1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "internal.h" 30 #include "kvm_s390x.h" 31 #include "qapi/error.h" 32 #include "qemu/error-report.h" 33 #include "qemu/timer.h" 34 #include "qemu/units.h" 35 #include "qemu/mmap-alloc.h" 36 #include "qemu/log.h" 37 #include "sysemu/sysemu.h" 38 #include "sysemu/hw_accel.h" 39 #include "sysemu/device_tree.h" 40 #include "exec/gdbstub.h" 41 #include "exec/ram_addr.h" 42 #include "trace.h" 43 #include "hw/s390x/s390-pci-inst.h" 44 #include "hw/s390x/s390-pci-bus.h" 45 #include "hw/s390x/ipl.h" 46 #include "hw/s390x/ebcdic.h" 47 #include "exec/memattrs.h" 48 #include "hw/s390x/s390-virtio-ccw.h" 49 #include "hw/s390x/s390-virtio-hcall.h" 50 51 #ifndef DEBUG_KVM 52 #define DEBUG_KVM 0 53 #endif 54 55 #define DPRINTF(fmt, ...) do { \ 56 if (DEBUG_KVM) { \ 57 fprintf(stderr, fmt, ## __VA_ARGS__); \ 58 } \ 59 } while (0) 60 61 #define kvm_vm_check_mem_attr(s, attr) \ 62 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 63 64 #define IPA0_DIAG 0x8300 65 #define IPA0_SIGP 0xae00 66 #define IPA0_B2 0xb200 67 #define IPA0_B9 0xb900 68 #define IPA0_EB 0xeb00 69 #define IPA0_E3 0xe300 70 71 #define PRIV_B2_SCLP_CALL 0x20 72 #define PRIV_B2_CSCH 0x30 73 #define PRIV_B2_HSCH 0x31 74 #define PRIV_B2_MSCH 0x32 75 #define PRIV_B2_SSCH 0x33 76 #define PRIV_B2_STSCH 0x34 77 #define PRIV_B2_TSCH 0x35 78 #define PRIV_B2_TPI 0x36 79 #define PRIV_B2_SAL 0x37 80 #define PRIV_B2_RSCH 0x38 81 #define PRIV_B2_STCRW 0x39 82 #define PRIV_B2_STCPS 0x3a 83 #define PRIV_B2_RCHP 0x3b 84 #define PRIV_B2_SCHM 0x3c 85 #define PRIV_B2_CHSC 0x5f 86 #define PRIV_B2_SIGA 0x74 87 #define PRIV_B2_XSCH 0x76 88 89 #define PRIV_EB_SQBS 0x8a 90 #define PRIV_EB_PCISTB 0xd0 91 #define PRIV_EB_SIC 0xd1 92 93 #define PRIV_B9_EQBS 0x9c 94 #define PRIV_B9_CLP 0xa0 95 #define PRIV_B9_PCISTG 0xd0 96 #define PRIV_B9_PCILG 0xd2 97 #define PRIV_B9_RPCIT 0xd3 98 99 #define PRIV_E3_MPCIFC 0xd0 100 #define PRIV_E3_STPCIFC 0xd4 101 102 #define DIAG_TIMEREVENT 0x288 103 #define DIAG_IPL 0x308 104 #define DIAG_KVM_HYPERCALL 0x500 105 #define DIAG_KVM_BREAKPOINT 0x501 106 107 #define ICPT_INSTRUCTION 0x04 108 #define ICPT_PROGRAM 0x08 109 #define ICPT_EXT_INT 0x14 110 #define ICPT_WAITPSW 0x1c 111 #define ICPT_SOFT_INTERCEPT 0x24 112 #define ICPT_CPU_STOP 0x28 113 #define ICPT_OPEREXC 0x2c 114 #define ICPT_IO 0x40 115 116 #define NR_LOCAL_IRQS 32 117 /* 118 * Needs to be big enough to contain max_cpus emergency signals 119 * and in addition NR_LOCAL_IRQS interrupts 120 */ 121 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ 122 (max_cpus + NR_LOCAL_IRQS)) 123 124 static CPUWatchpoint hw_watchpoint; 125 /* 126 * We don't use a list because this structure is also used to transmit the 127 * hardware breakpoints to the kernel. 128 */ 129 static struct kvm_hw_breakpoint *hw_breakpoints; 130 static int nb_hw_breakpoints; 131 132 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 133 KVM_CAP_LAST_INFO 134 }; 135 136 static int cap_sync_regs; 137 static int cap_async_pf; 138 static int cap_mem_op; 139 static int cap_s390_irq; 140 static int cap_ri; 141 static int cap_gs; 142 static int cap_hpage_1m; 143 144 static int active_cmma; 145 146 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared); 147 148 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 149 { 150 struct kvm_device_attr attr = { 151 .group = KVM_S390_VM_MEM_CTRL, 152 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 153 .addr = (uint64_t) memory_limit, 154 }; 155 156 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 157 } 158 159 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 160 { 161 int rc; 162 163 struct kvm_device_attr attr = { 164 .group = KVM_S390_VM_MEM_CTRL, 165 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 166 .addr = (uint64_t) &new_limit, 167 }; 168 169 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 170 return 0; 171 } 172 173 rc = kvm_s390_query_mem_limit(hw_limit); 174 if (rc) { 175 return rc; 176 } else if (*hw_limit < new_limit) { 177 return -E2BIG; 178 } 179 180 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 181 } 182 183 int kvm_s390_cmma_active(void) 184 { 185 return active_cmma; 186 } 187 188 static bool kvm_s390_cmma_available(void) 189 { 190 static bool initialized, value; 191 192 if (!initialized) { 193 initialized = true; 194 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 195 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 196 } 197 return value; 198 } 199 200 void kvm_s390_cmma_reset(void) 201 { 202 int rc; 203 struct kvm_device_attr attr = { 204 .group = KVM_S390_VM_MEM_CTRL, 205 .attr = KVM_S390_VM_MEM_CLR_CMMA, 206 }; 207 208 if (!kvm_s390_cmma_active()) { 209 return; 210 } 211 212 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 213 trace_kvm_clear_cmma(rc); 214 } 215 216 static void kvm_s390_enable_cmma(void) 217 { 218 int rc; 219 struct kvm_device_attr attr = { 220 .group = KVM_S390_VM_MEM_CTRL, 221 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 222 }; 223 224 if (cap_hpage_1m) { 225 warn_report("CMM will not be enabled because it is not " 226 "compatible with huge memory backings."); 227 return; 228 } 229 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 230 active_cmma = !rc; 231 trace_kvm_enable_cmma(rc); 232 } 233 234 static void kvm_s390_set_attr(uint64_t attr) 235 { 236 struct kvm_device_attr attribute = { 237 .group = KVM_S390_VM_CRYPTO, 238 .attr = attr, 239 }; 240 241 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 242 243 if (ret) { 244 error_report("Failed to set crypto device attribute %lu: %s", 245 attr, strerror(-ret)); 246 } 247 } 248 249 static void kvm_s390_init_aes_kw(void) 250 { 251 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 252 253 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 254 NULL)) { 255 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 256 } 257 258 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 259 kvm_s390_set_attr(attr); 260 } 261 } 262 263 static void kvm_s390_init_dea_kw(void) 264 { 265 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 266 267 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 268 NULL)) { 269 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 270 } 271 272 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 273 kvm_s390_set_attr(attr); 274 } 275 } 276 277 void kvm_s390_crypto_reset(void) 278 { 279 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 280 kvm_s390_init_aes_kw(); 281 kvm_s390_init_dea_kw(); 282 } 283 } 284 285 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 286 { 287 if (pagesize == 4 * KiB) { 288 return; 289 } 290 291 if (!hpage_1m_allowed()) { 292 error_setg(errp, "This QEMU machine does not support huge page " 293 "mappings"); 294 return; 295 } 296 297 if (pagesize != 1 * MiB) { 298 error_setg(errp, "Memory backing with 2G pages was specified, " 299 "but KVM does not support this memory backing"); 300 return; 301 } 302 303 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 304 error_setg(errp, "Memory backing with 1M pages was specified, " 305 "but KVM does not support this memory backing"); 306 return; 307 } 308 309 cap_hpage_1m = 1; 310 } 311 312 int kvm_arch_init(MachineState *ms, KVMState *s) 313 { 314 MachineClass *mc = MACHINE_GET_CLASS(ms); 315 316 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 317 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 318 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 319 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 320 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 321 322 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 323 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 324 phys_mem_set_alloc(legacy_s390_alloc); 325 } 326 327 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 328 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 329 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 330 if (ri_allowed()) { 331 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 332 cap_ri = 1; 333 } 334 } 335 if (cpu_model_allowed()) { 336 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 337 cap_gs = 1; 338 } 339 } 340 341 /* 342 * The migration interface for ais was introduced with kernel 4.13 343 * but the capability itself had been active since 4.12. As migration 344 * support is considered necessary let's disable ais in the 2.10 345 * machine. 346 */ 347 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ 348 349 return 0; 350 } 351 352 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 353 { 354 return 0; 355 } 356 357 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 358 { 359 return cpu->cpu_index; 360 } 361 362 int kvm_arch_init_vcpu(CPUState *cs) 363 { 364 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 365 S390CPU *cpu = S390_CPU(cs); 366 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 367 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); 368 return 0; 369 } 370 371 int kvm_arch_destroy_vcpu(CPUState *cs) 372 { 373 S390CPU *cpu = S390_CPU(cs); 374 375 g_free(cpu->irqstate); 376 cpu->irqstate = NULL; 377 378 return 0; 379 } 380 381 void kvm_s390_reset_vcpu(S390CPU *cpu) 382 { 383 CPUState *cs = CPU(cpu); 384 385 /* The initial reset call is needed here to reset in-kernel 386 * vcpu data that we can't access directly from QEMU 387 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 388 * Before this ioctl cpu_synchronize_state() is called in common kvm 389 * code (kvm-all) */ 390 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 391 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 392 } 393 } 394 395 static int can_sync_regs(CPUState *cs, int regs) 396 { 397 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 398 } 399 400 int kvm_arch_put_registers(CPUState *cs, int level) 401 { 402 S390CPU *cpu = S390_CPU(cs); 403 CPUS390XState *env = &cpu->env; 404 struct kvm_sregs sregs; 405 struct kvm_regs regs; 406 struct kvm_fpu fpu = {}; 407 int r; 408 int i; 409 410 /* always save the PSW and the GPRS*/ 411 cs->kvm_run->psw_addr = env->psw.addr; 412 cs->kvm_run->psw_mask = env->psw.mask; 413 414 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 415 for (i = 0; i < 16; i++) { 416 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 417 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 418 } 419 } else { 420 for (i = 0; i < 16; i++) { 421 regs.gprs[i] = env->regs[i]; 422 } 423 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 424 if (r < 0) { 425 return r; 426 } 427 } 428 429 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 430 for (i = 0; i < 32; i++) { 431 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 432 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 433 } 434 cs->kvm_run->s.regs.fpc = env->fpc; 435 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 436 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 437 for (i = 0; i < 16; i++) { 438 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 439 } 440 cs->kvm_run->s.regs.fpc = env->fpc; 441 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 442 } else { 443 /* Floating point */ 444 for (i = 0; i < 16; i++) { 445 fpu.fprs[i] = *get_freg(env, i); 446 } 447 fpu.fpc = env->fpc; 448 449 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 450 if (r < 0) { 451 return r; 452 } 453 } 454 455 /* Do we need to save more than that? */ 456 if (level == KVM_PUT_RUNTIME_STATE) { 457 return 0; 458 } 459 460 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 461 cs->kvm_run->s.regs.cputm = env->cputm; 462 cs->kvm_run->s.regs.ckc = env->ckc; 463 cs->kvm_run->s.regs.todpr = env->todpr; 464 cs->kvm_run->s.regs.gbea = env->gbea; 465 cs->kvm_run->s.regs.pp = env->pp; 466 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 467 } else { 468 /* 469 * These ONE_REGS are not protected by a capability. As they are only 470 * necessary for migration we just trace a possible error, but don't 471 * return with an error return code. 472 */ 473 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 474 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 475 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 476 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 477 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 478 } 479 480 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 481 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 482 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 483 } 484 485 /* pfault parameters */ 486 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 487 cs->kvm_run->s.regs.pft = env->pfault_token; 488 cs->kvm_run->s.regs.pfs = env->pfault_select; 489 cs->kvm_run->s.regs.pfc = env->pfault_compare; 490 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 491 } else if (cap_async_pf) { 492 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 493 if (r < 0) { 494 return r; 495 } 496 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 497 if (r < 0) { 498 return r; 499 } 500 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 501 if (r < 0) { 502 return r; 503 } 504 } 505 506 /* access registers and control registers*/ 507 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 508 for (i = 0; i < 16; i++) { 509 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 510 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 511 } 512 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 513 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 514 } else { 515 for (i = 0; i < 16; i++) { 516 sregs.acrs[i] = env->aregs[i]; 517 sregs.crs[i] = env->cregs[i]; 518 } 519 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 520 if (r < 0) { 521 return r; 522 } 523 } 524 525 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 526 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 527 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 528 } 529 530 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 531 cs->kvm_run->s.regs.bpbc = env->bpbc; 532 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 533 } 534 535 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 536 cs->kvm_run->s.regs.etoken = env->etoken; 537 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 538 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 539 } 540 541 /* Finally the prefix */ 542 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 543 cs->kvm_run->s.regs.prefix = env->psa; 544 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 545 } else { 546 /* prefix is only supported via sync regs */ 547 } 548 return 0; 549 } 550 551 int kvm_arch_get_registers(CPUState *cs) 552 { 553 S390CPU *cpu = S390_CPU(cs); 554 CPUS390XState *env = &cpu->env; 555 struct kvm_sregs sregs; 556 struct kvm_regs regs; 557 struct kvm_fpu fpu; 558 int i, r; 559 560 /* get the PSW */ 561 env->psw.addr = cs->kvm_run->psw_addr; 562 env->psw.mask = cs->kvm_run->psw_mask; 563 564 /* the GPRS */ 565 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 566 for (i = 0; i < 16; i++) { 567 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 568 } 569 } else { 570 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 571 if (r < 0) { 572 return r; 573 } 574 for (i = 0; i < 16; i++) { 575 env->regs[i] = regs.gprs[i]; 576 } 577 } 578 579 /* The ACRS and CRS */ 580 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 581 for (i = 0; i < 16; i++) { 582 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 583 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 584 } 585 } else { 586 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 587 if (r < 0) { 588 return r; 589 } 590 for (i = 0; i < 16; i++) { 591 env->aregs[i] = sregs.acrs[i]; 592 env->cregs[i] = sregs.crs[i]; 593 } 594 } 595 596 /* Floating point and vector registers */ 597 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 598 for (i = 0; i < 32; i++) { 599 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 600 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 601 } 602 env->fpc = cs->kvm_run->s.regs.fpc; 603 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 604 for (i = 0; i < 16; i++) { 605 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 606 } 607 env->fpc = cs->kvm_run->s.regs.fpc; 608 } else { 609 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 610 if (r < 0) { 611 return r; 612 } 613 for (i = 0; i < 16; i++) { 614 *get_freg(env, i) = fpu.fprs[i]; 615 } 616 env->fpc = fpu.fpc; 617 } 618 619 /* The prefix */ 620 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 621 env->psa = cs->kvm_run->s.regs.prefix; 622 } 623 624 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 625 env->cputm = cs->kvm_run->s.regs.cputm; 626 env->ckc = cs->kvm_run->s.regs.ckc; 627 env->todpr = cs->kvm_run->s.regs.todpr; 628 env->gbea = cs->kvm_run->s.regs.gbea; 629 env->pp = cs->kvm_run->s.regs.pp; 630 } else { 631 /* 632 * These ONE_REGS are not protected by a capability. As they are only 633 * necessary for migration we just trace a possible error, but don't 634 * return with an error return code. 635 */ 636 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 637 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 638 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 639 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 640 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 641 } 642 643 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 644 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 645 } 646 647 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 648 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 649 } 650 651 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 652 env->bpbc = cs->kvm_run->s.regs.bpbc; 653 } 654 655 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 656 env->etoken = cs->kvm_run->s.regs.etoken; 657 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 658 } 659 660 /* pfault parameters */ 661 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 662 env->pfault_token = cs->kvm_run->s.regs.pft; 663 env->pfault_select = cs->kvm_run->s.regs.pfs; 664 env->pfault_compare = cs->kvm_run->s.regs.pfc; 665 } else if (cap_async_pf) { 666 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 667 if (r < 0) { 668 return r; 669 } 670 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 671 if (r < 0) { 672 return r; 673 } 674 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 675 if (r < 0) { 676 return r; 677 } 678 } 679 680 return 0; 681 } 682 683 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 684 { 685 int r; 686 struct kvm_device_attr attr = { 687 .group = KVM_S390_VM_TOD, 688 .attr = KVM_S390_VM_TOD_LOW, 689 .addr = (uint64_t)tod_low, 690 }; 691 692 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 693 if (r) { 694 return r; 695 } 696 697 attr.attr = KVM_S390_VM_TOD_HIGH; 698 attr.addr = (uint64_t)tod_high; 699 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 700 } 701 702 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 703 { 704 int r; 705 struct kvm_s390_vm_tod_clock gtod; 706 struct kvm_device_attr attr = { 707 .group = KVM_S390_VM_TOD, 708 .attr = KVM_S390_VM_TOD_EXT, 709 .addr = (uint64_t)>od, 710 }; 711 712 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 713 *tod_high = gtod.epoch_idx; 714 *tod_low = gtod.tod; 715 716 return r; 717 } 718 719 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 720 { 721 int r; 722 struct kvm_device_attr attr = { 723 .group = KVM_S390_VM_TOD, 724 .attr = KVM_S390_VM_TOD_LOW, 725 .addr = (uint64_t)&tod_low, 726 }; 727 728 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 729 if (r) { 730 return r; 731 } 732 733 attr.attr = KVM_S390_VM_TOD_HIGH; 734 attr.addr = (uint64_t)&tod_high; 735 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 736 } 737 738 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 739 { 740 struct kvm_s390_vm_tod_clock gtod = { 741 .epoch_idx = tod_high, 742 .tod = tod_low, 743 }; 744 struct kvm_device_attr attr = { 745 .group = KVM_S390_VM_TOD, 746 .attr = KVM_S390_VM_TOD_EXT, 747 .addr = (uint64_t)>od, 748 }; 749 750 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 751 } 752 753 /** 754 * kvm_s390_mem_op: 755 * @addr: the logical start address in guest memory 756 * @ar: the access register number 757 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 758 * @len: length that should be transferred 759 * @is_write: true = write, false = read 760 * Returns: 0 on success, non-zero if an exception or error occurred 761 * 762 * Use KVM ioctl to read/write from/to guest memory. An access exception 763 * is injected into the vCPU in case of translation errors. 764 */ 765 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 766 int len, bool is_write) 767 { 768 struct kvm_s390_mem_op mem_op = { 769 .gaddr = addr, 770 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 771 .size = len, 772 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 773 : KVM_S390_MEMOP_LOGICAL_READ, 774 .buf = (uint64_t)hostbuf, 775 .ar = ar, 776 }; 777 int ret; 778 779 if (!cap_mem_op) { 780 return -ENOSYS; 781 } 782 if (!hostbuf) { 783 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 784 } 785 786 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 787 if (ret < 0) { 788 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 789 } 790 return ret; 791 } 792 793 /* 794 * Legacy layout for s390: 795 * Older S390 KVM requires the topmost vma of the RAM to be 796 * smaller than an system defined value, which is at least 256GB. 797 * Larger systems have larger values. We put the guest between 798 * the end of data segment (system break) and this value. We 799 * use 32GB as a base to have enough room for the system break 800 * to grow. We also have to use MAP parameters that avoid 801 * read-only mapping of guest pages. 802 */ 803 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared) 804 { 805 static void *mem; 806 807 if (mem) { 808 /* we only support one allocation, which is enough for initial ram */ 809 return NULL; 810 } 811 812 mem = mmap((void *) 0x800000000ULL, size, 813 PROT_EXEC|PROT_READ|PROT_WRITE, 814 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 815 if (mem == MAP_FAILED) { 816 mem = NULL; 817 } 818 if (mem && align) { 819 *align = QEMU_VMALLOC_ALIGN; 820 } 821 return mem; 822 } 823 824 static uint8_t const *sw_bp_inst; 825 static uint8_t sw_bp_ilen; 826 827 static void determine_sw_breakpoint_instr(void) 828 { 829 /* DIAG 501 is used for sw breakpoints with old kernels */ 830 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 831 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 832 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 833 834 if (sw_bp_inst) { 835 return; 836 } 837 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 838 sw_bp_inst = diag_501; 839 sw_bp_ilen = sizeof(diag_501); 840 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 841 } else { 842 sw_bp_inst = instr_0x0000; 843 sw_bp_ilen = sizeof(instr_0x0000); 844 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 845 } 846 } 847 848 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 849 { 850 determine_sw_breakpoint_instr(); 851 852 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 853 sw_bp_ilen, 0) || 854 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 855 return -EINVAL; 856 } 857 return 0; 858 } 859 860 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 861 { 862 uint8_t t[MAX_ILEN]; 863 864 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 865 return -EINVAL; 866 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 867 return -EINVAL; 868 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 869 sw_bp_ilen, 1)) { 870 return -EINVAL; 871 } 872 873 return 0; 874 } 875 876 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 877 int len, int type) 878 { 879 int n; 880 881 for (n = 0; n < nb_hw_breakpoints; n++) { 882 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 883 (hw_breakpoints[n].len == len || len == -1)) { 884 return &hw_breakpoints[n]; 885 } 886 } 887 888 return NULL; 889 } 890 891 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 892 { 893 int size; 894 895 if (find_hw_breakpoint(addr, len, type)) { 896 return -EEXIST; 897 } 898 899 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 900 901 if (!hw_breakpoints) { 902 nb_hw_breakpoints = 0; 903 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 904 } else { 905 hw_breakpoints = 906 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 907 } 908 909 if (!hw_breakpoints) { 910 nb_hw_breakpoints = 0; 911 return -ENOMEM; 912 } 913 914 hw_breakpoints[nb_hw_breakpoints].addr = addr; 915 hw_breakpoints[nb_hw_breakpoints].len = len; 916 hw_breakpoints[nb_hw_breakpoints].type = type; 917 918 nb_hw_breakpoints++; 919 920 return 0; 921 } 922 923 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 924 target_ulong len, int type) 925 { 926 switch (type) { 927 case GDB_BREAKPOINT_HW: 928 type = KVM_HW_BP; 929 break; 930 case GDB_WATCHPOINT_WRITE: 931 if (len < 1) { 932 return -EINVAL; 933 } 934 type = KVM_HW_WP_WRITE; 935 break; 936 default: 937 return -ENOSYS; 938 } 939 return insert_hw_breakpoint(addr, len, type); 940 } 941 942 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 943 target_ulong len, int type) 944 { 945 int size; 946 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 947 948 if (bp == NULL) { 949 return -ENOENT; 950 } 951 952 nb_hw_breakpoints--; 953 if (nb_hw_breakpoints > 0) { 954 /* 955 * In order to trim the array, move the last element to the position to 956 * be removed - if necessary. 957 */ 958 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 959 *bp = hw_breakpoints[nb_hw_breakpoints]; 960 } 961 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 962 hw_breakpoints = 963 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 964 } else { 965 g_free(hw_breakpoints); 966 hw_breakpoints = NULL; 967 } 968 969 return 0; 970 } 971 972 void kvm_arch_remove_all_hw_breakpoints(void) 973 { 974 nb_hw_breakpoints = 0; 975 g_free(hw_breakpoints); 976 hw_breakpoints = NULL; 977 } 978 979 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 980 { 981 int i; 982 983 if (nb_hw_breakpoints > 0) { 984 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 985 dbg->arch.hw_bp = hw_breakpoints; 986 987 for (i = 0; i < nb_hw_breakpoints; ++i) { 988 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 989 hw_breakpoints[i].addr); 990 } 991 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 992 } else { 993 dbg->arch.nr_hw_bp = 0; 994 dbg->arch.hw_bp = NULL; 995 } 996 } 997 998 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 999 { 1000 } 1001 1002 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1003 { 1004 return MEMTXATTRS_UNSPECIFIED; 1005 } 1006 1007 int kvm_arch_process_async_events(CPUState *cs) 1008 { 1009 return cs->halted; 1010 } 1011 1012 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1013 struct kvm_s390_interrupt *interrupt) 1014 { 1015 int r = 0; 1016 1017 interrupt->type = irq->type; 1018 switch (irq->type) { 1019 case KVM_S390_INT_VIRTIO: 1020 interrupt->parm = irq->u.ext.ext_params; 1021 /* fall through */ 1022 case KVM_S390_INT_PFAULT_INIT: 1023 case KVM_S390_INT_PFAULT_DONE: 1024 interrupt->parm64 = irq->u.ext.ext_params2; 1025 break; 1026 case KVM_S390_PROGRAM_INT: 1027 interrupt->parm = irq->u.pgm.code; 1028 break; 1029 case KVM_S390_SIGP_SET_PREFIX: 1030 interrupt->parm = irq->u.prefix.address; 1031 break; 1032 case KVM_S390_INT_SERVICE: 1033 interrupt->parm = irq->u.ext.ext_params; 1034 break; 1035 case KVM_S390_MCHK: 1036 interrupt->parm = irq->u.mchk.cr14; 1037 interrupt->parm64 = irq->u.mchk.mcic; 1038 break; 1039 case KVM_S390_INT_EXTERNAL_CALL: 1040 interrupt->parm = irq->u.extcall.code; 1041 break; 1042 case KVM_S390_INT_EMERGENCY: 1043 interrupt->parm = irq->u.emerg.code; 1044 break; 1045 case KVM_S390_SIGP_STOP: 1046 case KVM_S390_RESTART: 1047 break; /* These types have no parameters */ 1048 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1049 interrupt->parm = irq->u.io.subchannel_id << 16; 1050 interrupt->parm |= irq->u.io.subchannel_nr; 1051 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1052 interrupt->parm64 |= irq->u.io.io_int_word; 1053 break; 1054 default: 1055 r = -EINVAL; 1056 break; 1057 } 1058 return r; 1059 } 1060 1061 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1062 { 1063 struct kvm_s390_interrupt kvmint = {}; 1064 int r; 1065 1066 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1067 if (r < 0) { 1068 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1069 exit(1); 1070 } 1071 1072 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1073 if (r < 0) { 1074 fprintf(stderr, "KVM failed to inject interrupt\n"); 1075 exit(1); 1076 } 1077 } 1078 1079 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1080 { 1081 CPUState *cs = CPU(cpu); 1082 int r; 1083 1084 if (cap_s390_irq) { 1085 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1086 if (!r) { 1087 return; 1088 } 1089 error_report("KVM failed to inject interrupt %llx", irq->type); 1090 exit(1); 1091 } 1092 1093 inject_vcpu_irq_legacy(cs, irq); 1094 } 1095 1096 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1097 { 1098 struct kvm_s390_interrupt kvmint = {}; 1099 int r; 1100 1101 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1102 if (r < 0) { 1103 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1104 exit(1); 1105 } 1106 1107 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1108 if (r < 0) { 1109 fprintf(stderr, "KVM failed to inject interrupt\n"); 1110 exit(1); 1111 } 1112 } 1113 1114 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1115 { 1116 struct kvm_s390_irq irq = { 1117 .type = KVM_S390_PROGRAM_INT, 1118 .u.pgm.code = code, 1119 }; 1120 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1121 cpu->env.psw.addr); 1122 kvm_s390_vcpu_interrupt(cpu, &irq); 1123 } 1124 1125 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1126 { 1127 struct kvm_s390_irq irq = { 1128 .type = KVM_S390_PROGRAM_INT, 1129 .u.pgm.code = code, 1130 .u.pgm.trans_exc_code = te_code, 1131 .u.pgm.exc_access_id = te_code & 3, 1132 }; 1133 1134 kvm_s390_vcpu_interrupt(cpu, &irq); 1135 } 1136 1137 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1138 uint16_t ipbh0) 1139 { 1140 CPUS390XState *env = &cpu->env; 1141 uint64_t sccb; 1142 uint32_t code; 1143 int r = 0; 1144 1145 sccb = env->regs[ipbh0 & 0xf]; 1146 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1147 1148 r = sclp_service_call(env, sccb, code); 1149 if (r < 0) { 1150 kvm_s390_program_interrupt(cpu, -r); 1151 } else { 1152 setcc(cpu, r); 1153 } 1154 1155 return 0; 1156 } 1157 1158 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1159 { 1160 CPUS390XState *env = &cpu->env; 1161 int rc = 0; 1162 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1163 1164 switch (ipa1) { 1165 case PRIV_B2_XSCH: 1166 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1167 break; 1168 case PRIV_B2_CSCH: 1169 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1170 break; 1171 case PRIV_B2_HSCH: 1172 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1173 break; 1174 case PRIV_B2_MSCH: 1175 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1176 break; 1177 case PRIV_B2_SSCH: 1178 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1179 break; 1180 case PRIV_B2_STCRW: 1181 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1182 break; 1183 case PRIV_B2_STSCH: 1184 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1185 break; 1186 case PRIV_B2_TSCH: 1187 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1188 fprintf(stderr, "Spurious tsch intercept\n"); 1189 break; 1190 case PRIV_B2_CHSC: 1191 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1192 break; 1193 case PRIV_B2_TPI: 1194 /* This should have been handled by kvm already. */ 1195 fprintf(stderr, "Spurious tpi intercept\n"); 1196 break; 1197 case PRIV_B2_SCHM: 1198 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1199 run->s390_sieic.ipb, RA_IGNORED); 1200 break; 1201 case PRIV_B2_RSCH: 1202 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1203 break; 1204 case PRIV_B2_RCHP: 1205 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1206 break; 1207 case PRIV_B2_STCPS: 1208 /* We do not provide this instruction, it is suppressed. */ 1209 break; 1210 case PRIV_B2_SAL: 1211 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1212 break; 1213 case PRIV_B2_SIGA: 1214 /* Not provided, set CC = 3 for subchannel not operational */ 1215 setcc(cpu, 3); 1216 break; 1217 case PRIV_B2_SCLP_CALL: 1218 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1219 break; 1220 default: 1221 rc = -1; 1222 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1223 break; 1224 } 1225 1226 return rc; 1227 } 1228 1229 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1230 uint8_t *ar) 1231 { 1232 CPUS390XState *env = &cpu->env; 1233 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1234 uint32_t base2 = run->s390_sieic.ipb >> 28; 1235 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1236 ((run->s390_sieic.ipb & 0xff00) << 4); 1237 1238 if (disp2 & 0x80000) { 1239 disp2 += 0xfff00000; 1240 } 1241 if (ar) { 1242 *ar = base2; 1243 } 1244 1245 return (base2 ? env->regs[base2] : 0) + 1246 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1247 } 1248 1249 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1250 uint8_t *ar) 1251 { 1252 CPUS390XState *env = &cpu->env; 1253 uint32_t base2 = run->s390_sieic.ipb >> 28; 1254 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1255 ((run->s390_sieic.ipb & 0xff00) << 4); 1256 1257 if (disp2 & 0x80000) { 1258 disp2 += 0xfff00000; 1259 } 1260 if (ar) { 1261 *ar = base2; 1262 } 1263 1264 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1265 } 1266 1267 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1268 { 1269 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1270 1271 if (s390_has_feat(S390_FEAT_ZPCI)) { 1272 return clp_service_call(cpu, r2, RA_IGNORED); 1273 } else { 1274 return -1; 1275 } 1276 } 1277 1278 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1279 { 1280 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1281 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1282 1283 if (s390_has_feat(S390_FEAT_ZPCI)) { 1284 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1285 } else { 1286 return -1; 1287 } 1288 } 1289 1290 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1291 { 1292 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1293 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1294 1295 if (s390_has_feat(S390_FEAT_ZPCI)) { 1296 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1297 } else { 1298 return -1; 1299 } 1300 } 1301 1302 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1303 { 1304 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1305 uint64_t fiba; 1306 uint8_t ar; 1307 1308 if (s390_has_feat(S390_FEAT_ZPCI)) { 1309 fiba = get_base_disp_rxy(cpu, run, &ar); 1310 1311 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1312 } else { 1313 return -1; 1314 } 1315 } 1316 1317 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1318 { 1319 CPUS390XState *env = &cpu->env; 1320 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1321 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1322 uint8_t isc; 1323 uint16_t mode; 1324 int r; 1325 1326 mode = env->regs[r1] & 0xffff; 1327 isc = (env->regs[r3] >> 27) & 0x7; 1328 r = css_do_sic(env, isc, mode); 1329 if (r) { 1330 kvm_s390_program_interrupt(cpu, -r); 1331 } 1332 1333 return 0; 1334 } 1335 1336 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1337 { 1338 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1339 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1340 1341 if (s390_has_feat(S390_FEAT_ZPCI)) { 1342 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1343 } else { 1344 return -1; 1345 } 1346 } 1347 1348 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1349 { 1350 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1351 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1352 uint64_t gaddr; 1353 uint8_t ar; 1354 1355 if (s390_has_feat(S390_FEAT_ZPCI)) { 1356 gaddr = get_base_disp_rsy(cpu, run, &ar); 1357 1358 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1359 } else { 1360 return -1; 1361 } 1362 } 1363 1364 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1365 { 1366 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1367 uint64_t fiba; 1368 uint8_t ar; 1369 1370 if (s390_has_feat(S390_FEAT_ZPCI)) { 1371 fiba = get_base_disp_rxy(cpu, run, &ar); 1372 1373 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1374 } else { 1375 return -1; 1376 } 1377 } 1378 1379 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1380 { 1381 int r = 0; 1382 1383 switch (ipa1) { 1384 case PRIV_B9_CLP: 1385 r = kvm_clp_service_call(cpu, run); 1386 break; 1387 case PRIV_B9_PCISTG: 1388 r = kvm_pcistg_service_call(cpu, run); 1389 break; 1390 case PRIV_B9_PCILG: 1391 r = kvm_pcilg_service_call(cpu, run); 1392 break; 1393 case PRIV_B9_RPCIT: 1394 r = kvm_rpcit_service_call(cpu, run); 1395 break; 1396 case PRIV_B9_EQBS: 1397 /* just inject exception */ 1398 r = -1; 1399 break; 1400 default: 1401 r = -1; 1402 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1403 break; 1404 } 1405 1406 return r; 1407 } 1408 1409 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1410 { 1411 int r = 0; 1412 1413 switch (ipbl) { 1414 case PRIV_EB_PCISTB: 1415 r = kvm_pcistb_service_call(cpu, run); 1416 break; 1417 case PRIV_EB_SIC: 1418 r = kvm_sic_service_call(cpu, run); 1419 break; 1420 case PRIV_EB_SQBS: 1421 /* just inject exception */ 1422 r = -1; 1423 break; 1424 default: 1425 r = -1; 1426 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1427 break; 1428 } 1429 1430 return r; 1431 } 1432 1433 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1434 { 1435 int r = 0; 1436 1437 switch (ipbl) { 1438 case PRIV_E3_MPCIFC: 1439 r = kvm_mpcifc_service_call(cpu, run); 1440 break; 1441 case PRIV_E3_STPCIFC: 1442 r = kvm_stpcifc_service_call(cpu, run); 1443 break; 1444 default: 1445 r = -1; 1446 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1447 break; 1448 } 1449 1450 return r; 1451 } 1452 1453 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1454 { 1455 CPUS390XState *env = &cpu->env; 1456 int ret; 1457 1458 ret = s390_virtio_hypercall(env); 1459 if (ret == -EINVAL) { 1460 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1461 return 0; 1462 } 1463 1464 return ret; 1465 } 1466 1467 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1468 { 1469 uint64_t r1, r3; 1470 int rc; 1471 1472 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1473 r3 = run->s390_sieic.ipa & 0x000f; 1474 rc = handle_diag_288(&cpu->env, r1, r3); 1475 if (rc) { 1476 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1477 } 1478 } 1479 1480 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1481 { 1482 uint64_t r1, r3; 1483 1484 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1485 r3 = run->s390_sieic.ipa & 0x000f; 1486 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1487 } 1488 1489 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1490 { 1491 CPUS390XState *env = &cpu->env; 1492 unsigned long pc; 1493 1494 pc = env->psw.addr - sw_bp_ilen; 1495 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1496 env->psw.addr = pc; 1497 return EXCP_DEBUG; 1498 } 1499 1500 return -ENOENT; 1501 } 1502 1503 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1504 1505 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1506 { 1507 int r = 0; 1508 uint16_t func_code; 1509 1510 /* 1511 * For any diagnose call we support, bits 48-63 of the resulting 1512 * address specify the function code; the remainder is ignored. 1513 */ 1514 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1515 switch (func_code) { 1516 case DIAG_TIMEREVENT: 1517 kvm_handle_diag_288(cpu, run); 1518 break; 1519 case DIAG_IPL: 1520 kvm_handle_diag_308(cpu, run); 1521 break; 1522 case DIAG_KVM_HYPERCALL: 1523 r = handle_hypercall(cpu, run); 1524 break; 1525 case DIAG_KVM_BREAKPOINT: 1526 r = handle_sw_breakpoint(cpu, run); 1527 break; 1528 default: 1529 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1530 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1531 break; 1532 } 1533 1534 return r; 1535 } 1536 1537 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1538 { 1539 CPUS390XState *env = &cpu->env; 1540 const uint8_t r1 = ipa1 >> 4; 1541 const uint8_t r3 = ipa1 & 0x0f; 1542 int ret; 1543 uint8_t order; 1544 1545 /* get order code */ 1546 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1547 1548 ret = handle_sigp(env, order, r1, r3); 1549 setcc(cpu, ret); 1550 return 0; 1551 } 1552 1553 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1554 { 1555 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1556 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1557 int r = -1; 1558 1559 DPRINTF("handle_instruction 0x%x 0x%x\n", 1560 run->s390_sieic.ipa, run->s390_sieic.ipb); 1561 switch (ipa0) { 1562 case IPA0_B2: 1563 r = handle_b2(cpu, run, ipa1); 1564 break; 1565 case IPA0_B9: 1566 r = handle_b9(cpu, run, ipa1); 1567 break; 1568 case IPA0_EB: 1569 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1570 break; 1571 case IPA0_E3: 1572 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1573 break; 1574 case IPA0_DIAG: 1575 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1576 break; 1577 case IPA0_SIGP: 1578 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1579 break; 1580 } 1581 1582 if (r < 0) { 1583 r = 0; 1584 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1585 } 1586 1587 return r; 1588 } 1589 1590 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1591 int pswoffset) 1592 { 1593 CPUState *cs = CPU(cpu); 1594 1595 s390_cpu_halt(cpu); 1596 cpu->env.crash_reason = reason; 1597 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1598 } 1599 1600 /* try to detect pgm check loops */ 1601 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1602 { 1603 CPUState *cs = CPU(cpu); 1604 PSW oldpsw, newpsw; 1605 1606 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1607 offsetof(LowCore, program_new_psw)); 1608 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1609 offsetof(LowCore, program_new_psw) + 8); 1610 oldpsw.mask = run->psw_mask; 1611 oldpsw.addr = run->psw_addr; 1612 /* 1613 * Avoid endless loops of operation exceptions, if the pgm new 1614 * PSW will cause a new operation exception. 1615 * The heuristic checks if the pgm new psw is within 6 bytes before 1616 * the faulting psw address (with same DAT, AS settings) and the 1617 * new psw is not a wait psw and the fault was not triggered by 1618 * problem state. In that case go into crashed state. 1619 */ 1620 1621 if (oldpsw.addr - newpsw.addr <= 6 && 1622 !(newpsw.mask & PSW_MASK_WAIT) && 1623 !(oldpsw.mask & PSW_MASK_PSTATE) && 1624 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1625 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1626 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1627 offsetof(LowCore, program_new_psw)); 1628 return EXCP_HALTED; 1629 } 1630 return 0; 1631 } 1632 1633 static int handle_intercept(S390CPU *cpu) 1634 { 1635 CPUState *cs = CPU(cpu); 1636 struct kvm_run *run = cs->kvm_run; 1637 int icpt_code = run->s390_sieic.icptcode; 1638 int r = 0; 1639 1640 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1641 (long)cs->kvm_run->psw_addr); 1642 switch (icpt_code) { 1643 case ICPT_INSTRUCTION: 1644 r = handle_instruction(cpu, run); 1645 break; 1646 case ICPT_PROGRAM: 1647 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1648 offsetof(LowCore, program_new_psw)); 1649 r = EXCP_HALTED; 1650 break; 1651 case ICPT_EXT_INT: 1652 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1653 offsetof(LowCore, external_new_psw)); 1654 r = EXCP_HALTED; 1655 break; 1656 case ICPT_WAITPSW: 1657 /* disabled wait, since enabled wait is handled in kernel */ 1658 s390_handle_wait(cpu); 1659 r = EXCP_HALTED; 1660 break; 1661 case ICPT_CPU_STOP: 1662 do_stop_interrupt(&cpu->env); 1663 r = EXCP_HALTED; 1664 break; 1665 case ICPT_OPEREXC: 1666 /* check for break points */ 1667 r = handle_sw_breakpoint(cpu, run); 1668 if (r == -ENOENT) { 1669 /* Then check for potential pgm check loops */ 1670 r = handle_oper_loop(cpu, run); 1671 if (r == 0) { 1672 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1673 } 1674 } 1675 break; 1676 case ICPT_SOFT_INTERCEPT: 1677 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1678 exit(1); 1679 break; 1680 case ICPT_IO: 1681 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1682 exit(1); 1683 break; 1684 default: 1685 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1686 exit(1); 1687 break; 1688 } 1689 1690 return r; 1691 } 1692 1693 static int handle_tsch(S390CPU *cpu) 1694 { 1695 CPUState *cs = CPU(cpu); 1696 struct kvm_run *run = cs->kvm_run; 1697 int ret; 1698 1699 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1700 RA_IGNORED); 1701 if (ret < 0) { 1702 /* 1703 * Failure. 1704 * If an I/O interrupt had been dequeued, we have to reinject it. 1705 */ 1706 if (run->s390_tsch.dequeued) { 1707 s390_io_interrupt(run->s390_tsch.subchannel_id, 1708 run->s390_tsch.subchannel_nr, 1709 run->s390_tsch.io_int_parm, 1710 run->s390_tsch.io_int_word); 1711 } 1712 ret = 0; 1713 } 1714 return ret; 1715 } 1716 1717 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1718 { 1719 SysIB_322 sysib; 1720 int del; 1721 1722 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1723 return; 1724 } 1725 /* Shift the stack of Extended Names to prepare for our own data */ 1726 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1727 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1728 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1729 * assumed it's not capable of managing Extended Names for lower levels. 1730 */ 1731 for (del = 1; del < sysib.count; del++) { 1732 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1733 break; 1734 } 1735 } 1736 if (del < sysib.count) { 1737 memset(sysib.ext_names[del], 0, 1738 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1739 } 1740 /* Insert short machine name in EBCDIC, padded with blanks */ 1741 if (qemu_name) { 1742 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1743 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1744 strlen(qemu_name))); 1745 } 1746 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1747 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1748 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1749 * considered by s390 as not capable of providing any Extended Name. 1750 * Therefore if no name was specified on qemu invocation, we go with the 1751 * same "KVMguest" default, which KVM has filled into short name field. 1752 */ 1753 if (qemu_name) { 1754 strncpy((char *)sysib.ext_names[0], qemu_name, 1755 sizeof(sysib.ext_names[0])); 1756 } else { 1757 strcpy((char *)sysib.ext_names[0], "KVMguest"); 1758 } 1759 /* Insert UUID */ 1760 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1761 1762 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1763 } 1764 1765 static int handle_stsi(S390CPU *cpu) 1766 { 1767 CPUState *cs = CPU(cpu); 1768 struct kvm_run *run = cs->kvm_run; 1769 1770 switch (run->s390_stsi.fc) { 1771 case 3: 1772 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1773 return 0; 1774 } 1775 /* Only sysib 3.2.2 needs post-handling for now. */ 1776 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1777 return 0; 1778 default: 1779 return 0; 1780 } 1781 } 1782 1783 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1784 { 1785 CPUState *cs = CPU(cpu); 1786 struct kvm_run *run = cs->kvm_run; 1787 1788 int ret = 0; 1789 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1790 1791 switch (arch_info->type) { 1792 case KVM_HW_WP_WRITE: 1793 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1794 cs->watchpoint_hit = &hw_watchpoint; 1795 hw_watchpoint.vaddr = arch_info->addr; 1796 hw_watchpoint.flags = BP_MEM_WRITE; 1797 ret = EXCP_DEBUG; 1798 } 1799 break; 1800 case KVM_HW_BP: 1801 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1802 ret = EXCP_DEBUG; 1803 } 1804 break; 1805 case KVM_SINGLESTEP: 1806 if (cs->singlestep_enabled) { 1807 ret = EXCP_DEBUG; 1808 } 1809 break; 1810 default: 1811 ret = -ENOSYS; 1812 } 1813 1814 return ret; 1815 } 1816 1817 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1818 { 1819 S390CPU *cpu = S390_CPU(cs); 1820 int ret = 0; 1821 1822 qemu_mutex_lock_iothread(); 1823 1824 kvm_cpu_synchronize_state(cs); 1825 1826 switch (run->exit_reason) { 1827 case KVM_EXIT_S390_SIEIC: 1828 ret = handle_intercept(cpu); 1829 break; 1830 case KVM_EXIT_S390_RESET: 1831 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1832 break; 1833 case KVM_EXIT_S390_TSCH: 1834 ret = handle_tsch(cpu); 1835 break; 1836 case KVM_EXIT_S390_STSI: 1837 ret = handle_stsi(cpu); 1838 break; 1839 case KVM_EXIT_DEBUG: 1840 ret = kvm_arch_handle_debug_exit(cpu); 1841 break; 1842 default: 1843 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1844 break; 1845 } 1846 qemu_mutex_unlock_iothread(); 1847 1848 if (ret == 0) { 1849 ret = EXCP_INTERRUPT; 1850 } 1851 return ret; 1852 } 1853 1854 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1855 { 1856 return true; 1857 } 1858 1859 void kvm_s390_enable_css_support(S390CPU *cpu) 1860 { 1861 int r; 1862 1863 /* Activate host kernel channel subsystem support. */ 1864 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1865 assert(r == 0); 1866 } 1867 1868 void kvm_arch_init_irq_routing(KVMState *s) 1869 { 1870 /* 1871 * Note that while irqchip capabilities generally imply that cpustates 1872 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1873 * have to override the common code kvm_halt_in_kernel_allowed setting. 1874 */ 1875 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1876 kvm_gsi_routing_allowed = true; 1877 kvm_halt_in_kernel_allowed = false; 1878 } 1879 } 1880 1881 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1882 int vq, bool assign) 1883 { 1884 struct kvm_ioeventfd kick = { 1885 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1886 KVM_IOEVENTFD_FLAG_DATAMATCH, 1887 .fd = event_notifier_get_fd(notifier), 1888 .datamatch = vq, 1889 .addr = sch, 1890 .len = 8, 1891 }; 1892 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 1893 kick.datamatch); 1894 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1895 return -ENOSYS; 1896 } 1897 if (!assign) { 1898 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1899 } 1900 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1901 } 1902 1903 int kvm_s390_get_ri(void) 1904 { 1905 return cap_ri; 1906 } 1907 1908 int kvm_s390_get_gs(void) 1909 { 1910 return cap_gs; 1911 } 1912 1913 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1914 { 1915 struct kvm_mp_state mp_state = {}; 1916 int ret; 1917 1918 /* the kvm part might not have been initialized yet */ 1919 if (CPU(cpu)->kvm_state == NULL) { 1920 return 0; 1921 } 1922 1923 switch (cpu_state) { 1924 case S390_CPU_STATE_STOPPED: 1925 mp_state.mp_state = KVM_MP_STATE_STOPPED; 1926 break; 1927 case S390_CPU_STATE_CHECK_STOP: 1928 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 1929 break; 1930 case S390_CPU_STATE_OPERATING: 1931 mp_state.mp_state = KVM_MP_STATE_OPERATING; 1932 break; 1933 case S390_CPU_STATE_LOAD: 1934 mp_state.mp_state = KVM_MP_STATE_LOAD; 1935 break; 1936 default: 1937 error_report("Requested CPU state is not a valid S390 CPU state: %u", 1938 cpu_state); 1939 exit(1); 1940 } 1941 1942 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1943 if (ret) { 1944 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 1945 strerror(-ret)); 1946 } 1947 1948 return ret; 1949 } 1950 1951 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 1952 { 1953 unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; 1954 struct kvm_s390_irq_state irq_state = { 1955 .buf = (uint64_t) cpu->irqstate, 1956 .len = VCPU_IRQ_BUF_SIZE(max_cpus), 1957 }; 1958 CPUState *cs = CPU(cpu); 1959 int32_t bytes; 1960 1961 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1962 return; 1963 } 1964 1965 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 1966 if (bytes < 0) { 1967 cpu->irqstate_saved_size = 0; 1968 error_report("Migration of interrupt state failed"); 1969 return; 1970 } 1971 1972 cpu->irqstate_saved_size = bytes; 1973 } 1974 1975 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 1976 { 1977 CPUState *cs = CPU(cpu); 1978 struct kvm_s390_irq_state irq_state = { 1979 .buf = (uint64_t) cpu->irqstate, 1980 .len = cpu->irqstate_saved_size, 1981 }; 1982 int r; 1983 1984 if (cpu->irqstate_saved_size == 0) { 1985 return 0; 1986 } 1987 1988 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1989 return -ENOSYS; 1990 } 1991 1992 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 1993 if (r) { 1994 error_report("Setting interrupt state failed %d", r); 1995 } 1996 return r; 1997 } 1998 1999 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2000 uint64_t address, uint32_t data, PCIDevice *dev) 2001 { 2002 S390PCIBusDevice *pbdev; 2003 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2004 2005 if (!dev) { 2006 DPRINTF("add_msi_route no pci device\n"); 2007 return -ENODEV; 2008 } 2009 2010 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2011 if (!pbdev) { 2012 DPRINTF("add_msi_route no zpci device\n"); 2013 return -ENODEV; 2014 } 2015 2016 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2017 route->flags = 0; 2018 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2019 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2020 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2021 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2022 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2023 return 0; 2024 } 2025 2026 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2027 int vector, PCIDevice *dev) 2028 { 2029 return 0; 2030 } 2031 2032 int kvm_arch_release_virq_post(int virq) 2033 { 2034 return 0; 2035 } 2036 2037 int kvm_arch_msi_data_to_gsi(uint32_t data) 2038 { 2039 abort(); 2040 } 2041 2042 static int query_cpu_subfunc(S390FeatBitmap features) 2043 { 2044 struct kvm_s390_vm_cpu_subfunc prop; 2045 struct kvm_device_attr attr = { 2046 .group = KVM_S390_VM_CPU_MODEL, 2047 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2048 .addr = (uint64_t) &prop, 2049 }; 2050 int rc; 2051 2052 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2053 if (rc) { 2054 return rc; 2055 } 2056 2057 /* 2058 * We're going to add all subfunctions now, if the corresponding feature 2059 * is available that unlocks the query functions. 2060 */ 2061 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2062 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2063 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2064 } 2065 if (test_bit(S390_FEAT_MSA, features)) { 2066 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2067 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2068 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2069 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2070 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2071 } 2072 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2073 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2074 } 2075 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2076 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2077 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2078 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2079 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2080 } 2081 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2082 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2083 } 2084 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2085 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2086 } 2087 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2088 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2089 } 2090 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2091 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2092 } 2093 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2094 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2095 } 2096 return 0; 2097 } 2098 2099 static int configure_cpu_subfunc(const S390FeatBitmap features) 2100 { 2101 struct kvm_s390_vm_cpu_subfunc prop = {}; 2102 struct kvm_device_attr attr = { 2103 .group = KVM_S390_VM_CPU_MODEL, 2104 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2105 .addr = (uint64_t) &prop, 2106 }; 2107 2108 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2109 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2110 /* hardware support might be missing, IBC will handle most of this */ 2111 return 0; 2112 } 2113 2114 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2115 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2116 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2117 } 2118 if (test_bit(S390_FEAT_MSA, features)) { 2119 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2120 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2121 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2122 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2123 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2124 } 2125 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2126 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2127 } 2128 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2129 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2130 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2131 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2132 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2133 } 2134 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2135 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2136 } 2137 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2138 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2139 } 2140 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2141 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2142 } 2143 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2144 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2145 } 2146 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2147 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2148 } 2149 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2150 } 2151 2152 static int kvm_to_feat[][2] = { 2153 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2154 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2155 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2156 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2157 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2158 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2159 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2160 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2161 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2162 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2163 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2164 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2165 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2166 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2167 }; 2168 2169 static int query_cpu_feat(S390FeatBitmap features) 2170 { 2171 struct kvm_s390_vm_cpu_feat prop; 2172 struct kvm_device_attr attr = { 2173 .group = KVM_S390_VM_CPU_MODEL, 2174 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2175 .addr = (uint64_t) &prop, 2176 }; 2177 int rc; 2178 int i; 2179 2180 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2181 if (rc) { 2182 return rc; 2183 } 2184 2185 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2186 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2187 set_bit(kvm_to_feat[i][1], features); 2188 } 2189 } 2190 return 0; 2191 } 2192 2193 static int configure_cpu_feat(const S390FeatBitmap features) 2194 { 2195 struct kvm_s390_vm_cpu_feat prop = {}; 2196 struct kvm_device_attr attr = { 2197 .group = KVM_S390_VM_CPU_MODEL, 2198 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2199 .addr = (uint64_t) &prop, 2200 }; 2201 int i; 2202 2203 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2204 if (test_bit(kvm_to_feat[i][1], features)) { 2205 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2206 } 2207 } 2208 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2209 } 2210 2211 bool kvm_s390_cpu_models_supported(void) 2212 { 2213 if (!cpu_model_allowed()) { 2214 /* compatibility machines interfere with the cpu model */ 2215 return false; 2216 } 2217 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2218 KVM_S390_VM_CPU_MACHINE) && 2219 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2220 KVM_S390_VM_CPU_PROCESSOR) && 2221 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2222 KVM_S390_VM_CPU_MACHINE_FEAT) && 2223 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2224 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2225 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2226 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2227 } 2228 2229 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2230 { 2231 struct kvm_s390_vm_cpu_machine prop = {}; 2232 struct kvm_device_attr attr = { 2233 .group = KVM_S390_VM_CPU_MODEL, 2234 .attr = KVM_S390_VM_CPU_MACHINE, 2235 .addr = (uint64_t) &prop, 2236 }; 2237 uint16_t unblocked_ibc = 0, cpu_type = 0; 2238 int rc; 2239 2240 memset(model, 0, sizeof(*model)); 2241 2242 if (!kvm_s390_cpu_models_supported()) { 2243 error_setg(errp, "KVM doesn't support CPU models"); 2244 return; 2245 } 2246 2247 /* query the basic cpu model properties */ 2248 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2249 if (rc) { 2250 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2251 return; 2252 } 2253 2254 cpu_type = cpuid_type(prop.cpuid); 2255 if (has_ibc(prop.ibc)) { 2256 model->lowest_ibc = lowest_ibc(prop.ibc); 2257 unblocked_ibc = unblocked_ibc(prop.ibc); 2258 } 2259 model->cpu_id = cpuid_id(prop.cpuid); 2260 model->cpu_id_format = cpuid_format(prop.cpuid); 2261 model->cpu_ver = 0xff; 2262 2263 /* get supported cpu features indicated via STFL(E) */ 2264 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2265 (uint8_t *) prop.fac_mask); 2266 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2267 if (test_bit(S390_FEAT_STFLE, model->features)) { 2268 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2269 } 2270 /* get supported cpu features indicated e.g. via SCLP */ 2271 rc = query_cpu_feat(model->features); 2272 if (rc) { 2273 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2274 return; 2275 } 2276 /* get supported cpu subfunctions indicated via query / test bit */ 2277 rc = query_cpu_subfunc(model->features); 2278 if (rc) { 2279 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2280 return; 2281 } 2282 2283 /* PTFF subfunctions might be indicated although kernel support missing */ 2284 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2285 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2286 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2287 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2288 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2289 } 2290 2291 /* with cpu model support, CMM is only indicated if really available */ 2292 if (kvm_s390_cmma_available()) { 2293 set_bit(S390_FEAT_CMM, model->features); 2294 } else { 2295 /* no cmm -> no cmm nt */ 2296 clear_bit(S390_FEAT_CMM_NT, model->features); 2297 } 2298 2299 /* bpb needs kernel support for migration, VSIE and reset */ 2300 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2301 clear_bit(S390_FEAT_BPB, model->features); 2302 } 2303 2304 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2305 set_bit(S390_FEAT_ZPCI, model->features); 2306 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2307 2308 if (s390_known_cpu_type(cpu_type)) { 2309 /* we want the exact model, even if some features are missing */ 2310 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2311 ibc_ec_ga(unblocked_ibc), NULL); 2312 } else { 2313 /* model unknown, e.g. too new - search using features */ 2314 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2315 ibc_ec_ga(unblocked_ibc), 2316 model->features); 2317 } 2318 if (!model->def) { 2319 error_setg(errp, "KVM: host CPU model could not be identified"); 2320 return; 2321 } 2322 /* for now, we can only provide the AP feature with HW support */ 2323 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2324 KVM_S390_VM_CRYPTO_ENABLE_APIE)) { 2325 set_bit(S390_FEAT_AP, model->features); 2326 } 2327 /* strip of features that are not part of the maximum model */ 2328 bitmap_and(model->features, model->features, model->def->full_feat, 2329 S390_FEAT_MAX); 2330 } 2331 2332 static void kvm_s390_configure_apie(bool interpret) 2333 { 2334 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2335 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2336 2337 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2338 kvm_s390_set_attr(attr); 2339 } 2340 } 2341 2342 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2343 { 2344 struct kvm_s390_vm_cpu_processor prop = { 2345 .fac_list = { 0 }, 2346 }; 2347 struct kvm_device_attr attr = { 2348 .group = KVM_S390_VM_CPU_MODEL, 2349 .attr = KVM_S390_VM_CPU_PROCESSOR, 2350 .addr = (uint64_t) &prop, 2351 }; 2352 int rc; 2353 2354 if (!model) { 2355 /* compatibility handling if cpu models are disabled */ 2356 if (kvm_s390_cmma_available()) { 2357 kvm_s390_enable_cmma(); 2358 } 2359 return; 2360 } 2361 if (!kvm_s390_cpu_models_supported()) { 2362 error_setg(errp, "KVM doesn't support CPU models"); 2363 return; 2364 } 2365 prop.cpuid = s390_cpuid_from_cpu_model(model); 2366 prop.ibc = s390_ibc_from_cpu_model(model); 2367 /* configure cpu features indicated via STFL(e) */ 2368 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2369 (uint8_t *) prop.fac_list); 2370 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2371 if (rc) { 2372 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2373 return; 2374 } 2375 /* configure cpu features indicated e.g. via SCLP */ 2376 rc = configure_cpu_feat(model->features); 2377 if (rc) { 2378 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2379 return; 2380 } 2381 /* configure cpu subfunctions indicated via query / test bit */ 2382 rc = configure_cpu_subfunc(model->features); 2383 if (rc) { 2384 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2385 return; 2386 } 2387 /* enable CMM via CMMA */ 2388 if (test_bit(S390_FEAT_CMM, model->features)) { 2389 kvm_s390_enable_cmma(); 2390 } 2391 2392 if (test_bit(S390_FEAT_AP, model->features)) { 2393 kvm_s390_configure_apie(true); 2394 } 2395 } 2396 2397 void kvm_s390_restart_interrupt(S390CPU *cpu) 2398 { 2399 struct kvm_s390_irq irq = { 2400 .type = KVM_S390_RESTART, 2401 }; 2402 2403 kvm_s390_vcpu_interrupt(cpu, &irq); 2404 } 2405 2406 void kvm_s390_stop_interrupt(S390CPU *cpu) 2407 { 2408 struct kvm_s390_irq irq = { 2409 .type = KVM_S390_SIGP_STOP, 2410 }; 2411 2412 kvm_s390_vcpu_interrupt(cpu, &irq); 2413 } 2414