1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "cpu.h" 28 #include "s390x-internal.h" 29 #include "kvm_s390x.h" 30 #include "sysemu/kvm_int.h" 31 #include "qemu/cutils.h" 32 #include "qapi/error.h" 33 #include "qemu/error-report.h" 34 #include "qemu/timer.h" 35 #include "qemu/units.h" 36 #include "qemu/main-loop.h" 37 #include "qemu/mmap-alloc.h" 38 #include "qemu/log.h" 39 #include "sysemu/sysemu.h" 40 #include "sysemu/hw_accel.h" 41 #include "sysemu/runstate.h" 42 #include "sysemu/device_tree.h" 43 #include "exec/gdbstub.h" 44 #include "exec/ram_addr.h" 45 #include "trace.h" 46 #include "hw/s390x/s390-pci-inst.h" 47 #include "hw/s390x/s390-pci-bus.h" 48 #include "hw/s390x/ipl.h" 49 #include "hw/s390x/ebcdic.h" 50 #include "exec/memattrs.h" 51 #include "hw/s390x/s390-virtio-ccw.h" 52 #include "hw/s390x/s390-virtio-hcall.h" 53 #include "target/s390x/kvm/pv.h" 54 55 #define kvm_vm_check_mem_attr(s, attr) \ 56 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 57 58 #define IPA0_DIAG 0x8300 59 #define IPA0_SIGP 0xae00 60 #define IPA0_B2 0xb200 61 #define IPA0_B9 0xb900 62 #define IPA0_EB 0xeb00 63 #define IPA0_E3 0xe300 64 65 #define PRIV_B2_SCLP_CALL 0x20 66 #define PRIV_B2_CSCH 0x30 67 #define PRIV_B2_HSCH 0x31 68 #define PRIV_B2_MSCH 0x32 69 #define PRIV_B2_SSCH 0x33 70 #define PRIV_B2_STSCH 0x34 71 #define PRIV_B2_TSCH 0x35 72 #define PRIV_B2_TPI 0x36 73 #define PRIV_B2_SAL 0x37 74 #define PRIV_B2_RSCH 0x38 75 #define PRIV_B2_STCRW 0x39 76 #define PRIV_B2_STCPS 0x3a 77 #define PRIV_B2_RCHP 0x3b 78 #define PRIV_B2_SCHM 0x3c 79 #define PRIV_B2_CHSC 0x5f 80 #define PRIV_B2_SIGA 0x74 81 #define PRIV_B2_XSCH 0x76 82 83 #define PRIV_EB_SQBS 0x8a 84 #define PRIV_EB_PCISTB 0xd0 85 #define PRIV_EB_SIC 0xd1 86 87 #define PRIV_B9_EQBS 0x9c 88 #define PRIV_B9_CLP 0xa0 89 #define PRIV_B9_PTF 0xa2 90 #define PRIV_B9_PCISTG 0xd0 91 #define PRIV_B9_PCILG 0xd2 92 #define PRIV_B9_RPCIT 0xd3 93 94 #define PRIV_E3_MPCIFC 0xd0 95 #define PRIV_E3_STPCIFC 0xd4 96 97 #define DIAG_TIMEREVENT 0x288 98 #define DIAG_IPL 0x308 99 #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318 100 #define DIAG_KVM_HYPERCALL 0x500 101 #define DIAG_KVM_BREAKPOINT 0x501 102 103 #define ICPT_INSTRUCTION 0x04 104 #define ICPT_PROGRAM 0x08 105 #define ICPT_EXT_INT 0x14 106 #define ICPT_WAITPSW 0x1c 107 #define ICPT_SOFT_INTERCEPT 0x24 108 #define ICPT_CPU_STOP 0x28 109 #define ICPT_OPEREXC 0x2c 110 #define ICPT_IO 0x40 111 #define ICPT_PV_INSTR 0x68 112 #define ICPT_PV_INSTR_NOTIFICATION 0x6c 113 114 #define NR_LOCAL_IRQS 32 115 /* 116 * Needs to be big enough to contain max_cpus emergency signals 117 * and in addition NR_LOCAL_IRQS interrupts 118 */ 119 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 120 (max_cpus + NR_LOCAL_IRQS)) 121 /* 122 * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages 123 * as the dirty bitmap must be managed by bitops that take an int as 124 * position indicator. This would end at an unaligned address 125 * (0x7fffff00000). As future variants might provide larger pages 126 * and to make all addresses properly aligned, let us split at 4TB. 127 */ 128 #define KVM_SLOT_MAX_BYTES (4UL * TiB) 129 130 static CPUWatchpoint hw_watchpoint; 131 /* 132 * We don't use a list because this structure is also used to transmit the 133 * hardware breakpoints to the kernel. 134 */ 135 static struct kvm_hw_breakpoint *hw_breakpoints; 136 static int nb_hw_breakpoints; 137 138 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 139 KVM_CAP_LAST_INFO 140 }; 141 142 static int cap_sync_regs; 143 static int cap_async_pf; 144 static int cap_mem_op; 145 static int cap_mem_op_extension; 146 static int cap_s390_irq; 147 static int cap_ri; 148 static int cap_hpage_1m; 149 static int cap_vcpu_resets; 150 static int cap_protected; 151 static int cap_zpci_op; 152 static int cap_protected_dump; 153 154 static bool mem_op_storage_key_support; 155 156 static int active_cmma; 157 158 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 159 { 160 struct kvm_device_attr attr = { 161 .group = KVM_S390_VM_MEM_CTRL, 162 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 163 .addr = (uint64_t) memory_limit, 164 }; 165 166 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 167 } 168 169 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 170 { 171 int rc; 172 173 struct kvm_device_attr attr = { 174 .group = KVM_S390_VM_MEM_CTRL, 175 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 176 .addr = (uint64_t) &new_limit, 177 }; 178 179 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 180 return 0; 181 } 182 183 rc = kvm_s390_query_mem_limit(hw_limit); 184 if (rc) { 185 return rc; 186 } else if (*hw_limit < new_limit) { 187 return -E2BIG; 188 } 189 190 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 191 } 192 193 int kvm_s390_cmma_active(void) 194 { 195 return active_cmma; 196 } 197 198 static bool kvm_s390_cmma_available(void) 199 { 200 static bool initialized, value; 201 202 if (!initialized) { 203 initialized = true; 204 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 205 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 206 } 207 return value; 208 } 209 210 void kvm_s390_cmma_reset(void) 211 { 212 int rc; 213 struct kvm_device_attr attr = { 214 .group = KVM_S390_VM_MEM_CTRL, 215 .attr = KVM_S390_VM_MEM_CLR_CMMA, 216 }; 217 218 if (!kvm_s390_cmma_active()) { 219 return; 220 } 221 222 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 223 trace_kvm_clear_cmma(rc); 224 } 225 226 static void kvm_s390_enable_cmma(void) 227 { 228 int rc; 229 struct kvm_device_attr attr = { 230 .group = KVM_S390_VM_MEM_CTRL, 231 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 232 }; 233 234 if (cap_hpage_1m) { 235 warn_report("CMM will not be enabled because it is not " 236 "compatible with huge memory backings."); 237 return; 238 } 239 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 240 active_cmma = !rc; 241 trace_kvm_enable_cmma(rc); 242 } 243 244 static void kvm_s390_set_crypto_attr(uint64_t attr) 245 { 246 struct kvm_device_attr attribute = { 247 .group = KVM_S390_VM_CRYPTO, 248 .attr = attr, 249 }; 250 251 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 252 253 if (ret) { 254 error_report("Failed to set crypto device attribute %lu: %s", 255 attr, strerror(-ret)); 256 } 257 } 258 259 static void kvm_s390_init_aes_kw(void) 260 { 261 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 262 263 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 264 NULL)) { 265 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 266 } 267 268 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 269 kvm_s390_set_crypto_attr(attr); 270 } 271 } 272 273 static void kvm_s390_init_dea_kw(void) 274 { 275 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 276 277 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 278 NULL)) { 279 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 280 } 281 282 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 283 kvm_s390_set_crypto_attr(attr); 284 } 285 } 286 287 void kvm_s390_crypto_reset(void) 288 { 289 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 290 kvm_s390_init_aes_kw(); 291 kvm_s390_init_dea_kw(); 292 } 293 } 294 295 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 296 { 297 if (pagesize == 4 * KiB) { 298 return; 299 } 300 301 if (!hpage_1m_allowed()) { 302 error_setg(errp, "This QEMU machine does not support huge page " 303 "mappings"); 304 return; 305 } 306 307 if (pagesize != 1 * MiB) { 308 error_setg(errp, "Memory backing with 2G pages was specified, " 309 "but KVM does not support this memory backing"); 310 return; 311 } 312 313 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 314 error_setg(errp, "Memory backing with 1M pages was specified, " 315 "but KVM does not support this memory backing"); 316 return; 317 } 318 319 cap_hpage_1m = 1; 320 } 321 322 int kvm_s390_get_hpage_1m(void) 323 { 324 return cap_hpage_1m; 325 } 326 327 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque) 328 { 329 MachineClass *mc = MACHINE_CLASS(oc); 330 331 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 332 } 333 334 int kvm_arch_get_default_type(MachineState *ms) 335 { 336 return 0; 337 } 338 339 int kvm_arch_init(MachineState *ms, KVMState *s) 340 { 341 int required_caps[] = { 342 KVM_CAP_DEVICE_CTRL, 343 KVM_CAP_SYNC_REGS, 344 }; 345 346 for (int i = 0; i < ARRAY_SIZE(required_caps); i++) { 347 if (!kvm_check_extension(s, required_caps[i])) { 348 error_report("KVM is missing capability #%d - " 349 "please use kernel 3.15 or newer", required_caps[i]); 350 return -1; 351 } 352 } 353 354 object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE, 355 false, NULL); 356 357 if (!kvm_check_extension(s, KVM_CAP_S390_COW)) { 358 error_report("KVM is missing capability KVM_CAP_S390_COW - " 359 "unsupported environment"); 360 return -1; 361 } 362 363 cap_sync_regs = true; 364 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 365 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 366 cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION); 367 mem_op_storage_key_support = cap_mem_op_extension > 0; 368 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 369 cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS); 370 cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED); 371 cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP); 372 cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP); 373 374 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 375 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 376 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 377 kvm_vm_enable_cap(s, KVM_CAP_S390_CPU_TOPOLOGY, 0); 378 if (ri_allowed()) { 379 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 380 cap_ri = 1; 381 } 382 } 383 if (cpu_model_allowed()) { 384 kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0); 385 } 386 387 /* 388 * The migration interface for ais was introduced with kernel 4.13 389 * but the capability itself had been active since 4.12. As migration 390 * support is considered necessary, we only try to enable this for 391 * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available. 392 */ 393 if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() && 394 kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) { 395 kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); 396 } 397 398 kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); 399 return 0; 400 } 401 402 int kvm_arch_irqchip_create(KVMState *s) 403 { 404 return 0; 405 } 406 407 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 408 { 409 return cpu->cpu_index; 410 } 411 412 int kvm_arch_init_vcpu(CPUState *cs) 413 { 414 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 415 S390CPU *cpu = S390_CPU(cs); 416 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 417 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 418 return 0; 419 } 420 421 int kvm_arch_destroy_vcpu(CPUState *cs) 422 { 423 S390CPU *cpu = S390_CPU(cs); 424 425 g_free(cpu->irqstate); 426 cpu->irqstate = NULL; 427 428 return 0; 429 } 430 431 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type) 432 { 433 CPUState *cs = CPU(cpu); 434 435 /* 436 * The reset call is needed here to reset in-kernel vcpu data that 437 * we can't access directly from QEMU (i.e. with older kernels 438 * which don't support sync_regs/ONE_REG). Before this ioctl 439 * cpu_synchronize_state() is called in common kvm code 440 * (kvm-all). 441 */ 442 if (kvm_vcpu_ioctl(cs, type)) { 443 error_report("CPU reset failed on CPU %i type %lx", 444 cs->cpu_index, type); 445 } 446 } 447 448 void kvm_s390_reset_vcpu_initial(S390CPU *cpu) 449 { 450 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 451 } 452 453 void kvm_s390_reset_vcpu_clear(S390CPU *cpu) 454 { 455 if (cap_vcpu_resets) { 456 kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET); 457 } else { 458 kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); 459 } 460 } 461 462 void kvm_s390_reset_vcpu_normal(S390CPU *cpu) 463 { 464 if (cap_vcpu_resets) { 465 kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET); 466 } 467 } 468 469 static int can_sync_regs(CPUState *cs, int regs) 470 { 471 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 472 } 473 474 int kvm_arch_put_registers(CPUState *cs, int level) 475 { 476 S390CPU *cpu = S390_CPU(cs); 477 CPUS390XState *env = &cpu->env; 478 struct kvm_sregs sregs; 479 struct kvm_regs regs; 480 struct kvm_fpu fpu = {}; 481 int r; 482 int i; 483 484 /* always save the PSW and the GPRS*/ 485 cs->kvm_run->psw_addr = env->psw.addr; 486 cs->kvm_run->psw_mask = env->psw.mask; 487 488 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 489 for (i = 0; i < 16; i++) { 490 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 491 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 492 } 493 } else { 494 for (i = 0; i < 16; i++) { 495 regs.gprs[i] = env->regs[i]; 496 } 497 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 498 if (r < 0) { 499 return r; 500 } 501 } 502 503 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 504 for (i = 0; i < 32; i++) { 505 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 506 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 507 } 508 cs->kvm_run->s.regs.fpc = env->fpc; 509 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 510 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 511 for (i = 0; i < 16; i++) { 512 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 513 } 514 cs->kvm_run->s.regs.fpc = env->fpc; 515 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 516 } else { 517 /* Floating point */ 518 for (i = 0; i < 16; i++) { 519 fpu.fprs[i] = *get_freg(env, i); 520 } 521 fpu.fpc = env->fpc; 522 523 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 524 if (r < 0) { 525 return r; 526 } 527 } 528 529 /* Do we need to save more than that? */ 530 if (level == KVM_PUT_RUNTIME_STATE) { 531 return 0; 532 } 533 534 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 535 cs->kvm_run->s.regs.cputm = env->cputm; 536 cs->kvm_run->s.regs.ckc = env->ckc; 537 cs->kvm_run->s.regs.todpr = env->todpr; 538 cs->kvm_run->s.regs.gbea = env->gbea; 539 cs->kvm_run->s.regs.pp = env->pp; 540 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 541 } else { 542 /* 543 * These ONE_REGS are not protected by a capability. As they are only 544 * necessary for migration we just trace a possible error, but don't 545 * return with an error return code. 546 */ 547 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 548 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 549 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 550 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 551 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 552 } 553 554 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 555 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 556 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 557 } 558 559 /* pfault parameters */ 560 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 561 cs->kvm_run->s.regs.pft = env->pfault_token; 562 cs->kvm_run->s.regs.pfs = env->pfault_select; 563 cs->kvm_run->s.regs.pfc = env->pfault_compare; 564 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 565 } else if (cap_async_pf) { 566 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 567 if (r < 0) { 568 return r; 569 } 570 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 571 if (r < 0) { 572 return r; 573 } 574 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 575 if (r < 0) { 576 return r; 577 } 578 } 579 580 /* access registers and control registers*/ 581 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 582 for (i = 0; i < 16; i++) { 583 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 584 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 585 } 586 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 587 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 588 } else { 589 for (i = 0; i < 16; i++) { 590 sregs.acrs[i] = env->aregs[i]; 591 sregs.crs[i] = env->cregs[i]; 592 } 593 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 594 if (r < 0) { 595 return r; 596 } 597 } 598 599 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 600 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 601 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 602 } 603 604 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 605 cs->kvm_run->s.regs.bpbc = env->bpbc; 606 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 607 } 608 609 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 610 cs->kvm_run->s.regs.etoken = env->etoken; 611 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 612 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 613 } 614 615 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 616 cs->kvm_run->s.regs.diag318 = env->diag318_info; 617 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 618 } 619 620 /* Finally the prefix */ 621 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 622 cs->kvm_run->s.regs.prefix = env->psa; 623 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 624 } else { 625 /* prefix is only supported via sync regs */ 626 } 627 return 0; 628 } 629 630 int kvm_arch_get_registers(CPUState *cs) 631 { 632 S390CPU *cpu = S390_CPU(cs); 633 CPUS390XState *env = &cpu->env; 634 struct kvm_sregs sregs; 635 struct kvm_regs regs; 636 struct kvm_fpu fpu; 637 int i, r; 638 639 /* get the PSW */ 640 env->psw.addr = cs->kvm_run->psw_addr; 641 env->psw.mask = cs->kvm_run->psw_mask; 642 643 /* the GPRS */ 644 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 645 for (i = 0; i < 16; i++) { 646 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 647 } 648 } else { 649 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 650 if (r < 0) { 651 return r; 652 } 653 for (i = 0; i < 16; i++) { 654 env->regs[i] = regs.gprs[i]; 655 } 656 } 657 658 /* The ACRS and CRS */ 659 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 660 for (i = 0; i < 16; i++) { 661 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 662 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 663 } 664 } else { 665 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 666 if (r < 0) { 667 return r; 668 } 669 for (i = 0; i < 16; i++) { 670 env->aregs[i] = sregs.acrs[i]; 671 env->cregs[i] = sregs.crs[i]; 672 } 673 } 674 675 /* Floating point and vector registers */ 676 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 677 for (i = 0; i < 32; i++) { 678 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 679 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 680 } 681 env->fpc = cs->kvm_run->s.regs.fpc; 682 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 683 for (i = 0; i < 16; i++) { 684 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 685 } 686 env->fpc = cs->kvm_run->s.regs.fpc; 687 } else { 688 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 689 if (r < 0) { 690 return r; 691 } 692 for (i = 0; i < 16; i++) { 693 *get_freg(env, i) = fpu.fprs[i]; 694 } 695 env->fpc = fpu.fpc; 696 } 697 698 /* The prefix */ 699 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 700 env->psa = cs->kvm_run->s.regs.prefix; 701 } 702 703 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 704 env->cputm = cs->kvm_run->s.regs.cputm; 705 env->ckc = cs->kvm_run->s.regs.ckc; 706 env->todpr = cs->kvm_run->s.regs.todpr; 707 env->gbea = cs->kvm_run->s.regs.gbea; 708 env->pp = cs->kvm_run->s.regs.pp; 709 } else { 710 /* 711 * These ONE_REGS are not protected by a capability. As they are only 712 * necessary for migration we just trace a possible error, but don't 713 * return with an error return code. 714 */ 715 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 716 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 717 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 718 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 719 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 720 } 721 722 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 723 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 724 } 725 726 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 727 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 728 } 729 730 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 731 env->bpbc = cs->kvm_run->s.regs.bpbc; 732 } 733 734 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 735 env->etoken = cs->kvm_run->s.regs.etoken; 736 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 737 } 738 739 /* pfault parameters */ 740 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 741 env->pfault_token = cs->kvm_run->s.regs.pft; 742 env->pfault_select = cs->kvm_run->s.regs.pfs; 743 env->pfault_compare = cs->kvm_run->s.regs.pfc; 744 } else if (cap_async_pf) { 745 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 746 if (r < 0) { 747 return r; 748 } 749 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 750 if (r < 0) { 751 return r; 752 } 753 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 754 if (r < 0) { 755 return r; 756 } 757 } 758 759 if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { 760 env->diag318_info = cs->kvm_run->s.regs.diag318; 761 } 762 763 return 0; 764 } 765 766 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 767 { 768 int r; 769 struct kvm_device_attr attr = { 770 .group = KVM_S390_VM_TOD, 771 .attr = KVM_S390_VM_TOD_LOW, 772 .addr = (uint64_t)tod_low, 773 }; 774 775 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 776 if (r) { 777 return r; 778 } 779 780 attr.attr = KVM_S390_VM_TOD_HIGH; 781 attr.addr = (uint64_t)tod_high; 782 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 783 } 784 785 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 786 { 787 int r; 788 struct kvm_s390_vm_tod_clock gtod; 789 struct kvm_device_attr attr = { 790 .group = KVM_S390_VM_TOD, 791 .attr = KVM_S390_VM_TOD_EXT, 792 .addr = (uint64_t)>od, 793 }; 794 795 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 796 *tod_high = gtod.epoch_idx; 797 *tod_low = gtod.tod; 798 799 return r; 800 } 801 802 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 803 { 804 int r; 805 struct kvm_device_attr attr = { 806 .group = KVM_S390_VM_TOD, 807 .attr = KVM_S390_VM_TOD_LOW, 808 .addr = (uint64_t)&tod_low, 809 }; 810 811 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 812 if (r) { 813 return r; 814 } 815 816 attr.attr = KVM_S390_VM_TOD_HIGH; 817 attr.addr = (uint64_t)&tod_high; 818 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 819 } 820 821 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 822 { 823 struct kvm_s390_vm_tod_clock gtod = { 824 .epoch_idx = tod_high, 825 .tod = tod_low, 826 }; 827 struct kvm_device_attr attr = { 828 .group = KVM_S390_VM_TOD, 829 .attr = KVM_S390_VM_TOD_EXT, 830 .addr = (uint64_t)>od, 831 }; 832 833 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 834 } 835 836 /** 837 * kvm_s390_mem_op: 838 * @addr: the logical start address in guest memory 839 * @ar: the access register number 840 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 841 * @len: length that should be transferred 842 * @is_write: true = write, false = read 843 * Returns: 0 on success, non-zero if an exception or error occurred 844 * 845 * Use KVM ioctl to read/write from/to guest memory. An access exception 846 * is injected into the vCPU in case of translation errors. 847 */ 848 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 849 int len, bool is_write) 850 { 851 struct kvm_s390_mem_op mem_op = { 852 .gaddr = addr, 853 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 854 .size = len, 855 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 856 : KVM_S390_MEMOP_LOGICAL_READ, 857 .buf = (uint64_t)hostbuf, 858 .ar = ar, 859 .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY, 860 }; 861 int ret; 862 863 if (!cap_mem_op) { 864 return -ENOSYS; 865 } 866 if (!hostbuf) { 867 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 868 } 869 if (mem_op_storage_key_support) { 870 mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION; 871 } 872 873 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 874 if (ret < 0) { 875 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 876 } 877 return ret; 878 } 879 880 int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf, 881 int len, bool is_write) 882 { 883 struct kvm_s390_mem_op mem_op = { 884 .sida_offset = offset, 885 .size = len, 886 .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE 887 : KVM_S390_MEMOP_SIDA_READ, 888 .buf = (uint64_t)hostbuf, 889 }; 890 int ret; 891 892 if (!cap_mem_op || !cap_protected) { 893 return -ENOSYS; 894 } 895 896 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 897 if (ret < 0) { 898 error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 899 abort(); 900 } 901 return ret; 902 } 903 904 static uint8_t const *sw_bp_inst; 905 static uint8_t sw_bp_ilen; 906 907 static void determine_sw_breakpoint_instr(void) 908 { 909 /* DIAG 501 is used for sw breakpoints with old kernels */ 910 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 911 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 912 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 913 914 if (sw_bp_inst) { 915 return; 916 } 917 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 918 sw_bp_inst = diag_501; 919 sw_bp_ilen = sizeof(diag_501); 920 trace_kvm_sw_breakpoint(4); 921 } else { 922 sw_bp_inst = instr_0x0000; 923 sw_bp_ilen = sizeof(instr_0x0000); 924 trace_kvm_sw_breakpoint(2); 925 } 926 } 927 928 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 929 { 930 determine_sw_breakpoint_instr(); 931 932 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 933 sw_bp_ilen, 0) || 934 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 935 return -EINVAL; 936 } 937 return 0; 938 } 939 940 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 941 { 942 uint8_t t[MAX_ILEN]; 943 944 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 945 return -EINVAL; 946 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 947 return -EINVAL; 948 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 949 sw_bp_ilen, 1)) { 950 return -EINVAL; 951 } 952 953 return 0; 954 } 955 956 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 957 int len, int type) 958 { 959 int n; 960 961 for (n = 0; n < nb_hw_breakpoints; n++) { 962 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 963 (hw_breakpoints[n].len == len || len == -1)) { 964 return &hw_breakpoints[n]; 965 } 966 } 967 968 return NULL; 969 } 970 971 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 972 { 973 int size; 974 975 if (find_hw_breakpoint(addr, len, type)) { 976 return -EEXIST; 977 } 978 979 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 980 981 if (!hw_breakpoints) { 982 nb_hw_breakpoints = 0; 983 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 984 } else { 985 hw_breakpoints = 986 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 987 } 988 989 if (!hw_breakpoints) { 990 nb_hw_breakpoints = 0; 991 return -ENOMEM; 992 } 993 994 hw_breakpoints[nb_hw_breakpoints].addr = addr; 995 hw_breakpoints[nb_hw_breakpoints].len = len; 996 hw_breakpoints[nb_hw_breakpoints].type = type; 997 998 nb_hw_breakpoints++; 999 1000 return 0; 1001 } 1002 1003 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 1004 { 1005 switch (type) { 1006 case GDB_BREAKPOINT_HW: 1007 type = KVM_HW_BP; 1008 break; 1009 case GDB_WATCHPOINT_WRITE: 1010 if (len < 1) { 1011 return -EINVAL; 1012 } 1013 type = KVM_HW_WP_WRITE; 1014 break; 1015 default: 1016 return -ENOSYS; 1017 } 1018 return insert_hw_breakpoint(addr, len, type); 1019 } 1020 1021 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 1022 { 1023 int size; 1024 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 1025 1026 if (bp == NULL) { 1027 return -ENOENT; 1028 } 1029 1030 nb_hw_breakpoints--; 1031 if (nb_hw_breakpoints > 0) { 1032 /* 1033 * In order to trim the array, move the last element to the position to 1034 * be removed - if necessary. 1035 */ 1036 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 1037 *bp = hw_breakpoints[nb_hw_breakpoints]; 1038 } 1039 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 1040 hw_breakpoints = 1041 g_realloc(hw_breakpoints, size); 1042 } else { 1043 g_free(hw_breakpoints); 1044 hw_breakpoints = NULL; 1045 } 1046 1047 return 0; 1048 } 1049 1050 void kvm_arch_remove_all_hw_breakpoints(void) 1051 { 1052 nb_hw_breakpoints = 0; 1053 g_free(hw_breakpoints); 1054 hw_breakpoints = NULL; 1055 } 1056 1057 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 1058 { 1059 int i; 1060 1061 if (nb_hw_breakpoints > 0) { 1062 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 1063 dbg->arch.hw_bp = hw_breakpoints; 1064 1065 for (i = 0; i < nb_hw_breakpoints; ++i) { 1066 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 1067 hw_breakpoints[i].addr); 1068 } 1069 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 1070 } else { 1071 dbg->arch.nr_hw_bp = 0; 1072 dbg->arch.hw_bp = NULL; 1073 } 1074 } 1075 1076 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 1077 { 1078 } 1079 1080 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1081 { 1082 return MEMTXATTRS_UNSPECIFIED; 1083 } 1084 1085 int kvm_arch_process_async_events(CPUState *cs) 1086 { 1087 return cs->halted; 1088 } 1089 1090 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1091 struct kvm_s390_interrupt *interrupt) 1092 { 1093 int r = 0; 1094 1095 interrupt->type = irq->type; 1096 switch (irq->type) { 1097 case KVM_S390_INT_VIRTIO: 1098 interrupt->parm = irq->u.ext.ext_params; 1099 /* fall through */ 1100 case KVM_S390_INT_PFAULT_INIT: 1101 case KVM_S390_INT_PFAULT_DONE: 1102 interrupt->parm64 = irq->u.ext.ext_params2; 1103 break; 1104 case KVM_S390_PROGRAM_INT: 1105 interrupt->parm = irq->u.pgm.code; 1106 break; 1107 case KVM_S390_SIGP_SET_PREFIX: 1108 interrupt->parm = irq->u.prefix.address; 1109 break; 1110 case KVM_S390_INT_SERVICE: 1111 interrupt->parm = irq->u.ext.ext_params; 1112 break; 1113 case KVM_S390_MCHK: 1114 interrupt->parm = irq->u.mchk.cr14; 1115 interrupt->parm64 = irq->u.mchk.mcic; 1116 break; 1117 case KVM_S390_INT_EXTERNAL_CALL: 1118 interrupt->parm = irq->u.extcall.code; 1119 break; 1120 case KVM_S390_INT_EMERGENCY: 1121 interrupt->parm = irq->u.emerg.code; 1122 break; 1123 case KVM_S390_SIGP_STOP: 1124 case KVM_S390_RESTART: 1125 break; /* These types have no parameters */ 1126 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1127 interrupt->parm = irq->u.io.subchannel_id << 16; 1128 interrupt->parm |= irq->u.io.subchannel_nr; 1129 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1130 interrupt->parm64 |= irq->u.io.io_int_word; 1131 break; 1132 default: 1133 r = -EINVAL; 1134 break; 1135 } 1136 return r; 1137 } 1138 1139 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1140 { 1141 struct kvm_s390_interrupt kvmint = {}; 1142 int r; 1143 1144 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1145 if (r < 0) { 1146 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1147 exit(1); 1148 } 1149 1150 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1151 if (r < 0) { 1152 fprintf(stderr, "KVM failed to inject interrupt\n"); 1153 exit(1); 1154 } 1155 } 1156 1157 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1158 { 1159 CPUState *cs = CPU(cpu); 1160 int r; 1161 1162 if (cap_s390_irq) { 1163 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1164 if (!r) { 1165 return; 1166 } 1167 error_report("KVM failed to inject interrupt %llx", irq->type); 1168 exit(1); 1169 } 1170 1171 inject_vcpu_irq_legacy(cs, irq); 1172 } 1173 1174 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1175 { 1176 struct kvm_s390_interrupt kvmint = {}; 1177 int r; 1178 1179 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1180 if (r < 0) { 1181 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1182 exit(1); 1183 } 1184 1185 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1186 if (r < 0) { 1187 fprintf(stderr, "KVM failed to inject interrupt\n"); 1188 exit(1); 1189 } 1190 } 1191 1192 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1193 { 1194 struct kvm_s390_irq irq = { 1195 .type = KVM_S390_PROGRAM_INT, 1196 .u.pgm.code = code, 1197 }; 1198 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1199 cpu->env.psw.addr); 1200 kvm_s390_vcpu_interrupt(cpu, &irq); 1201 } 1202 1203 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1204 { 1205 struct kvm_s390_irq irq = { 1206 .type = KVM_S390_PROGRAM_INT, 1207 .u.pgm.code = code, 1208 .u.pgm.trans_exc_code = te_code, 1209 .u.pgm.exc_access_id = te_code & 3, 1210 }; 1211 1212 kvm_s390_vcpu_interrupt(cpu, &irq); 1213 } 1214 1215 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1216 uint16_t ipbh0) 1217 { 1218 CPUS390XState *env = &cpu->env; 1219 uint64_t sccb; 1220 uint32_t code; 1221 int r; 1222 1223 sccb = env->regs[ipbh0 & 0xf]; 1224 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1225 1226 switch (run->s390_sieic.icptcode) { 1227 case ICPT_PV_INSTR_NOTIFICATION: 1228 g_assert(s390_is_pv()); 1229 /* The notification intercepts are currently handled by KVM */ 1230 error_report("unexpected SCLP PV notification"); 1231 exit(1); 1232 break; 1233 case ICPT_PV_INSTR: 1234 g_assert(s390_is_pv()); 1235 sclp_service_call_protected(env, sccb, code); 1236 /* Setting the CC is done by the Ultravisor. */ 1237 break; 1238 case ICPT_INSTRUCTION: 1239 g_assert(!s390_is_pv()); 1240 r = sclp_service_call(env, sccb, code); 1241 if (r < 0) { 1242 kvm_s390_program_interrupt(cpu, -r); 1243 return; 1244 } 1245 setcc(cpu, r); 1246 } 1247 } 1248 1249 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1250 { 1251 CPUS390XState *env = &cpu->env; 1252 int rc = 0; 1253 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1254 1255 switch (ipa1) { 1256 case PRIV_B2_XSCH: 1257 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1258 break; 1259 case PRIV_B2_CSCH: 1260 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1261 break; 1262 case PRIV_B2_HSCH: 1263 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1264 break; 1265 case PRIV_B2_MSCH: 1266 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1267 break; 1268 case PRIV_B2_SSCH: 1269 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1270 break; 1271 case PRIV_B2_STCRW: 1272 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1273 break; 1274 case PRIV_B2_STSCH: 1275 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1276 break; 1277 case PRIV_B2_TSCH: 1278 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1279 fprintf(stderr, "Spurious tsch intercept\n"); 1280 break; 1281 case PRIV_B2_CHSC: 1282 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1283 break; 1284 case PRIV_B2_TPI: 1285 /* This should have been handled by kvm already. */ 1286 fprintf(stderr, "Spurious tpi intercept\n"); 1287 break; 1288 case PRIV_B2_SCHM: 1289 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1290 run->s390_sieic.ipb, RA_IGNORED); 1291 break; 1292 case PRIV_B2_RSCH: 1293 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1294 break; 1295 case PRIV_B2_RCHP: 1296 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1297 break; 1298 case PRIV_B2_STCPS: 1299 /* We do not provide this instruction, it is suppressed. */ 1300 break; 1301 case PRIV_B2_SAL: 1302 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1303 break; 1304 case PRIV_B2_SIGA: 1305 /* Not provided, set CC = 3 for subchannel not operational */ 1306 setcc(cpu, 3); 1307 break; 1308 case PRIV_B2_SCLP_CALL: 1309 kvm_sclp_service_call(cpu, run, ipbh0); 1310 break; 1311 default: 1312 rc = -1; 1313 trace_kvm_insn_unhandled_priv(ipa1); 1314 break; 1315 } 1316 1317 return rc; 1318 } 1319 1320 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1321 uint8_t *ar) 1322 { 1323 CPUS390XState *env = &cpu->env; 1324 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1325 uint32_t base2 = run->s390_sieic.ipb >> 28; 1326 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1327 ((run->s390_sieic.ipb & 0xff00) << 4); 1328 1329 if (disp2 & 0x80000) { 1330 disp2 += 0xfff00000; 1331 } 1332 if (ar) { 1333 *ar = base2; 1334 } 1335 1336 return (base2 ? env->regs[base2] : 0) + 1337 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1338 } 1339 1340 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1341 uint8_t *ar) 1342 { 1343 CPUS390XState *env = &cpu->env; 1344 uint32_t base2 = run->s390_sieic.ipb >> 28; 1345 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1346 ((run->s390_sieic.ipb & 0xff00) << 4); 1347 1348 if (disp2 & 0x80000) { 1349 disp2 += 0xfff00000; 1350 } 1351 if (ar) { 1352 *ar = base2; 1353 } 1354 1355 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1356 } 1357 1358 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1359 { 1360 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1361 1362 if (s390_has_feat(S390_FEAT_ZPCI)) { 1363 return clp_service_call(cpu, r2, RA_IGNORED); 1364 } else { 1365 return -1; 1366 } 1367 } 1368 1369 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1370 { 1371 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1372 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1373 1374 if (s390_has_feat(S390_FEAT_ZPCI)) { 1375 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1376 } else { 1377 return -1; 1378 } 1379 } 1380 1381 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1382 { 1383 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1384 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1385 1386 if (s390_has_feat(S390_FEAT_ZPCI)) { 1387 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1388 } else { 1389 return -1; 1390 } 1391 } 1392 1393 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1394 { 1395 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1396 uint64_t fiba; 1397 uint8_t ar; 1398 1399 if (s390_has_feat(S390_FEAT_ZPCI)) { 1400 fiba = get_base_disp_rxy(cpu, run, &ar); 1401 1402 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1403 } else { 1404 return -1; 1405 } 1406 } 1407 1408 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1409 { 1410 CPUS390XState *env = &cpu->env; 1411 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1412 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1413 uint8_t isc; 1414 uint16_t mode; 1415 int r; 1416 1417 mode = env->regs[r1] & 0xffff; 1418 isc = (env->regs[r3] >> 27) & 0x7; 1419 r = css_do_sic(env, isc, mode); 1420 if (r) { 1421 kvm_s390_program_interrupt(cpu, -r); 1422 } 1423 1424 return 0; 1425 } 1426 1427 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1428 { 1429 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1430 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1431 1432 if (s390_has_feat(S390_FEAT_ZPCI)) { 1433 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1434 } else { 1435 return -1; 1436 } 1437 } 1438 1439 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1440 { 1441 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1442 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1443 uint64_t gaddr; 1444 uint8_t ar; 1445 1446 if (s390_has_feat(S390_FEAT_ZPCI)) { 1447 gaddr = get_base_disp_rsy(cpu, run, &ar); 1448 1449 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1450 } else { 1451 return -1; 1452 } 1453 } 1454 1455 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1456 { 1457 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1458 uint64_t fiba; 1459 uint8_t ar; 1460 1461 if (s390_has_feat(S390_FEAT_ZPCI)) { 1462 fiba = get_base_disp_rxy(cpu, run, &ar); 1463 1464 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1465 } else { 1466 return -1; 1467 } 1468 } 1469 1470 static void kvm_handle_ptf(S390CPU *cpu, struct kvm_run *run) 1471 { 1472 uint8_t r1 = (run->s390_sieic.ipb >> 20) & 0x0f; 1473 1474 s390_handle_ptf(cpu, r1, RA_IGNORED); 1475 } 1476 1477 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1478 { 1479 int r = 0; 1480 1481 switch (ipa1) { 1482 case PRIV_B9_CLP: 1483 r = kvm_clp_service_call(cpu, run); 1484 break; 1485 case PRIV_B9_PCISTG: 1486 r = kvm_pcistg_service_call(cpu, run); 1487 break; 1488 case PRIV_B9_PCILG: 1489 r = kvm_pcilg_service_call(cpu, run); 1490 break; 1491 case PRIV_B9_RPCIT: 1492 r = kvm_rpcit_service_call(cpu, run); 1493 break; 1494 case PRIV_B9_PTF: 1495 kvm_handle_ptf(cpu, run); 1496 break; 1497 case PRIV_B9_EQBS: 1498 /* just inject exception */ 1499 r = -1; 1500 break; 1501 default: 1502 r = -1; 1503 trace_kvm_insn_unhandled_priv(ipa1); 1504 break; 1505 } 1506 1507 return r; 1508 } 1509 1510 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1511 { 1512 int r = 0; 1513 1514 switch (ipbl) { 1515 case PRIV_EB_PCISTB: 1516 r = kvm_pcistb_service_call(cpu, run); 1517 break; 1518 case PRIV_EB_SIC: 1519 r = kvm_sic_service_call(cpu, run); 1520 break; 1521 case PRIV_EB_SQBS: 1522 /* just inject exception */ 1523 r = -1; 1524 break; 1525 default: 1526 r = -1; 1527 trace_kvm_insn_unhandled_priv(ipbl); 1528 break; 1529 } 1530 1531 return r; 1532 } 1533 1534 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1535 { 1536 int r = 0; 1537 1538 switch (ipbl) { 1539 case PRIV_E3_MPCIFC: 1540 r = kvm_mpcifc_service_call(cpu, run); 1541 break; 1542 case PRIV_E3_STPCIFC: 1543 r = kvm_stpcifc_service_call(cpu, run); 1544 break; 1545 default: 1546 r = -1; 1547 trace_kvm_insn_unhandled_priv(ipbl); 1548 break; 1549 } 1550 1551 return r; 1552 } 1553 1554 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1555 { 1556 CPUS390XState *env = &cpu->env; 1557 int ret; 1558 1559 ret = s390_virtio_hypercall(env); 1560 if (ret == -EINVAL) { 1561 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1562 return 0; 1563 } 1564 1565 return ret; 1566 } 1567 1568 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1569 { 1570 uint64_t r1, r3; 1571 int rc; 1572 1573 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1574 r3 = run->s390_sieic.ipa & 0x000f; 1575 rc = handle_diag_288(&cpu->env, r1, r3); 1576 if (rc) { 1577 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1578 } 1579 } 1580 1581 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1582 { 1583 uint64_t r1, r3; 1584 1585 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1586 r3 = run->s390_sieic.ipa & 0x000f; 1587 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1588 } 1589 1590 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1591 { 1592 CPUS390XState *env = &cpu->env; 1593 unsigned long pc; 1594 1595 pc = env->psw.addr - sw_bp_ilen; 1596 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1597 env->psw.addr = pc; 1598 return EXCP_DEBUG; 1599 } 1600 1601 return -ENOENT; 1602 } 1603 1604 void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info) 1605 { 1606 CPUS390XState *env = &S390_CPU(cs)->env; 1607 1608 /* Feat bit is set only if KVM supports sync for diag318 */ 1609 if (s390_has_feat(S390_FEAT_DIAG_318)) { 1610 env->diag318_info = diag318_info; 1611 cs->kvm_run->s.regs.diag318 = diag318_info; 1612 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; 1613 /* 1614 * diag 318 info is zeroed during a clear reset and 1615 * diag 308 IPL subcodes. 1616 */ 1617 } 1618 } 1619 1620 static void handle_diag_318(S390CPU *cpu, struct kvm_run *run) 1621 { 1622 uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4; 1623 uint64_t diag318_info = run->s.regs.gprs[reg]; 1624 CPUState *t; 1625 1626 /* 1627 * DIAG 318 can only be enabled with KVM support. As such, let's 1628 * ensure a guest cannot execute this instruction erroneously. 1629 */ 1630 if (!s390_has_feat(S390_FEAT_DIAG_318)) { 1631 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1632 return; 1633 } 1634 1635 CPU_FOREACH(t) { 1636 run_on_cpu(t, s390_do_cpu_set_diag318, 1637 RUN_ON_CPU_HOST_ULONG(diag318_info)); 1638 } 1639 } 1640 1641 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1642 1643 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1644 { 1645 int r = 0; 1646 uint16_t func_code; 1647 1648 /* 1649 * For any diagnose call we support, bits 48-63 of the resulting 1650 * address specify the function code; the remainder is ignored. 1651 */ 1652 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1653 switch (func_code) { 1654 case DIAG_TIMEREVENT: 1655 kvm_handle_diag_288(cpu, run); 1656 break; 1657 case DIAG_IPL: 1658 kvm_handle_diag_308(cpu, run); 1659 break; 1660 case DIAG_SET_CONTROL_PROGRAM_CODES: 1661 handle_diag_318(cpu, run); 1662 break; 1663 case DIAG_KVM_HYPERCALL: 1664 r = handle_hypercall(cpu, run); 1665 break; 1666 case DIAG_KVM_BREAKPOINT: 1667 r = handle_sw_breakpoint(cpu, run); 1668 break; 1669 default: 1670 trace_kvm_insn_diag(func_code); 1671 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1672 break; 1673 } 1674 1675 return r; 1676 } 1677 1678 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1679 { 1680 CPUS390XState *env = &cpu->env; 1681 const uint8_t r1 = ipa1 >> 4; 1682 const uint8_t r3 = ipa1 & 0x0f; 1683 int ret; 1684 uint8_t order; 1685 1686 /* get order code */ 1687 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1688 1689 ret = handle_sigp(env, order, r1, r3); 1690 setcc(cpu, ret); 1691 return 0; 1692 } 1693 1694 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1695 { 1696 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1697 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1698 int r = -1; 1699 1700 trace_kvm_insn(run->s390_sieic.ipa, run->s390_sieic.ipb); 1701 switch (ipa0) { 1702 case IPA0_B2: 1703 r = handle_b2(cpu, run, ipa1); 1704 break; 1705 case IPA0_B9: 1706 r = handle_b9(cpu, run, ipa1); 1707 break; 1708 case IPA0_EB: 1709 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1710 break; 1711 case IPA0_E3: 1712 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1713 break; 1714 case IPA0_DIAG: 1715 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1716 break; 1717 case IPA0_SIGP: 1718 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1719 break; 1720 } 1721 1722 if (r < 0) { 1723 r = 0; 1724 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1725 } 1726 1727 return r; 1728 } 1729 1730 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1731 int pswoffset) 1732 { 1733 CPUState *cs = CPU(cpu); 1734 1735 s390_cpu_halt(cpu); 1736 cpu->env.crash_reason = reason; 1737 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1738 } 1739 1740 /* try to detect pgm check loops */ 1741 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1742 { 1743 CPUState *cs = CPU(cpu); 1744 PSW oldpsw, newpsw; 1745 1746 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1747 offsetof(LowCore, program_new_psw)); 1748 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1749 offsetof(LowCore, program_new_psw) + 8); 1750 oldpsw.mask = run->psw_mask; 1751 oldpsw.addr = run->psw_addr; 1752 /* 1753 * Avoid endless loops of operation exceptions, if the pgm new 1754 * PSW will cause a new operation exception. 1755 * The heuristic checks if the pgm new psw is within 6 bytes before 1756 * the faulting psw address (with same DAT, AS settings) and the 1757 * new psw is not a wait psw and the fault was not triggered by 1758 * problem state. In that case go into crashed state. 1759 */ 1760 1761 if (oldpsw.addr - newpsw.addr <= 6 && 1762 !(newpsw.mask & PSW_MASK_WAIT) && 1763 !(oldpsw.mask & PSW_MASK_PSTATE) && 1764 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1765 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1766 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1767 offsetof(LowCore, program_new_psw)); 1768 return EXCP_HALTED; 1769 } 1770 return 0; 1771 } 1772 1773 static int handle_intercept(S390CPU *cpu) 1774 { 1775 CPUState *cs = CPU(cpu); 1776 struct kvm_run *run = cs->kvm_run; 1777 int icpt_code = run->s390_sieic.icptcode; 1778 int r = 0; 1779 1780 trace_kvm_intercept(icpt_code, (long)run->psw_addr); 1781 switch (icpt_code) { 1782 case ICPT_INSTRUCTION: 1783 case ICPT_PV_INSTR: 1784 case ICPT_PV_INSTR_NOTIFICATION: 1785 r = handle_instruction(cpu, run); 1786 break; 1787 case ICPT_PROGRAM: 1788 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1789 offsetof(LowCore, program_new_psw)); 1790 r = EXCP_HALTED; 1791 break; 1792 case ICPT_EXT_INT: 1793 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1794 offsetof(LowCore, external_new_psw)); 1795 r = EXCP_HALTED; 1796 break; 1797 case ICPT_WAITPSW: 1798 /* disabled wait, since enabled wait is handled in kernel */ 1799 s390_handle_wait(cpu); 1800 r = EXCP_HALTED; 1801 break; 1802 case ICPT_CPU_STOP: 1803 do_stop_interrupt(&cpu->env); 1804 r = EXCP_HALTED; 1805 break; 1806 case ICPT_OPEREXC: 1807 /* check for break points */ 1808 r = handle_sw_breakpoint(cpu, run); 1809 if (r == -ENOENT) { 1810 /* Then check for potential pgm check loops */ 1811 r = handle_oper_loop(cpu, run); 1812 if (r == 0) { 1813 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1814 } 1815 } 1816 break; 1817 case ICPT_SOFT_INTERCEPT: 1818 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1819 exit(1); 1820 break; 1821 case ICPT_IO: 1822 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1823 exit(1); 1824 break; 1825 default: 1826 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1827 exit(1); 1828 break; 1829 } 1830 1831 return r; 1832 } 1833 1834 static int handle_tsch(S390CPU *cpu) 1835 { 1836 CPUState *cs = CPU(cpu); 1837 struct kvm_run *run = cs->kvm_run; 1838 int ret; 1839 1840 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1841 RA_IGNORED); 1842 if (ret < 0) { 1843 /* 1844 * Failure. 1845 * If an I/O interrupt had been dequeued, we have to reinject it. 1846 */ 1847 if (run->s390_tsch.dequeued) { 1848 s390_io_interrupt(run->s390_tsch.subchannel_id, 1849 run->s390_tsch.subchannel_nr, 1850 run->s390_tsch.io_int_parm, 1851 run->s390_tsch.io_int_word); 1852 } 1853 ret = 0; 1854 } 1855 return ret; 1856 } 1857 1858 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1859 { 1860 const MachineState *ms = MACHINE(qdev_get_machine()); 1861 uint16_t conf_cpus = 0, reserved_cpus = 0; 1862 SysIB_322 sysib; 1863 int del, i; 1864 1865 if (s390_is_pv()) { 1866 s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib)); 1867 } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1868 return; 1869 } 1870 /* Shift the stack of Extended Names to prepare for our own data */ 1871 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1872 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1873 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1874 * assumed it's not capable of managing Extended Names for lower levels. 1875 */ 1876 for (del = 1; del < sysib.count; del++) { 1877 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1878 break; 1879 } 1880 } 1881 if (del < sysib.count) { 1882 memset(sysib.ext_names[del], 0, 1883 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1884 } 1885 1886 /* count the cpus and split them into configured and reserved ones */ 1887 for (i = 0; i < ms->possible_cpus->len; i++) { 1888 if (ms->possible_cpus->cpus[i].cpu) { 1889 conf_cpus++; 1890 } else { 1891 reserved_cpus++; 1892 } 1893 } 1894 sysib.vm[0].total_cpus = conf_cpus + reserved_cpus; 1895 sysib.vm[0].conf_cpus = conf_cpus; 1896 sysib.vm[0].reserved_cpus = reserved_cpus; 1897 1898 /* Insert short machine name in EBCDIC, padded with blanks */ 1899 if (qemu_name) { 1900 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1901 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1902 strlen(qemu_name))); 1903 } 1904 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1905 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1906 * considered by s390 as not capable of providing any Extended Name. 1907 * Therefore if no name was specified on qemu invocation, we go with the 1908 * same "KVMguest" default, which KVM has filled into short name field. 1909 */ 1910 strpadcpy((char *)sysib.ext_names[0], 1911 sizeof(sysib.ext_names[0]), 1912 qemu_name ?: "KVMguest", '\0'); 1913 1914 /* Insert UUID */ 1915 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1916 1917 if (s390_is_pv()) { 1918 s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib)); 1919 } else { 1920 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1921 } 1922 } 1923 1924 static int handle_stsi(S390CPU *cpu) 1925 { 1926 CPUState *cs = CPU(cpu); 1927 struct kvm_run *run = cs->kvm_run; 1928 1929 switch (run->s390_stsi.fc) { 1930 case 3: 1931 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1932 return 0; 1933 } 1934 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1935 return 0; 1936 case 15: 1937 insert_stsi_15_1_x(cpu, run->s390_stsi.sel2, run->s390_stsi.addr, 1938 run->s390_stsi.ar, RA_IGNORED); 1939 return 0; 1940 default: 1941 return 0; 1942 } 1943 } 1944 1945 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1946 { 1947 CPUState *cs = CPU(cpu); 1948 struct kvm_run *run = cs->kvm_run; 1949 1950 int ret = 0; 1951 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1952 1953 switch (arch_info->type) { 1954 case KVM_HW_WP_WRITE: 1955 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1956 cs->watchpoint_hit = &hw_watchpoint; 1957 hw_watchpoint.vaddr = arch_info->addr; 1958 hw_watchpoint.flags = BP_MEM_WRITE; 1959 ret = EXCP_DEBUG; 1960 } 1961 break; 1962 case KVM_HW_BP: 1963 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1964 ret = EXCP_DEBUG; 1965 } 1966 break; 1967 case KVM_SINGLESTEP: 1968 if (cs->singlestep_enabled) { 1969 ret = EXCP_DEBUG; 1970 } 1971 break; 1972 default: 1973 ret = -ENOSYS; 1974 } 1975 1976 return ret; 1977 } 1978 1979 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1980 { 1981 S390CPU *cpu = S390_CPU(cs); 1982 int ret = 0; 1983 1984 qemu_mutex_lock_iothread(); 1985 1986 kvm_cpu_synchronize_state(cs); 1987 1988 switch (run->exit_reason) { 1989 case KVM_EXIT_S390_SIEIC: 1990 ret = handle_intercept(cpu); 1991 break; 1992 case KVM_EXIT_S390_RESET: 1993 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1994 break; 1995 case KVM_EXIT_S390_TSCH: 1996 ret = handle_tsch(cpu); 1997 break; 1998 case KVM_EXIT_S390_STSI: 1999 ret = handle_stsi(cpu); 2000 break; 2001 case KVM_EXIT_DEBUG: 2002 ret = kvm_arch_handle_debug_exit(cpu); 2003 break; 2004 default: 2005 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 2006 break; 2007 } 2008 qemu_mutex_unlock_iothread(); 2009 2010 if (ret == 0) { 2011 ret = EXCP_INTERRUPT; 2012 } 2013 return ret; 2014 } 2015 2016 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 2017 { 2018 return true; 2019 } 2020 2021 void kvm_s390_enable_css_support(S390CPU *cpu) 2022 { 2023 int r; 2024 2025 /* Activate host kernel channel subsystem support. */ 2026 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 2027 assert(r == 0); 2028 } 2029 2030 void kvm_arch_init_irq_routing(KVMState *s) 2031 { 2032 /* 2033 * Note that while irqchip capabilities generally imply that cpustates 2034 * are handled in-kernel, it is not true for s390 (yet); therefore, we 2035 * have to override the common code kvm_halt_in_kernel_allowed setting. 2036 */ 2037 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2038 kvm_gsi_routing_allowed = true; 2039 kvm_halt_in_kernel_allowed = false; 2040 } 2041 } 2042 2043 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 2044 int vq, bool assign) 2045 { 2046 struct kvm_ioeventfd kick = { 2047 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 2048 KVM_IOEVENTFD_FLAG_DATAMATCH, 2049 .fd = event_notifier_get_fd(notifier), 2050 .datamatch = vq, 2051 .addr = sch, 2052 .len = 8, 2053 }; 2054 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 2055 kick.datamatch); 2056 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 2057 return -ENOSYS; 2058 } 2059 if (!assign) { 2060 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 2061 } 2062 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 2063 } 2064 2065 int kvm_s390_get_protected_dump(void) 2066 { 2067 return cap_protected_dump; 2068 } 2069 2070 int kvm_s390_get_ri(void) 2071 { 2072 return cap_ri; 2073 } 2074 2075 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 2076 { 2077 struct kvm_mp_state mp_state = {}; 2078 int ret; 2079 2080 /* the kvm part might not have been initialized yet */ 2081 if (CPU(cpu)->kvm_state == NULL) { 2082 return 0; 2083 } 2084 2085 switch (cpu_state) { 2086 case S390_CPU_STATE_STOPPED: 2087 mp_state.mp_state = KVM_MP_STATE_STOPPED; 2088 break; 2089 case S390_CPU_STATE_CHECK_STOP: 2090 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 2091 break; 2092 case S390_CPU_STATE_OPERATING: 2093 mp_state.mp_state = KVM_MP_STATE_OPERATING; 2094 break; 2095 case S390_CPU_STATE_LOAD: 2096 mp_state.mp_state = KVM_MP_STATE_LOAD; 2097 break; 2098 default: 2099 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2100 cpu_state); 2101 exit(1); 2102 } 2103 2104 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2105 if (ret) { 2106 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2107 strerror(-ret)); 2108 } 2109 2110 return ret; 2111 } 2112 2113 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2114 { 2115 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 2116 struct kvm_s390_irq_state irq_state = { 2117 .buf = (uint64_t) cpu->irqstate, 2118 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 2119 }; 2120 CPUState *cs = CPU(cpu); 2121 int32_t bytes; 2122 2123 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2124 return; 2125 } 2126 2127 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2128 if (bytes < 0) { 2129 cpu->irqstate_saved_size = 0; 2130 error_report("Migration of interrupt state failed"); 2131 return; 2132 } 2133 2134 cpu->irqstate_saved_size = bytes; 2135 } 2136 2137 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2138 { 2139 CPUState *cs = CPU(cpu); 2140 struct kvm_s390_irq_state irq_state = { 2141 .buf = (uint64_t) cpu->irqstate, 2142 .len = cpu->irqstate_saved_size, 2143 }; 2144 int r; 2145 2146 if (cpu->irqstate_saved_size == 0) { 2147 return 0; 2148 } 2149 2150 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2151 return -ENOSYS; 2152 } 2153 2154 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2155 if (r) { 2156 error_report("Setting interrupt state failed %d", r); 2157 } 2158 return r; 2159 } 2160 2161 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2162 uint64_t address, uint32_t data, PCIDevice *dev) 2163 { 2164 S390PCIBusDevice *pbdev; 2165 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2166 2167 if (!dev) { 2168 trace_kvm_msi_route_fixup("no pci device"); 2169 return -ENODEV; 2170 } 2171 2172 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2173 if (!pbdev) { 2174 trace_kvm_msi_route_fixup("no zpci device"); 2175 return -ENODEV; 2176 } 2177 2178 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2179 route->flags = 0; 2180 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2181 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2182 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2183 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2184 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2185 return 0; 2186 } 2187 2188 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2189 int vector, PCIDevice *dev) 2190 { 2191 return 0; 2192 } 2193 2194 int kvm_arch_release_virq_post(int virq) 2195 { 2196 return 0; 2197 } 2198 2199 int kvm_arch_msi_data_to_gsi(uint32_t data) 2200 { 2201 abort(); 2202 } 2203 2204 static int query_cpu_subfunc(S390FeatBitmap features) 2205 { 2206 struct kvm_s390_vm_cpu_subfunc prop = {}; 2207 struct kvm_device_attr attr = { 2208 .group = KVM_S390_VM_CPU_MODEL, 2209 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2210 .addr = (uint64_t) &prop, 2211 }; 2212 int rc; 2213 2214 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2215 if (rc) { 2216 return rc; 2217 } 2218 2219 /* 2220 * We're going to add all subfunctions now, if the corresponding feature 2221 * is available that unlocks the query functions. 2222 */ 2223 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2224 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2225 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2226 } 2227 if (test_bit(S390_FEAT_MSA, features)) { 2228 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2229 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2230 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2231 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2232 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2233 } 2234 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2235 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2236 } 2237 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2238 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2239 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2240 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2241 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2242 } 2243 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2244 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2245 } 2246 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2247 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2248 } 2249 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2250 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2251 } 2252 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2253 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2254 } 2255 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2256 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2257 } 2258 return 0; 2259 } 2260 2261 static int configure_cpu_subfunc(const S390FeatBitmap features) 2262 { 2263 struct kvm_s390_vm_cpu_subfunc prop = {}; 2264 struct kvm_device_attr attr = { 2265 .group = KVM_S390_VM_CPU_MODEL, 2266 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2267 .addr = (uint64_t) &prop, 2268 }; 2269 2270 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2271 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2272 /* hardware support might be missing, IBC will handle most of this */ 2273 return 0; 2274 } 2275 2276 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2277 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2278 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2279 } 2280 if (test_bit(S390_FEAT_MSA, features)) { 2281 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2282 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2283 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2284 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2285 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2286 } 2287 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2288 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2289 } 2290 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2291 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2292 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2293 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2294 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2295 } 2296 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2297 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2298 } 2299 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2300 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2301 } 2302 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2303 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2304 } 2305 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2306 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2307 } 2308 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2309 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2310 } 2311 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2312 } 2313 2314 static bool ap_available(void) 2315 { 2316 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2317 KVM_S390_VM_CRYPTO_ENABLE_APIE); 2318 } 2319 2320 static bool ap_enabled(const S390FeatBitmap features) 2321 { 2322 return test_bit(S390_FEAT_AP, features); 2323 } 2324 2325 static bool uv_feat_supported(void) 2326 { 2327 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2328 KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST); 2329 } 2330 2331 static int query_uv_feat_guest(S390FeatBitmap features) 2332 { 2333 struct kvm_s390_vm_cpu_uv_feat prop = {}; 2334 struct kvm_device_attr attr = { 2335 .group = KVM_S390_VM_CPU_MODEL, 2336 .attr = KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST, 2337 .addr = (uint64_t) &prop, 2338 }; 2339 int rc; 2340 2341 /* AP support check is currently the only user of the UV feature test */ 2342 if (!(uv_feat_supported() && ap_available())) { 2343 return 0; 2344 } 2345 2346 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2347 if (rc) { 2348 return rc; 2349 } 2350 2351 if (prop.ap) { 2352 set_bit(S390_FEAT_UV_FEAT_AP, features); 2353 } 2354 if (prop.ap_intr) { 2355 set_bit(S390_FEAT_UV_FEAT_AP_INTR, features); 2356 } 2357 2358 return 0; 2359 } 2360 2361 static int kvm_to_feat[][2] = { 2362 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2363 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2364 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2365 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2366 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2367 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2368 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2369 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2370 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2371 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2372 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2373 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2374 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2375 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2376 }; 2377 2378 static int query_cpu_feat(S390FeatBitmap features) 2379 { 2380 struct kvm_s390_vm_cpu_feat prop = {}; 2381 struct kvm_device_attr attr = { 2382 .group = KVM_S390_VM_CPU_MODEL, 2383 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2384 .addr = (uint64_t) &prop, 2385 }; 2386 int rc; 2387 int i; 2388 2389 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2390 if (rc) { 2391 return rc; 2392 } 2393 2394 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2395 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2396 set_bit(kvm_to_feat[i][1], features); 2397 } 2398 } 2399 return 0; 2400 } 2401 2402 static int configure_cpu_feat(const S390FeatBitmap features) 2403 { 2404 struct kvm_s390_vm_cpu_feat prop = {}; 2405 struct kvm_device_attr attr = { 2406 .group = KVM_S390_VM_CPU_MODEL, 2407 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2408 .addr = (uint64_t) &prop, 2409 }; 2410 int i; 2411 2412 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2413 if (test_bit(kvm_to_feat[i][1], features)) { 2414 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2415 } 2416 } 2417 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2418 } 2419 2420 bool kvm_s390_cpu_models_supported(void) 2421 { 2422 if (!cpu_model_allowed()) { 2423 /* compatibility machines interfere with the cpu model */ 2424 return false; 2425 } 2426 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2427 KVM_S390_VM_CPU_MACHINE) && 2428 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2429 KVM_S390_VM_CPU_PROCESSOR) && 2430 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2431 KVM_S390_VM_CPU_MACHINE_FEAT) && 2432 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2433 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2434 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2435 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2436 } 2437 2438 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2439 { 2440 struct kvm_s390_vm_cpu_machine prop = {}; 2441 struct kvm_device_attr attr = { 2442 .group = KVM_S390_VM_CPU_MODEL, 2443 .attr = KVM_S390_VM_CPU_MACHINE, 2444 .addr = (uint64_t) &prop, 2445 }; 2446 uint16_t unblocked_ibc = 0, cpu_type = 0; 2447 int rc; 2448 2449 memset(model, 0, sizeof(*model)); 2450 2451 if (!kvm_s390_cpu_models_supported()) { 2452 error_setg(errp, "KVM doesn't support CPU models"); 2453 return; 2454 } 2455 2456 /* query the basic cpu model properties */ 2457 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2458 if (rc) { 2459 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2460 return; 2461 } 2462 2463 cpu_type = cpuid_type(prop.cpuid); 2464 if (has_ibc(prop.ibc)) { 2465 model->lowest_ibc = lowest_ibc(prop.ibc); 2466 unblocked_ibc = unblocked_ibc(prop.ibc); 2467 } 2468 model->cpu_id = cpuid_id(prop.cpuid); 2469 model->cpu_id_format = cpuid_format(prop.cpuid); 2470 model->cpu_ver = 0xff; 2471 2472 /* get supported cpu features indicated via STFL(E) */ 2473 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2474 (uint8_t *) prop.fac_mask); 2475 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2476 if (test_bit(S390_FEAT_STFLE, model->features)) { 2477 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2478 } 2479 /* get supported cpu features indicated e.g. via SCLP */ 2480 rc = query_cpu_feat(model->features); 2481 if (rc) { 2482 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2483 return; 2484 } 2485 /* get supported cpu subfunctions indicated via query / test bit */ 2486 rc = query_cpu_subfunc(model->features); 2487 if (rc) { 2488 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2489 return; 2490 } 2491 2492 /* PTFF subfunctions might be indicated although kernel support missing */ 2493 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2494 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2495 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2496 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2497 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2498 } 2499 2500 /* with cpu model support, CMM is only indicated if really available */ 2501 if (kvm_s390_cmma_available()) { 2502 set_bit(S390_FEAT_CMM, model->features); 2503 } else { 2504 /* no cmm -> no cmm nt */ 2505 clear_bit(S390_FEAT_CMM_NT, model->features); 2506 } 2507 2508 /* bpb needs kernel support for migration, VSIE and reset */ 2509 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2510 clear_bit(S390_FEAT_BPB, model->features); 2511 } 2512 2513 /* 2514 * If we have support for protected virtualization, indicate 2515 * the protected virtualization IPL unpack facility. 2516 */ 2517 if (cap_protected) { 2518 set_bit(S390_FEAT_UNPACK, model->features); 2519 } 2520 2521 /* 2522 * If we have kernel support for CPU Topology indicate the 2523 * configuration-topology facility. 2524 */ 2525 if (kvm_check_extension(kvm_state, KVM_CAP_S390_CPU_TOPOLOGY)) { 2526 set_bit(S390_FEAT_CONFIGURATION_TOPOLOGY, model->features); 2527 } 2528 2529 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2530 set_bit(S390_FEAT_ZPCI, model->features); 2531 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2532 2533 if (s390_known_cpu_type(cpu_type)) { 2534 /* we want the exact model, even if some features are missing */ 2535 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2536 ibc_ec_ga(unblocked_ibc), NULL); 2537 } else { 2538 /* model unknown, e.g. too new - search using features */ 2539 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2540 ibc_ec_ga(unblocked_ibc), 2541 model->features); 2542 } 2543 if (!model->def) { 2544 error_setg(errp, "KVM: host CPU model could not be identified"); 2545 return; 2546 } 2547 /* for now, we can only provide the AP feature with HW support */ 2548 if (ap_available()) { 2549 set_bit(S390_FEAT_AP, model->features); 2550 } 2551 2552 /* 2553 * Extended-Length SCCB is handled entirely within QEMU. 2554 * For PV guests this is completely fenced by the Ultravisor, as Service 2555 * Call error checking and STFLE interpretation are handled via SIE. 2556 */ 2557 set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features); 2558 2559 if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) { 2560 set_bit(S390_FEAT_DIAG_318, model->features); 2561 } 2562 2563 /* Test for Ultravisor features that influence secure guest behavior */ 2564 query_uv_feat_guest(model->features); 2565 2566 /* strip of features that are not part of the maximum model */ 2567 bitmap_and(model->features, model->features, model->def->full_feat, 2568 S390_FEAT_MAX); 2569 } 2570 2571 static int configure_uv_feat_guest(const S390FeatBitmap features) 2572 { 2573 struct kvm_s390_vm_cpu_uv_feat uv_feat = {}; 2574 struct kvm_device_attr attribute = { 2575 .group = KVM_S390_VM_CPU_MODEL, 2576 .attr = KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST, 2577 .addr = (__u64) &uv_feat, 2578 }; 2579 2580 /* AP support check is currently the only user of the UV feature test */ 2581 if (!(uv_feat_supported() && ap_enabled(features))) { 2582 return 0; 2583 } 2584 2585 if (test_bit(S390_FEAT_UV_FEAT_AP, features)) { 2586 uv_feat.ap = 1; 2587 } 2588 if (test_bit(S390_FEAT_UV_FEAT_AP_INTR, features)) { 2589 uv_feat.ap_intr = 1; 2590 } 2591 2592 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 2593 } 2594 2595 static void kvm_s390_configure_apie(bool interpret) 2596 { 2597 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2598 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2599 2600 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2601 kvm_s390_set_crypto_attr(attr); 2602 } 2603 } 2604 2605 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2606 { 2607 struct kvm_s390_vm_cpu_processor prop = { 2608 .fac_list = { 0 }, 2609 }; 2610 struct kvm_device_attr attr = { 2611 .group = KVM_S390_VM_CPU_MODEL, 2612 .attr = KVM_S390_VM_CPU_PROCESSOR, 2613 .addr = (uint64_t) &prop, 2614 }; 2615 int rc; 2616 2617 if (!model) { 2618 /* compatibility handling if cpu models are disabled */ 2619 if (kvm_s390_cmma_available()) { 2620 kvm_s390_enable_cmma(); 2621 } 2622 return; 2623 } 2624 if (!kvm_s390_cpu_models_supported()) { 2625 error_setg(errp, "KVM doesn't support CPU models"); 2626 return; 2627 } 2628 prop.cpuid = s390_cpuid_from_cpu_model(model); 2629 prop.ibc = s390_ibc_from_cpu_model(model); 2630 /* configure cpu features indicated via STFL(e) */ 2631 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2632 (uint8_t *) prop.fac_list); 2633 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2634 if (rc) { 2635 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2636 return; 2637 } 2638 /* configure cpu features indicated e.g. via SCLP */ 2639 rc = configure_cpu_feat(model->features); 2640 if (rc) { 2641 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2642 return; 2643 } 2644 /* configure cpu subfunctions indicated via query / test bit */ 2645 rc = configure_cpu_subfunc(model->features); 2646 if (rc) { 2647 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2648 return; 2649 } 2650 /* enable CMM via CMMA */ 2651 if (test_bit(S390_FEAT_CMM, model->features)) { 2652 kvm_s390_enable_cmma(); 2653 } 2654 2655 if (ap_enabled(model->features)) { 2656 kvm_s390_configure_apie(true); 2657 } 2658 2659 /* configure UV-features for the guest indicated via query / test_bit */ 2660 rc = configure_uv_feat_guest(model->features); 2661 if (rc) { 2662 error_setg(errp, "KVM: Error configuring CPU UV features %d", rc); 2663 return; 2664 } 2665 } 2666 2667 void kvm_s390_restart_interrupt(S390CPU *cpu) 2668 { 2669 struct kvm_s390_irq irq = { 2670 .type = KVM_S390_RESTART, 2671 }; 2672 2673 kvm_s390_vcpu_interrupt(cpu, &irq); 2674 } 2675 2676 void kvm_s390_stop_interrupt(S390CPU *cpu) 2677 { 2678 struct kvm_s390_irq irq = { 2679 .type = KVM_S390_SIGP_STOP, 2680 }; 2681 2682 kvm_s390_vcpu_interrupt(cpu, &irq); 2683 } 2684 2685 bool kvm_arch_cpu_check_are_resettable(void) 2686 { 2687 return true; 2688 } 2689 2690 int kvm_s390_get_zpci_op(void) 2691 { 2692 return cap_zpci_op; 2693 } 2694 2695 int kvm_s390_topology_set_mtcr(uint64_t attr) 2696 { 2697 struct kvm_device_attr attribute = { 2698 .group = KVM_S390_VM_CPU_TOPOLOGY, 2699 .attr = attr, 2700 }; 2701 2702 if (!s390_has_feat(S390_FEAT_CONFIGURATION_TOPOLOGY)) { 2703 return 0; 2704 } 2705 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_TOPOLOGY, attr)) { 2706 return -ENOTSUP; 2707 } 2708 2709 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 2710 } 2711 2712 void kvm_arch_accel_class_init(ObjectClass *oc) 2713 { 2714 } 2715