1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * Contributions after 2012-10-29 are licensed under the terms of the 18 * GNU GPL, version 2 or (at your option) any later version. 19 * 20 * You should have received a copy of the GNU (Lesser) General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include <sys/ioctl.h> 26 27 #include <linux/kvm.h> 28 #include <asm/ptrace.h> 29 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "internal.h" 33 #include "kvm_s390x.h" 34 #include "qapi/error.h" 35 #include "qemu/error-report.h" 36 #include "qemu/timer.h" 37 #include "sysemu/sysemu.h" 38 #include "sysemu/hw_accel.h" 39 #include "hw/hw.h" 40 #include "sysemu/device_tree.h" 41 #include "exec/gdbstub.h" 42 #include "exec/address-spaces.h" 43 #include "trace.h" 44 #include "qapi-event.h" 45 #include "hw/s390x/s390-pci-inst.h" 46 #include "hw/s390x/s390-pci-bus.h" 47 #include "hw/s390x/ipl.h" 48 #include "hw/s390x/ebcdic.h" 49 #include "exec/memattrs.h" 50 #include "hw/s390x/s390-virtio-ccw.h" 51 #include "hw/s390x/s390-virtio-hcall.h" 52 53 #ifndef DEBUG_KVM 54 #define DEBUG_KVM 0 55 #endif 56 57 #define DPRINTF(fmt, ...) do { \ 58 if (DEBUG_KVM) { \ 59 fprintf(stderr, fmt, ## __VA_ARGS__); \ 60 } \ 61 } while (0) 62 63 #define kvm_vm_check_mem_attr(s, attr) \ 64 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 65 66 #define IPA0_DIAG 0x8300 67 #define IPA0_SIGP 0xae00 68 #define IPA0_B2 0xb200 69 #define IPA0_B9 0xb900 70 #define IPA0_EB 0xeb00 71 #define IPA0_E3 0xe300 72 73 #define PRIV_B2_SCLP_CALL 0x20 74 #define PRIV_B2_CSCH 0x30 75 #define PRIV_B2_HSCH 0x31 76 #define PRIV_B2_MSCH 0x32 77 #define PRIV_B2_SSCH 0x33 78 #define PRIV_B2_STSCH 0x34 79 #define PRIV_B2_TSCH 0x35 80 #define PRIV_B2_TPI 0x36 81 #define PRIV_B2_SAL 0x37 82 #define PRIV_B2_RSCH 0x38 83 #define PRIV_B2_STCRW 0x39 84 #define PRIV_B2_STCPS 0x3a 85 #define PRIV_B2_RCHP 0x3b 86 #define PRIV_B2_SCHM 0x3c 87 #define PRIV_B2_CHSC 0x5f 88 #define PRIV_B2_SIGA 0x74 89 #define PRIV_B2_XSCH 0x76 90 91 #define PRIV_EB_SQBS 0x8a 92 #define PRIV_EB_PCISTB 0xd0 93 #define PRIV_EB_SIC 0xd1 94 95 #define PRIV_B9_EQBS 0x9c 96 #define PRIV_B9_CLP 0xa0 97 #define PRIV_B9_PCISTG 0xd0 98 #define PRIV_B9_PCILG 0xd2 99 #define PRIV_B9_RPCIT 0xd3 100 101 #define PRIV_E3_MPCIFC 0xd0 102 #define PRIV_E3_STPCIFC 0xd4 103 104 #define DIAG_TIMEREVENT 0x288 105 #define DIAG_IPL 0x308 106 #define DIAG_KVM_HYPERCALL 0x500 107 #define DIAG_KVM_BREAKPOINT 0x501 108 109 #define ICPT_INSTRUCTION 0x04 110 #define ICPT_PROGRAM 0x08 111 #define ICPT_EXT_INT 0x14 112 #define ICPT_WAITPSW 0x1c 113 #define ICPT_SOFT_INTERCEPT 0x24 114 #define ICPT_CPU_STOP 0x28 115 #define ICPT_OPEREXC 0x2c 116 #define ICPT_IO 0x40 117 118 #define NR_LOCAL_IRQS 32 119 /* 120 * Needs to be big enough to contain max_cpus emergency signals 121 * and in addition NR_LOCAL_IRQS interrupts 122 */ 123 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \ 124 (max_cpus + NR_LOCAL_IRQS)) 125 126 static CPUWatchpoint hw_watchpoint; 127 /* 128 * We don't use a list because this structure is also used to transmit the 129 * hardware breakpoints to the kernel. 130 */ 131 static struct kvm_hw_breakpoint *hw_breakpoints; 132 static int nb_hw_breakpoints; 133 134 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 135 KVM_CAP_LAST_INFO 136 }; 137 138 static int cap_sync_regs; 139 static int cap_async_pf; 140 static int cap_mem_op; 141 static int cap_s390_irq; 142 static int cap_ri; 143 static int cap_gs; 144 145 static int active_cmma; 146 147 static void *legacy_s390_alloc(size_t size, uint64_t *align); 148 149 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 150 { 151 struct kvm_device_attr attr = { 152 .group = KVM_S390_VM_MEM_CTRL, 153 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 154 .addr = (uint64_t) memory_limit, 155 }; 156 157 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 158 } 159 160 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 161 { 162 int rc; 163 164 struct kvm_device_attr attr = { 165 .group = KVM_S390_VM_MEM_CTRL, 166 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 167 .addr = (uint64_t) &new_limit, 168 }; 169 170 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 171 return 0; 172 } 173 174 rc = kvm_s390_query_mem_limit(hw_limit); 175 if (rc) { 176 return rc; 177 } else if (*hw_limit < new_limit) { 178 return -E2BIG; 179 } 180 181 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 182 } 183 184 int kvm_s390_cmma_active(void) 185 { 186 return active_cmma; 187 } 188 189 static bool kvm_s390_cmma_available(void) 190 { 191 static bool initialized, value; 192 193 if (!initialized) { 194 initialized = true; 195 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 196 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 197 } 198 return value; 199 } 200 201 void kvm_s390_cmma_reset(void) 202 { 203 int rc; 204 struct kvm_device_attr attr = { 205 .group = KVM_S390_VM_MEM_CTRL, 206 .attr = KVM_S390_VM_MEM_CLR_CMMA, 207 }; 208 209 if (!kvm_s390_cmma_active()) { 210 return; 211 } 212 213 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 214 trace_kvm_clear_cmma(rc); 215 } 216 217 static void kvm_s390_enable_cmma(void) 218 { 219 int rc; 220 struct kvm_device_attr attr = { 221 .group = KVM_S390_VM_MEM_CTRL, 222 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 223 }; 224 225 if (mem_path) { 226 warn_report("CMM will not be enabled because it is not " 227 "compatible with hugetlbfs."); 228 return; 229 } 230 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 231 active_cmma = !rc; 232 trace_kvm_enable_cmma(rc); 233 } 234 235 static void kvm_s390_set_attr(uint64_t attr) 236 { 237 struct kvm_device_attr attribute = { 238 .group = KVM_S390_VM_CRYPTO, 239 .attr = attr, 240 }; 241 242 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 243 244 if (ret) { 245 error_report("Failed to set crypto device attribute %lu: %s", 246 attr, strerror(-ret)); 247 } 248 } 249 250 static void kvm_s390_init_aes_kw(void) 251 { 252 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 253 254 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 255 NULL)) { 256 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 257 } 258 259 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 260 kvm_s390_set_attr(attr); 261 } 262 } 263 264 static void kvm_s390_init_dea_kw(void) 265 { 266 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 267 268 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 269 NULL)) { 270 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 271 } 272 273 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 274 kvm_s390_set_attr(attr); 275 } 276 } 277 278 void kvm_s390_crypto_reset(void) 279 { 280 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 281 kvm_s390_init_aes_kw(); 282 kvm_s390_init_dea_kw(); 283 } 284 } 285 286 int kvm_arch_init(MachineState *ms, KVMState *s) 287 { 288 MachineClass *mc = MACHINE_GET_CLASS(ms); 289 290 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 291 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 292 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 293 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 294 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 295 296 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 297 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 298 phys_mem_set_alloc(legacy_s390_alloc); 299 } 300 301 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 302 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 303 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 304 if (ri_allowed()) { 305 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 306 cap_ri = 1; 307 } 308 } 309 if (cpu_model_allowed()) { 310 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 311 cap_gs = 1; 312 } 313 } 314 315 /* 316 * The migration interface for ais was introduced with kernel 4.13 317 * but the capability itself had been active since 4.12. As migration 318 * support is considered necessary let's disable ais in the 2.10 319 * machine. 320 */ 321 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ 322 323 return 0; 324 } 325 326 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 327 { 328 return 0; 329 } 330 331 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 332 { 333 return cpu->cpu_index; 334 } 335 336 int kvm_arch_init_vcpu(CPUState *cs) 337 { 338 S390CPU *cpu = S390_CPU(cs); 339 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 340 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE); 341 return 0; 342 } 343 344 void kvm_s390_reset_vcpu(S390CPU *cpu) 345 { 346 CPUState *cs = CPU(cpu); 347 348 /* The initial reset call is needed here to reset in-kernel 349 * vcpu data that we can't access directly from QEMU 350 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 351 * Before this ioctl cpu_synchronize_state() is called in common kvm 352 * code (kvm-all) */ 353 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 354 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 355 } 356 } 357 358 static int can_sync_regs(CPUState *cs, int regs) 359 { 360 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 361 } 362 363 int kvm_arch_put_registers(CPUState *cs, int level) 364 { 365 S390CPU *cpu = S390_CPU(cs); 366 CPUS390XState *env = &cpu->env; 367 struct kvm_sregs sregs; 368 struct kvm_regs regs; 369 struct kvm_fpu fpu = {}; 370 int r; 371 int i; 372 373 /* always save the PSW and the GPRS*/ 374 cs->kvm_run->psw_addr = env->psw.addr; 375 cs->kvm_run->psw_mask = env->psw.mask; 376 377 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 378 for (i = 0; i < 16; i++) { 379 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 380 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 381 } 382 } else { 383 for (i = 0; i < 16; i++) { 384 regs.gprs[i] = env->regs[i]; 385 } 386 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 387 if (r < 0) { 388 return r; 389 } 390 } 391 392 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 393 for (i = 0; i < 32; i++) { 394 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll; 395 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll; 396 } 397 cs->kvm_run->s.regs.fpc = env->fpc; 398 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 399 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 400 for (i = 0; i < 16; i++) { 401 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll; 402 } 403 cs->kvm_run->s.regs.fpc = env->fpc; 404 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 405 } else { 406 /* Floating point */ 407 for (i = 0; i < 16; i++) { 408 fpu.fprs[i] = get_freg(env, i)->ll; 409 } 410 fpu.fpc = env->fpc; 411 412 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 413 if (r < 0) { 414 return r; 415 } 416 } 417 418 /* Do we need to save more than that? */ 419 if (level == KVM_PUT_RUNTIME_STATE) { 420 return 0; 421 } 422 423 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 424 cs->kvm_run->s.regs.cputm = env->cputm; 425 cs->kvm_run->s.regs.ckc = env->ckc; 426 cs->kvm_run->s.regs.todpr = env->todpr; 427 cs->kvm_run->s.regs.gbea = env->gbea; 428 cs->kvm_run->s.regs.pp = env->pp; 429 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 430 } else { 431 /* 432 * These ONE_REGS are not protected by a capability. As they are only 433 * necessary for migration we just trace a possible error, but don't 434 * return with an error return code. 435 */ 436 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 437 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 438 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 439 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 440 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 441 } 442 443 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 444 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 445 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 446 } 447 448 /* pfault parameters */ 449 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 450 cs->kvm_run->s.regs.pft = env->pfault_token; 451 cs->kvm_run->s.regs.pfs = env->pfault_select; 452 cs->kvm_run->s.regs.pfc = env->pfault_compare; 453 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 454 } else if (cap_async_pf) { 455 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 456 if (r < 0) { 457 return r; 458 } 459 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 460 if (r < 0) { 461 return r; 462 } 463 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 464 if (r < 0) { 465 return r; 466 } 467 } 468 469 /* access registers and control registers*/ 470 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 471 for (i = 0; i < 16; i++) { 472 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 473 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 474 } 475 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 476 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 477 } else { 478 for (i = 0; i < 16; i++) { 479 sregs.acrs[i] = env->aregs[i]; 480 sregs.crs[i] = env->cregs[i]; 481 } 482 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 483 if (r < 0) { 484 return r; 485 } 486 } 487 488 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 489 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 490 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 491 } 492 493 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 494 cs->kvm_run->s.regs.bpbc = env->bpbc; 495 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 496 } 497 498 /* Finally the prefix */ 499 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 500 cs->kvm_run->s.regs.prefix = env->psa; 501 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 502 } else { 503 /* prefix is only supported via sync regs */ 504 } 505 return 0; 506 } 507 508 int kvm_arch_get_registers(CPUState *cs) 509 { 510 S390CPU *cpu = S390_CPU(cs); 511 CPUS390XState *env = &cpu->env; 512 struct kvm_sregs sregs; 513 struct kvm_regs regs; 514 struct kvm_fpu fpu; 515 int i, r; 516 517 /* get the PSW */ 518 env->psw.addr = cs->kvm_run->psw_addr; 519 env->psw.mask = cs->kvm_run->psw_mask; 520 521 /* the GPRS */ 522 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 523 for (i = 0; i < 16; i++) { 524 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 525 } 526 } else { 527 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 528 if (r < 0) { 529 return r; 530 } 531 for (i = 0; i < 16; i++) { 532 env->regs[i] = regs.gprs[i]; 533 } 534 } 535 536 /* The ACRS and CRS */ 537 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 538 for (i = 0; i < 16; i++) { 539 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 540 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 541 } 542 } else { 543 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 544 if (r < 0) { 545 return r; 546 } 547 for (i = 0; i < 16; i++) { 548 env->aregs[i] = sregs.acrs[i]; 549 env->cregs[i] = sregs.crs[i]; 550 } 551 } 552 553 /* Floating point and vector registers */ 554 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 555 for (i = 0; i < 32; i++) { 556 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0]; 557 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1]; 558 } 559 env->fpc = cs->kvm_run->s.regs.fpc; 560 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 561 for (i = 0; i < 16; i++) { 562 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i]; 563 } 564 env->fpc = cs->kvm_run->s.regs.fpc; 565 } else { 566 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 567 if (r < 0) { 568 return r; 569 } 570 for (i = 0; i < 16; i++) { 571 get_freg(env, i)->ll = fpu.fprs[i]; 572 } 573 env->fpc = fpu.fpc; 574 } 575 576 /* The prefix */ 577 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 578 env->psa = cs->kvm_run->s.regs.prefix; 579 } 580 581 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 582 env->cputm = cs->kvm_run->s.regs.cputm; 583 env->ckc = cs->kvm_run->s.regs.ckc; 584 env->todpr = cs->kvm_run->s.regs.todpr; 585 env->gbea = cs->kvm_run->s.regs.gbea; 586 env->pp = cs->kvm_run->s.regs.pp; 587 } else { 588 /* 589 * These ONE_REGS are not protected by a capability. As they are only 590 * necessary for migration we just trace a possible error, but don't 591 * return with an error return code. 592 */ 593 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 594 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 595 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 596 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 597 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 598 } 599 600 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 601 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 602 } 603 604 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 605 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 606 } 607 608 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 609 env->bpbc = cs->kvm_run->s.regs.bpbc; 610 } 611 612 /* pfault parameters */ 613 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 614 env->pfault_token = cs->kvm_run->s.regs.pft; 615 env->pfault_select = cs->kvm_run->s.regs.pfs; 616 env->pfault_compare = cs->kvm_run->s.regs.pfc; 617 } else if (cap_async_pf) { 618 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 619 if (r < 0) { 620 return r; 621 } 622 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 623 if (r < 0) { 624 return r; 625 } 626 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 627 if (r < 0) { 628 return r; 629 } 630 } 631 632 return 0; 633 } 634 635 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 636 { 637 int r; 638 struct kvm_device_attr attr = { 639 .group = KVM_S390_VM_TOD, 640 .attr = KVM_S390_VM_TOD_LOW, 641 .addr = (uint64_t)tod_low, 642 }; 643 644 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 645 if (r) { 646 return r; 647 } 648 649 attr.attr = KVM_S390_VM_TOD_HIGH; 650 attr.addr = (uint64_t)tod_high; 651 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 652 } 653 654 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 655 { 656 int r; 657 struct kvm_s390_vm_tod_clock gtod; 658 struct kvm_device_attr attr = { 659 .group = KVM_S390_VM_TOD, 660 .attr = KVM_S390_VM_TOD_EXT, 661 .addr = (uint64_t)>od, 662 }; 663 664 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 665 *tod_high = gtod.epoch_idx; 666 *tod_low = gtod.tod; 667 668 return r; 669 } 670 671 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low) 672 { 673 int r; 674 struct kvm_device_attr attr = { 675 .group = KVM_S390_VM_TOD, 676 .attr = KVM_S390_VM_TOD_LOW, 677 .addr = (uint64_t)tod_low, 678 }; 679 680 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 681 if (r) { 682 return r; 683 } 684 685 attr.attr = KVM_S390_VM_TOD_HIGH; 686 attr.addr = (uint64_t)tod_high; 687 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 688 } 689 690 int kvm_s390_set_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 691 { 692 struct kvm_s390_vm_tod_clock gtod = { 693 .epoch_idx = *tod_high, 694 .tod = *tod_low, 695 }; 696 struct kvm_device_attr attr = { 697 .group = KVM_S390_VM_TOD, 698 .attr = KVM_S390_VM_TOD_EXT, 699 .addr = (uint64_t)>od, 700 }; 701 702 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 703 } 704 705 /** 706 * kvm_s390_mem_op: 707 * @addr: the logical start address in guest memory 708 * @ar: the access register number 709 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 710 * @len: length that should be transferred 711 * @is_write: true = write, false = read 712 * Returns: 0 on success, non-zero if an exception or error occurred 713 * 714 * Use KVM ioctl to read/write from/to guest memory. An access exception 715 * is injected into the vCPU in case of translation errors. 716 */ 717 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 718 int len, bool is_write) 719 { 720 struct kvm_s390_mem_op mem_op = { 721 .gaddr = addr, 722 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 723 .size = len, 724 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 725 : KVM_S390_MEMOP_LOGICAL_READ, 726 .buf = (uint64_t)hostbuf, 727 .ar = ar, 728 }; 729 int ret; 730 731 if (!cap_mem_op) { 732 return -ENOSYS; 733 } 734 if (!hostbuf) { 735 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 736 } 737 738 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 739 if (ret < 0) { 740 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret)); 741 } 742 return ret; 743 } 744 745 /* 746 * Legacy layout for s390: 747 * Older S390 KVM requires the topmost vma of the RAM to be 748 * smaller than an system defined value, which is at least 256GB. 749 * Larger systems have larger values. We put the guest between 750 * the end of data segment (system break) and this value. We 751 * use 32GB as a base to have enough room for the system break 752 * to grow. We also have to use MAP parameters that avoid 753 * read-only mapping of guest pages. 754 */ 755 static void *legacy_s390_alloc(size_t size, uint64_t *align) 756 { 757 void *mem; 758 759 mem = mmap((void *) 0x800000000ULL, size, 760 PROT_EXEC|PROT_READ|PROT_WRITE, 761 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 762 return mem == MAP_FAILED ? NULL : mem; 763 } 764 765 static uint8_t const *sw_bp_inst; 766 static uint8_t sw_bp_ilen; 767 768 static void determine_sw_breakpoint_instr(void) 769 { 770 /* DIAG 501 is used for sw breakpoints with old kernels */ 771 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 772 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 773 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 774 775 if (sw_bp_inst) { 776 return; 777 } 778 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 779 sw_bp_inst = diag_501; 780 sw_bp_ilen = sizeof(diag_501); 781 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 782 } else { 783 sw_bp_inst = instr_0x0000; 784 sw_bp_ilen = sizeof(instr_0x0000); 785 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 786 } 787 } 788 789 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 790 { 791 determine_sw_breakpoint_instr(); 792 793 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 794 sw_bp_ilen, 0) || 795 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 796 return -EINVAL; 797 } 798 return 0; 799 } 800 801 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 802 { 803 uint8_t t[MAX_ILEN]; 804 805 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 806 return -EINVAL; 807 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 808 return -EINVAL; 809 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 810 sw_bp_ilen, 1)) { 811 return -EINVAL; 812 } 813 814 return 0; 815 } 816 817 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 818 int len, int type) 819 { 820 int n; 821 822 for (n = 0; n < nb_hw_breakpoints; n++) { 823 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 824 (hw_breakpoints[n].len == len || len == -1)) { 825 return &hw_breakpoints[n]; 826 } 827 } 828 829 return NULL; 830 } 831 832 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 833 { 834 int size; 835 836 if (find_hw_breakpoint(addr, len, type)) { 837 return -EEXIST; 838 } 839 840 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 841 842 if (!hw_breakpoints) { 843 nb_hw_breakpoints = 0; 844 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 845 } else { 846 hw_breakpoints = 847 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 848 } 849 850 if (!hw_breakpoints) { 851 nb_hw_breakpoints = 0; 852 return -ENOMEM; 853 } 854 855 hw_breakpoints[nb_hw_breakpoints].addr = addr; 856 hw_breakpoints[nb_hw_breakpoints].len = len; 857 hw_breakpoints[nb_hw_breakpoints].type = type; 858 859 nb_hw_breakpoints++; 860 861 return 0; 862 } 863 864 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 865 target_ulong len, int type) 866 { 867 switch (type) { 868 case GDB_BREAKPOINT_HW: 869 type = KVM_HW_BP; 870 break; 871 case GDB_WATCHPOINT_WRITE: 872 if (len < 1) { 873 return -EINVAL; 874 } 875 type = KVM_HW_WP_WRITE; 876 break; 877 default: 878 return -ENOSYS; 879 } 880 return insert_hw_breakpoint(addr, len, type); 881 } 882 883 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 884 target_ulong len, int type) 885 { 886 int size; 887 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 888 889 if (bp == NULL) { 890 return -ENOENT; 891 } 892 893 nb_hw_breakpoints--; 894 if (nb_hw_breakpoints > 0) { 895 /* 896 * In order to trim the array, move the last element to the position to 897 * be removed - if necessary. 898 */ 899 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 900 *bp = hw_breakpoints[nb_hw_breakpoints]; 901 } 902 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 903 hw_breakpoints = 904 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 905 } else { 906 g_free(hw_breakpoints); 907 hw_breakpoints = NULL; 908 } 909 910 return 0; 911 } 912 913 void kvm_arch_remove_all_hw_breakpoints(void) 914 { 915 nb_hw_breakpoints = 0; 916 g_free(hw_breakpoints); 917 hw_breakpoints = NULL; 918 } 919 920 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 921 { 922 int i; 923 924 if (nb_hw_breakpoints > 0) { 925 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 926 dbg->arch.hw_bp = hw_breakpoints; 927 928 for (i = 0; i < nb_hw_breakpoints; ++i) { 929 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 930 hw_breakpoints[i].addr); 931 } 932 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 933 } else { 934 dbg->arch.nr_hw_bp = 0; 935 dbg->arch.hw_bp = NULL; 936 } 937 } 938 939 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 940 { 941 } 942 943 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 944 { 945 return MEMTXATTRS_UNSPECIFIED; 946 } 947 948 int kvm_arch_process_async_events(CPUState *cs) 949 { 950 return cs->halted; 951 } 952 953 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 954 struct kvm_s390_interrupt *interrupt) 955 { 956 int r = 0; 957 958 interrupt->type = irq->type; 959 switch (irq->type) { 960 case KVM_S390_INT_VIRTIO: 961 interrupt->parm = irq->u.ext.ext_params; 962 /* fall through */ 963 case KVM_S390_INT_PFAULT_INIT: 964 case KVM_S390_INT_PFAULT_DONE: 965 interrupt->parm64 = irq->u.ext.ext_params2; 966 break; 967 case KVM_S390_PROGRAM_INT: 968 interrupt->parm = irq->u.pgm.code; 969 break; 970 case KVM_S390_SIGP_SET_PREFIX: 971 interrupt->parm = irq->u.prefix.address; 972 break; 973 case KVM_S390_INT_SERVICE: 974 interrupt->parm = irq->u.ext.ext_params; 975 break; 976 case KVM_S390_MCHK: 977 interrupt->parm = irq->u.mchk.cr14; 978 interrupt->parm64 = irq->u.mchk.mcic; 979 break; 980 case KVM_S390_INT_EXTERNAL_CALL: 981 interrupt->parm = irq->u.extcall.code; 982 break; 983 case KVM_S390_INT_EMERGENCY: 984 interrupt->parm = irq->u.emerg.code; 985 break; 986 case KVM_S390_SIGP_STOP: 987 case KVM_S390_RESTART: 988 break; /* These types have no parameters */ 989 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 990 interrupt->parm = irq->u.io.subchannel_id << 16; 991 interrupt->parm |= irq->u.io.subchannel_nr; 992 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 993 interrupt->parm64 |= irq->u.io.io_int_word; 994 break; 995 default: 996 r = -EINVAL; 997 break; 998 } 999 return r; 1000 } 1001 1002 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1003 { 1004 struct kvm_s390_interrupt kvmint = {}; 1005 int r; 1006 1007 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1008 if (r < 0) { 1009 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1010 exit(1); 1011 } 1012 1013 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1014 if (r < 0) { 1015 fprintf(stderr, "KVM failed to inject interrupt\n"); 1016 exit(1); 1017 } 1018 } 1019 1020 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1021 { 1022 CPUState *cs = CPU(cpu); 1023 int r; 1024 1025 if (cap_s390_irq) { 1026 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1027 if (!r) { 1028 return; 1029 } 1030 error_report("KVM failed to inject interrupt %llx", irq->type); 1031 exit(1); 1032 } 1033 1034 inject_vcpu_irq_legacy(cs, irq); 1035 } 1036 1037 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) 1038 { 1039 struct kvm_s390_interrupt kvmint = {}; 1040 int r; 1041 1042 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1043 if (r < 0) { 1044 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1045 exit(1); 1046 } 1047 1048 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1049 if (r < 0) { 1050 fprintf(stderr, "KVM failed to inject interrupt\n"); 1051 exit(1); 1052 } 1053 } 1054 1055 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) 1056 { 1057 static bool use_flic = true; 1058 int r; 1059 1060 if (use_flic) { 1061 r = kvm_s390_inject_flic(irq); 1062 if (r == -ENOSYS) { 1063 use_flic = false; 1064 } 1065 if (!r) { 1066 return; 1067 } 1068 } 1069 __kvm_s390_floating_interrupt(irq); 1070 } 1071 1072 void kvm_s390_service_interrupt(uint32_t parm) 1073 { 1074 struct kvm_s390_irq irq = { 1075 .type = KVM_S390_INT_SERVICE, 1076 .u.ext.ext_params = parm, 1077 }; 1078 1079 kvm_s390_floating_interrupt(&irq); 1080 } 1081 1082 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1083 { 1084 struct kvm_s390_irq irq = { 1085 .type = KVM_S390_PROGRAM_INT, 1086 .u.pgm.code = code, 1087 }; 1088 1089 kvm_s390_vcpu_interrupt(cpu, &irq); 1090 } 1091 1092 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1093 { 1094 struct kvm_s390_irq irq = { 1095 .type = KVM_S390_PROGRAM_INT, 1096 .u.pgm.code = code, 1097 .u.pgm.trans_exc_code = te_code, 1098 .u.pgm.exc_access_id = te_code & 3, 1099 }; 1100 1101 kvm_s390_vcpu_interrupt(cpu, &irq); 1102 } 1103 1104 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1105 uint16_t ipbh0) 1106 { 1107 CPUS390XState *env = &cpu->env; 1108 uint64_t sccb; 1109 uint32_t code; 1110 int r = 0; 1111 1112 cpu_synchronize_state(CPU(cpu)); 1113 sccb = env->regs[ipbh0 & 0xf]; 1114 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1115 1116 r = sclp_service_call(env, sccb, code); 1117 if (r < 0) { 1118 kvm_s390_program_interrupt(cpu, -r); 1119 } else { 1120 setcc(cpu, r); 1121 } 1122 1123 return 0; 1124 } 1125 1126 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1127 { 1128 CPUS390XState *env = &cpu->env; 1129 int rc = 0; 1130 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1131 1132 cpu_synchronize_state(CPU(cpu)); 1133 1134 switch (ipa1) { 1135 case PRIV_B2_XSCH: 1136 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1137 break; 1138 case PRIV_B2_CSCH: 1139 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1140 break; 1141 case PRIV_B2_HSCH: 1142 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1143 break; 1144 case PRIV_B2_MSCH: 1145 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1146 break; 1147 case PRIV_B2_SSCH: 1148 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1149 break; 1150 case PRIV_B2_STCRW: 1151 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1152 break; 1153 case PRIV_B2_STSCH: 1154 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1155 break; 1156 case PRIV_B2_TSCH: 1157 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1158 fprintf(stderr, "Spurious tsch intercept\n"); 1159 break; 1160 case PRIV_B2_CHSC: 1161 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1162 break; 1163 case PRIV_B2_TPI: 1164 /* This should have been handled by kvm already. */ 1165 fprintf(stderr, "Spurious tpi intercept\n"); 1166 break; 1167 case PRIV_B2_SCHM: 1168 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1169 run->s390_sieic.ipb, RA_IGNORED); 1170 break; 1171 case PRIV_B2_RSCH: 1172 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1173 break; 1174 case PRIV_B2_RCHP: 1175 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1176 break; 1177 case PRIV_B2_STCPS: 1178 /* We do not provide this instruction, it is suppressed. */ 1179 break; 1180 case PRIV_B2_SAL: 1181 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1182 break; 1183 case PRIV_B2_SIGA: 1184 /* Not provided, set CC = 3 for subchannel not operational */ 1185 setcc(cpu, 3); 1186 break; 1187 case PRIV_B2_SCLP_CALL: 1188 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1189 break; 1190 default: 1191 rc = -1; 1192 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1193 break; 1194 } 1195 1196 return rc; 1197 } 1198 1199 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1200 uint8_t *ar) 1201 { 1202 CPUS390XState *env = &cpu->env; 1203 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1204 uint32_t base2 = run->s390_sieic.ipb >> 28; 1205 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1206 ((run->s390_sieic.ipb & 0xff00) << 4); 1207 1208 if (disp2 & 0x80000) { 1209 disp2 += 0xfff00000; 1210 } 1211 if (ar) { 1212 *ar = base2; 1213 } 1214 1215 return (base2 ? env->regs[base2] : 0) + 1216 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1217 } 1218 1219 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1220 uint8_t *ar) 1221 { 1222 CPUS390XState *env = &cpu->env; 1223 uint32_t base2 = run->s390_sieic.ipb >> 28; 1224 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1225 ((run->s390_sieic.ipb & 0xff00) << 4); 1226 1227 if (disp2 & 0x80000) { 1228 disp2 += 0xfff00000; 1229 } 1230 if (ar) { 1231 *ar = base2; 1232 } 1233 1234 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1235 } 1236 1237 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1238 { 1239 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1240 1241 if (s390_has_feat(S390_FEAT_ZPCI)) { 1242 return clp_service_call(cpu, r2, RA_IGNORED); 1243 } else { 1244 return -1; 1245 } 1246 } 1247 1248 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1249 { 1250 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1251 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1252 1253 if (s390_has_feat(S390_FEAT_ZPCI)) { 1254 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1255 } else { 1256 return -1; 1257 } 1258 } 1259 1260 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1261 { 1262 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1263 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1264 1265 if (s390_has_feat(S390_FEAT_ZPCI)) { 1266 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1267 } else { 1268 return -1; 1269 } 1270 } 1271 1272 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1273 { 1274 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1275 uint64_t fiba; 1276 uint8_t ar; 1277 1278 if (s390_has_feat(S390_FEAT_ZPCI)) { 1279 cpu_synchronize_state(CPU(cpu)); 1280 fiba = get_base_disp_rxy(cpu, run, &ar); 1281 1282 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1283 } else { 1284 return -1; 1285 } 1286 } 1287 1288 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1289 { 1290 CPUS390XState *env = &cpu->env; 1291 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1292 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1293 uint8_t isc; 1294 uint16_t mode; 1295 int r; 1296 1297 cpu_synchronize_state(CPU(cpu)); 1298 mode = env->regs[r1] & 0xffff; 1299 isc = (env->regs[r3] >> 27) & 0x7; 1300 r = css_do_sic(env, isc, mode); 1301 if (r) { 1302 kvm_s390_program_interrupt(cpu, -r); 1303 } 1304 1305 return 0; 1306 } 1307 1308 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1309 { 1310 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1311 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1312 1313 if (s390_has_feat(S390_FEAT_ZPCI)) { 1314 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1315 } else { 1316 return -1; 1317 } 1318 } 1319 1320 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1321 { 1322 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1323 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1324 uint64_t gaddr; 1325 uint8_t ar; 1326 1327 if (s390_has_feat(S390_FEAT_ZPCI)) { 1328 cpu_synchronize_state(CPU(cpu)); 1329 gaddr = get_base_disp_rsy(cpu, run, &ar); 1330 1331 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1332 } else { 1333 return -1; 1334 } 1335 } 1336 1337 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1338 { 1339 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1340 uint64_t fiba; 1341 uint8_t ar; 1342 1343 if (s390_has_feat(S390_FEAT_ZPCI)) { 1344 cpu_synchronize_state(CPU(cpu)); 1345 fiba = get_base_disp_rxy(cpu, run, &ar); 1346 1347 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1348 } else { 1349 return -1; 1350 } 1351 } 1352 1353 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1354 { 1355 int r = 0; 1356 1357 switch (ipa1) { 1358 case PRIV_B9_CLP: 1359 r = kvm_clp_service_call(cpu, run); 1360 break; 1361 case PRIV_B9_PCISTG: 1362 r = kvm_pcistg_service_call(cpu, run); 1363 break; 1364 case PRIV_B9_PCILG: 1365 r = kvm_pcilg_service_call(cpu, run); 1366 break; 1367 case PRIV_B9_RPCIT: 1368 r = kvm_rpcit_service_call(cpu, run); 1369 break; 1370 case PRIV_B9_EQBS: 1371 /* just inject exception */ 1372 r = -1; 1373 break; 1374 default: 1375 r = -1; 1376 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1377 break; 1378 } 1379 1380 return r; 1381 } 1382 1383 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1384 { 1385 int r = 0; 1386 1387 switch (ipbl) { 1388 case PRIV_EB_PCISTB: 1389 r = kvm_pcistb_service_call(cpu, run); 1390 break; 1391 case PRIV_EB_SIC: 1392 r = kvm_sic_service_call(cpu, run); 1393 break; 1394 case PRIV_EB_SQBS: 1395 /* just inject exception */ 1396 r = -1; 1397 break; 1398 default: 1399 r = -1; 1400 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1401 break; 1402 } 1403 1404 return r; 1405 } 1406 1407 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1408 { 1409 int r = 0; 1410 1411 switch (ipbl) { 1412 case PRIV_E3_MPCIFC: 1413 r = kvm_mpcifc_service_call(cpu, run); 1414 break; 1415 case PRIV_E3_STPCIFC: 1416 r = kvm_stpcifc_service_call(cpu, run); 1417 break; 1418 default: 1419 r = -1; 1420 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1421 break; 1422 } 1423 1424 return r; 1425 } 1426 1427 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1428 { 1429 CPUS390XState *env = &cpu->env; 1430 int ret; 1431 1432 cpu_synchronize_state(CPU(cpu)); 1433 ret = s390_virtio_hypercall(env); 1434 if (ret == -EINVAL) { 1435 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1436 return 0; 1437 } 1438 1439 return ret; 1440 } 1441 1442 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1443 { 1444 uint64_t r1, r3; 1445 int rc; 1446 1447 cpu_synchronize_state(CPU(cpu)); 1448 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1449 r3 = run->s390_sieic.ipa & 0x000f; 1450 rc = handle_diag_288(&cpu->env, r1, r3); 1451 if (rc) { 1452 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1453 } 1454 } 1455 1456 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1457 { 1458 uint64_t r1, r3; 1459 1460 cpu_synchronize_state(CPU(cpu)); 1461 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1462 r3 = run->s390_sieic.ipa & 0x000f; 1463 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1464 } 1465 1466 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1467 { 1468 CPUS390XState *env = &cpu->env; 1469 unsigned long pc; 1470 1471 cpu_synchronize_state(CPU(cpu)); 1472 1473 pc = env->psw.addr - sw_bp_ilen; 1474 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1475 env->psw.addr = pc; 1476 return EXCP_DEBUG; 1477 } 1478 1479 return -ENOENT; 1480 } 1481 1482 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1483 1484 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1485 { 1486 int r = 0; 1487 uint16_t func_code; 1488 1489 /* 1490 * For any diagnose call we support, bits 48-63 of the resulting 1491 * address specify the function code; the remainder is ignored. 1492 */ 1493 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1494 switch (func_code) { 1495 case DIAG_TIMEREVENT: 1496 kvm_handle_diag_288(cpu, run); 1497 break; 1498 case DIAG_IPL: 1499 kvm_handle_diag_308(cpu, run); 1500 break; 1501 case DIAG_KVM_HYPERCALL: 1502 r = handle_hypercall(cpu, run); 1503 break; 1504 case DIAG_KVM_BREAKPOINT: 1505 r = handle_sw_breakpoint(cpu, run); 1506 break; 1507 default: 1508 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1509 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1510 break; 1511 } 1512 1513 return r; 1514 } 1515 1516 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1517 { 1518 CPUS390XState *env = &cpu->env; 1519 const uint8_t r1 = ipa1 >> 4; 1520 const uint8_t r3 = ipa1 & 0x0f; 1521 int ret; 1522 uint8_t order; 1523 1524 cpu_synchronize_state(CPU(cpu)); 1525 1526 /* get order code */ 1527 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1528 1529 ret = handle_sigp(env, order, r1, r3); 1530 setcc(cpu, ret); 1531 return 0; 1532 } 1533 1534 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1535 { 1536 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1537 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1538 int r = -1; 1539 1540 DPRINTF("handle_instruction 0x%x 0x%x\n", 1541 run->s390_sieic.ipa, run->s390_sieic.ipb); 1542 switch (ipa0) { 1543 case IPA0_B2: 1544 r = handle_b2(cpu, run, ipa1); 1545 break; 1546 case IPA0_B9: 1547 r = handle_b9(cpu, run, ipa1); 1548 break; 1549 case IPA0_EB: 1550 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1551 break; 1552 case IPA0_E3: 1553 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1554 break; 1555 case IPA0_DIAG: 1556 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1557 break; 1558 case IPA0_SIGP: 1559 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1560 break; 1561 } 1562 1563 if (r < 0) { 1564 r = 0; 1565 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1566 } 1567 1568 return r; 1569 } 1570 1571 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset) 1572 { 1573 CPUState *cs = CPU(cpu); 1574 1575 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx", 1576 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset), 1577 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8)); 1578 s390_cpu_halt(cpu); 1579 qemu_system_guest_panicked(NULL); 1580 } 1581 1582 /* try to detect pgm check loops */ 1583 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1584 { 1585 CPUState *cs = CPU(cpu); 1586 PSW oldpsw, newpsw; 1587 1588 cpu_synchronize_state(cs); 1589 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1590 offsetof(LowCore, program_new_psw)); 1591 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1592 offsetof(LowCore, program_new_psw) + 8); 1593 oldpsw.mask = run->psw_mask; 1594 oldpsw.addr = run->psw_addr; 1595 /* 1596 * Avoid endless loops of operation exceptions, if the pgm new 1597 * PSW will cause a new operation exception. 1598 * The heuristic checks if the pgm new psw is within 6 bytes before 1599 * the faulting psw address (with same DAT, AS settings) and the 1600 * new psw is not a wait psw and the fault was not triggered by 1601 * problem state. In that case go into crashed state. 1602 */ 1603 1604 if (oldpsw.addr - newpsw.addr <= 6 && 1605 !(newpsw.mask & PSW_MASK_WAIT) && 1606 !(oldpsw.mask & PSW_MASK_PSTATE) && 1607 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1608 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1609 unmanageable_intercept(cpu, "operation exception loop", 1610 offsetof(LowCore, program_new_psw)); 1611 return EXCP_HALTED; 1612 } 1613 return 0; 1614 } 1615 1616 static int handle_intercept(S390CPU *cpu) 1617 { 1618 CPUState *cs = CPU(cpu); 1619 struct kvm_run *run = cs->kvm_run; 1620 int icpt_code = run->s390_sieic.icptcode; 1621 int r = 0; 1622 1623 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1624 (long)cs->kvm_run->psw_addr); 1625 switch (icpt_code) { 1626 case ICPT_INSTRUCTION: 1627 r = handle_instruction(cpu, run); 1628 break; 1629 case ICPT_PROGRAM: 1630 unmanageable_intercept(cpu, "program interrupt", 1631 offsetof(LowCore, program_new_psw)); 1632 r = EXCP_HALTED; 1633 break; 1634 case ICPT_EXT_INT: 1635 unmanageable_intercept(cpu, "external interrupt", 1636 offsetof(LowCore, external_new_psw)); 1637 r = EXCP_HALTED; 1638 break; 1639 case ICPT_WAITPSW: 1640 /* disabled wait, since enabled wait is handled in kernel */ 1641 cpu_synchronize_state(cs); 1642 s390_handle_wait(cpu); 1643 r = EXCP_HALTED; 1644 break; 1645 case ICPT_CPU_STOP: 1646 do_stop_interrupt(&cpu->env); 1647 r = EXCP_HALTED; 1648 break; 1649 case ICPT_OPEREXC: 1650 /* check for break points */ 1651 r = handle_sw_breakpoint(cpu, run); 1652 if (r == -ENOENT) { 1653 /* Then check for potential pgm check loops */ 1654 r = handle_oper_loop(cpu, run); 1655 if (r == 0) { 1656 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1657 } 1658 } 1659 break; 1660 case ICPT_SOFT_INTERCEPT: 1661 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1662 exit(1); 1663 break; 1664 case ICPT_IO: 1665 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1666 exit(1); 1667 break; 1668 default: 1669 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1670 exit(1); 1671 break; 1672 } 1673 1674 return r; 1675 } 1676 1677 static int handle_tsch(S390CPU *cpu) 1678 { 1679 CPUState *cs = CPU(cpu); 1680 struct kvm_run *run = cs->kvm_run; 1681 int ret; 1682 1683 cpu_synchronize_state(cs); 1684 1685 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1686 RA_IGNORED); 1687 if (ret < 0) { 1688 /* 1689 * Failure. 1690 * If an I/O interrupt had been dequeued, we have to reinject it. 1691 */ 1692 if (run->s390_tsch.dequeued) { 1693 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id, 1694 run->s390_tsch.subchannel_nr, 1695 run->s390_tsch.io_int_parm, 1696 run->s390_tsch.io_int_word); 1697 } 1698 ret = 0; 1699 } 1700 return ret; 1701 } 1702 1703 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1704 { 1705 struct sysib_322 sysib; 1706 int del; 1707 1708 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1709 return; 1710 } 1711 /* Shift the stack of Extended Names to prepare for our own data */ 1712 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1713 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1714 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1715 * assumed it's not capable of managing Extended Names for lower levels. 1716 */ 1717 for (del = 1; del < sysib.count; del++) { 1718 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1719 break; 1720 } 1721 } 1722 if (del < sysib.count) { 1723 memset(sysib.ext_names[del], 0, 1724 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1725 } 1726 /* Insert short machine name in EBCDIC, padded with blanks */ 1727 if (qemu_name) { 1728 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1729 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1730 strlen(qemu_name))); 1731 } 1732 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1733 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1734 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1735 * considered by s390 as not capable of providing any Extended Name. 1736 * Therefore if no name was specified on qemu invocation, we go with the 1737 * same "KVMguest" default, which KVM has filled into short name field. 1738 */ 1739 if (qemu_name) { 1740 strncpy((char *)sysib.ext_names[0], qemu_name, 1741 sizeof(sysib.ext_names[0])); 1742 } else { 1743 strcpy((char *)sysib.ext_names[0], "KVMguest"); 1744 } 1745 /* Insert UUID */ 1746 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1747 1748 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1749 } 1750 1751 static int handle_stsi(S390CPU *cpu) 1752 { 1753 CPUState *cs = CPU(cpu); 1754 struct kvm_run *run = cs->kvm_run; 1755 1756 switch (run->s390_stsi.fc) { 1757 case 3: 1758 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1759 return 0; 1760 } 1761 /* Only sysib 3.2.2 needs post-handling for now. */ 1762 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1763 return 0; 1764 default: 1765 return 0; 1766 } 1767 } 1768 1769 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1770 { 1771 CPUState *cs = CPU(cpu); 1772 struct kvm_run *run = cs->kvm_run; 1773 1774 int ret = 0; 1775 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1776 1777 switch (arch_info->type) { 1778 case KVM_HW_WP_WRITE: 1779 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1780 cs->watchpoint_hit = &hw_watchpoint; 1781 hw_watchpoint.vaddr = arch_info->addr; 1782 hw_watchpoint.flags = BP_MEM_WRITE; 1783 ret = EXCP_DEBUG; 1784 } 1785 break; 1786 case KVM_HW_BP: 1787 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1788 ret = EXCP_DEBUG; 1789 } 1790 break; 1791 case KVM_SINGLESTEP: 1792 if (cs->singlestep_enabled) { 1793 ret = EXCP_DEBUG; 1794 } 1795 break; 1796 default: 1797 ret = -ENOSYS; 1798 } 1799 1800 return ret; 1801 } 1802 1803 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1804 { 1805 S390CPU *cpu = S390_CPU(cs); 1806 int ret = 0; 1807 1808 qemu_mutex_lock_iothread(); 1809 1810 switch (run->exit_reason) { 1811 case KVM_EXIT_S390_SIEIC: 1812 ret = handle_intercept(cpu); 1813 break; 1814 case KVM_EXIT_S390_RESET: 1815 s390_reipl_request(); 1816 break; 1817 case KVM_EXIT_S390_TSCH: 1818 ret = handle_tsch(cpu); 1819 break; 1820 case KVM_EXIT_S390_STSI: 1821 ret = handle_stsi(cpu); 1822 break; 1823 case KVM_EXIT_DEBUG: 1824 ret = kvm_arch_handle_debug_exit(cpu); 1825 break; 1826 default: 1827 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1828 break; 1829 } 1830 qemu_mutex_unlock_iothread(); 1831 1832 if (ret == 0) { 1833 ret = EXCP_INTERRUPT; 1834 } 1835 return ret; 1836 } 1837 1838 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1839 { 1840 return true; 1841 } 1842 1843 void kvm_s390_io_interrupt(uint16_t subchannel_id, 1844 uint16_t subchannel_nr, uint32_t io_int_parm, 1845 uint32_t io_int_word) 1846 { 1847 struct kvm_s390_irq irq = { 1848 .u.io.subchannel_id = subchannel_id, 1849 .u.io.subchannel_nr = subchannel_nr, 1850 .u.io.io_int_parm = io_int_parm, 1851 .u.io.io_int_word = io_int_word, 1852 }; 1853 1854 if (io_int_word & IO_INT_WORD_AI) { 1855 irq.type = KVM_S390_INT_IO(1, 0, 0, 0); 1856 } else { 1857 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8, 1858 (subchannel_id & 0x0006), 1859 subchannel_nr); 1860 } 1861 kvm_s390_floating_interrupt(&irq); 1862 } 1863 1864 void kvm_s390_crw_mchk(void) 1865 { 1866 struct kvm_s390_irq irq = { 1867 .type = KVM_S390_MCHK, 1868 .u.mchk.cr14 = CR14_CHANNEL_REPORT_SC, 1869 .u.mchk.mcic = s390_build_validity_mcic() | MCIC_SC_CP, 1870 }; 1871 kvm_s390_floating_interrupt(&irq); 1872 } 1873 1874 void kvm_s390_enable_css_support(S390CPU *cpu) 1875 { 1876 int r; 1877 1878 /* Activate host kernel channel subsystem support. */ 1879 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1880 assert(r == 0); 1881 } 1882 1883 void kvm_arch_init_irq_routing(KVMState *s) 1884 { 1885 /* 1886 * Note that while irqchip capabilities generally imply that cpustates 1887 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1888 * have to override the common code kvm_halt_in_kernel_allowed setting. 1889 */ 1890 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1891 kvm_gsi_routing_allowed = true; 1892 kvm_halt_in_kernel_allowed = false; 1893 } 1894 } 1895 1896 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1897 int vq, bool assign) 1898 { 1899 struct kvm_ioeventfd kick = { 1900 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1901 KVM_IOEVENTFD_FLAG_DATAMATCH, 1902 .fd = event_notifier_get_fd(notifier), 1903 .datamatch = vq, 1904 .addr = sch, 1905 .len = 8, 1906 }; 1907 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1908 return -ENOSYS; 1909 } 1910 if (!assign) { 1911 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1912 } 1913 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1914 } 1915 1916 int kvm_s390_get_memslot_count(void) 1917 { 1918 return kvm_check_extension(kvm_state, KVM_CAP_NR_MEMSLOTS); 1919 } 1920 1921 int kvm_s390_get_ri(void) 1922 { 1923 return cap_ri; 1924 } 1925 1926 int kvm_s390_get_gs(void) 1927 { 1928 return cap_gs; 1929 } 1930 1931 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1932 { 1933 struct kvm_mp_state mp_state = {}; 1934 int ret; 1935 1936 /* the kvm part might not have been initialized yet */ 1937 if (CPU(cpu)->kvm_state == NULL) { 1938 return 0; 1939 } 1940 1941 switch (cpu_state) { 1942 case CPU_STATE_STOPPED: 1943 mp_state.mp_state = KVM_MP_STATE_STOPPED; 1944 break; 1945 case CPU_STATE_CHECK_STOP: 1946 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 1947 break; 1948 case CPU_STATE_OPERATING: 1949 mp_state.mp_state = KVM_MP_STATE_OPERATING; 1950 break; 1951 case CPU_STATE_LOAD: 1952 mp_state.mp_state = KVM_MP_STATE_LOAD; 1953 break; 1954 default: 1955 error_report("Requested CPU state is not a valid S390 CPU state: %u", 1956 cpu_state); 1957 exit(1); 1958 } 1959 1960 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1961 if (ret) { 1962 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 1963 strerror(-ret)); 1964 } 1965 1966 return ret; 1967 } 1968 1969 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 1970 { 1971 struct kvm_s390_irq_state irq_state = { 1972 .buf = (uint64_t) cpu->irqstate, 1973 .len = VCPU_IRQ_BUF_SIZE, 1974 }; 1975 CPUState *cs = CPU(cpu); 1976 int32_t bytes; 1977 1978 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1979 return; 1980 } 1981 1982 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 1983 if (bytes < 0) { 1984 cpu->irqstate_saved_size = 0; 1985 error_report("Migration of interrupt state failed"); 1986 return; 1987 } 1988 1989 cpu->irqstate_saved_size = bytes; 1990 } 1991 1992 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 1993 { 1994 CPUState *cs = CPU(cpu); 1995 struct kvm_s390_irq_state irq_state = { 1996 .buf = (uint64_t) cpu->irqstate, 1997 .len = cpu->irqstate_saved_size, 1998 }; 1999 int r; 2000 2001 if (cpu->irqstate_saved_size == 0) { 2002 return 0; 2003 } 2004 2005 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2006 return -ENOSYS; 2007 } 2008 2009 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2010 if (r) { 2011 error_report("Setting interrupt state failed %d", r); 2012 } 2013 return r; 2014 } 2015 2016 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2017 uint64_t address, uint32_t data, PCIDevice *dev) 2018 { 2019 S390PCIBusDevice *pbdev; 2020 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2021 2022 if (!dev) { 2023 DPRINTF("add_msi_route no pci device\n"); 2024 return -ENODEV; 2025 } 2026 2027 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2028 if (!pbdev) { 2029 DPRINTF("add_msi_route no zpci device\n"); 2030 return -ENODEV; 2031 } 2032 2033 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2034 route->flags = 0; 2035 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2036 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2037 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2038 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2039 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2040 return 0; 2041 } 2042 2043 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2044 int vector, PCIDevice *dev) 2045 { 2046 return 0; 2047 } 2048 2049 int kvm_arch_release_virq_post(int virq) 2050 { 2051 return 0; 2052 } 2053 2054 int kvm_arch_msi_data_to_gsi(uint32_t data) 2055 { 2056 abort(); 2057 } 2058 2059 static int query_cpu_subfunc(S390FeatBitmap features) 2060 { 2061 struct kvm_s390_vm_cpu_subfunc prop; 2062 struct kvm_device_attr attr = { 2063 .group = KVM_S390_VM_CPU_MODEL, 2064 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2065 .addr = (uint64_t) &prop, 2066 }; 2067 int rc; 2068 2069 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2070 if (rc) { 2071 return rc; 2072 } 2073 2074 /* 2075 * We're going to add all subfunctions now, if the corresponding feature 2076 * is available that unlocks the query functions. 2077 */ 2078 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2079 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2080 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2081 } 2082 if (test_bit(S390_FEAT_MSA, features)) { 2083 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2084 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2085 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2086 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2087 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2088 } 2089 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2090 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2091 } 2092 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2093 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2094 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2095 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2096 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2097 } 2098 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2099 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2100 } 2101 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2102 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2103 } 2104 return 0; 2105 } 2106 2107 static int configure_cpu_subfunc(const S390FeatBitmap features) 2108 { 2109 struct kvm_s390_vm_cpu_subfunc prop = {}; 2110 struct kvm_device_attr attr = { 2111 .group = KVM_S390_VM_CPU_MODEL, 2112 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2113 .addr = (uint64_t) &prop, 2114 }; 2115 2116 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2117 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2118 /* hardware support might be missing, IBC will handle most of this */ 2119 return 0; 2120 } 2121 2122 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2123 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2124 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2125 } 2126 if (test_bit(S390_FEAT_MSA, features)) { 2127 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2128 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2129 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2130 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2131 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2132 } 2133 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2134 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2135 } 2136 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2137 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2138 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2139 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2140 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2141 } 2142 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2143 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2144 } 2145 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2146 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2147 } 2148 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2149 } 2150 2151 static int kvm_to_feat[][2] = { 2152 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2153 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2154 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2155 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2156 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2157 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2158 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2159 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2160 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2161 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2162 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2163 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2164 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2165 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2166 }; 2167 2168 static int query_cpu_feat(S390FeatBitmap features) 2169 { 2170 struct kvm_s390_vm_cpu_feat prop; 2171 struct kvm_device_attr attr = { 2172 .group = KVM_S390_VM_CPU_MODEL, 2173 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2174 .addr = (uint64_t) &prop, 2175 }; 2176 int rc; 2177 int i; 2178 2179 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2180 if (rc) { 2181 return rc; 2182 } 2183 2184 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2185 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2186 set_bit(kvm_to_feat[i][1], features); 2187 } 2188 } 2189 return 0; 2190 } 2191 2192 static int configure_cpu_feat(const S390FeatBitmap features) 2193 { 2194 struct kvm_s390_vm_cpu_feat prop = {}; 2195 struct kvm_device_attr attr = { 2196 .group = KVM_S390_VM_CPU_MODEL, 2197 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2198 .addr = (uint64_t) &prop, 2199 }; 2200 int i; 2201 2202 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2203 if (test_bit(kvm_to_feat[i][1], features)) { 2204 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2205 } 2206 } 2207 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2208 } 2209 2210 bool kvm_s390_cpu_models_supported(void) 2211 { 2212 if (!cpu_model_allowed()) { 2213 /* compatibility machines interfere with the cpu model */ 2214 return false; 2215 } 2216 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2217 KVM_S390_VM_CPU_MACHINE) && 2218 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2219 KVM_S390_VM_CPU_PROCESSOR) && 2220 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2221 KVM_S390_VM_CPU_MACHINE_FEAT) && 2222 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2223 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2224 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2225 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2226 } 2227 2228 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2229 { 2230 struct kvm_s390_vm_cpu_machine prop = {}; 2231 struct kvm_device_attr attr = { 2232 .group = KVM_S390_VM_CPU_MODEL, 2233 .attr = KVM_S390_VM_CPU_MACHINE, 2234 .addr = (uint64_t) &prop, 2235 }; 2236 uint16_t unblocked_ibc = 0, cpu_type = 0; 2237 int rc; 2238 2239 memset(model, 0, sizeof(*model)); 2240 2241 if (!kvm_s390_cpu_models_supported()) { 2242 error_setg(errp, "KVM doesn't support CPU models"); 2243 return; 2244 } 2245 2246 /* query the basic cpu model properties */ 2247 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2248 if (rc) { 2249 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2250 return; 2251 } 2252 2253 cpu_type = cpuid_type(prop.cpuid); 2254 if (has_ibc(prop.ibc)) { 2255 model->lowest_ibc = lowest_ibc(prop.ibc); 2256 unblocked_ibc = unblocked_ibc(prop.ibc); 2257 } 2258 model->cpu_id = cpuid_id(prop.cpuid); 2259 model->cpu_id_format = cpuid_format(prop.cpuid); 2260 model->cpu_ver = 0xff; 2261 2262 /* get supported cpu features indicated via STFL(E) */ 2263 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2264 (uint8_t *) prop.fac_mask); 2265 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2266 if (test_bit(S390_FEAT_STFLE, model->features)) { 2267 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2268 } 2269 /* get supported cpu features indicated e.g. via SCLP */ 2270 rc = query_cpu_feat(model->features); 2271 if (rc) { 2272 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2273 return; 2274 } 2275 /* get supported cpu subfunctions indicated via query / test bit */ 2276 rc = query_cpu_subfunc(model->features); 2277 if (rc) { 2278 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2279 return; 2280 } 2281 2282 /* with cpu model support, CMM is only indicated if really available */ 2283 if (kvm_s390_cmma_available()) { 2284 set_bit(S390_FEAT_CMM, model->features); 2285 } else { 2286 /* no cmm -> no cmm nt */ 2287 clear_bit(S390_FEAT_CMM_NT, model->features); 2288 } 2289 2290 /* bpb needs kernel support for migration, VSIE and reset */ 2291 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2292 clear_bit(S390_FEAT_BPB, model->features); 2293 } 2294 2295 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2296 if (pci_available) { 2297 set_bit(S390_FEAT_ZPCI, model->features); 2298 } 2299 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2300 2301 if (s390_known_cpu_type(cpu_type)) { 2302 /* we want the exact model, even if some features are missing */ 2303 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2304 ibc_ec_ga(unblocked_ibc), NULL); 2305 } else { 2306 /* model unknown, e.g. too new - search using features */ 2307 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2308 ibc_ec_ga(unblocked_ibc), 2309 model->features); 2310 } 2311 if (!model->def) { 2312 error_setg(errp, "KVM: host CPU model could not be identified"); 2313 return; 2314 } 2315 /* strip of features that are not part of the maximum model */ 2316 bitmap_and(model->features, model->features, model->def->full_feat, 2317 S390_FEAT_MAX); 2318 } 2319 2320 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2321 { 2322 struct kvm_s390_vm_cpu_processor prop = { 2323 .fac_list = { 0 }, 2324 }; 2325 struct kvm_device_attr attr = { 2326 .group = KVM_S390_VM_CPU_MODEL, 2327 .attr = KVM_S390_VM_CPU_PROCESSOR, 2328 .addr = (uint64_t) &prop, 2329 }; 2330 int rc; 2331 2332 if (!model) { 2333 /* compatibility handling if cpu models are disabled */ 2334 if (kvm_s390_cmma_available()) { 2335 kvm_s390_enable_cmma(); 2336 } 2337 return; 2338 } 2339 if (!kvm_s390_cpu_models_supported()) { 2340 error_setg(errp, "KVM doesn't support CPU models"); 2341 return; 2342 } 2343 prop.cpuid = s390_cpuid_from_cpu_model(model); 2344 prop.ibc = s390_ibc_from_cpu_model(model); 2345 /* configure cpu features indicated via STFL(e) */ 2346 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2347 (uint8_t *) prop.fac_list); 2348 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2349 if (rc) { 2350 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2351 return; 2352 } 2353 /* configure cpu features indicated e.g. via SCLP */ 2354 rc = configure_cpu_feat(model->features); 2355 if (rc) { 2356 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2357 return; 2358 } 2359 /* configure cpu subfunctions indicated via query / test bit */ 2360 rc = configure_cpu_subfunc(model->features); 2361 if (rc) { 2362 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2363 return; 2364 } 2365 /* enable CMM via CMMA */ 2366 if (test_bit(S390_FEAT_CMM, model->features)) { 2367 kvm_s390_enable_cmma(); 2368 } 2369 } 2370 2371 void kvm_s390_restart_interrupt(S390CPU *cpu) 2372 { 2373 struct kvm_s390_irq irq = { 2374 .type = KVM_S390_RESTART, 2375 }; 2376 2377 kvm_s390_vcpu_interrupt(cpu, &irq); 2378 } 2379 2380 void kvm_s390_stop_interrupt(S390CPU *cpu) 2381 { 2382 struct kvm_s390_irq irq = { 2383 .type = KVM_S390_SIGP_STOP, 2384 }; 2385 2386 kvm_s390_vcpu_interrupt(cpu, &irq); 2387 } 2388