xref: /qemu/target/s390x/kvm/kvm.c (revision c3347ed0d2ee42a7dcf7bfe7f9c3884a9596727a)
1 /*
2  * QEMU S390x KVM implementation
3  *
4  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5  * Copyright IBM Corp. 2012
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26 
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "internal.h"
30 #include "kvm_s390x.h"
31 #include "sysemu/kvm_int.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 
54 #ifndef DEBUG_KVM
55 #define DEBUG_KVM  0
56 #endif
57 
58 #define DPRINTF(fmt, ...) do {                \
59     if (DEBUG_KVM) {                          \
60         fprintf(stderr, fmt, ## __VA_ARGS__); \
61     }                                         \
62 } while (0)
63 
64 #define kvm_vm_check_mem_attr(s, attr) \
65     kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
66 
67 #define IPA0_DIAG                       0x8300
68 #define IPA0_SIGP                       0xae00
69 #define IPA0_B2                         0xb200
70 #define IPA0_B9                         0xb900
71 #define IPA0_EB                         0xeb00
72 #define IPA0_E3                         0xe300
73 
74 #define PRIV_B2_SCLP_CALL               0x20
75 #define PRIV_B2_CSCH                    0x30
76 #define PRIV_B2_HSCH                    0x31
77 #define PRIV_B2_MSCH                    0x32
78 #define PRIV_B2_SSCH                    0x33
79 #define PRIV_B2_STSCH                   0x34
80 #define PRIV_B2_TSCH                    0x35
81 #define PRIV_B2_TPI                     0x36
82 #define PRIV_B2_SAL                     0x37
83 #define PRIV_B2_RSCH                    0x38
84 #define PRIV_B2_STCRW                   0x39
85 #define PRIV_B2_STCPS                   0x3a
86 #define PRIV_B2_RCHP                    0x3b
87 #define PRIV_B2_SCHM                    0x3c
88 #define PRIV_B2_CHSC                    0x5f
89 #define PRIV_B2_SIGA                    0x74
90 #define PRIV_B2_XSCH                    0x76
91 
92 #define PRIV_EB_SQBS                    0x8a
93 #define PRIV_EB_PCISTB                  0xd0
94 #define PRIV_EB_SIC                     0xd1
95 
96 #define PRIV_B9_EQBS                    0x9c
97 #define PRIV_B9_CLP                     0xa0
98 #define PRIV_B9_PCISTG                  0xd0
99 #define PRIV_B9_PCILG                   0xd2
100 #define PRIV_B9_RPCIT                   0xd3
101 
102 #define PRIV_E3_MPCIFC                  0xd0
103 #define PRIV_E3_STPCIFC                 0xd4
104 
105 #define DIAG_TIMEREVENT                 0x288
106 #define DIAG_IPL                        0x308
107 #define DIAG_KVM_HYPERCALL              0x500
108 #define DIAG_KVM_BREAKPOINT             0x501
109 
110 #define ICPT_INSTRUCTION                0x04
111 #define ICPT_PROGRAM                    0x08
112 #define ICPT_EXT_INT                    0x14
113 #define ICPT_WAITPSW                    0x1c
114 #define ICPT_SOFT_INTERCEPT             0x24
115 #define ICPT_CPU_STOP                   0x28
116 #define ICPT_OPEREXC                    0x2c
117 #define ICPT_IO                         0x40
118 
119 #define NR_LOCAL_IRQS 32
120 /*
121  * Needs to be big enough to contain max_cpus emergency signals
122  * and in addition NR_LOCAL_IRQS interrupts
123  */
124 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
125                                      (max_cpus + NR_LOCAL_IRQS))
126 /*
127  * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
128  * as the dirty bitmap must be managed by bitops that take an int as
129  * position indicator. This would end at an unaligned  address
130  * (0x7fffff00000). As future variants might provide larger pages
131  * and to make all addresses properly aligned, let us split at 4TB.
132  */
133 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
134 
135 static CPUWatchpoint hw_watchpoint;
136 /*
137  * We don't use a list because this structure is also used to transmit the
138  * hardware breakpoints to the kernel.
139  */
140 static struct kvm_hw_breakpoint *hw_breakpoints;
141 static int nb_hw_breakpoints;
142 
143 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
144     KVM_CAP_LAST_INFO
145 };
146 
147 static int cap_sync_regs;
148 static int cap_async_pf;
149 static int cap_mem_op;
150 static int cap_s390_irq;
151 static int cap_ri;
152 static int cap_gs;
153 static int cap_hpage_1m;
154 static int cap_vcpu_resets;
155 
156 static int active_cmma;
157 
158 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
159 
160 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
161 {
162     struct kvm_device_attr attr = {
163         .group = KVM_S390_VM_MEM_CTRL,
164         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
165         .addr = (uint64_t) memory_limit,
166     };
167 
168     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
169 }
170 
171 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
172 {
173     int rc;
174 
175     struct kvm_device_attr attr = {
176         .group = KVM_S390_VM_MEM_CTRL,
177         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
178         .addr = (uint64_t) &new_limit,
179     };
180 
181     if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
182         return 0;
183     }
184 
185     rc = kvm_s390_query_mem_limit(hw_limit);
186     if (rc) {
187         return rc;
188     } else if (*hw_limit < new_limit) {
189         return -E2BIG;
190     }
191 
192     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
193 }
194 
195 int kvm_s390_cmma_active(void)
196 {
197     return active_cmma;
198 }
199 
200 static bool kvm_s390_cmma_available(void)
201 {
202     static bool initialized, value;
203 
204     if (!initialized) {
205         initialized = true;
206         value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
207                 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
208     }
209     return value;
210 }
211 
212 void kvm_s390_cmma_reset(void)
213 {
214     int rc;
215     struct kvm_device_attr attr = {
216         .group = KVM_S390_VM_MEM_CTRL,
217         .attr = KVM_S390_VM_MEM_CLR_CMMA,
218     };
219 
220     if (!kvm_s390_cmma_active()) {
221         return;
222     }
223 
224     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
225     trace_kvm_clear_cmma(rc);
226 }
227 
228 static void kvm_s390_enable_cmma(void)
229 {
230     int rc;
231     struct kvm_device_attr attr = {
232         .group = KVM_S390_VM_MEM_CTRL,
233         .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
234     };
235 
236     if (cap_hpage_1m) {
237         warn_report("CMM will not be enabled because it is not "
238                     "compatible with huge memory backings.");
239         return;
240     }
241     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
242     active_cmma = !rc;
243     trace_kvm_enable_cmma(rc);
244 }
245 
246 static void kvm_s390_set_attr(uint64_t attr)
247 {
248     struct kvm_device_attr attribute = {
249         .group = KVM_S390_VM_CRYPTO,
250         .attr  = attr,
251     };
252 
253     int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
254 
255     if (ret) {
256         error_report("Failed to set crypto device attribute %lu: %s",
257                      attr, strerror(-ret));
258     }
259 }
260 
261 static void kvm_s390_init_aes_kw(void)
262 {
263     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
264 
265     if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
266                                  NULL)) {
267             attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
268     }
269 
270     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
271             kvm_s390_set_attr(attr);
272     }
273 }
274 
275 static void kvm_s390_init_dea_kw(void)
276 {
277     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
278 
279     if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
280                                  NULL)) {
281             attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
282     }
283 
284     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
285             kvm_s390_set_attr(attr);
286     }
287 }
288 
289 void kvm_s390_crypto_reset(void)
290 {
291     if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
292         kvm_s390_init_aes_kw();
293         kvm_s390_init_dea_kw();
294     }
295 }
296 
297 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
298 {
299     if (pagesize == 4 * KiB) {
300         return;
301     }
302 
303     if (!hpage_1m_allowed()) {
304         error_setg(errp, "This QEMU machine does not support huge page "
305                    "mappings");
306         return;
307     }
308 
309     if (pagesize != 1 * MiB) {
310         error_setg(errp, "Memory backing with 2G pages was specified, "
311                    "but KVM does not support this memory backing");
312         return;
313     }
314 
315     if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
316         error_setg(errp, "Memory backing with 1M pages was specified, "
317                    "but KVM does not support this memory backing");
318         return;
319     }
320 
321     cap_hpage_1m = 1;
322 }
323 
324 int kvm_s390_get_hpage_1m(void)
325 {
326     return cap_hpage_1m;
327 }
328 
329 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
330 {
331     MachineClass *mc = MACHINE_CLASS(oc);
332 
333     mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
334 }
335 
336 int kvm_arch_init(MachineState *ms, KVMState *s)
337 {
338     object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
339                          false, NULL);
340 
341     if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
342         error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
343                      "please use kernel 3.15 or newer");
344         return -1;
345     }
346 
347     cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
348     cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
349     cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
350     cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
351     cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
352 
353     if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
354         || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
355         phys_mem_set_alloc(legacy_s390_alloc);
356     }
357 
358     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
359     kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
360     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
361     if (ri_allowed()) {
362         if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
363             cap_ri = 1;
364         }
365     }
366     if (cpu_model_allowed()) {
367         if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
368             cap_gs = 1;
369         }
370     }
371 
372     /*
373      * The migration interface for ais was introduced with kernel 4.13
374      * but the capability itself had been active since 4.12. As migration
375      * support is considered necessary, we only try to enable this for
376      * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
377      */
378     if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
379         kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
380         kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
381     }
382 
383     kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
384     return 0;
385 }
386 
387 int kvm_arch_irqchip_create(KVMState *s)
388 {
389     return 0;
390 }
391 
392 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
393 {
394     return cpu->cpu_index;
395 }
396 
397 int kvm_arch_init_vcpu(CPUState *cs)
398 {
399     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
400     S390CPU *cpu = S390_CPU(cs);
401     kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
402     cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
403     return 0;
404 }
405 
406 int kvm_arch_destroy_vcpu(CPUState *cs)
407 {
408     S390CPU *cpu = S390_CPU(cs);
409 
410     g_free(cpu->irqstate);
411     cpu->irqstate = NULL;
412 
413     return 0;
414 }
415 
416 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
417 {
418     CPUState *cs = CPU(cpu);
419 
420     /*
421      * The reset call is needed here to reset in-kernel vcpu data that
422      * we can't access directly from QEMU (i.e. with older kernels
423      * which don't support sync_regs/ONE_REG).  Before this ioctl
424      * cpu_synchronize_state() is called in common kvm code
425      * (kvm-all).
426      */
427     if (kvm_vcpu_ioctl(cs, type)) {
428         error_report("CPU reset failed on CPU %i type %lx",
429                      cs->cpu_index, type);
430     }
431 }
432 
433 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
434 {
435     kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
436 }
437 
438 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
439 {
440     if (cap_vcpu_resets) {
441         kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
442     } else {
443         kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
444     }
445 }
446 
447 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
448 {
449     if (cap_vcpu_resets) {
450         kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
451     }
452 }
453 
454 static int can_sync_regs(CPUState *cs, int regs)
455 {
456     return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
457 }
458 
459 int kvm_arch_put_registers(CPUState *cs, int level)
460 {
461     S390CPU *cpu = S390_CPU(cs);
462     CPUS390XState *env = &cpu->env;
463     struct kvm_sregs sregs;
464     struct kvm_regs regs;
465     struct kvm_fpu fpu = {};
466     int r;
467     int i;
468 
469     /* always save the PSW  and the GPRS*/
470     cs->kvm_run->psw_addr = env->psw.addr;
471     cs->kvm_run->psw_mask = env->psw.mask;
472 
473     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
474         for (i = 0; i < 16; i++) {
475             cs->kvm_run->s.regs.gprs[i] = env->regs[i];
476             cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
477         }
478     } else {
479         for (i = 0; i < 16; i++) {
480             regs.gprs[i] = env->regs[i];
481         }
482         r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
483         if (r < 0) {
484             return r;
485         }
486     }
487 
488     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
489         for (i = 0; i < 32; i++) {
490             cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
491             cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
492         }
493         cs->kvm_run->s.regs.fpc = env->fpc;
494         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
495     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
496         for (i = 0; i < 16; i++) {
497             cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
498         }
499         cs->kvm_run->s.regs.fpc = env->fpc;
500         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
501     } else {
502         /* Floating point */
503         for (i = 0; i < 16; i++) {
504             fpu.fprs[i] = *get_freg(env, i);
505         }
506         fpu.fpc = env->fpc;
507 
508         r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
509         if (r < 0) {
510             return r;
511         }
512     }
513 
514     /* Do we need to save more than that? */
515     if (level == KVM_PUT_RUNTIME_STATE) {
516         return 0;
517     }
518 
519     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
520         cs->kvm_run->s.regs.cputm = env->cputm;
521         cs->kvm_run->s.regs.ckc = env->ckc;
522         cs->kvm_run->s.regs.todpr = env->todpr;
523         cs->kvm_run->s.regs.gbea = env->gbea;
524         cs->kvm_run->s.regs.pp = env->pp;
525         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
526     } else {
527         /*
528          * These ONE_REGS are not protected by a capability. As they are only
529          * necessary for migration we just trace a possible error, but don't
530          * return with an error return code.
531          */
532         kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
533         kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
534         kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
535         kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
536         kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
537     }
538 
539     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
540         memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
541         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
542     }
543 
544     /* pfault parameters */
545     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
546         cs->kvm_run->s.regs.pft = env->pfault_token;
547         cs->kvm_run->s.regs.pfs = env->pfault_select;
548         cs->kvm_run->s.regs.pfc = env->pfault_compare;
549         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
550     } else if (cap_async_pf) {
551         r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
552         if (r < 0) {
553             return r;
554         }
555         r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
556         if (r < 0) {
557             return r;
558         }
559         r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
560         if (r < 0) {
561             return r;
562         }
563     }
564 
565     /* access registers and control registers*/
566     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
567         for (i = 0; i < 16; i++) {
568             cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
569             cs->kvm_run->s.regs.crs[i] = env->cregs[i];
570         }
571         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
572         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
573     } else {
574         for (i = 0; i < 16; i++) {
575             sregs.acrs[i] = env->aregs[i];
576             sregs.crs[i] = env->cregs[i];
577         }
578         r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
579         if (r < 0) {
580             return r;
581         }
582     }
583 
584     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
585         memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
586         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
587     }
588 
589     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
590         cs->kvm_run->s.regs.bpbc = env->bpbc;
591         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
592     }
593 
594     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
595         cs->kvm_run->s.regs.etoken = env->etoken;
596         cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
597         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
598     }
599 
600     /* Finally the prefix */
601     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
602         cs->kvm_run->s.regs.prefix = env->psa;
603         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
604     } else {
605         /* prefix is only supported via sync regs */
606     }
607     return 0;
608 }
609 
610 int kvm_arch_get_registers(CPUState *cs)
611 {
612     S390CPU *cpu = S390_CPU(cs);
613     CPUS390XState *env = &cpu->env;
614     struct kvm_sregs sregs;
615     struct kvm_regs regs;
616     struct kvm_fpu fpu;
617     int i, r;
618 
619     /* get the PSW */
620     env->psw.addr = cs->kvm_run->psw_addr;
621     env->psw.mask = cs->kvm_run->psw_mask;
622 
623     /* the GPRS */
624     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
625         for (i = 0; i < 16; i++) {
626             env->regs[i] = cs->kvm_run->s.regs.gprs[i];
627         }
628     } else {
629         r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
630         if (r < 0) {
631             return r;
632         }
633          for (i = 0; i < 16; i++) {
634             env->regs[i] = regs.gprs[i];
635         }
636     }
637 
638     /* The ACRS and CRS */
639     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
640         for (i = 0; i < 16; i++) {
641             env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
642             env->cregs[i] = cs->kvm_run->s.regs.crs[i];
643         }
644     } else {
645         r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
646         if (r < 0) {
647             return r;
648         }
649          for (i = 0; i < 16; i++) {
650             env->aregs[i] = sregs.acrs[i];
651             env->cregs[i] = sregs.crs[i];
652         }
653     }
654 
655     /* Floating point and vector registers */
656     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
657         for (i = 0; i < 32; i++) {
658             env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
659             env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
660         }
661         env->fpc = cs->kvm_run->s.regs.fpc;
662     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
663         for (i = 0; i < 16; i++) {
664             *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
665         }
666         env->fpc = cs->kvm_run->s.regs.fpc;
667     } else {
668         r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
669         if (r < 0) {
670             return r;
671         }
672         for (i = 0; i < 16; i++) {
673             *get_freg(env, i) = fpu.fprs[i];
674         }
675         env->fpc = fpu.fpc;
676     }
677 
678     /* The prefix */
679     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
680         env->psa = cs->kvm_run->s.regs.prefix;
681     }
682 
683     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
684         env->cputm = cs->kvm_run->s.regs.cputm;
685         env->ckc = cs->kvm_run->s.regs.ckc;
686         env->todpr = cs->kvm_run->s.regs.todpr;
687         env->gbea = cs->kvm_run->s.regs.gbea;
688         env->pp = cs->kvm_run->s.regs.pp;
689     } else {
690         /*
691          * These ONE_REGS are not protected by a capability. As they are only
692          * necessary for migration we just trace a possible error, but don't
693          * return with an error return code.
694          */
695         kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
696         kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
697         kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
698         kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
699         kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
700     }
701 
702     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
703         memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
704     }
705 
706     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
707         memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
708     }
709 
710     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
711         env->bpbc = cs->kvm_run->s.regs.bpbc;
712     }
713 
714     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
715         env->etoken = cs->kvm_run->s.regs.etoken;
716         env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
717     }
718 
719     /* pfault parameters */
720     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
721         env->pfault_token = cs->kvm_run->s.regs.pft;
722         env->pfault_select = cs->kvm_run->s.regs.pfs;
723         env->pfault_compare = cs->kvm_run->s.regs.pfc;
724     } else if (cap_async_pf) {
725         r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
726         if (r < 0) {
727             return r;
728         }
729         r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
730         if (r < 0) {
731             return r;
732         }
733         r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
734         if (r < 0) {
735             return r;
736         }
737     }
738 
739     return 0;
740 }
741 
742 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
743 {
744     int r;
745     struct kvm_device_attr attr = {
746         .group = KVM_S390_VM_TOD,
747         .attr = KVM_S390_VM_TOD_LOW,
748         .addr = (uint64_t)tod_low,
749     };
750 
751     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
752     if (r) {
753         return r;
754     }
755 
756     attr.attr = KVM_S390_VM_TOD_HIGH;
757     attr.addr = (uint64_t)tod_high;
758     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
759 }
760 
761 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
762 {
763     int r;
764     struct kvm_s390_vm_tod_clock gtod;
765     struct kvm_device_attr attr = {
766         .group = KVM_S390_VM_TOD,
767         .attr = KVM_S390_VM_TOD_EXT,
768         .addr = (uint64_t)&gtod,
769     };
770 
771     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
772     *tod_high = gtod.epoch_idx;
773     *tod_low  = gtod.tod;
774 
775     return r;
776 }
777 
778 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
779 {
780     int r;
781     struct kvm_device_attr attr = {
782         .group = KVM_S390_VM_TOD,
783         .attr = KVM_S390_VM_TOD_LOW,
784         .addr = (uint64_t)&tod_low,
785     };
786 
787     r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
788     if (r) {
789         return r;
790     }
791 
792     attr.attr = KVM_S390_VM_TOD_HIGH;
793     attr.addr = (uint64_t)&tod_high;
794     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
795 }
796 
797 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
798 {
799     struct kvm_s390_vm_tod_clock gtod = {
800         .epoch_idx = tod_high,
801         .tod  = tod_low,
802     };
803     struct kvm_device_attr attr = {
804         .group = KVM_S390_VM_TOD,
805         .attr = KVM_S390_VM_TOD_EXT,
806         .addr = (uint64_t)&gtod,
807     };
808 
809     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
810 }
811 
812 /**
813  * kvm_s390_mem_op:
814  * @addr:      the logical start address in guest memory
815  * @ar:        the access register number
816  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
817  * @len:       length that should be transferred
818  * @is_write:  true = write, false = read
819  * Returns:    0 on success, non-zero if an exception or error occurred
820  *
821  * Use KVM ioctl to read/write from/to guest memory. An access exception
822  * is injected into the vCPU in case of translation errors.
823  */
824 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
825                     int len, bool is_write)
826 {
827     struct kvm_s390_mem_op mem_op = {
828         .gaddr = addr,
829         .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
830         .size = len,
831         .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
832                        : KVM_S390_MEMOP_LOGICAL_READ,
833         .buf = (uint64_t)hostbuf,
834         .ar = ar,
835     };
836     int ret;
837 
838     if (!cap_mem_op) {
839         return -ENOSYS;
840     }
841     if (!hostbuf) {
842         mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
843     }
844 
845     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
846     if (ret < 0) {
847         warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
848     }
849     return ret;
850 }
851 
852 /*
853  * Legacy layout for s390:
854  * Older S390 KVM requires the topmost vma of the RAM to be
855  * smaller than an system defined value, which is at least 256GB.
856  * Larger systems have larger values. We put the guest between
857  * the end of data segment (system break) and this value. We
858  * use 32GB as a base to have enough room for the system break
859  * to grow. We also have to use MAP parameters that avoid
860  * read-only mapping of guest pages.
861  */
862 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
863 {
864     static void *mem;
865 
866     if (mem) {
867         /* we only support one allocation, which is enough for initial ram */
868         return NULL;
869     }
870 
871     mem = mmap((void *) 0x800000000ULL, size,
872                PROT_EXEC|PROT_READ|PROT_WRITE,
873                MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
874     if (mem == MAP_FAILED) {
875         mem = NULL;
876     }
877     if (mem && align) {
878         *align = QEMU_VMALLOC_ALIGN;
879     }
880     return mem;
881 }
882 
883 static uint8_t const *sw_bp_inst;
884 static uint8_t sw_bp_ilen;
885 
886 static void determine_sw_breakpoint_instr(void)
887 {
888         /* DIAG 501 is used for sw breakpoints with old kernels */
889         static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
890         /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
891         static const uint8_t instr_0x0000[] = {0x00, 0x00};
892 
893         if (sw_bp_inst) {
894             return;
895         }
896         if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
897             sw_bp_inst = diag_501;
898             sw_bp_ilen = sizeof(diag_501);
899             DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
900         } else {
901             sw_bp_inst = instr_0x0000;
902             sw_bp_ilen = sizeof(instr_0x0000);
903             DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
904         }
905 }
906 
907 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
908 {
909     determine_sw_breakpoint_instr();
910 
911     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
912                             sw_bp_ilen, 0) ||
913         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
914         return -EINVAL;
915     }
916     return 0;
917 }
918 
919 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
920 {
921     uint8_t t[MAX_ILEN];
922 
923     if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
924         return -EINVAL;
925     } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
926         return -EINVAL;
927     } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
928                                    sw_bp_ilen, 1)) {
929         return -EINVAL;
930     }
931 
932     return 0;
933 }
934 
935 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
936                                                     int len, int type)
937 {
938     int n;
939 
940     for (n = 0; n < nb_hw_breakpoints; n++) {
941         if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
942             (hw_breakpoints[n].len == len || len == -1)) {
943             return &hw_breakpoints[n];
944         }
945     }
946 
947     return NULL;
948 }
949 
950 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
951 {
952     int size;
953 
954     if (find_hw_breakpoint(addr, len, type)) {
955         return -EEXIST;
956     }
957 
958     size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
959 
960     if (!hw_breakpoints) {
961         nb_hw_breakpoints = 0;
962         hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
963     } else {
964         hw_breakpoints =
965             (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
966     }
967 
968     if (!hw_breakpoints) {
969         nb_hw_breakpoints = 0;
970         return -ENOMEM;
971     }
972 
973     hw_breakpoints[nb_hw_breakpoints].addr = addr;
974     hw_breakpoints[nb_hw_breakpoints].len = len;
975     hw_breakpoints[nb_hw_breakpoints].type = type;
976 
977     nb_hw_breakpoints++;
978 
979     return 0;
980 }
981 
982 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
983                                   target_ulong len, int type)
984 {
985     switch (type) {
986     case GDB_BREAKPOINT_HW:
987         type = KVM_HW_BP;
988         break;
989     case GDB_WATCHPOINT_WRITE:
990         if (len < 1) {
991             return -EINVAL;
992         }
993         type = KVM_HW_WP_WRITE;
994         break;
995     default:
996         return -ENOSYS;
997     }
998     return insert_hw_breakpoint(addr, len, type);
999 }
1000 
1001 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1002                                   target_ulong len, int type)
1003 {
1004     int size;
1005     struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1006 
1007     if (bp == NULL) {
1008         return -ENOENT;
1009     }
1010 
1011     nb_hw_breakpoints--;
1012     if (nb_hw_breakpoints > 0) {
1013         /*
1014          * In order to trim the array, move the last element to the position to
1015          * be removed - if necessary.
1016          */
1017         if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1018             *bp = hw_breakpoints[nb_hw_breakpoints];
1019         }
1020         size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1021         hw_breakpoints =
1022              (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
1023     } else {
1024         g_free(hw_breakpoints);
1025         hw_breakpoints = NULL;
1026     }
1027 
1028     return 0;
1029 }
1030 
1031 void kvm_arch_remove_all_hw_breakpoints(void)
1032 {
1033     nb_hw_breakpoints = 0;
1034     g_free(hw_breakpoints);
1035     hw_breakpoints = NULL;
1036 }
1037 
1038 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1039 {
1040     int i;
1041 
1042     if (nb_hw_breakpoints > 0) {
1043         dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1044         dbg->arch.hw_bp = hw_breakpoints;
1045 
1046         for (i = 0; i < nb_hw_breakpoints; ++i) {
1047             hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1048                                                        hw_breakpoints[i].addr);
1049         }
1050         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1051     } else {
1052         dbg->arch.nr_hw_bp = 0;
1053         dbg->arch.hw_bp = NULL;
1054     }
1055 }
1056 
1057 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1058 {
1059 }
1060 
1061 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1062 {
1063     return MEMTXATTRS_UNSPECIFIED;
1064 }
1065 
1066 int kvm_arch_process_async_events(CPUState *cs)
1067 {
1068     return cs->halted;
1069 }
1070 
1071 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1072                                      struct kvm_s390_interrupt *interrupt)
1073 {
1074     int r = 0;
1075 
1076     interrupt->type = irq->type;
1077     switch (irq->type) {
1078     case KVM_S390_INT_VIRTIO:
1079         interrupt->parm = irq->u.ext.ext_params;
1080         /* fall through */
1081     case KVM_S390_INT_PFAULT_INIT:
1082     case KVM_S390_INT_PFAULT_DONE:
1083         interrupt->parm64 = irq->u.ext.ext_params2;
1084         break;
1085     case KVM_S390_PROGRAM_INT:
1086         interrupt->parm = irq->u.pgm.code;
1087         break;
1088     case KVM_S390_SIGP_SET_PREFIX:
1089         interrupt->parm = irq->u.prefix.address;
1090         break;
1091     case KVM_S390_INT_SERVICE:
1092         interrupt->parm = irq->u.ext.ext_params;
1093         break;
1094     case KVM_S390_MCHK:
1095         interrupt->parm = irq->u.mchk.cr14;
1096         interrupt->parm64 = irq->u.mchk.mcic;
1097         break;
1098     case KVM_S390_INT_EXTERNAL_CALL:
1099         interrupt->parm = irq->u.extcall.code;
1100         break;
1101     case KVM_S390_INT_EMERGENCY:
1102         interrupt->parm = irq->u.emerg.code;
1103         break;
1104     case KVM_S390_SIGP_STOP:
1105     case KVM_S390_RESTART:
1106         break; /* These types have no parameters */
1107     case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1108         interrupt->parm = irq->u.io.subchannel_id << 16;
1109         interrupt->parm |= irq->u.io.subchannel_nr;
1110         interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1111         interrupt->parm64 |= irq->u.io.io_int_word;
1112         break;
1113     default:
1114         r = -EINVAL;
1115         break;
1116     }
1117     return r;
1118 }
1119 
1120 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1121 {
1122     struct kvm_s390_interrupt kvmint = {};
1123     int r;
1124 
1125     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1126     if (r < 0) {
1127         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1128         exit(1);
1129     }
1130 
1131     r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1132     if (r < 0) {
1133         fprintf(stderr, "KVM failed to inject interrupt\n");
1134         exit(1);
1135     }
1136 }
1137 
1138 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1139 {
1140     CPUState *cs = CPU(cpu);
1141     int r;
1142 
1143     if (cap_s390_irq) {
1144         r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1145         if (!r) {
1146             return;
1147         }
1148         error_report("KVM failed to inject interrupt %llx", irq->type);
1149         exit(1);
1150     }
1151 
1152     inject_vcpu_irq_legacy(cs, irq);
1153 }
1154 
1155 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1156 {
1157     struct kvm_s390_interrupt kvmint = {};
1158     int r;
1159 
1160     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1161     if (r < 0) {
1162         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1163         exit(1);
1164     }
1165 
1166     r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1167     if (r < 0) {
1168         fprintf(stderr, "KVM failed to inject interrupt\n");
1169         exit(1);
1170     }
1171 }
1172 
1173 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1174 {
1175     struct kvm_s390_irq irq = {
1176         .type = KVM_S390_PROGRAM_INT,
1177         .u.pgm.code = code,
1178     };
1179     qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1180                   cpu->env.psw.addr);
1181     kvm_s390_vcpu_interrupt(cpu, &irq);
1182 }
1183 
1184 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1185 {
1186     struct kvm_s390_irq irq = {
1187         .type = KVM_S390_PROGRAM_INT,
1188         .u.pgm.code = code,
1189         .u.pgm.trans_exc_code = te_code,
1190         .u.pgm.exc_access_id = te_code & 3,
1191     };
1192 
1193     kvm_s390_vcpu_interrupt(cpu, &irq);
1194 }
1195 
1196 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1197                                  uint16_t ipbh0)
1198 {
1199     CPUS390XState *env = &cpu->env;
1200     uint64_t sccb;
1201     uint32_t code;
1202     int r;
1203 
1204     sccb = env->regs[ipbh0 & 0xf];
1205     code = env->regs[(ipbh0 & 0xf0) >> 4];
1206 
1207     r = sclp_service_call(env, sccb, code);
1208     if (r < 0) {
1209         kvm_s390_program_interrupt(cpu, -r);
1210         return;
1211     }
1212     setcc(cpu, r);
1213 }
1214 
1215 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1216 {
1217     CPUS390XState *env = &cpu->env;
1218     int rc = 0;
1219     uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1220 
1221     switch (ipa1) {
1222     case PRIV_B2_XSCH:
1223         ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1224         break;
1225     case PRIV_B2_CSCH:
1226         ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1227         break;
1228     case PRIV_B2_HSCH:
1229         ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1230         break;
1231     case PRIV_B2_MSCH:
1232         ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1233         break;
1234     case PRIV_B2_SSCH:
1235         ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1236         break;
1237     case PRIV_B2_STCRW:
1238         ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1239         break;
1240     case PRIV_B2_STSCH:
1241         ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1242         break;
1243     case PRIV_B2_TSCH:
1244         /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1245         fprintf(stderr, "Spurious tsch intercept\n");
1246         break;
1247     case PRIV_B2_CHSC:
1248         ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1249         break;
1250     case PRIV_B2_TPI:
1251         /* This should have been handled by kvm already. */
1252         fprintf(stderr, "Spurious tpi intercept\n");
1253         break;
1254     case PRIV_B2_SCHM:
1255         ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1256                            run->s390_sieic.ipb, RA_IGNORED);
1257         break;
1258     case PRIV_B2_RSCH:
1259         ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1260         break;
1261     case PRIV_B2_RCHP:
1262         ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1263         break;
1264     case PRIV_B2_STCPS:
1265         /* We do not provide this instruction, it is suppressed. */
1266         break;
1267     case PRIV_B2_SAL:
1268         ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1269         break;
1270     case PRIV_B2_SIGA:
1271         /* Not provided, set CC = 3 for subchannel not operational */
1272         setcc(cpu, 3);
1273         break;
1274     case PRIV_B2_SCLP_CALL:
1275         kvm_sclp_service_call(cpu, run, ipbh0);
1276         break;
1277     default:
1278         rc = -1;
1279         DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1280         break;
1281     }
1282 
1283     return rc;
1284 }
1285 
1286 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1287                                   uint8_t *ar)
1288 {
1289     CPUS390XState *env = &cpu->env;
1290     uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1291     uint32_t base2 = run->s390_sieic.ipb >> 28;
1292     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1293                      ((run->s390_sieic.ipb & 0xff00) << 4);
1294 
1295     if (disp2 & 0x80000) {
1296         disp2 += 0xfff00000;
1297     }
1298     if (ar) {
1299         *ar = base2;
1300     }
1301 
1302     return (base2 ? env->regs[base2] : 0) +
1303            (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1304 }
1305 
1306 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1307                                   uint8_t *ar)
1308 {
1309     CPUS390XState *env = &cpu->env;
1310     uint32_t base2 = run->s390_sieic.ipb >> 28;
1311     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1312                      ((run->s390_sieic.ipb & 0xff00) << 4);
1313 
1314     if (disp2 & 0x80000) {
1315         disp2 += 0xfff00000;
1316     }
1317     if (ar) {
1318         *ar = base2;
1319     }
1320 
1321     return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1322 }
1323 
1324 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1325 {
1326     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1327 
1328     if (s390_has_feat(S390_FEAT_ZPCI)) {
1329         return clp_service_call(cpu, r2, RA_IGNORED);
1330     } else {
1331         return -1;
1332     }
1333 }
1334 
1335 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1336 {
1337     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1338     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1339 
1340     if (s390_has_feat(S390_FEAT_ZPCI)) {
1341         return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1342     } else {
1343         return -1;
1344     }
1345 }
1346 
1347 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1348 {
1349     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1350     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1351 
1352     if (s390_has_feat(S390_FEAT_ZPCI)) {
1353         return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1354     } else {
1355         return -1;
1356     }
1357 }
1358 
1359 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1360 {
1361     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1362     uint64_t fiba;
1363     uint8_t ar;
1364 
1365     if (s390_has_feat(S390_FEAT_ZPCI)) {
1366         fiba = get_base_disp_rxy(cpu, run, &ar);
1367 
1368         return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1369     } else {
1370         return -1;
1371     }
1372 }
1373 
1374 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1375 {
1376     CPUS390XState *env = &cpu->env;
1377     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1378     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1379     uint8_t isc;
1380     uint16_t mode;
1381     int r;
1382 
1383     mode = env->regs[r1] & 0xffff;
1384     isc = (env->regs[r3] >> 27) & 0x7;
1385     r = css_do_sic(env, isc, mode);
1386     if (r) {
1387         kvm_s390_program_interrupt(cpu, -r);
1388     }
1389 
1390     return 0;
1391 }
1392 
1393 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1394 {
1395     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1396     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1397 
1398     if (s390_has_feat(S390_FEAT_ZPCI)) {
1399         return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1400     } else {
1401         return -1;
1402     }
1403 }
1404 
1405 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1406 {
1407     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1408     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1409     uint64_t gaddr;
1410     uint8_t ar;
1411 
1412     if (s390_has_feat(S390_FEAT_ZPCI)) {
1413         gaddr = get_base_disp_rsy(cpu, run, &ar);
1414 
1415         return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1416     } else {
1417         return -1;
1418     }
1419 }
1420 
1421 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1422 {
1423     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1424     uint64_t fiba;
1425     uint8_t ar;
1426 
1427     if (s390_has_feat(S390_FEAT_ZPCI)) {
1428         fiba = get_base_disp_rxy(cpu, run, &ar);
1429 
1430         return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1431     } else {
1432         return -1;
1433     }
1434 }
1435 
1436 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1437 {
1438     int r = 0;
1439 
1440     switch (ipa1) {
1441     case PRIV_B9_CLP:
1442         r = kvm_clp_service_call(cpu, run);
1443         break;
1444     case PRIV_B9_PCISTG:
1445         r = kvm_pcistg_service_call(cpu, run);
1446         break;
1447     case PRIV_B9_PCILG:
1448         r = kvm_pcilg_service_call(cpu, run);
1449         break;
1450     case PRIV_B9_RPCIT:
1451         r = kvm_rpcit_service_call(cpu, run);
1452         break;
1453     case PRIV_B9_EQBS:
1454         /* just inject exception */
1455         r = -1;
1456         break;
1457     default:
1458         r = -1;
1459         DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1460         break;
1461     }
1462 
1463     return r;
1464 }
1465 
1466 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1467 {
1468     int r = 0;
1469 
1470     switch (ipbl) {
1471     case PRIV_EB_PCISTB:
1472         r = kvm_pcistb_service_call(cpu, run);
1473         break;
1474     case PRIV_EB_SIC:
1475         r = kvm_sic_service_call(cpu, run);
1476         break;
1477     case PRIV_EB_SQBS:
1478         /* just inject exception */
1479         r = -1;
1480         break;
1481     default:
1482         r = -1;
1483         DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1484         break;
1485     }
1486 
1487     return r;
1488 }
1489 
1490 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1491 {
1492     int r = 0;
1493 
1494     switch (ipbl) {
1495     case PRIV_E3_MPCIFC:
1496         r = kvm_mpcifc_service_call(cpu, run);
1497         break;
1498     case PRIV_E3_STPCIFC:
1499         r = kvm_stpcifc_service_call(cpu, run);
1500         break;
1501     default:
1502         r = -1;
1503         DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1504         break;
1505     }
1506 
1507     return r;
1508 }
1509 
1510 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1511 {
1512     CPUS390XState *env = &cpu->env;
1513     int ret;
1514 
1515     ret = s390_virtio_hypercall(env);
1516     if (ret == -EINVAL) {
1517         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1518         return 0;
1519     }
1520 
1521     return ret;
1522 }
1523 
1524 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1525 {
1526     uint64_t r1, r3;
1527     int rc;
1528 
1529     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1530     r3 = run->s390_sieic.ipa & 0x000f;
1531     rc = handle_diag_288(&cpu->env, r1, r3);
1532     if (rc) {
1533         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1534     }
1535 }
1536 
1537 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1538 {
1539     uint64_t r1, r3;
1540 
1541     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1542     r3 = run->s390_sieic.ipa & 0x000f;
1543     handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1544 }
1545 
1546 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1547 {
1548     CPUS390XState *env = &cpu->env;
1549     unsigned long pc;
1550 
1551     pc = env->psw.addr - sw_bp_ilen;
1552     if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1553         env->psw.addr = pc;
1554         return EXCP_DEBUG;
1555     }
1556 
1557     return -ENOENT;
1558 }
1559 
1560 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1561 
1562 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1563 {
1564     int r = 0;
1565     uint16_t func_code;
1566 
1567     /*
1568      * For any diagnose call we support, bits 48-63 of the resulting
1569      * address specify the function code; the remainder is ignored.
1570      */
1571     func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1572     switch (func_code) {
1573     case DIAG_TIMEREVENT:
1574         kvm_handle_diag_288(cpu, run);
1575         break;
1576     case DIAG_IPL:
1577         kvm_handle_diag_308(cpu, run);
1578         break;
1579     case DIAG_KVM_HYPERCALL:
1580         r = handle_hypercall(cpu, run);
1581         break;
1582     case DIAG_KVM_BREAKPOINT:
1583         r = handle_sw_breakpoint(cpu, run);
1584         break;
1585     default:
1586         DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1587         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1588         break;
1589     }
1590 
1591     return r;
1592 }
1593 
1594 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1595 {
1596     CPUS390XState *env = &cpu->env;
1597     const uint8_t r1 = ipa1 >> 4;
1598     const uint8_t r3 = ipa1 & 0x0f;
1599     int ret;
1600     uint8_t order;
1601 
1602     /* get order code */
1603     order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1604 
1605     ret = handle_sigp(env, order, r1, r3);
1606     setcc(cpu, ret);
1607     return 0;
1608 }
1609 
1610 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1611 {
1612     unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1613     uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1614     int r = -1;
1615 
1616     DPRINTF("handle_instruction 0x%x 0x%x\n",
1617             run->s390_sieic.ipa, run->s390_sieic.ipb);
1618     switch (ipa0) {
1619     case IPA0_B2:
1620         r = handle_b2(cpu, run, ipa1);
1621         break;
1622     case IPA0_B9:
1623         r = handle_b9(cpu, run, ipa1);
1624         break;
1625     case IPA0_EB:
1626         r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1627         break;
1628     case IPA0_E3:
1629         r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1630         break;
1631     case IPA0_DIAG:
1632         r = handle_diag(cpu, run, run->s390_sieic.ipb);
1633         break;
1634     case IPA0_SIGP:
1635         r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1636         break;
1637     }
1638 
1639     if (r < 0) {
1640         r = 0;
1641         kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1642     }
1643 
1644     return r;
1645 }
1646 
1647 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1648                                    int pswoffset)
1649 {
1650     CPUState *cs = CPU(cpu);
1651 
1652     s390_cpu_halt(cpu);
1653     cpu->env.crash_reason = reason;
1654     qemu_system_guest_panicked(cpu_get_crash_info(cs));
1655 }
1656 
1657 /* try to detect pgm check loops */
1658 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1659 {
1660     CPUState *cs = CPU(cpu);
1661     PSW oldpsw, newpsw;
1662 
1663     newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1664                            offsetof(LowCore, program_new_psw));
1665     newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1666                            offsetof(LowCore, program_new_psw) + 8);
1667     oldpsw.mask  = run->psw_mask;
1668     oldpsw.addr  = run->psw_addr;
1669     /*
1670      * Avoid endless loops of operation exceptions, if the pgm new
1671      * PSW will cause a new operation exception.
1672      * The heuristic checks if the pgm new psw is within 6 bytes before
1673      * the faulting psw address (with same DAT, AS settings) and the
1674      * new psw is not a wait psw and the fault was not triggered by
1675      * problem state. In that case go into crashed state.
1676      */
1677 
1678     if (oldpsw.addr - newpsw.addr <= 6 &&
1679         !(newpsw.mask & PSW_MASK_WAIT) &&
1680         !(oldpsw.mask & PSW_MASK_PSTATE) &&
1681         (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1682         (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1683         unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1684                                offsetof(LowCore, program_new_psw));
1685         return EXCP_HALTED;
1686     }
1687     return 0;
1688 }
1689 
1690 static int handle_intercept(S390CPU *cpu)
1691 {
1692     CPUState *cs = CPU(cpu);
1693     struct kvm_run *run = cs->kvm_run;
1694     int icpt_code = run->s390_sieic.icptcode;
1695     int r = 0;
1696 
1697     DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1698             (long)cs->kvm_run->psw_addr);
1699     switch (icpt_code) {
1700         case ICPT_INSTRUCTION:
1701             r = handle_instruction(cpu, run);
1702             break;
1703         case ICPT_PROGRAM:
1704             unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1705                                    offsetof(LowCore, program_new_psw));
1706             r = EXCP_HALTED;
1707             break;
1708         case ICPT_EXT_INT:
1709             unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1710                                    offsetof(LowCore, external_new_psw));
1711             r = EXCP_HALTED;
1712             break;
1713         case ICPT_WAITPSW:
1714             /* disabled wait, since enabled wait is handled in kernel */
1715             s390_handle_wait(cpu);
1716             r = EXCP_HALTED;
1717             break;
1718         case ICPT_CPU_STOP:
1719             do_stop_interrupt(&cpu->env);
1720             r = EXCP_HALTED;
1721             break;
1722         case ICPT_OPEREXC:
1723             /* check for break points */
1724             r = handle_sw_breakpoint(cpu, run);
1725             if (r == -ENOENT) {
1726                 /* Then check for potential pgm check loops */
1727                 r = handle_oper_loop(cpu, run);
1728                 if (r == 0) {
1729                     kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1730                 }
1731             }
1732             break;
1733         case ICPT_SOFT_INTERCEPT:
1734             fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1735             exit(1);
1736             break;
1737         case ICPT_IO:
1738             fprintf(stderr, "KVM unimplemented icpt IO\n");
1739             exit(1);
1740             break;
1741         default:
1742             fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1743             exit(1);
1744             break;
1745     }
1746 
1747     return r;
1748 }
1749 
1750 static int handle_tsch(S390CPU *cpu)
1751 {
1752     CPUState *cs = CPU(cpu);
1753     struct kvm_run *run = cs->kvm_run;
1754     int ret;
1755 
1756     ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1757                              RA_IGNORED);
1758     if (ret < 0) {
1759         /*
1760          * Failure.
1761          * If an I/O interrupt had been dequeued, we have to reinject it.
1762          */
1763         if (run->s390_tsch.dequeued) {
1764             s390_io_interrupt(run->s390_tsch.subchannel_id,
1765                               run->s390_tsch.subchannel_nr,
1766                               run->s390_tsch.io_int_parm,
1767                               run->s390_tsch.io_int_word);
1768         }
1769         ret = 0;
1770     }
1771     return ret;
1772 }
1773 
1774 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1775 {
1776     const MachineState *ms = MACHINE(qdev_get_machine());
1777     uint16_t conf_cpus = 0, reserved_cpus = 0;
1778     SysIB_322 sysib;
1779     int del, i;
1780 
1781     if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1782         return;
1783     }
1784     /* Shift the stack of Extended Names to prepare for our own data */
1785     memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1786             sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1787     /* First virt level, that doesn't provide Ext Names delimits stack. It is
1788      * assumed it's not capable of managing Extended Names for lower levels.
1789      */
1790     for (del = 1; del < sysib.count; del++) {
1791         if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1792             break;
1793         }
1794     }
1795     if (del < sysib.count) {
1796         memset(sysib.ext_names[del], 0,
1797                sizeof(sysib.ext_names[0]) * (sysib.count - del));
1798     }
1799 
1800     /* count the cpus and split them into configured and reserved ones */
1801     for (i = 0; i < ms->possible_cpus->len; i++) {
1802         if (ms->possible_cpus->cpus[i].cpu) {
1803             conf_cpus++;
1804         } else {
1805             reserved_cpus++;
1806         }
1807     }
1808     sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1809     sysib.vm[0].conf_cpus = conf_cpus;
1810     sysib.vm[0].reserved_cpus = reserved_cpus;
1811 
1812     /* Insert short machine name in EBCDIC, padded with blanks */
1813     if (qemu_name) {
1814         memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1815         ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1816                                                     strlen(qemu_name)));
1817     }
1818     sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1819     memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1820     /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1821      * considered by s390 as not capable of providing any Extended Name.
1822      * Therefore if no name was specified on qemu invocation, we go with the
1823      * same "KVMguest" default, which KVM has filled into short name field.
1824      */
1825     if (qemu_name) {
1826         strncpy((char *)sysib.ext_names[0], qemu_name,
1827                 sizeof(sysib.ext_names[0]));
1828     } else {
1829         strcpy((char *)sysib.ext_names[0], "KVMguest");
1830     }
1831     /* Insert UUID */
1832     memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1833 
1834     s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1835 }
1836 
1837 static int handle_stsi(S390CPU *cpu)
1838 {
1839     CPUState *cs = CPU(cpu);
1840     struct kvm_run *run = cs->kvm_run;
1841 
1842     switch (run->s390_stsi.fc) {
1843     case 3:
1844         if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1845             return 0;
1846         }
1847         /* Only sysib 3.2.2 needs post-handling for now. */
1848         insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1849         return 0;
1850     default:
1851         return 0;
1852     }
1853 }
1854 
1855 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1856 {
1857     CPUState *cs = CPU(cpu);
1858     struct kvm_run *run = cs->kvm_run;
1859 
1860     int ret = 0;
1861     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1862 
1863     switch (arch_info->type) {
1864     case KVM_HW_WP_WRITE:
1865         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1866             cs->watchpoint_hit = &hw_watchpoint;
1867             hw_watchpoint.vaddr = arch_info->addr;
1868             hw_watchpoint.flags = BP_MEM_WRITE;
1869             ret = EXCP_DEBUG;
1870         }
1871         break;
1872     case KVM_HW_BP:
1873         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1874             ret = EXCP_DEBUG;
1875         }
1876         break;
1877     case KVM_SINGLESTEP:
1878         if (cs->singlestep_enabled) {
1879             ret = EXCP_DEBUG;
1880         }
1881         break;
1882     default:
1883         ret = -ENOSYS;
1884     }
1885 
1886     return ret;
1887 }
1888 
1889 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1890 {
1891     S390CPU *cpu = S390_CPU(cs);
1892     int ret = 0;
1893 
1894     qemu_mutex_lock_iothread();
1895 
1896     kvm_cpu_synchronize_state(cs);
1897 
1898     switch (run->exit_reason) {
1899         case KVM_EXIT_S390_SIEIC:
1900             ret = handle_intercept(cpu);
1901             break;
1902         case KVM_EXIT_S390_RESET:
1903             s390_ipl_reset_request(cs, S390_RESET_REIPL);
1904             break;
1905         case KVM_EXIT_S390_TSCH:
1906             ret = handle_tsch(cpu);
1907             break;
1908         case KVM_EXIT_S390_STSI:
1909             ret = handle_stsi(cpu);
1910             break;
1911         case KVM_EXIT_DEBUG:
1912             ret = kvm_arch_handle_debug_exit(cpu);
1913             break;
1914         default:
1915             fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1916             break;
1917     }
1918     qemu_mutex_unlock_iothread();
1919 
1920     if (ret == 0) {
1921         ret = EXCP_INTERRUPT;
1922     }
1923     return ret;
1924 }
1925 
1926 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1927 {
1928     return true;
1929 }
1930 
1931 void kvm_s390_enable_css_support(S390CPU *cpu)
1932 {
1933     int r;
1934 
1935     /* Activate host kernel channel subsystem support. */
1936     r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1937     assert(r == 0);
1938 }
1939 
1940 void kvm_arch_init_irq_routing(KVMState *s)
1941 {
1942     /*
1943      * Note that while irqchip capabilities generally imply that cpustates
1944      * are handled in-kernel, it is not true for s390 (yet); therefore, we
1945      * have to override the common code kvm_halt_in_kernel_allowed setting.
1946      */
1947     if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1948         kvm_gsi_routing_allowed = true;
1949         kvm_halt_in_kernel_allowed = false;
1950     }
1951 }
1952 
1953 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1954                                     int vq, bool assign)
1955 {
1956     struct kvm_ioeventfd kick = {
1957         .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1958         KVM_IOEVENTFD_FLAG_DATAMATCH,
1959         .fd = event_notifier_get_fd(notifier),
1960         .datamatch = vq,
1961         .addr = sch,
1962         .len = 8,
1963     };
1964     trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1965                                      kick.datamatch);
1966     if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1967         return -ENOSYS;
1968     }
1969     if (!assign) {
1970         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1971     }
1972     return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1973 }
1974 
1975 int kvm_s390_get_ri(void)
1976 {
1977     return cap_ri;
1978 }
1979 
1980 int kvm_s390_get_gs(void)
1981 {
1982     return cap_gs;
1983 }
1984 
1985 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1986 {
1987     struct kvm_mp_state mp_state = {};
1988     int ret;
1989 
1990     /* the kvm part might not have been initialized yet */
1991     if (CPU(cpu)->kvm_state == NULL) {
1992         return 0;
1993     }
1994 
1995     switch (cpu_state) {
1996     case S390_CPU_STATE_STOPPED:
1997         mp_state.mp_state = KVM_MP_STATE_STOPPED;
1998         break;
1999     case S390_CPU_STATE_CHECK_STOP:
2000         mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2001         break;
2002     case S390_CPU_STATE_OPERATING:
2003         mp_state.mp_state = KVM_MP_STATE_OPERATING;
2004         break;
2005     case S390_CPU_STATE_LOAD:
2006         mp_state.mp_state = KVM_MP_STATE_LOAD;
2007         break;
2008     default:
2009         error_report("Requested CPU state is not a valid S390 CPU state: %u",
2010                      cpu_state);
2011         exit(1);
2012     }
2013 
2014     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2015     if (ret) {
2016         trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2017                                        strerror(-ret));
2018     }
2019 
2020     return ret;
2021 }
2022 
2023 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2024 {
2025     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2026     struct kvm_s390_irq_state irq_state = {
2027         .buf = (uint64_t) cpu->irqstate,
2028         .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2029     };
2030     CPUState *cs = CPU(cpu);
2031     int32_t bytes;
2032 
2033     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2034         return;
2035     }
2036 
2037     bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2038     if (bytes < 0) {
2039         cpu->irqstate_saved_size = 0;
2040         error_report("Migration of interrupt state failed");
2041         return;
2042     }
2043 
2044     cpu->irqstate_saved_size = bytes;
2045 }
2046 
2047 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2048 {
2049     CPUState *cs = CPU(cpu);
2050     struct kvm_s390_irq_state irq_state = {
2051         .buf = (uint64_t) cpu->irqstate,
2052         .len = cpu->irqstate_saved_size,
2053     };
2054     int r;
2055 
2056     if (cpu->irqstate_saved_size == 0) {
2057         return 0;
2058     }
2059 
2060     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2061         return -ENOSYS;
2062     }
2063 
2064     r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2065     if (r) {
2066         error_report("Setting interrupt state failed %d", r);
2067     }
2068     return r;
2069 }
2070 
2071 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2072                              uint64_t address, uint32_t data, PCIDevice *dev)
2073 {
2074     S390PCIBusDevice *pbdev;
2075     uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2076 
2077     if (!dev) {
2078         DPRINTF("add_msi_route no pci device\n");
2079         return -ENODEV;
2080     }
2081 
2082     pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2083     if (!pbdev) {
2084         DPRINTF("add_msi_route no zpci device\n");
2085         return -ENODEV;
2086     }
2087 
2088     route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2089     route->flags = 0;
2090     route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2091     route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2092     route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2093     route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2094     route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2095     return 0;
2096 }
2097 
2098 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2099                                 int vector, PCIDevice *dev)
2100 {
2101     return 0;
2102 }
2103 
2104 int kvm_arch_release_virq_post(int virq)
2105 {
2106     return 0;
2107 }
2108 
2109 int kvm_arch_msi_data_to_gsi(uint32_t data)
2110 {
2111     abort();
2112 }
2113 
2114 static int query_cpu_subfunc(S390FeatBitmap features)
2115 {
2116     struct kvm_s390_vm_cpu_subfunc prop;
2117     struct kvm_device_attr attr = {
2118         .group = KVM_S390_VM_CPU_MODEL,
2119         .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2120         .addr = (uint64_t) &prop,
2121     };
2122     int rc;
2123 
2124     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2125     if (rc) {
2126         return  rc;
2127     }
2128 
2129     /*
2130      * We're going to add all subfunctions now, if the corresponding feature
2131      * is available that unlocks the query functions.
2132      */
2133     s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2134     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2135         s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2136     }
2137     if (test_bit(S390_FEAT_MSA, features)) {
2138         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2139         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2140         s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2141         s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2142         s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2143     }
2144     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2145         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2146     }
2147     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2148         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2149         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2150         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2151         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2152     }
2153     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2154         s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2155     }
2156     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2157         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2158     }
2159     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2160         s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2161     }
2162     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2163         s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2164     }
2165     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2166         s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2167     }
2168     return 0;
2169 }
2170 
2171 static int configure_cpu_subfunc(const S390FeatBitmap features)
2172 {
2173     struct kvm_s390_vm_cpu_subfunc prop = {};
2174     struct kvm_device_attr attr = {
2175         .group = KVM_S390_VM_CPU_MODEL,
2176         .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2177         .addr = (uint64_t) &prop,
2178     };
2179 
2180     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2181                            KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2182         /* hardware support might be missing, IBC will handle most of this */
2183         return 0;
2184     }
2185 
2186     s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2187     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2188         s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2189     }
2190     if (test_bit(S390_FEAT_MSA, features)) {
2191         s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2192         s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2193         s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2194         s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2195         s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2196     }
2197     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2198         s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2199     }
2200     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2201         s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2202         s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2203         s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2204         s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2205     }
2206     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2207         s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2208     }
2209     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2210         s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2211     }
2212     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2213         s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2214     }
2215     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2216         s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2217     }
2218     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2219         s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2220     }
2221     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2222 }
2223 
2224 static int kvm_to_feat[][2] = {
2225     { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2226     { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2227     { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2228     { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2229     { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2230     { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2231     { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2232     { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2233     { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2234     { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2235     { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2236     { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2237     { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2238     { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2239 };
2240 
2241 static int query_cpu_feat(S390FeatBitmap features)
2242 {
2243     struct kvm_s390_vm_cpu_feat prop;
2244     struct kvm_device_attr attr = {
2245         .group = KVM_S390_VM_CPU_MODEL,
2246         .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2247         .addr = (uint64_t) &prop,
2248     };
2249     int rc;
2250     int i;
2251 
2252     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2253     if (rc) {
2254         return  rc;
2255     }
2256 
2257     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2258         if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2259             set_bit(kvm_to_feat[i][1], features);
2260         }
2261     }
2262     return 0;
2263 }
2264 
2265 static int configure_cpu_feat(const S390FeatBitmap features)
2266 {
2267     struct kvm_s390_vm_cpu_feat prop = {};
2268     struct kvm_device_attr attr = {
2269         .group = KVM_S390_VM_CPU_MODEL,
2270         .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2271         .addr = (uint64_t) &prop,
2272     };
2273     int i;
2274 
2275     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2276         if (test_bit(kvm_to_feat[i][1], features)) {
2277             set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2278         }
2279     }
2280     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2281 }
2282 
2283 bool kvm_s390_cpu_models_supported(void)
2284 {
2285     if (!cpu_model_allowed()) {
2286         /* compatibility machines interfere with the cpu model */
2287         return false;
2288     }
2289     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2290                              KVM_S390_VM_CPU_MACHINE) &&
2291            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2292                              KVM_S390_VM_CPU_PROCESSOR) &&
2293            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2294                              KVM_S390_VM_CPU_MACHINE_FEAT) &&
2295            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2296                              KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2297            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2298                              KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2299 }
2300 
2301 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2302 {
2303     struct kvm_s390_vm_cpu_machine prop = {};
2304     struct kvm_device_attr attr = {
2305         .group = KVM_S390_VM_CPU_MODEL,
2306         .attr = KVM_S390_VM_CPU_MACHINE,
2307         .addr = (uint64_t) &prop,
2308     };
2309     uint16_t unblocked_ibc = 0, cpu_type = 0;
2310     int rc;
2311 
2312     memset(model, 0, sizeof(*model));
2313 
2314     if (!kvm_s390_cpu_models_supported()) {
2315         error_setg(errp, "KVM doesn't support CPU models");
2316         return;
2317     }
2318 
2319     /* query the basic cpu model properties */
2320     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2321     if (rc) {
2322         error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2323         return;
2324     }
2325 
2326     cpu_type = cpuid_type(prop.cpuid);
2327     if (has_ibc(prop.ibc)) {
2328         model->lowest_ibc = lowest_ibc(prop.ibc);
2329         unblocked_ibc = unblocked_ibc(prop.ibc);
2330     }
2331     model->cpu_id = cpuid_id(prop.cpuid);
2332     model->cpu_id_format = cpuid_format(prop.cpuid);
2333     model->cpu_ver = 0xff;
2334 
2335     /* get supported cpu features indicated via STFL(E) */
2336     s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2337                              (uint8_t *) prop.fac_mask);
2338     /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2339     if (test_bit(S390_FEAT_STFLE, model->features)) {
2340         set_bit(S390_FEAT_DAT_ENH_2, model->features);
2341     }
2342     /* get supported cpu features indicated e.g. via SCLP */
2343     rc = query_cpu_feat(model->features);
2344     if (rc) {
2345         error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2346         return;
2347     }
2348     /* get supported cpu subfunctions indicated via query / test bit */
2349     rc = query_cpu_subfunc(model->features);
2350     if (rc) {
2351         error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2352         return;
2353     }
2354 
2355     /* PTFF subfunctions might be indicated although kernel support missing */
2356     if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2357         clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2358         clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2359         clear_bit(S390_FEAT_PTFF_STOE, model->features);
2360         clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2361     }
2362 
2363     /* with cpu model support, CMM is only indicated if really available */
2364     if (kvm_s390_cmma_available()) {
2365         set_bit(S390_FEAT_CMM, model->features);
2366     } else {
2367         /* no cmm -> no cmm nt */
2368         clear_bit(S390_FEAT_CMM_NT, model->features);
2369     }
2370 
2371     /* bpb needs kernel support for migration, VSIE and reset */
2372     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2373         clear_bit(S390_FEAT_BPB, model->features);
2374     }
2375 
2376     /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2377     set_bit(S390_FEAT_ZPCI, model->features);
2378     set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2379 
2380     if (s390_known_cpu_type(cpu_type)) {
2381         /* we want the exact model, even if some features are missing */
2382         model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2383                                        ibc_ec_ga(unblocked_ibc), NULL);
2384     } else {
2385         /* model unknown, e.g. too new - search using features */
2386         model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2387                                        ibc_ec_ga(unblocked_ibc),
2388                                        model->features);
2389     }
2390     if (!model->def) {
2391         error_setg(errp, "KVM: host CPU model could not be identified");
2392         return;
2393     }
2394     /* for now, we can only provide the AP feature with HW support */
2395     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2396         KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2397         set_bit(S390_FEAT_AP, model->features);
2398     }
2399     /* strip of features that are not part of the maximum model */
2400     bitmap_and(model->features, model->features, model->def->full_feat,
2401                S390_FEAT_MAX);
2402 }
2403 
2404 static void kvm_s390_configure_apie(bool interpret)
2405 {
2406     uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2407                                 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2408 
2409     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2410         kvm_s390_set_attr(attr);
2411     }
2412 }
2413 
2414 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2415 {
2416     struct kvm_s390_vm_cpu_processor prop  = {
2417         .fac_list = { 0 },
2418     };
2419     struct kvm_device_attr attr = {
2420         .group = KVM_S390_VM_CPU_MODEL,
2421         .attr = KVM_S390_VM_CPU_PROCESSOR,
2422         .addr = (uint64_t) &prop,
2423     };
2424     int rc;
2425 
2426     if (!model) {
2427         /* compatibility handling if cpu models are disabled */
2428         if (kvm_s390_cmma_available()) {
2429             kvm_s390_enable_cmma();
2430         }
2431         return;
2432     }
2433     if (!kvm_s390_cpu_models_supported()) {
2434         error_setg(errp, "KVM doesn't support CPU models");
2435         return;
2436     }
2437     prop.cpuid = s390_cpuid_from_cpu_model(model);
2438     prop.ibc = s390_ibc_from_cpu_model(model);
2439     /* configure cpu features indicated via STFL(e) */
2440     s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2441                          (uint8_t *) prop.fac_list);
2442     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2443     if (rc) {
2444         error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2445         return;
2446     }
2447     /* configure cpu features indicated e.g. via SCLP */
2448     rc = configure_cpu_feat(model->features);
2449     if (rc) {
2450         error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2451         return;
2452     }
2453     /* configure cpu subfunctions indicated via query / test bit */
2454     rc = configure_cpu_subfunc(model->features);
2455     if (rc) {
2456         error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2457         return;
2458     }
2459     /* enable CMM via CMMA */
2460     if (test_bit(S390_FEAT_CMM, model->features)) {
2461         kvm_s390_enable_cmma();
2462     }
2463 
2464     if (test_bit(S390_FEAT_AP, model->features)) {
2465         kvm_s390_configure_apie(true);
2466     }
2467 }
2468 
2469 void kvm_s390_restart_interrupt(S390CPU *cpu)
2470 {
2471     struct kvm_s390_irq irq = {
2472         .type = KVM_S390_RESTART,
2473     };
2474 
2475     kvm_s390_vcpu_interrupt(cpu, &irq);
2476 }
2477 
2478 void kvm_s390_stop_interrupt(S390CPU *cpu)
2479 {
2480     struct kvm_s390_irq irq = {
2481         .type = KVM_S390_SIGP_STOP,
2482     };
2483 
2484     kvm_s390_vcpu_interrupt(cpu, &irq);
2485 }
2486