 *bp = hw_breakpoints[nb_hw_breakpoints]; 979 } 980 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 981 hw_breakpoints = 982 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 983 } else { 984 g_free(hw_breakpoints); 985 hw_breakpoints = NULL; 986 } 987 988 return 0; 989 } 990 991 void kvm_arch_remove_all_hw_breakpoints(void) 992 { 993 nb_hw_breakpoints = 0; 994 g_free(hw_breakpoints); 995 hw_breakpoints = NULL; 996 } 997 998 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 999 { 1000 int i; 1001 1002 if (nb_hw_breakpoints > 0) { 1003 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 1004 dbg->arch.hw_bp = hw_breakpoints; 1005 1006 for (i = 0; i < nb_hw_breakpoints; ++i) { 1007 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 1008 hw_breakpoints[i].addr); 1009 } 1010 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1011 } else { 1012 dbg->arch.nr_hw_bp = 0; 1013 dbg->arch.hw_bp = NULL; 1014 } 1015 } 1016 1017 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 1018 { 1019 } 1020 1021 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1022 { 1023 return MEMTXATTRS_UNSPECIFIED; 1024 } 1025 1026 int kvm_arch_process_async_events(CPUState *cs) 1027 { 1028 return cs->halted; 1029 } 1030 1031 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1032 struct kvm_s390_interrupt *interrupt) 1033 { 1034 int r = 0; 1035 1036 interrupt->type = irq->type; 1037 switch (irq->type) { 1038 case KVM_S390_INT_VIRTIO: 1039 interrupt->parm = irq->u.ext.ext_params; 1040 /* fall through */ 1041 case KVM_S390_INT_PFAULT_INIT: 1042 case KVM_S390_INT_PFAULT_DONE: 1043 interrupt->parm64 = irq->u.ext.ext_params2; 1044 break; 1045 case KVM_S390_PROGRAM_INT: 1046 interrupt->parm = irq->u.pgm.code; 1047 break; 1048 case KVM_S390_SIGP_SET_PREFIX: 1049 interrupt->parm = irq->u.prefix.address; 1050 break; 1051 case KVM_S390_INT_SERVICE: 1052 interrupt->parm = irq->u.ext.ext_params; 1053 break; 1054 case KVM_S390_MCHK: 1055 interrupt->parm = irq->u.mchk.cr14; 1056 interrupt->parm64 = irq->u.mchk.mcic; 1057 break; 1058 case KVM_S390_INT_EXTERNAL_CALL: 1059 interrupt->parm = irq->u.extcall.code; 1060 break; 1061 case KVM_S390_INT_EMERGENCY: 1062 interrupt->parm = irq->u.emerg.code; 1063 break; 1064 case KVM_S390_SIGP_STOP: 1065 case KVM_S390_RESTART: 1066 break; /* These types have no parameters */ 1067 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1068 interrupt->parm = irq->u.io.subchannel_id << 16; 1069 interrupt->parm |= irq->u.io.subchannel_nr; 1070 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1071 interrupt->parm64 |= irq->u.io.io_int_word; 1072 break; 1073 default: 1074 r = -EINVAL; 1075 break; 1076 } 1077 return r; 1078 } 1079 1080 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1081 { 1082 struct kvm_s390_interrupt kvmint = {}; 1083 int r; 1084 1085 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1086 if (r < 0) { 1087 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1088 exit(1); 1089 } 1090 1091 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1092 if (r < 0) { 1093 fprintf(stderr, "KVM failed to inject interrupt\n"); 1094 exit(1); 1095 } 1096 } 1097 1098 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1099 { 1100 CPUState *cs = CPU(cpu); 1101 int r; 1102 1103 if (cap_s390_irq) { 1104 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1105 if (!r) { 1106 return; 1107 } 1108 error_report("KVM failed to inject interrupt %llx", irq->type); 1109 exit(1); 1110 } 1111 1112 inject_vcpu_irq_legacy(cs, irq); 1113 } 1114 1115 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1116 { 1117 struct kvm_s390_interrupt kvmint = {}; 1118 int r; 1119 1120 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1121 if (r < 0) { 1122 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1123 exit(1); 1124 } 1125 1126 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1127 if (r < 0) { 1128 fprintf(stderr, "KVM failed to inject interrupt\n"); 1129 exit(1); 1130 } 1131 } 1132 1133 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1134 { 1135 struct kvm_s390_irq irq = { 1136 .type = KVM_S390_PROGRAM_INT, 1137 .u.pgm.code = code, 1138 }; 1139 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1140 cpu->env.psw.addr); 1141 kvm_s390_vcpu_interrupt(cpu, &irq); 1142 } 1143 1144 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1145 { 1146 struct kvm_s390_irq irq = { 1147 .type = KVM_S390_PROGRAM_INT, 1148 .u.pgm.code = code, 1149 .u.pgm.trans_exc_code = te_code, 1150 .u.pgm.exc_access_id = te_code & 3, 1151 }; 1152 1153 kvm_s390_vcpu_interrupt(cpu, &irq); 1154 } 1155 1156 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1157 uint16_t ipbh0) 1158 { 1159 CPUS390XState *env = &cpu->env; 1160 uint64_t sccb; 1161 uint32_t code; 1162 int r = 0; 1163 1164 sccb = env->regs[ipbh0 & 0xf]; 1165 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1166 1167 r = sclp_service_call(env, sccb, code); 1168 if (r < 0) { 1169 kvm_s390_program_interrupt(cpu, -r); 1170 } else { 1171 setcc(cpu, r); 1172 } 1173 1174 return 0; 1175 } 1176 1177 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1178 { 1179 CPUS390XState *env = &cpu->env; 1180 int rc = 0; 1181 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1182 1183 switch (ipa1) { 1184 case PRIV_B2_XSCH: 1185 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1186 break; 1187 case PRIV_B2_CSCH: 1188 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1189 break; 1190 case PRIV_B2_HSCH: 1191 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1192 break; 1193 case PRIV_B2_MSCH: 1194 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1195 break; 1196 case PRIV_B2_SSCH: 1197 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1198 break; 1199 case PRIV_B2_STCRW: 1200 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1201 break; 1202 case PRIV_B2_STSCH: 1203 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1204 break; 1205 case PRIV_B2_TSCH: 1206 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1207 fprintf(stderr, "Spurious tsch intercept\n"); 1208 break; 1209 case PRIV_B2_CHSC: 1210 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1211 break; 1212 case PRIV_B2_TPI: 1213 /* This should have been handled by kvm already. */ 1214 fprintf(stderr, "Spurious tpi intercept\n"); 1215 break; 1216 case PRIV_B2_SCHM: 1217 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1218 run->s390_sieic.ipb, RA_IGNORED); 1219 break; 1220 case PRIV_B2_RSCH: 1221 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1222 break; 1223 case PRIV_B2_RCHP: 1224 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1225 break; 1226 case PRIV_B2_STCPS: 1227 /* We do not provide this instruction, it is suppressed. */ 1228 break; 1229 case PRIV_B2_SAL: 1230 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1231 break; 1232 case PRIV_B2_SIGA: 1233 /* Not provided, set CC = 3 for subchannel not operational */ 1234 setcc(cpu, 3); 1235 break; 1236 case PRIV_B2_SCLP_CALL: 1237 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1238 break; 1239 default: 1240 rc = -1; 1241 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1242 break; 1243 } 1244 1245 return rc; 1246 } 1247 1248 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1249 uint8_t *ar) 1250 { 1251 CPUS390XState *env = &cpu->env; 1252 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1253 uint32_t base2 = run->s390_sieic.ipb >> 28; 1254 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1255 ((run->s390_sieic.ipb & 0xff00) << 4); 1256 1257 if (disp2 & 0x80000) { 1258 disp2 += 0xfff00000; 1259 } 1260 if (ar) { 1261 *ar = base2; 1262 } 1263 1264 return (base2 ? env->regs[base2] : 0) + 1265 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1266 } 1267 1268 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1269 uint8_t *ar) 1270 { 1271 CPUS390XState *env = &cpu->env; 1272 uint32_t base2 = run->s390_sieic.ipb >> 28; 1273 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1274 ((run->s390_sieic.ipb & 0xff00) << 4); 1275 1276 if (disp2 & 0x80000) { 1277 disp2 += 0xfff00000; 1278 } 1279 if (ar) { 1280 *ar = base2; 1281 } 1282 1283 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1284 } 1285 1286 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1287 { 1288 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1289 1290 if (s390_has_feat(S390_FEAT_ZPCI)) { 1291 return clp_service_call(cpu, r2, RA_IGNORED); 1292 } else { 1293 return -1; 1294 } 1295 } 1296 1297 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1298 { 1299 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1300 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1301 1302 if (s390_has_feat(S390_FEAT_ZPCI)) { 1303 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1304 } else { 1305 return -1; 1306 } 1307 } 1308 1309 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1310 { 1311 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1312 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1313 1314 if (s390_has_feat(S390_FEAT_ZPCI)) { 1315 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1316 } else { 1317 return -1; 1318 } 1319 } 1320 1321 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1322 { 1323 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1324 uint64_t fiba; 1325 uint8_t ar; 1326 1327 if (s390_has_feat(S390_FEAT_ZPCI)) { 1328 fiba = get_base_disp_rxy(cpu, run, &ar); 1329 1330 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1331 } else { 1332 return -1; 1333 } 1334 } 1335 1336 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1337 { 1338 CPUS390XState *env = &cpu->env; 1339 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1340 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1341 uint8_t isc; 1342 uint16_t mode; 1343 int r; 1344 1345 mode = env->regs[r1] & 0xffff; 1346 isc = (env->regs[r3] >> 27) & 0x7; 1347 r = css_do_sic(env, isc, mode); 1348 if (r) { 1349 kvm_s390_program_interrupt(cpu, -r); 1350 } 1351 1352 return 0; 1353 } 1354 1355 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1356 { 1357 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1358 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1359 1360 if (s390_has_feat(S390_FEAT_ZPCI)) { 1361 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1362 } else { 1363 return -1; 1364 } 1365 } 1366 1367 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1368 { 1369 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1370 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1371 uint64_t gaddr; 1372 uint8_t ar; 1373 1374 if (s390_has_feat(S390_FEAT_ZPCI)) { 1375 gaddr = get_base_disp_rsy(cpu, run, &ar); 1376 1377 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1378 } else { 1379 return -1; 1380 } 1381 } 1382 1383 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1384 { 1385 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1386 uint64_t fiba; 1387 uint8_t ar; 1388 1389 if (s390_has_feat(S390_FEAT_ZPCI)) { 1390 fiba = get_base_disp_rxy(cpu, run, &ar); 1391 1392 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1393 } else { 1394 return -1; 1395 } 1396 } 1397 1398 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1399 { 1400 int r = 0; 1401 1402 switch (ipa1) { 1403 case PRIV_B9_CLP: 1404 r = kvm_clp_service_call(cpu, run); 1405 break; 1406 case PRIV_B9_PCISTG: 1407 r = kvm_pcistg_service_call(cpu, run); 1408 break; 1409 case PRIV_B9_PCILG: 1410 r = kvm_pcilg_service_call(cpu, run); 1411 break; 1412 case PRIV_B9_RPCIT: 1413 r = kvm_rpcit_service_call(cpu, run); 1414 break; 1415 case PRIV_B9_EQBS: 1416 /* just inject exception */ 1417 r = -1; 1418 break; 1419 default: 1420 r = -1; 1421 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1422 break; 1423 } 1424 1425 return r; 1426 } 1427 1428 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1429 { 1430 int r = 0; 1431 1432 switch (ipbl) { 1433 case PRIV_EB_PCISTB: 1434 r = kvm_pcistb_service_call(cpu, run); 1435 break; 1436 case PRIV_EB_SIC: 1437 r = kvm_sic_service_call(cpu, run); 1438 break; 1439 case PRIV_EB_SQBS: 1440 /* just inject exception */ 1441 r = -1; 1442 break; 1443 default: 1444 r = -1; 1445 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1446 break; 1447 } 1448 1449 return r; 1450 } 1451 1452 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1453 { 1454 int r = 0; 1455 1456 switch (ipbl) { 1457 case PRIV_E3_MPCIFC: 1458 r = kvm_mpcifc_service_call(cpu, run); 1459 break; 1460 case PRIV_E3_STPCIFC: 1461 r = kvm_stpcifc_service_call(cpu, run); 1462 break; 1463 default: 1464 r = -1; 1465 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1466 break; 1467 } 1468 1469 return r; 1470 } 1471 1472 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1473 { 1474 CPUS390XState *env = &cpu->env; 1475 int ret; 1476 1477 ret = s390_virtio_hypercall(env); 1478 if (ret == -EINVAL) { 1479 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1480 return 0; 1481 } 1482 1483 return ret; 1484 } 1485 1486 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1487 { 1488 uint64_t r1, r3; 1489 int rc; 1490 1491 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1492 r3 = run->s390_sieic.ipa & 0x000f; 1493 rc = handle_diag_288(&cpu->env, r1, r3); 1494 if (rc) { 1495 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1496 } 1497 } 1498 1499 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1500 { 1501 uint64_t r1, r3; 1502 1503 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1504 r3 = run->s390_sieic.ipa & 0x000f; 1505 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1506 } 1507 1508 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1509 { 1510 CPUS390XState *env = &cpu->env; 1511 unsigned long pc; 1512 1513 pc = env->psw.addr - sw_bp_ilen; 1514 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1515 env->psw.addr = pc; 1516 return EXCP_DEBUG; 1517 } 1518 1519 return -ENOENT; 1520 } 1521 1522 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1523 1524 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1525 { 1526 int r = 0; 1527 uint16_t func_code; 1528 1529 /* 1530 * For any diagnose call we support, bits 48-63 of the resulting 1531 * address specify the function code; the remainder is ignored. 1532 */ 1533 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1534 switch (func_code) { 1535 case DIAG_TIMEREVENT: 1536 kvm_handle_diag_288(cpu, run); 1537 break; 1538 case DIAG_IPL: 1539 kvm_handle_diag_308(cpu, run); 1540 break; 1541 case DIAG_KVM_HYPERCALL: 1542 r = handle_hypercall(cpu, run); 1543 break; 1544 case DIAG_KVM_BREAKPOINT: 1545 r = handle_sw_breakpoint(cpu, run); 1546 break; 1547 default: 1548 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1549 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1550 break; 1551 } 1552 1553 return r; 1554 } 1555 1556 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1557 { 1558 CPUS390XState *env = &cpu->env; 1559 const uint8_t r1 = ipa1 >> 4; 1560 const uint8_t r3 = ipa1 & 0x0f; 1561 int ret; 1562 uint8_t order; 1563 1564 /* get order code */ 1565 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1566 1567 ret = handle_sigp(env, order, r1, r3); 1568 setcc(cpu, ret); 1569 return 0; 1570 } 1571 1572 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1573 { 1574 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1575 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1576 int r = -1; 1577 1578 DPRINTF("handle_instruction 0x%x 0x%x\n", 1579 run->s390_sieic.ipa, run->s390_sieic.ipb); 1580 switch (ipa0) { 1581 case IPA0_B2: 1582 r = handle_b2(cpu, run, ipa1); 1583 break; 1584 case IPA0_B9: 1585 r = handle_b9(cpu, run, ipa1); 1586 break; 1587 case IPA0_EB: 1588 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1589 break; 1590 case IPA0_E3: 1591 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1592 break; 1593 case IPA0_DIAG: 1594 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1595 break; 1596 case IPA0_SIGP: 1597 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1598 break; 1599 } 1600 1601 if (r < 0) { 1602 r = 0; 1603 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1604 } 1605 1606 return r; 1607 } 1608 1609 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1610 int pswoffset) 1611 { 1612 CPUState *cs = CPU(cpu); 1613 1614 s390_cpu_halt(cpu); 1615 cpu->env.crash_reason = reason; 1616 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1617 } 1618 1619 /* try to detect pgm check loops */ 1620 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1621 { 1622 CPUState *cs = CPU(cpu); 1623 PSW oldpsw, newpsw; 1624 1625 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1626 offsetof(LowCore, program_new_psw)); 1627 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1628 offsetof(LowCore, program_new_psw) + 8); 1629 oldpsw.mask = run->psw_mask; 1630 oldpsw.addr = run->psw_addr; 1631 /* 1632 * Avoid endless loops of operation exceptions, if the pgm new 1633 * PSW will cause a new operation exception. 1634 * The heuristic checks if the pgm new psw is within 6 bytes before 1635 * the faulting psw address (with same DAT, AS settings) and the 1636 * new psw is not a wait psw and the fault was not triggered by 1637 * problem state. In that case go into crashed state. 1638 */ 1639 1640 if (oldpsw.addr - newpsw.addr <= 6 && 1641 !(newpsw.mask & PSW_MASK_WAIT) && 1642 !(oldpsw.mask & PSW_MASK_PSTATE) && 1643 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1644 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1645 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1646 offsetof(LowCore, program_new_psw)); 1647 return EXCP_HALTED; 1648 } 1649 return 0; 1650 } 1651 1652 static int handle_intercept(S390CPU *cpu) 1653 { 1654 CPUState *cs = CPU(cpu); 1655 struct kvm_run *run = cs->kvm_run; 1656 int icpt_code = run->s390_sieic.icptcode; 1657 int r = 0; 1658 1659 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1660 (long)cs->kvm_run->psw_addr); 1661 switch (icpt_code) { 1662 case ICPT_INSTRUCTION: 1663 r = handle_instruction(cpu, run); 1664 break; 1665 case ICPT_PROGRAM: 1666 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1667 offsetof(LowCore, program_new_psw)); 1668 r = EXCP_HALTED; 1669 break; 1670 case ICPT_EXT_INT: 1671 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1672 offsetof(LowCore, external_new_psw)); 1673 r = EXCP_HALTED; 1674 break; 1675 case ICPT_WAITPSW: 1676 /* disabled wait, since enabled wait is handled in kernel */ 1677 s390_handle_wait(cpu); 1678 r = EXCP_HALTED; 1679 break; 1680 case ICPT_CPU_STOP: 1681 do_stop_interrupt(&cpu->env); 1682 r = EXCP_HALTED; 1683 break; 1684 case ICPT_OPEREXC: 1685 /* check for break points */ 1686 r = handle_sw_breakpoint(cpu, run); 1687 if (r == -ENOENT) { 1688 /* Then check for potential pgm check loops */ 1689 r = handle_oper_loop(cpu, run); 1690 if (r == 0) { 1691 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1692 } 1693 } 1694 break; 1695 case ICPT_SOFT_INTERCEPT: 1696 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1697 exit(1); 1698 break; 1699 case ICPT_IO: 1700 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1701 exit(1); 1702 break; 1703 default: 1704 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1705 exit(1); 1706 break; 1707 } 1708 1709 return r; 1710 } 1711 1712 static int handle_tsch(S390CPU *cpu) 1713 { 1714 CPUState *cs = CPU(cpu); 1715 struct kvm_run *run = cs->kvm_run; 1716 int ret; 1717 1718 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1719 RA_IGNORED); 1720 if (ret < 0) { 1721 /* 1722 * Failure. 1723 * If an I/O interrupt had been dequeued, we have to reinject it. 1724 */ 1725 if (run->s390_tsch.dequeued) { 1726 s390_io_interrupt(run->s390_tsch.subchannel_id, 1727 run->s390_tsch.subchannel_nr, 1728 run->s390_tsch.io_int_parm, 1729 run->s390_tsch.io_int_word); 1730 } 1731 ret = 0; 1732 } 1733 return ret; 1734 } 1735 1736 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1737 { 1738 SysIB_322 sysib; 1739 int del; 1740 1741 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1742 return; 1743 } 1744 /* Shift the stack of Extended Names to prepare for our own data */ 1745 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1746 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1747 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1748 * assumed it's not capable of managing Extended Names for lower levels. 1749 */ 1750 for (del = 1; del < sysib.count; del++) { 1751 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1752 break; 1753 } 1754 } 1755 if (del < sysib.count) { 1756 memset(sysib.ext_names[del], 0, 1757 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1758 } 1759 /* Insert short machine name in EBCDIC, padded with blanks */ 1760 if (qemu_name) { 1761 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1762 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1763 strlen(qemu_name))); 1764 } 1765 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1766 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1767 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1768 * considered by s390 as not capable of providing any Extended Name. 1769 * Therefore if no name was specified on qemu invocation, we go with the 1770 * same "KVMguest" default, which KVM has filled into short name field. 1771 */ 1772 if (qemu_name) { 1773 strncpy((char *)sysib.ext_names[0], qemu_name, 1774 sizeof(sysib.ext_names[0])); 1775 } else { 1776 strcpy((char *)sysib.ext_names[0], "KVMguest"); 1777 } 1778 /* Insert UUID */ 1779 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1780 1781 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1782 } 1783 1784 static int handle_stsi(S390CPU *cpu) 1785 { 1786 CPUState *cs = CPU(cpu); 1787 struct kvm_run *run = cs->kvm_run; 1788 1789 switch (run->s390_stsi.fc) { 1790 case 3: 1791 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1792 return 0; 1793 } 1794 /* Only sysib 3.2.2 needs post-handling for now. */ 1795 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1796 return 0; 1797 default: 1798 return 0; 1799 } 1800 } 1801 1802 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1803 { 1804 CPUState *cs = CPU(cpu); 1805 struct kvm_run *run = cs->kvm_run; 1806 1807 int ret = 0; 1808 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1809 1810 switch (arch_info->type) { 1811 case KVM_HW_WP_WRITE: 1812 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1813 cs->watchpoint_hit = &hw_watchpoint; 1814 hw_watchpoint.vaddr = arch_info->addr; 1815 hw_watchpoint.flags = BP_MEM_WRITE; 1816 ret = EXCP_DEBUG; 1817 } 1818 break; 1819 case KVM_HW_BP: 1820 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1821 ret = EXCP_DEBUG; 1822 } 1823 break; 1824 case KVM_SINGLESTEP: 1825 if (cs->singlestep_enabled) { 1826 ret = EXCP_DEBUG; 1827 } 1828 break; 1829 default: 1830 ret = -ENOSYS; 1831 } 1832 1833 return ret; 1834 } 1835 1836 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1837 { 1838 S390CPU *cpu = S390_CPU(cs); 1839 int ret = 0; 1840 1841 qemu_mutex_lock_iothread(); 1842 1843 kvm_cpu_synchronize_state(cs); 1844 1845 switch (run->exit_reason) { 1846 case KVM_EXIT_S390_SIEIC: 1847 ret = handle_intercept(cpu); 1848 break; 1849 case KVM_EXIT_S390_RESET: 1850 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1851 break; 1852 case KVM_EXIT_S390_TSCH: 1853 ret = handle_tsch(cpu); 1854 break; 1855 case KVM_EXIT_S390_STSI: 1856 ret = handle_stsi(cpu); 1857 break; 1858 case KVM_EXIT_DEBUG: 1859 ret = kvm_arch_handle_debug_exit(cpu); 1860 break; 1861 default: 1862 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1863 break; 1864 } 1865 qemu_mutex_unlock_iothread(); 1866 1867 if (ret == 0) { 1868 ret = EXCP_INTERRUPT; 1869 } 1870 return ret; 1871 } 1872 1873 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1874 { 1875 return true; 1876 } 1877 1878 void kvm_s390_enable_css_support(S390CPU *cpu) 1879 { 1880 int r; 1881 1882 /* Activate host kernel channel subsystem support. */ 1883 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1884 assert(r == 0); 1885 } 1886 1887 void kvm_arch_init_irq_routing(KVMState *s) 1888 { 1889 /* 1890 * Note that while irqchip capabilities generally imply that cpustates 1891 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1892 * have to override the common code kvm_halt_in_kernel_allowed setting. 1893 */ 1894 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1895 kvm_gsi_routing_allowed = true; 1896 kvm_halt_in_kernel_allowed = false; 1897 } 1898 } 1899 1900 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1901 int vq, bool assign) 1902 { 1903 struct kvm_ioeventfd kick = { 1904 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1905 KVM_IOEVENTFD_FLAG_DATAMATCH, 1906 .fd = event_notifier_get_fd(notifier), 1907 .datamatch = vq, 1908 .addr = sch, 1909 .len = 8, 1910 }; 1911 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 1912 kick.datamatch); 1913 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1914 return -ENOSYS; 1915 } 1916 if (!assign) { 1917 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1918 } 1919 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1920 } 1921 1922 int kvm_s390_get_ri(void) 1923 { 1924 return cap_ri; 1925 } 1926 1927 int kvm_s390_get_gs(void) 1928 { 1929 return cap_gs; 1930 } 1931 1932 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1933 { 1934 struct kvm_mp_state mp_state = {}; 1935 int ret; 1936 1937 /* the kvm part might not have been initialized yet */ 1938 if (CPU(cpu)->kvm_state == NULL) { 1939 return 0; 1940 } 1941 1942 switch (cpu_state) { 1943 case S390_CPU_STATE_STOPPED: 1944 mp_state.mp_state = KVM_MP_STATE_STOPPED; 1945 break; 1946 case S390_CPU_STATE_CHECK_STOP: 1947 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 1948 break; 1949 case S390_CPU_STATE_OPERATING: 1950 mp_state.mp_state = KVM_MP_STATE_OPERATING; 1951 break; 1952 case S390_CPU_STATE_LOAD: 1953 mp_state.mp_state = KVM_MP_STATE_LOAD; 1954 break; 1955 default: 1956 error_report("Requested CPU state is not a valid S390 CPU state: %u", 1957 cpu_state); 1958 exit(1); 1959 } 1960 1961 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1962 if (ret) { 1963 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 1964 strerror(-ret)); 1965 } 1966 1967 return ret; 1968 } 1969 1970 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 1971 { 1972 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 1973 struct kvm_s390_irq_state irq_state = { 1974 .buf = (uint64_t) cpu->irqstate, 1975 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 1976 }; 1977 CPUState *cs = CPU(cpu); 1978 int32_t bytes; 1979 1980 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1981 return; 1982 } 1983 1984 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 1985 if (bytes < 0) { 1986 cpu->irqstate_saved_size = 0; 1987 error_report("Migration of interrupt state failed"); 1988 return; 1989 } 1990 1991 cpu->irqstate_saved_size = bytes; 1992 } 1993 1994 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 1995 { 1996 CPUState *cs = CPU(cpu); 1997 struct kvm_s390_irq_state irq_state = { 1998 .buf = (uint64_t) cpu->irqstate, 1999 .len = cpu->irqstate_saved_size, 2000 }; 2001 int r; 2002 2003 if (cpu->irqstate_saved_size == 0) { 2004 return 0; 2005 } 2006 2007 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2008 return -ENOSYS; 2009 } 2010 2011 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2012 if (r) { 2013 error_report("Setting interrupt state failed %d", r); 2014 } 2015 return r; 2016 } 2017 2018 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2019 uint64_t address, uint32_t data, PCIDevice *dev) 2020 { 2021 S390PCIBusDevice *pbdev; 2022 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2023 2024 if (!dev) { 2025 DPRINTF("add_msi_route no pci device\n"); 2026 return -ENODEV; 2027 } 2028 2029 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2030 if (!pbdev) { 2031 DPRINTF("add_msi_route no zpci device\n"); 2032 return -ENODEV; 2033 } 2034 2035 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2036 route->flags = 0; 2037 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2038 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2039 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2040 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2041 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2042 return 0; 2043 } 2044 2045 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2046 int vector, PCIDevice *dev) 2047 { 2048 return 0; 2049 } 2050 2051 int kvm_arch_release_virq_post(int virq) 2052 { 2053 return 0; 2054 } 2055 2056 int kvm_arch_msi_data_to_gsi(uint32_t data) 2057 { 2058 abort(); 2059 } 2060 2061 static int query_cpu_subfunc(S390FeatBitmap features) 2062 { 2063 struct kvm_s390_vm_cpu_subfunc prop; 2064 struct kvm_device_attr attr = { 2065 .group = KVM_S390_VM_CPU_MODEL, 2066 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2067 .addr = (uint64_t) &prop, 2068 }; 2069 int rc; 2070 2071 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2072 if (rc) { 2073 return rc; 2074 } 2075 2076 /* 2077 * We're going to add all subfunctions now, if the corresponding feature 2078 * is available that unlocks the query functions. 2079 */ 2080 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2081 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2082 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2083 } 2084 if (test_bit(S390_FEAT_MSA, features)) { 2085 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2086 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2087 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2088 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2089 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2090 } 2091 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2092 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2093 } 2094 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2095 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2096 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2097 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2098 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2099 } 2100 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2101 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2102 } 2103 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2104 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2105 } 2106 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2107 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2108 } 2109 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2110 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2111 } 2112 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2113 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2114 } 2115 return 0; 2116 } 2117 2118 static int configure_cpu_subfunc(const S390FeatBitmap features) 2119 { 2120 struct kvm_s390_vm_cpu_subfunc prop = {}; 2121 struct kvm_device_attr attr = { 2122 .group = KVM_S390_VM_CPU_MODEL, 2123 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2124 .addr = (uint64_t) &prop, 2125 }; 2126 2127 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2128 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2129 /* hardware support might be missing, IBC will handle most of this */ 2130 return 0; 2131 } 2132 2133 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2134 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2135 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2136 } 2137 if (test_bit(S390_FEAT_MSA, features)) { 2138 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2139 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2140 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2141 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2142 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2143 } 2144 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2145 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2146 } 2147 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2148 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2149 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2150 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2151 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2152 } 2153 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2154 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2155 } 2156 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2157 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2158 } 2159 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2160 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2161 } 2162 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2163 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2164 } 2165 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2166 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2167 } 2168 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2169 } 2170 2171 static int kvm_to_feat[][2] = { 2172 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2173 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2174 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2175 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2176 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2177 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2178 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2179 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2180 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2181 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2182 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2183 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2184 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2185 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2186 }; 2187 2188 static int query_cpu_feat(S390FeatBitmap features) 2189 { 2190 struct kvm_s390_vm_cpu_feat prop; 2191 struct kvm_device_attr attr = { 2192 .group = KVM_S390_VM_CPU_MODEL, 2193 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2194 .addr = (uint64_t) &prop, 2195 }; 2196 int rc; 2197 int i; 2198 2199 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2200 if (rc) { 2201 return rc; 2202 } 2203 2204 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2205 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2206 set_bit(kvm_to_feat[i][1], features); 2207 } 2208 } 2209 return 0; 2210 } 2211 2212 static int configure_cpu_feat(const S390FeatBitmap features) 2213 { 2214 struct kvm_s390_vm_cpu_feat prop = {}; 2215 struct kvm_device_attr attr = { 2216 .group = KVM_S390_VM_CPU_MODEL, 2217 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2218 .addr = (uint64_t) &prop, 2219 }; 2220 int i; 2221 2222 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2223 if (test_bit(kvm_to_feat[i][1], features)) { 2224 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2225 } 2226 } 2227 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2228 } 2229 2230 bool kvm_s390_cpu_models_supported(void) 2231 { 2232 if (!cpu_model_allowed()) { 2233 /* compatibility machines interfere with the cpu model */ 2234 return false; 2235 } 2236 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2237 KVM_S390_VM_CPU_MACHINE) && 2238 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2239 KVM_S390_VM_CPU_PROCESSOR) && 2240 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2241 KVM_S390_VM_CPU_MACHINE_FEAT) && 2242 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2243 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2244 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2245 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2246 } 2247 2248 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2249 { 2250 struct kvm_s390_vm_cpu_machine prop = {}; 2251 struct kvm_device_attr attr = { 2252 .group = KVM_S390_VM_CPU_MODEL, 2253 .attr = KVM_S390_VM_CPU_MACHINE, 2254 .addr = (uint64_t) &prop, 2255 }; 2256 uint16_t unblocked_ibc = 0, cpu_type = 0; 2257 int rc; 2258 2259 memset(model, 0, sizeof(*model)); 2260 2261 if (!kvm_s390_cpu_models_supported()) { 2262 error_setg(errp, "KVM doesn't support CPU models"); 2263 return; 2264 } 2265 2266 /* query the basic cpu model properties */ 2267 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2268 if (rc) { 2269 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2270 return; 2271 } 2272 2273 cpu_type = cpuid_type(prop.cpuid); 2274 if (has_ibc(prop.ibc)) { 2275 model->lowest_ibc = lowest_ibc(prop.ibc); 2276 unblocked_ibc = unblocked_ibc(prop.ibc); 2277 } 2278 model->cpu_id = cpuid_id(prop.cpuid); 2279 model->cpu_id_format = cpuid_format(prop.cpuid); 2280 model->cpu_ver = 0xff; 2281 2282 /* get supported cpu features indicated via STFL(E) */ 2283 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2284 (uint8_t *) prop.fac_mask); 2285 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2286 if (test_bit(S390_FEAT_STFLE, model->features)) { 2287 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2288 } 2289 /* get supported cpu features indicated e.g. via SCLP */ 2290 rc = query_cpu_feat(model->features); 2291 if (rc) { 2292 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2293 return; 2294 } 2295 /* get supported cpu subfunctions indicated via query / test bit */ 2296 rc = query_cpu_subfunc(model->features); 2297 if (rc) { 2298 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2299 return; 2300 } 2301 2302 /* PTFF subfunctions might be indicated although kernel support missing */ 2303 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2304 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2305 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2306 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2307 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2308 } 2309 2310 /* with cpu model support, CMM is only indicated if really available */ 2311 if (kvm_s390_cmma_available()) { 2312 set_bit(S390_FEAT_CMM, model->features); 2313 } else { 2314 /* no cmm -> no cmm nt */ 2315 clear_bit(S390_FEAT_CMM_NT, model->features); 2316 } 2317 2318 /* bpb needs kernel support for migration, VSIE and reset */ 2319 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2320 clear_bit(S390_FEAT_BPB, model->features); 2321 } 2322 2323 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2324 set_bit(S390_FEAT_ZPCI, model->features); 2325 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2326 2327 if (s390_known_cpu_type(cpu_type)) { 2328 /* we want the exact model, even if some features are missing */ 2329 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2330 ibc_ec_ga(unblocked_ibc), NULL); 2331 } else { 2332 /* model unknown, e.g. too new - search using features */ 2333 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2334 ibc_ec_ga(unblocked_ibc), 2335 model->features); 2336 } 2337 if (!model->def) { 2338 error_setg(errp, "KVM: host CPU model could not be identified"); 2339 return; 2340 } 2341 /* for now, we can only provide the AP feature with HW support */ 2342 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2343 KVM_S390_VM_CRYPTO_ENABLE_APIE)) { 2344 set_bit(S390_FEAT_AP, model->features); 2345 } 2346 /* strip of features that are not part of the maximum model */ 2347 bitmap_and(model->features, model->features, model->def->full_feat, 2348 S390_FEAT_MAX); 2349 } 2350 2351 static void kvm_s390_configure_apie(bool interpret) 2352 { 2353 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2354 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2355 2356 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2357 kvm_s390_set_attr(attr); 2358 } 2359 } 2360 2361 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2362 { 2363 struct kvm_s390_vm_cpu_processor prop = { 2364 .fac_list = { 0 }, 2365 }; 2366 struct kvm_device_attr attr = { 2367 .group = KVM_S390_VM_CPU_MODEL, 2368 .attr = KVM_S390_VM_CPU_PROCESSOR, 2369 .addr = (uint64_t) &prop, 2370 }; 2371 int rc; 2372 2373 if (!model) { 2374 /* compatibility handling if cpu models are disabled */ 2375 if (kvm_s390_cmma_available()) { 2376 kvm_s390_enable_cmma(); 2377 } 2378 return; 2379 } 2380 if (!kvm_s390_cpu_models_supported()) { 2381 error_setg(errp, "KVM doesn't support CPU models"); 2382 return; 2383 } 2384 prop.cpuid = s390_cpuid_from_cpu_model(model); 2385 prop.ibc = s390_ibc_from_cpu_model(model); 2386 /* configure cpu features indicated via STFL(e) */ 2387 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2388 (uint8_t *) prop.fac_list); 2389 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2390 if (rc) { 2391 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2392 return; 2393 } 2394 /* configure cpu features indicated e.g. via SCLP */ 2395 rc = configure_cpu_feat(model->features); 2396 if (rc) { 2397 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2398 return; 2399 } 2400 /* configure cpu subfunctions indicated via query / test bit */ 2401 rc = configure_cpu_subfunc(model->features); 2402 if (rc) { 2403 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2404 return; 2405 } 2406 /* enable CMM via CMMA */ 2407 if (test_bit(S390_FEAT_CMM, model->features)) { 2408 kvm_s390_enable_cmma(); 2409 } 2410 2411 if (test_bit(S390_FEAT_AP, model->features)) { 2412 kvm_s390_configure_apie(true); 2413 } 2414 } 2415 2416 void kvm_s390_restart_interrupt(S390CPU *cpu) 2417 { 2418 struct kvm_s390_irq irq = { 2419 .type = KVM_S390_RESTART, 2420 }; 2421 2422 kvm_s390_vcpu_interrupt(cpu, &irq); 2423 } 2424 2425 void kvm_s390_stop_interrupt(S390CPU *cpu) 2426 { 2427 struct kvm_s390_irq irq = { 2428 .type = KVM_S390_SIGP_STOP, 2429 }; 2430 2431 kvm_s390_vcpu_interrupt(cpu, &irq); 2432 } 2433