1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * Contributions after 2012-10-29 are licensed under the terms of the 18 * GNU GPL, version 2 or (at your option) any later version. 19 * 20 * You should have received a copy of the GNU (Lesser) General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include <sys/ioctl.h> 26 27 #include <linux/kvm.h> 28 #include <asm/ptrace.h> 29 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "qemu/error-report.h" 33 #include "qemu/timer.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/kvm.h" 36 #include "hw/hw.h" 37 #include "sysemu/device_tree.h" 38 #include "qapi/qmp/qjson.h" 39 #include "exec/gdbstub.h" 40 #include "exec/address-spaces.h" 41 #include "trace.h" 42 #include "qapi-event.h" 43 #include "hw/s390x/s390-pci-inst.h" 44 #include "hw/s390x/s390-pci-bus.h" 45 #include "hw/s390x/ipl.h" 46 #include "hw/s390x/ebcdic.h" 47 #include "exec/memattrs.h" 48 #include "hw/s390x/s390-virtio-ccw.h" 49 50 /* #define DEBUG_KVM */ 51 52 #ifdef DEBUG_KVM 53 #define DPRINTF(fmt, ...) \ 54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 55 #else 56 #define DPRINTF(fmt, ...) \ 57 do { } while (0) 58 #endif 59 60 #define kvm_vm_check_mem_attr(s, attr) \ 61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 62 63 #define IPA0_DIAG 0x8300 64 #define IPA0_SIGP 0xae00 65 #define IPA0_B2 0xb200 66 #define IPA0_B9 0xb900 67 #define IPA0_EB 0xeb00 68 #define IPA0_E3 0xe300 69 70 #define PRIV_B2_SCLP_CALL 0x20 71 #define PRIV_B2_CSCH 0x30 72 #define PRIV_B2_HSCH 0x31 73 #define PRIV_B2_MSCH 0x32 74 #define PRIV_B2_SSCH 0x33 75 #define PRIV_B2_STSCH 0x34 76 #define PRIV_B2_TSCH 0x35 77 #define PRIV_B2_TPI 0x36 78 #define PRIV_B2_SAL 0x37 79 #define PRIV_B2_RSCH 0x38 80 #define PRIV_B2_STCRW 0x39 81 #define PRIV_B2_STCPS 0x3a 82 #define PRIV_B2_RCHP 0x3b 83 #define PRIV_B2_SCHM 0x3c 84 #define PRIV_B2_CHSC 0x5f 85 #define PRIV_B2_SIGA 0x74 86 #define PRIV_B2_XSCH 0x76 87 88 #define PRIV_EB_SQBS 0x8a 89 #define PRIV_EB_PCISTB 0xd0 90 #define PRIV_EB_SIC 0xd1 91 92 #define PRIV_B9_EQBS 0x9c 93 #define PRIV_B9_CLP 0xa0 94 #define PRIV_B9_PCISTG 0xd0 95 #define PRIV_B9_PCILG 0xd2 96 #define PRIV_B9_RPCIT 0xd3 97 98 #define PRIV_E3_MPCIFC 0xd0 99 #define PRIV_E3_STPCIFC 0xd4 100 101 #define DIAG_TIMEREVENT 0x288 102 #define DIAG_IPL 0x308 103 #define DIAG_KVM_HYPERCALL 0x500 104 #define DIAG_KVM_BREAKPOINT 0x501 105 106 #define ICPT_INSTRUCTION 0x04 107 #define ICPT_PROGRAM 0x08 108 #define ICPT_EXT_INT 0x14 109 #define ICPT_WAITPSW 0x1c 110 #define ICPT_SOFT_INTERCEPT 0x24 111 #define ICPT_CPU_STOP 0x28 112 #define ICPT_OPEREXC 0x2c 113 #define ICPT_IO 0x40 114 115 #define NR_LOCAL_IRQS 32 116 /* 117 * Needs to be big enough to contain max_cpus emergency signals 118 * and in addition NR_LOCAL_IRQS interrupts 119 */ 120 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \ 121 (max_cpus + NR_LOCAL_IRQS)) 122 123 static CPUWatchpoint hw_watchpoint; 124 /* 125 * We don't use a list because this structure is also used to transmit the 126 * hardware breakpoints to the kernel. 127 */ 128 static struct kvm_hw_breakpoint *hw_breakpoints; 129 static int nb_hw_breakpoints; 130 131 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 132 KVM_CAP_LAST_INFO 133 }; 134 135 static QemuMutex qemu_sigp_mutex; 136 137 static int cap_sync_regs; 138 static int cap_async_pf; 139 static int cap_mem_op; 140 static int cap_s390_irq; 141 static int cap_ri; 142 143 static void *legacy_s390_alloc(size_t size, uint64_t *align); 144 145 static int kvm_s390_query_mem_limit(KVMState *s, uint64_t *memory_limit) 146 { 147 struct kvm_device_attr attr = { 148 .group = KVM_S390_VM_MEM_CTRL, 149 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 150 .addr = (uint64_t) memory_limit, 151 }; 152 153 return kvm_vm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 154 } 155 156 int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit) 157 { 158 int rc; 159 160 struct kvm_device_attr attr = { 161 .group = KVM_S390_VM_MEM_CTRL, 162 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 163 .addr = (uint64_t) &new_limit, 164 }; 165 166 if (!kvm_vm_check_mem_attr(s, KVM_S390_VM_MEM_LIMIT_SIZE)) { 167 return 0; 168 } 169 170 rc = kvm_s390_query_mem_limit(s, hw_limit); 171 if (rc) { 172 return rc; 173 } else if (*hw_limit < new_limit) { 174 return -E2BIG; 175 } 176 177 return kvm_vm_ioctl(s, KVM_SET_DEVICE_ATTR, &attr); 178 } 179 180 static bool kvm_s390_cmma_available(void) 181 { 182 static bool initialized, value; 183 184 if (!initialized) { 185 initialized = true; 186 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 187 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 188 } 189 return value; 190 } 191 192 void kvm_s390_cmma_reset(void) 193 { 194 int rc; 195 struct kvm_device_attr attr = { 196 .group = KVM_S390_VM_MEM_CTRL, 197 .attr = KVM_S390_VM_MEM_CLR_CMMA, 198 }; 199 200 if (!mem_path || !kvm_s390_cmma_available()) { 201 return; 202 } 203 204 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 205 trace_kvm_clear_cmma(rc); 206 } 207 208 static void kvm_s390_enable_cmma(void) 209 { 210 int rc; 211 struct kvm_device_attr attr = { 212 .group = KVM_S390_VM_MEM_CTRL, 213 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 214 }; 215 216 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 217 trace_kvm_enable_cmma(rc); 218 } 219 220 static void kvm_s390_set_attr(uint64_t attr) 221 { 222 struct kvm_device_attr attribute = { 223 .group = KVM_S390_VM_CRYPTO, 224 .attr = attr, 225 }; 226 227 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 228 229 if (ret) { 230 error_report("Failed to set crypto device attribute %lu: %s", 231 attr, strerror(-ret)); 232 } 233 } 234 235 static void kvm_s390_init_aes_kw(void) 236 { 237 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 238 239 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 240 NULL)) { 241 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 242 } 243 244 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 245 kvm_s390_set_attr(attr); 246 } 247 } 248 249 static void kvm_s390_init_dea_kw(void) 250 { 251 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 252 253 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 254 NULL)) { 255 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 256 } 257 258 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 259 kvm_s390_set_attr(attr); 260 } 261 } 262 263 void kvm_s390_crypto_reset(void) 264 { 265 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 266 kvm_s390_init_aes_kw(); 267 kvm_s390_init_dea_kw(); 268 } 269 } 270 271 int kvm_arch_init(MachineState *ms, KVMState *s) 272 { 273 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 274 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 275 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 276 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 277 278 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 279 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 280 phys_mem_set_alloc(legacy_s390_alloc); 281 } 282 283 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 284 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 285 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 286 if (ri_allowed()) { 287 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 288 cap_ri = 1; 289 } 290 } 291 292 qemu_mutex_init(&qemu_sigp_mutex); 293 294 return 0; 295 } 296 297 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 298 { 299 return 0; 300 } 301 302 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 303 { 304 return cpu->cpu_index; 305 } 306 307 int kvm_arch_init_vcpu(CPUState *cs) 308 { 309 S390CPU *cpu = S390_CPU(cs); 310 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 311 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE); 312 return 0; 313 } 314 315 void kvm_s390_reset_vcpu(S390CPU *cpu) 316 { 317 CPUState *cs = CPU(cpu); 318 319 /* The initial reset call is needed here to reset in-kernel 320 * vcpu data that we can't access directly from QEMU 321 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 322 * Before this ioctl cpu_synchronize_state() is called in common kvm 323 * code (kvm-all) */ 324 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 325 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 326 } 327 } 328 329 static int can_sync_regs(CPUState *cs, int regs) 330 { 331 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 332 } 333 334 int kvm_arch_put_registers(CPUState *cs, int level) 335 { 336 S390CPU *cpu = S390_CPU(cs); 337 CPUS390XState *env = &cpu->env; 338 struct kvm_sregs sregs; 339 struct kvm_regs regs; 340 struct kvm_fpu fpu = {}; 341 int r; 342 int i; 343 344 /* always save the PSW and the GPRS*/ 345 cs->kvm_run->psw_addr = env->psw.addr; 346 cs->kvm_run->psw_mask = env->psw.mask; 347 348 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 349 for (i = 0; i < 16; i++) { 350 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 351 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 352 } 353 } else { 354 for (i = 0; i < 16; i++) { 355 regs.gprs[i] = env->regs[i]; 356 } 357 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 358 if (r < 0) { 359 return r; 360 } 361 } 362 363 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 364 for (i = 0; i < 32; i++) { 365 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll; 366 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll; 367 } 368 cs->kvm_run->s.regs.fpc = env->fpc; 369 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 370 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 371 for (i = 0; i < 16; i++) { 372 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll; 373 } 374 cs->kvm_run->s.regs.fpc = env->fpc; 375 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 376 } else { 377 /* Floating point */ 378 for (i = 0; i < 16; i++) { 379 fpu.fprs[i] = get_freg(env, i)->ll; 380 } 381 fpu.fpc = env->fpc; 382 383 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 384 if (r < 0) { 385 return r; 386 } 387 } 388 389 /* Do we need to save more than that? */ 390 if (level == KVM_PUT_RUNTIME_STATE) { 391 return 0; 392 } 393 394 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 395 cs->kvm_run->s.regs.cputm = env->cputm; 396 cs->kvm_run->s.regs.ckc = env->ckc; 397 cs->kvm_run->s.regs.todpr = env->todpr; 398 cs->kvm_run->s.regs.gbea = env->gbea; 399 cs->kvm_run->s.regs.pp = env->pp; 400 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 401 } else { 402 /* 403 * These ONE_REGS are not protected by a capability. As they are only 404 * necessary for migration we just trace a possible error, but don't 405 * return with an error return code. 406 */ 407 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 408 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 409 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 410 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 411 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 412 } 413 414 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 415 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 416 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 417 } 418 419 /* pfault parameters */ 420 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 421 cs->kvm_run->s.regs.pft = env->pfault_token; 422 cs->kvm_run->s.regs.pfs = env->pfault_select; 423 cs->kvm_run->s.regs.pfc = env->pfault_compare; 424 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 425 } else if (cap_async_pf) { 426 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 427 if (r < 0) { 428 return r; 429 } 430 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 431 if (r < 0) { 432 return r; 433 } 434 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 435 if (r < 0) { 436 return r; 437 } 438 } 439 440 /* access registers and control registers*/ 441 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 442 for (i = 0; i < 16; i++) { 443 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 444 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 445 } 446 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 447 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 448 } else { 449 for (i = 0; i < 16; i++) { 450 sregs.acrs[i] = env->aregs[i]; 451 sregs.crs[i] = env->cregs[i]; 452 } 453 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 454 if (r < 0) { 455 return r; 456 } 457 } 458 459 /* Finally the prefix */ 460 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 461 cs->kvm_run->s.regs.prefix = env->psa; 462 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 463 } else { 464 /* prefix is only supported via sync regs */ 465 } 466 return 0; 467 } 468 469 int kvm_arch_get_registers(CPUState *cs) 470 { 471 S390CPU *cpu = S390_CPU(cs); 472 CPUS390XState *env = &cpu->env; 473 struct kvm_sregs sregs; 474 struct kvm_regs regs; 475 struct kvm_fpu fpu; 476 int i, r; 477 478 /* get the PSW */ 479 env->psw.addr = cs->kvm_run->psw_addr; 480 env->psw.mask = cs->kvm_run->psw_mask; 481 482 /* the GPRS */ 483 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 484 for (i = 0; i < 16; i++) { 485 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 486 } 487 } else { 488 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 489 if (r < 0) { 490 return r; 491 } 492 for (i = 0; i < 16; i++) { 493 env->regs[i] = regs.gprs[i]; 494 } 495 } 496 497 /* The ACRS and CRS */ 498 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 499 for (i = 0; i < 16; i++) { 500 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 501 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 502 } 503 } else { 504 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 505 if (r < 0) { 506 return r; 507 } 508 for (i = 0; i < 16; i++) { 509 env->aregs[i] = sregs.acrs[i]; 510 env->cregs[i] = sregs.crs[i]; 511 } 512 } 513 514 /* Floating point and vector registers */ 515 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 516 for (i = 0; i < 32; i++) { 517 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0]; 518 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1]; 519 } 520 env->fpc = cs->kvm_run->s.regs.fpc; 521 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 522 for (i = 0; i < 16; i++) { 523 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i]; 524 } 525 env->fpc = cs->kvm_run->s.regs.fpc; 526 } else { 527 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 528 if (r < 0) { 529 return r; 530 } 531 for (i = 0; i < 16; i++) { 532 get_freg(env, i)->ll = fpu.fprs[i]; 533 } 534 env->fpc = fpu.fpc; 535 } 536 537 /* The prefix */ 538 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 539 env->psa = cs->kvm_run->s.regs.prefix; 540 } 541 542 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 543 env->cputm = cs->kvm_run->s.regs.cputm; 544 env->ckc = cs->kvm_run->s.regs.ckc; 545 env->todpr = cs->kvm_run->s.regs.todpr; 546 env->gbea = cs->kvm_run->s.regs.gbea; 547 env->pp = cs->kvm_run->s.regs.pp; 548 } else { 549 /* 550 * These ONE_REGS are not protected by a capability. As they are only 551 * necessary for migration we just trace a possible error, but don't 552 * return with an error return code. 553 */ 554 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 555 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 556 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 557 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 558 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 559 } 560 561 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 562 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 563 } 564 565 /* pfault parameters */ 566 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 567 env->pfault_token = cs->kvm_run->s.regs.pft; 568 env->pfault_select = cs->kvm_run->s.regs.pfs; 569 env->pfault_compare = cs->kvm_run->s.regs.pfc; 570 } else if (cap_async_pf) { 571 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 572 if (r < 0) { 573 return r; 574 } 575 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 576 if (r < 0) { 577 return r; 578 } 579 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 580 if (r < 0) { 581 return r; 582 } 583 } 584 585 return 0; 586 } 587 588 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 589 { 590 int r; 591 struct kvm_device_attr attr = { 592 .group = KVM_S390_VM_TOD, 593 .attr = KVM_S390_VM_TOD_LOW, 594 .addr = (uint64_t)tod_low, 595 }; 596 597 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 598 if (r) { 599 return r; 600 } 601 602 attr.attr = KVM_S390_VM_TOD_HIGH; 603 attr.addr = (uint64_t)tod_high; 604 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 605 } 606 607 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low) 608 { 609 int r; 610 611 struct kvm_device_attr attr = { 612 .group = KVM_S390_VM_TOD, 613 .attr = KVM_S390_VM_TOD_LOW, 614 .addr = (uint64_t)tod_low, 615 }; 616 617 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 618 if (r) { 619 return r; 620 } 621 622 attr.attr = KVM_S390_VM_TOD_HIGH; 623 attr.addr = (uint64_t)tod_high; 624 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 625 } 626 627 /** 628 * kvm_s390_mem_op: 629 * @addr: the logical start address in guest memory 630 * @ar: the access register number 631 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 632 * @len: length that should be transferred 633 * @is_write: true = write, false = read 634 * Returns: 0 on success, non-zero if an exception or error occurred 635 * 636 * Use KVM ioctl to read/write from/to guest memory. An access exception 637 * is injected into the vCPU in case of translation errors. 638 */ 639 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 640 int len, bool is_write) 641 { 642 struct kvm_s390_mem_op mem_op = { 643 .gaddr = addr, 644 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 645 .size = len, 646 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 647 : KVM_S390_MEMOP_LOGICAL_READ, 648 .buf = (uint64_t)hostbuf, 649 .ar = ar, 650 }; 651 int ret; 652 653 if (!cap_mem_op) { 654 return -ENOSYS; 655 } 656 if (!hostbuf) { 657 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 658 } 659 660 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 661 if (ret < 0) { 662 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret)); 663 } 664 return ret; 665 } 666 667 /* 668 * Legacy layout for s390: 669 * Older S390 KVM requires the topmost vma of the RAM to be 670 * smaller than an system defined value, which is at least 256GB. 671 * Larger systems have larger values. We put the guest between 672 * the end of data segment (system break) and this value. We 673 * use 32GB as a base to have enough room for the system break 674 * to grow. We also have to use MAP parameters that avoid 675 * read-only mapping of guest pages. 676 */ 677 static void *legacy_s390_alloc(size_t size, uint64_t *align) 678 { 679 void *mem; 680 681 mem = mmap((void *) 0x800000000ULL, size, 682 PROT_EXEC|PROT_READ|PROT_WRITE, 683 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 684 return mem == MAP_FAILED ? NULL : mem; 685 } 686 687 static uint8_t const *sw_bp_inst; 688 static uint8_t sw_bp_ilen; 689 690 static void determine_sw_breakpoint_instr(void) 691 { 692 /* DIAG 501 is used for sw breakpoints with old kernels */ 693 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 694 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 695 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 696 697 if (sw_bp_inst) { 698 return; 699 } 700 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 701 sw_bp_inst = diag_501; 702 sw_bp_ilen = sizeof(diag_501); 703 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 704 } else { 705 sw_bp_inst = instr_0x0000; 706 sw_bp_ilen = sizeof(instr_0x0000); 707 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 708 } 709 } 710 711 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 712 { 713 determine_sw_breakpoint_instr(); 714 715 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 716 sw_bp_ilen, 0) || 717 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 718 return -EINVAL; 719 } 720 return 0; 721 } 722 723 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 724 { 725 uint8_t t[MAX_ILEN]; 726 727 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 728 return -EINVAL; 729 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 730 return -EINVAL; 731 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 732 sw_bp_ilen, 1)) { 733 return -EINVAL; 734 } 735 736 return 0; 737 } 738 739 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 740 int len, int type) 741 { 742 int n; 743 744 for (n = 0; n < nb_hw_breakpoints; n++) { 745 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 746 (hw_breakpoints[n].len == len || len == -1)) { 747 return &hw_breakpoints[n]; 748 } 749 } 750 751 return NULL; 752 } 753 754 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 755 { 756 int size; 757 758 if (find_hw_breakpoint(addr, len, type)) { 759 return -EEXIST; 760 } 761 762 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 763 764 if (!hw_breakpoints) { 765 nb_hw_breakpoints = 0; 766 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 767 } else { 768 hw_breakpoints = 769 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 770 } 771 772 if (!hw_breakpoints) { 773 nb_hw_breakpoints = 0; 774 return -ENOMEM; 775 } 776 777 hw_breakpoints[nb_hw_breakpoints].addr = addr; 778 hw_breakpoints[nb_hw_breakpoints].len = len; 779 hw_breakpoints[nb_hw_breakpoints].type = type; 780 781 nb_hw_breakpoints++; 782 783 return 0; 784 } 785 786 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 787 target_ulong len, int type) 788 { 789 switch (type) { 790 case GDB_BREAKPOINT_HW: 791 type = KVM_HW_BP; 792 break; 793 case GDB_WATCHPOINT_WRITE: 794 if (len < 1) { 795 return -EINVAL; 796 } 797 type = KVM_HW_WP_WRITE; 798 break; 799 default: 800 return -ENOSYS; 801 } 802 return insert_hw_breakpoint(addr, len, type); 803 } 804 805 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 806 target_ulong len, int type) 807 { 808 int size; 809 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 810 811 if (bp == NULL) { 812 return -ENOENT; 813 } 814 815 nb_hw_breakpoints--; 816 if (nb_hw_breakpoints > 0) { 817 /* 818 * In order to trim the array, move the last element to the position to 819 * be removed - if necessary. 820 */ 821 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 822 *bp = hw_breakpoints[nb_hw_breakpoints]; 823 } 824 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 825 hw_breakpoints = 826 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 827 } else { 828 g_free(hw_breakpoints); 829 hw_breakpoints = NULL; 830 } 831 832 return 0; 833 } 834 835 void kvm_arch_remove_all_hw_breakpoints(void) 836 { 837 nb_hw_breakpoints = 0; 838 g_free(hw_breakpoints); 839 hw_breakpoints = NULL; 840 } 841 842 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 843 { 844 int i; 845 846 if (nb_hw_breakpoints > 0) { 847 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 848 dbg->arch.hw_bp = hw_breakpoints; 849 850 for (i = 0; i < nb_hw_breakpoints; ++i) { 851 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 852 hw_breakpoints[i].addr); 853 } 854 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 855 } else { 856 dbg->arch.nr_hw_bp = 0; 857 dbg->arch.hw_bp = NULL; 858 } 859 } 860 861 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 862 { 863 } 864 865 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 866 { 867 return MEMTXATTRS_UNSPECIFIED; 868 } 869 870 int kvm_arch_process_async_events(CPUState *cs) 871 { 872 return cs->halted; 873 } 874 875 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 876 struct kvm_s390_interrupt *interrupt) 877 { 878 int r = 0; 879 880 interrupt->type = irq->type; 881 switch (irq->type) { 882 case KVM_S390_INT_VIRTIO: 883 interrupt->parm = irq->u.ext.ext_params; 884 /* fall through */ 885 case KVM_S390_INT_PFAULT_INIT: 886 case KVM_S390_INT_PFAULT_DONE: 887 interrupt->parm64 = irq->u.ext.ext_params2; 888 break; 889 case KVM_S390_PROGRAM_INT: 890 interrupt->parm = irq->u.pgm.code; 891 break; 892 case KVM_S390_SIGP_SET_PREFIX: 893 interrupt->parm = irq->u.prefix.address; 894 break; 895 case KVM_S390_INT_SERVICE: 896 interrupt->parm = irq->u.ext.ext_params; 897 break; 898 case KVM_S390_MCHK: 899 interrupt->parm = irq->u.mchk.cr14; 900 interrupt->parm64 = irq->u.mchk.mcic; 901 break; 902 case KVM_S390_INT_EXTERNAL_CALL: 903 interrupt->parm = irq->u.extcall.code; 904 break; 905 case KVM_S390_INT_EMERGENCY: 906 interrupt->parm = irq->u.emerg.code; 907 break; 908 case KVM_S390_SIGP_STOP: 909 case KVM_S390_RESTART: 910 break; /* These types have no parameters */ 911 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 912 interrupt->parm = irq->u.io.subchannel_id << 16; 913 interrupt->parm |= irq->u.io.subchannel_nr; 914 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 915 interrupt->parm64 |= irq->u.io.io_int_word; 916 break; 917 default: 918 r = -EINVAL; 919 break; 920 } 921 return r; 922 } 923 924 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 925 { 926 struct kvm_s390_interrupt kvmint = {}; 927 int r; 928 929 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 930 if (r < 0) { 931 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 932 exit(1); 933 } 934 935 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 936 if (r < 0) { 937 fprintf(stderr, "KVM failed to inject interrupt\n"); 938 exit(1); 939 } 940 } 941 942 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 943 { 944 CPUState *cs = CPU(cpu); 945 int r; 946 947 if (cap_s390_irq) { 948 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 949 if (!r) { 950 return; 951 } 952 error_report("KVM failed to inject interrupt %llx", irq->type); 953 exit(1); 954 } 955 956 inject_vcpu_irq_legacy(cs, irq); 957 } 958 959 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) 960 { 961 struct kvm_s390_interrupt kvmint = {}; 962 int r; 963 964 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 965 if (r < 0) { 966 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 967 exit(1); 968 } 969 970 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 971 if (r < 0) { 972 fprintf(stderr, "KVM failed to inject interrupt\n"); 973 exit(1); 974 } 975 } 976 977 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) 978 { 979 static bool use_flic = true; 980 int r; 981 982 if (use_flic) { 983 r = kvm_s390_inject_flic(irq); 984 if (r == -ENOSYS) { 985 use_flic = false; 986 } 987 if (!r) { 988 return; 989 } 990 } 991 __kvm_s390_floating_interrupt(irq); 992 } 993 994 void kvm_s390_service_interrupt(uint32_t parm) 995 { 996 struct kvm_s390_irq irq = { 997 .type = KVM_S390_INT_SERVICE, 998 .u.ext.ext_params = parm, 999 }; 1000 1001 kvm_s390_floating_interrupt(&irq); 1002 } 1003 1004 static void enter_pgmcheck(S390CPU *cpu, uint16_t code) 1005 { 1006 struct kvm_s390_irq irq = { 1007 .type = KVM_S390_PROGRAM_INT, 1008 .u.pgm.code = code, 1009 }; 1010 1011 kvm_s390_vcpu_interrupt(cpu, &irq); 1012 } 1013 1014 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1015 { 1016 struct kvm_s390_irq irq = { 1017 .type = KVM_S390_PROGRAM_INT, 1018 .u.pgm.code = code, 1019 .u.pgm.trans_exc_code = te_code, 1020 .u.pgm.exc_access_id = te_code & 3, 1021 }; 1022 1023 kvm_s390_vcpu_interrupt(cpu, &irq); 1024 } 1025 1026 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1027 uint16_t ipbh0) 1028 { 1029 CPUS390XState *env = &cpu->env; 1030 uint64_t sccb; 1031 uint32_t code; 1032 int r = 0; 1033 1034 cpu_synchronize_state(CPU(cpu)); 1035 sccb = env->regs[ipbh0 & 0xf]; 1036 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1037 1038 r = sclp_service_call(env, sccb, code); 1039 if (r < 0) { 1040 enter_pgmcheck(cpu, -r); 1041 } else { 1042 setcc(cpu, r); 1043 } 1044 1045 return 0; 1046 } 1047 1048 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1049 { 1050 CPUS390XState *env = &cpu->env; 1051 int rc = 0; 1052 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1053 1054 cpu_synchronize_state(CPU(cpu)); 1055 1056 switch (ipa1) { 1057 case PRIV_B2_XSCH: 1058 ioinst_handle_xsch(cpu, env->regs[1]); 1059 break; 1060 case PRIV_B2_CSCH: 1061 ioinst_handle_csch(cpu, env->regs[1]); 1062 break; 1063 case PRIV_B2_HSCH: 1064 ioinst_handle_hsch(cpu, env->regs[1]); 1065 break; 1066 case PRIV_B2_MSCH: 1067 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb); 1068 break; 1069 case PRIV_B2_SSCH: 1070 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb); 1071 break; 1072 case PRIV_B2_STCRW: 1073 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb); 1074 break; 1075 case PRIV_B2_STSCH: 1076 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb); 1077 break; 1078 case PRIV_B2_TSCH: 1079 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1080 fprintf(stderr, "Spurious tsch intercept\n"); 1081 break; 1082 case PRIV_B2_CHSC: 1083 ioinst_handle_chsc(cpu, run->s390_sieic.ipb); 1084 break; 1085 case PRIV_B2_TPI: 1086 /* This should have been handled by kvm already. */ 1087 fprintf(stderr, "Spurious tpi intercept\n"); 1088 break; 1089 case PRIV_B2_SCHM: 1090 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1091 run->s390_sieic.ipb); 1092 break; 1093 case PRIV_B2_RSCH: 1094 ioinst_handle_rsch(cpu, env->regs[1]); 1095 break; 1096 case PRIV_B2_RCHP: 1097 ioinst_handle_rchp(cpu, env->regs[1]); 1098 break; 1099 case PRIV_B2_STCPS: 1100 /* We do not provide this instruction, it is suppressed. */ 1101 break; 1102 case PRIV_B2_SAL: 1103 ioinst_handle_sal(cpu, env->regs[1]); 1104 break; 1105 case PRIV_B2_SIGA: 1106 /* Not provided, set CC = 3 for subchannel not operational */ 1107 setcc(cpu, 3); 1108 break; 1109 case PRIV_B2_SCLP_CALL: 1110 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1111 break; 1112 default: 1113 rc = -1; 1114 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1115 break; 1116 } 1117 1118 return rc; 1119 } 1120 1121 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1122 uint8_t *ar) 1123 { 1124 CPUS390XState *env = &cpu->env; 1125 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1126 uint32_t base2 = run->s390_sieic.ipb >> 28; 1127 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1128 ((run->s390_sieic.ipb & 0xff00) << 4); 1129 1130 if (disp2 & 0x80000) { 1131 disp2 += 0xfff00000; 1132 } 1133 if (ar) { 1134 *ar = base2; 1135 } 1136 1137 return (base2 ? env->regs[base2] : 0) + 1138 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1139 } 1140 1141 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1142 uint8_t *ar) 1143 { 1144 CPUS390XState *env = &cpu->env; 1145 uint32_t base2 = run->s390_sieic.ipb >> 28; 1146 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1147 ((run->s390_sieic.ipb & 0xff00) << 4); 1148 1149 if (disp2 & 0x80000) { 1150 disp2 += 0xfff00000; 1151 } 1152 if (ar) { 1153 *ar = base2; 1154 } 1155 1156 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1157 } 1158 1159 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1160 { 1161 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1162 1163 return clp_service_call(cpu, r2); 1164 } 1165 1166 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1167 { 1168 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1169 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1170 1171 return pcilg_service_call(cpu, r1, r2); 1172 } 1173 1174 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1175 { 1176 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1177 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1178 1179 return pcistg_service_call(cpu, r1, r2); 1180 } 1181 1182 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1183 { 1184 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1185 uint64_t fiba; 1186 uint8_t ar; 1187 1188 cpu_synchronize_state(CPU(cpu)); 1189 fiba = get_base_disp_rxy(cpu, run, &ar); 1190 1191 return stpcifc_service_call(cpu, r1, fiba, ar); 1192 } 1193 1194 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1195 { 1196 /* NOOP */ 1197 return 0; 1198 } 1199 1200 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1201 { 1202 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1203 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1204 1205 return rpcit_service_call(cpu, r1, r2); 1206 } 1207 1208 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1209 { 1210 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1211 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1212 uint64_t gaddr; 1213 uint8_t ar; 1214 1215 cpu_synchronize_state(CPU(cpu)); 1216 gaddr = get_base_disp_rsy(cpu, run, &ar); 1217 1218 return pcistb_service_call(cpu, r1, r3, gaddr, ar); 1219 } 1220 1221 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1222 { 1223 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1224 uint64_t fiba; 1225 uint8_t ar; 1226 1227 cpu_synchronize_state(CPU(cpu)); 1228 fiba = get_base_disp_rxy(cpu, run, &ar); 1229 1230 return mpcifc_service_call(cpu, r1, fiba, ar); 1231 } 1232 1233 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1234 { 1235 int r = 0; 1236 1237 switch (ipa1) { 1238 case PRIV_B9_CLP: 1239 r = kvm_clp_service_call(cpu, run); 1240 break; 1241 case PRIV_B9_PCISTG: 1242 r = kvm_pcistg_service_call(cpu, run); 1243 break; 1244 case PRIV_B9_PCILG: 1245 r = kvm_pcilg_service_call(cpu, run); 1246 break; 1247 case PRIV_B9_RPCIT: 1248 r = kvm_rpcit_service_call(cpu, run); 1249 break; 1250 case PRIV_B9_EQBS: 1251 /* just inject exception */ 1252 r = -1; 1253 break; 1254 default: 1255 r = -1; 1256 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1257 break; 1258 } 1259 1260 return r; 1261 } 1262 1263 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1264 { 1265 int r = 0; 1266 1267 switch (ipbl) { 1268 case PRIV_EB_PCISTB: 1269 r = kvm_pcistb_service_call(cpu, run); 1270 break; 1271 case PRIV_EB_SIC: 1272 r = kvm_sic_service_call(cpu, run); 1273 break; 1274 case PRIV_EB_SQBS: 1275 /* just inject exception */ 1276 r = -1; 1277 break; 1278 default: 1279 r = -1; 1280 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1281 break; 1282 } 1283 1284 return r; 1285 } 1286 1287 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1288 { 1289 int r = 0; 1290 1291 switch (ipbl) { 1292 case PRIV_E3_MPCIFC: 1293 r = kvm_mpcifc_service_call(cpu, run); 1294 break; 1295 case PRIV_E3_STPCIFC: 1296 r = kvm_stpcifc_service_call(cpu, run); 1297 break; 1298 default: 1299 r = -1; 1300 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1301 break; 1302 } 1303 1304 return r; 1305 } 1306 1307 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1308 { 1309 CPUS390XState *env = &cpu->env; 1310 int ret; 1311 1312 cpu_synchronize_state(CPU(cpu)); 1313 ret = s390_virtio_hypercall(env); 1314 if (ret == -EINVAL) { 1315 enter_pgmcheck(cpu, PGM_SPECIFICATION); 1316 return 0; 1317 } 1318 1319 return ret; 1320 } 1321 1322 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1323 { 1324 uint64_t r1, r3; 1325 int rc; 1326 1327 cpu_synchronize_state(CPU(cpu)); 1328 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1329 r3 = run->s390_sieic.ipa & 0x000f; 1330 rc = handle_diag_288(&cpu->env, r1, r3); 1331 if (rc) { 1332 enter_pgmcheck(cpu, PGM_SPECIFICATION); 1333 } 1334 } 1335 1336 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1337 { 1338 uint64_t r1, r3; 1339 1340 cpu_synchronize_state(CPU(cpu)); 1341 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1342 r3 = run->s390_sieic.ipa & 0x000f; 1343 handle_diag_308(&cpu->env, r1, r3); 1344 } 1345 1346 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1347 { 1348 CPUS390XState *env = &cpu->env; 1349 unsigned long pc; 1350 1351 cpu_synchronize_state(CPU(cpu)); 1352 1353 pc = env->psw.addr - sw_bp_ilen; 1354 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1355 env->psw.addr = pc; 1356 return EXCP_DEBUG; 1357 } 1358 1359 return -ENOENT; 1360 } 1361 1362 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1363 1364 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1365 { 1366 int r = 0; 1367 uint16_t func_code; 1368 1369 /* 1370 * For any diagnose call we support, bits 48-63 of the resulting 1371 * address specify the function code; the remainder is ignored. 1372 */ 1373 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1374 switch (func_code) { 1375 case DIAG_TIMEREVENT: 1376 kvm_handle_diag_288(cpu, run); 1377 break; 1378 case DIAG_IPL: 1379 kvm_handle_diag_308(cpu, run); 1380 break; 1381 case DIAG_KVM_HYPERCALL: 1382 r = handle_hypercall(cpu, run); 1383 break; 1384 case DIAG_KVM_BREAKPOINT: 1385 r = handle_sw_breakpoint(cpu, run); 1386 break; 1387 default: 1388 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1389 enter_pgmcheck(cpu, PGM_SPECIFICATION); 1390 break; 1391 } 1392 1393 return r; 1394 } 1395 1396 typedef struct SigpInfo { 1397 uint64_t param; 1398 int cc; 1399 uint64_t *status_reg; 1400 } SigpInfo; 1401 1402 static void set_sigp_status(SigpInfo *si, uint64_t status) 1403 { 1404 *si->status_reg &= 0xffffffff00000000ULL; 1405 *si->status_reg |= status; 1406 si->cc = SIGP_CC_STATUS_STORED; 1407 } 1408 1409 static void sigp_start(CPUState *cs, run_on_cpu_data arg) 1410 { 1411 S390CPU *cpu = S390_CPU(cs); 1412 SigpInfo *si = arg.host_ptr; 1413 1414 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { 1415 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1416 return; 1417 } 1418 1419 s390_cpu_set_state(CPU_STATE_OPERATING, cpu); 1420 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1421 } 1422 1423 static void sigp_stop(CPUState *cs, run_on_cpu_data arg) 1424 { 1425 S390CPU *cpu = S390_CPU(cs); 1426 SigpInfo *si = arg.host_ptr; 1427 struct kvm_s390_irq irq = { 1428 .type = KVM_S390_SIGP_STOP, 1429 }; 1430 1431 if (s390_cpu_get_state(cpu) != CPU_STATE_OPERATING) { 1432 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1433 return; 1434 } 1435 1436 /* disabled wait - sleeping in user space */ 1437 if (cs->halted) { 1438 s390_cpu_set_state(CPU_STATE_STOPPED, cpu); 1439 } else { 1440 /* execute the stop function */ 1441 cpu->env.sigp_order = SIGP_STOP; 1442 kvm_s390_vcpu_interrupt(cpu, &irq); 1443 } 1444 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1445 } 1446 1447 #define ADTL_SAVE_AREA_SIZE 1024 1448 static int kvm_s390_store_adtl_status(S390CPU *cpu, hwaddr addr) 1449 { 1450 void *mem; 1451 hwaddr len = ADTL_SAVE_AREA_SIZE; 1452 1453 mem = cpu_physical_memory_map(addr, &len, 1); 1454 if (!mem) { 1455 return -EFAULT; 1456 } 1457 if (len != ADTL_SAVE_AREA_SIZE) { 1458 cpu_physical_memory_unmap(mem, len, 1, 0); 1459 return -EFAULT; 1460 } 1461 1462 memcpy(mem, &cpu->env.vregs, 512); 1463 1464 cpu_physical_memory_unmap(mem, len, 1, len); 1465 1466 return 0; 1467 } 1468 1469 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area) 1470 #define SAVE_AREA_SIZE 512 1471 static int kvm_s390_store_status(S390CPU *cpu, hwaddr addr, bool store_arch) 1472 { 1473 static const uint8_t ar_id = 1; 1474 uint64_t ckc = cpu->env.ckc >> 8; 1475 void *mem; 1476 int i; 1477 hwaddr len = SAVE_AREA_SIZE; 1478 1479 mem = cpu_physical_memory_map(addr, &len, 1); 1480 if (!mem) { 1481 return -EFAULT; 1482 } 1483 if (len != SAVE_AREA_SIZE) { 1484 cpu_physical_memory_unmap(mem, len, 1, 0); 1485 return -EFAULT; 1486 } 1487 1488 if (store_arch) { 1489 cpu_physical_memory_write(offsetof(LowCore, ar_access_id), &ar_id, 1); 1490 } 1491 for (i = 0; i < 16; ++i) { 1492 *((uint64_t *)mem + i) = get_freg(&cpu->env, i)->ll; 1493 } 1494 memcpy(mem + 128, &cpu->env.regs, 128); 1495 memcpy(mem + 256, &cpu->env.psw, 16); 1496 memcpy(mem + 280, &cpu->env.psa, 4); 1497 memcpy(mem + 284, &cpu->env.fpc, 4); 1498 memcpy(mem + 292, &cpu->env.todpr, 4); 1499 memcpy(mem + 296, &cpu->env.cputm, 8); 1500 memcpy(mem + 304, &ckc, 8); 1501 memcpy(mem + 320, &cpu->env.aregs, 64); 1502 memcpy(mem + 384, &cpu->env.cregs, 128); 1503 1504 cpu_physical_memory_unmap(mem, len, 1, len); 1505 1506 return 0; 1507 } 1508 1509 static void sigp_stop_and_store_status(CPUState *cs, run_on_cpu_data arg) 1510 { 1511 S390CPU *cpu = S390_CPU(cs); 1512 SigpInfo *si = arg.host_ptr; 1513 struct kvm_s390_irq irq = { 1514 .type = KVM_S390_SIGP_STOP, 1515 }; 1516 1517 /* disabled wait - sleeping in user space */ 1518 if (s390_cpu_get_state(cpu) == CPU_STATE_OPERATING && cs->halted) { 1519 s390_cpu_set_state(CPU_STATE_STOPPED, cpu); 1520 } 1521 1522 switch (s390_cpu_get_state(cpu)) { 1523 case CPU_STATE_OPERATING: 1524 cpu->env.sigp_order = SIGP_STOP_STORE_STATUS; 1525 kvm_s390_vcpu_interrupt(cpu, &irq); 1526 /* store will be performed when handling the stop intercept */ 1527 break; 1528 case CPU_STATE_STOPPED: 1529 /* already stopped, just store the status */ 1530 cpu_synchronize_state(cs); 1531 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, true); 1532 break; 1533 } 1534 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1535 } 1536 1537 static void sigp_store_status_at_address(CPUState *cs, run_on_cpu_data arg) 1538 { 1539 S390CPU *cpu = S390_CPU(cs); 1540 SigpInfo *si = arg.host_ptr; 1541 uint32_t address = si->param & 0x7ffffe00u; 1542 1543 /* cpu has to be stopped */ 1544 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { 1545 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); 1546 return; 1547 } 1548 1549 cpu_synchronize_state(cs); 1550 1551 if (kvm_s390_store_status(cpu, address, false)) { 1552 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1553 return; 1554 } 1555 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1556 } 1557 1558 static void sigp_store_adtl_status(CPUState *cs, run_on_cpu_data arg) 1559 { 1560 S390CPU *cpu = S390_CPU(cs); 1561 SigpInfo *si = arg.host_ptr; 1562 1563 if (!s390_has_feat(S390_FEAT_VECTOR)) { 1564 set_sigp_status(si, SIGP_STAT_INVALID_ORDER); 1565 return; 1566 } 1567 1568 /* cpu has to be stopped */ 1569 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { 1570 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); 1571 return; 1572 } 1573 1574 /* parameter must be aligned to 1024-byte boundary */ 1575 if (si->param & 0x3ff) { 1576 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1577 return; 1578 } 1579 1580 cpu_synchronize_state(cs); 1581 1582 if (kvm_s390_store_adtl_status(cpu, si->param)) { 1583 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1584 return; 1585 } 1586 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1587 } 1588 1589 static void sigp_restart(CPUState *cs, run_on_cpu_data arg) 1590 { 1591 S390CPU *cpu = S390_CPU(cs); 1592 SigpInfo *si = arg.host_ptr; 1593 struct kvm_s390_irq irq = { 1594 .type = KVM_S390_RESTART, 1595 }; 1596 1597 switch (s390_cpu_get_state(cpu)) { 1598 case CPU_STATE_STOPPED: 1599 /* the restart irq has to be delivered prior to any other pending irq */ 1600 cpu_synchronize_state(cs); 1601 do_restart_interrupt(&cpu->env); 1602 s390_cpu_set_state(CPU_STATE_OPERATING, cpu); 1603 break; 1604 case CPU_STATE_OPERATING: 1605 kvm_s390_vcpu_interrupt(cpu, &irq); 1606 break; 1607 } 1608 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1609 } 1610 1611 int kvm_s390_cpu_restart(S390CPU *cpu) 1612 { 1613 SigpInfo si = {}; 1614 1615 run_on_cpu(CPU(cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si)); 1616 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env); 1617 return 0; 1618 } 1619 1620 static void sigp_initial_cpu_reset(CPUState *cs, run_on_cpu_data arg) 1621 { 1622 S390CPU *cpu = S390_CPU(cs); 1623 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu); 1624 SigpInfo *si = arg.host_ptr; 1625 1626 cpu_synchronize_state(cs); 1627 scc->initial_cpu_reset(cs); 1628 cpu_synchronize_post_reset(cs); 1629 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1630 } 1631 1632 static void sigp_cpu_reset(CPUState *cs, run_on_cpu_data arg) 1633 { 1634 S390CPU *cpu = S390_CPU(cs); 1635 S390CPUClass *scc = S390_CPU_GET_CLASS(cpu); 1636 SigpInfo *si = arg.host_ptr; 1637 1638 cpu_synchronize_state(cs); 1639 scc->cpu_reset(cs); 1640 cpu_synchronize_post_reset(cs); 1641 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1642 } 1643 1644 static void sigp_set_prefix(CPUState *cs, run_on_cpu_data arg) 1645 { 1646 S390CPU *cpu = S390_CPU(cs); 1647 SigpInfo *si = arg.host_ptr; 1648 uint32_t addr = si->param & 0x7fffe000u; 1649 1650 cpu_synchronize_state(cs); 1651 1652 if (!address_space_access_valid(&address_space_memory, addr, 1653 sizeof(struct LowCore), false)) { 1654 set_sigp_status(si, SIGP_STAT_INVALID_PARAMETER); 1655 return; 1656 } 1657 1658 /* cpu has to be stopped */ 1659 if (s390_cpu_get_state(cpu) != CPU_STATE_STOPPED) { 1660 set_sigp_status(si, SIGP_STAT_INCORRECT_STATE); 1661 return; 1662 } 1663 1664 cpu->env.psa = addr; 1665 cpu_synchronize_post_init(cs); 1666 si->cc = SIGP_CC_ORDER_CODE_ACCEPTED; 1667 } 1668 1669 static int handle_sigp_single_dst(S390CPU *dst_cpu, uint8_t order, 1670 uint64_t param, uint64_t *status_reg) 1671 { 1672 SigpInfo si = { 1673 .param = param, 1674 .status_reg = status_reg, 1675 }; 1676 1677 /* cpu available? */ 1678 if (dst_cpu == NULL) { 1679 return SIGP_CC_NOT_OPERATIONAL; 1680 } 1681 1682 /* only resets can break pending orders */ 1683 if (dst_cpu->env.sigp_order != 0 && 1684 order != SIGP_CPU_RESET && 1685 order != SIGP_INITIAL_CPU_RESET) { 1686 return SIGP_CC_BUSY; 1687 } 1688 1689 switch (order) { 1690 case SIGP_START: 1691 run_on_cpu(CPU(dst_cpu), sigp_start, RUN_ON_CPU_HOST_PTR(&si)); 1692 break; 1693 case SIGP_STOP: 1694 run_on_cpu(CPU(dst_cpu), sigp_stop, RUN_ON_CPU_HOST_PTR(&si)); 1695 break; 1696 case SIGP_RESTART: 1697 run_on_cpu(CPU(dst_cpu), sigp_restart, RUN_ON_CPU_HOST_PTR(&si)); 1698 break; 1699 case SIGP_STOP_STORE_STATUS: 1700 run_on_cpu(CPU(dst_cpu), sigp_stop_and_store_status, RUN_ON_CPU_HOST_PTR(&si)); 1701 break; 1702 case SIGP_STORE_STATUS_ADDR: 1703 run_on_cpu(CPU(dst_cpu), sigp_store_status_at_address, RUN_ON_CPU_HOST_PTR(&si)); 1704 break; 1705 case SIGP_STORE_ADTL_STATUS: 1706 run_on_cpu(CPU(dst_cpu), sigp_store_adtl_status, RUN_ON_CPU_HOST_PTR(&si)); 1707 break; 1708 case SIGP_SET_PREFIX: 1709 run_on_cpu(CPU(dst_cpu), sigp_set_prefix, RUN_ON_CPU_HOST_PTR(&si)); 1710 break; 1711 case SIGP_INITIAL_CPU_RESET: 1712 run_on_cpu(CPU(dst_cpu), sigp_initial_cpu_reset, RUN_ON_CPU_HOST_PTR(&si)); 1713 break; 1714 case SIGP_CPU_RESET: 1715 run_on_cpu(CPU(dst_cpu), sigp_cpu_reset, RUN_ON_CPU_HOST_PTR(&si)); 1716 break; 1717 default: 1718 DPRINTF("KVM: unknown SIGP: 0x%x\n", order); 1719 set_sigp_status(&si, SIGP_STAT_INVALID_ORDER); 1720 } 1721 1722 return si.cc; 1723 } 1724 1725 static int sigp_set_architecture(S390CPU *cpu, uint32_t param, 1726 uint64_t *status_reg) 1727 { 1728 CPUState *cur_cs; 1729 S390CPU *cur_cpu; 1730 1731 /* due to the BQL, we are the only active cpu */ 1732 CPU_FOREACH(cur_cs) { 1733 cur_cpu = S390_CPU(cur_cs); 1734 if (cur_cpu->env.sigp_order != 0) { 1735 return SIGP_CC_BUSY; 1736 } 1737 cpu_synchronize_state(cur_cs); 1738 /* all but the current one have to be stopped */ 1739 if (cur_cpu != cpu && 1740 s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) { 1741 *status_reg &= 0xffffffff00000000ULL; 1742 *status_reg |= SIGP_STAT_INCORRECT_STATE; 1743 return SIGP_CC_STATUS_STORED; 1744 } 1745 } 1746 1747 switch (param & 0xff) { 1748 case SIGP_MODE_ESA_S390: 1749 /* not supported */ 1750 return SIGP_CC_NOT_OPERATIONAL; 1751 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW: 1752 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW: 1753 CPU_FOREACH(cur_cs) { 1754 cur_cpu = S390_CPU(cur_cs); 1755 cur_cpu->env.pfault_token = -1UL; 1756 } 1757 break; 1758 default: 1759 *status_reg &= 0xffffffff00000000ULL; 1760 *status_reg |= SIGP_STAT_INVALID_PARAMETER; 1761 return SIGP_CC_STATUS_STORED; 1762 } 1763 1764 return SIGP_CC_ORDER_CODE_ACCEPTED; 1765 } 1766 1767 #define SIGP_ORDER_MASK 0x000000ff 1768 1769 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1770 { 1771 CPUS390XState *env = &cpu->env; 1772 const uint8_t r1 = ipa1 >> 4; 1773 const uint8_t r3 = ipa1 & 0x0f; 1774 int ret; 1775 uint8_t order; 1776 uint64_t *status_reg; 1777 uint64_t param; 1778 S390CPU *dst_cpu = NULL; 1779 1780 cpu_synchronize_state(CPU(cpu)); 1781 1782 /* get order code */ 1783 order = decode_basedisp_rs(env, run->s390_sieic.ipb, NULL) 1784 & SIGP_ORDER_MASK; 1785 status_reg = &env->regs[r1]; 1786 param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1]; 1787 1788 if (qemu_mutex_trylock(&qemu_sigp_mutex)) { 1789 ret = SIGP_CC_BUSY; 1790 goto out; 1791 } 1792 1793 switch (order) { 1794 case SIGP_SET_ARCH: 1795 ret = sigp_set_architecture(cpu, param, status_reg); 1796 break; 1797 default: 1798 /* all other sigp orders target a single vcpu */ 1799 dst_cpu = s390_cpu_addr2state(env->regs[r3]); 1800 ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg); 1801 } 1802 qemu_mutex_unlock(&qemu_sigp_mutex); 1803 1804 out: 1805 trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index, 1806 dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret); 1807 1808 if (ret >= 0) { 1809 setcc(cpu, ret); 1810 return 0; 1811 } 1812 1813 return ret; 1814 } 1815 1816 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1817 { 1818 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1819 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1820 int r = -1; 1821 1822 DPRINTF("handle_instruction 0x%x 0x%x\n", 1823 run->s390_sieic.ipa, run->s390_sieic.ipb); 1824 switch (ipa0) { 1825 case IPA0_B2: 1826 r = handle_b2(cpu, run, ipa1); 1827 break; 1828 case IPA0_B9: 1829 r = handle_b9(cpu, run, ipa1); 1830 break; 1831 case IPA0_EB: 1832 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1833 break; 1834 case IPA0_E3: 1835 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1836 break; 1837 case IPA0_DIAG: 1838 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1839 break; 1840 case IPA0_SIGP: 1841 r = handle_sigp(cpu, run, ipa1); 1842 break; 1843 } 1844 1845 if (r < 0) { 1846 r = 0; 1847 enter_pgmcheck(cpu, 0x0001); 1848 } 1849 1850 return r; 1851 } 1852 1853 static bool is_special_wait_psw(CPUState *cs) 1854 { 1855 /* signal quiesce */ 1856 return cs->kvm_run->psw_addr == 0xfffUL; 1857 } 1858 1859 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset) 1860 { 1861 CPUState *cs = CPU(cpu); 1862 1863 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx", 1864 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset), 1865 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8)); 1866 s390_cpu_halt(cpu); 1867 qemu_system_guest_panicked(); 1868 } 1869 1870 static int handle_intercept(S390CPU *cpu) 1871 { 1872 CPUState *cs = CPU(cpu); 1873 struct kvm_run *run = cs->kvm_run; 1874 int icpt_code = run->s390_sieic.icptcode; 1875 int r = 0; 1876 1877 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1878 (long)cs->kvm_run->psw_addr); 1879 switch (icpt_code) { 1880 case ICPT_INSTRUCTION: 1881 r = handle_instruction(cpu, run); 1882 break; 1883 case ICPT_PROGRAM: 1884 unmanageable_intercept(cpu, "program interrupt", 1885 offsetof(LowCore, program_new_psw)); 1886 r = EXCP_HALTED; 1887 break; 1888 case ICPT_EXT_INT: 1889 unmanageable_intercept(cpu, "external interrupt", 1890 offsetof(LowCore, external_new_psw)); 1891 r = EXCP_HALTED; 1892 break; 1893 case ICPT_WAITPSW: 1894 /* disabled wait, since enabled wait is handled in kernel */ 1895 cpu_synchronize_state(cs); 1896 if (s390_cpu_halt(cpu) == 0) { 1897 if (is_special_wait_psw(cs)) { 1898 qemu_system_shutdown_request(); 1899 } else { 1900 qemu_system_guest_panicked(); 1901 } 1902 } 1903 r = EXCP_HALTED; 1904 break; 1905 case ICPT_CPU_STOP: 1906 if (s390_cpu_set_state(CPU_STATE_STOPPED, cpu) == 0) { 1907 qemu_system_shutdown_request(); 1908 } 1909 if (cpu->env.sigp_order == SIGP_STOP_STORE_STATUS) { 1910 kvm_s390_store_status(cpu, KVM_S390_STORE_STATUS_DEF_ADDR, 1911 true); 1912 } 1913 cpu->env.sigp_order = 0; 1914 r = EXCP_HALTED; 1915 break; 1916 case ICPT_OPEREXC: 1917 /* currently only instr 0x0000 after enabled via capability */ 1918 r = handle_sw_breakpoint(cpu, run); 1919 if (r == -ENOENT) { 1920 enter_pgmcheck(cpu, PGM_OPERATION); 1921 r = 0; 1922 } 1923 break; 1924 case ICPT_SOFT_INTERCEPT: 1925 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1926 exit(1); 1927 break; 1928 case ICPT_IO: 1929 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1930 exit(1); 1931 break; 1932 default: 1933 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1934 exit(1); 1935 break; 1936 } 1937 1938 return r; 1939 } 1940 1941 static int handle_tsch(S390CPU *cpu) 1942 { 1943 CPUState *cs = CPU(cpu); 1944 struct kvm_run *run = cs->kvm_run; 1945 int ret; 1946 1947 cpu_synchronize_state(cs); 1948 1949 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb); 1950 if (ret < 0) { 1951 /* 1952 * Failure. 1953 * If an I/O interrupt had been dequeued, we have to reinject it. 1954 */ 1955 if (run->s390_tsch.dequeued) { 1956 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id, 1957 run->s390_tsch.subchannel_nr, 1958 run->s390_tsch.io_int_parm, 1959 run->s390_tsch.io_int_word); 1960 } 1961 ret = 0; 1962 } 1963 return ret; 1964 } 1965 1966 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1967 { 1968 struct sysib_322 sysib; 1969 int del; 1970 1971 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1972 return; 1973 } 1974 /* Shift the stack of Extended Names to prepare for our own data */ 1975 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1976 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1977 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1978 * assumed it's not capable of managing Extended Names for lower levels. 1979 */ 1980 for (del = 1; del < sysib.count; del++) { 1981 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1982 break; 1983 } 1984 } 1985 if (del < sysib.count) { 1986 memset(sysib.ext_names[del], 0, 1987 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1988 } 1989 /* Insert short machine name in EBCDIC, padded with blanks */ 1990 if (qemu_name) { 1991 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1992 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1993 strlen(qemu_name))); 1994 } 1995 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1996 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1997 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1998 * considered by s390 as not capable of providing any Extended Name. 1999 * Therefore if no name was specified on qemu invocation, we go with the 2000 * same "KVMguest" default, which KVM has filled into short name field. 2001 */ 2002 if (qemu_name) { 2003 strncpy((char *)sysib.ext_names[0], qemu_name, 2004 sizeof(sysib.ext_names[0])); 2005 } else { 2006 strcpy((char *)sysib.ext_names[0], "KVMguest"); 2007 } 2008 /* Insert UUID */ 2009 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 2010 2011 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 2012 } 2013 2014 static int handle_stsi(S390CPU *cpu) 2015 { 2016 CPUState *cs = CPU(cpu); 2017 struct kvm_run *run = cs->kvm_run; 2018 2019 switch (run->s390_stsi.fc) { 2020 case 3: 2021 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 2022 return 0; 2023 } 2024 /* Only sysib 3.2.2 needs post-handling for now. */ 2025 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 2026 return 0; 2027 default: 2028 return 0; 2029 } 2030 } 2031 2032 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 2033 { 2034 CPUState *cs = CPU(cpu); 2035 struct kvm_run *run = cs->kvm_run; 2036 2037 int ret = 0; 2038 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 2039 2040 switch (arch_info->type) { 2041 case KVM_HW_WP_WRITE: 2042 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 2043 cs->watchpoint_hit = &hw_watchpoint; 2044 hw_watchpoint.vaddr = arch_info->addr; 2045 hw_watchpoint.flags = BP_MEM_WRITE; 2046 ret = EXCP_DEBUG; 2047 } 2048 break; 2049 case KVM_HW_BP: 2050 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 2051 ret = EXCP_DEBUG; 2052 } 2053 break; 2054 case KVM_SINGLESTEP: 2055 if (cs->singlestep_enabled) { 2056 ret = EXCP_DEBUG; 2057 } 2058 break; 2059 default: 2060 ret = -ENOSYS; 2061 } 2062 2063 return ret; 2064 } 2065 2066 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 2067 { 2068 S390CPU *cpu = S390_CPU(cs); 2069 int ret = 0; 2070 2071 qemu_mutex_lock_iothread(); 2072 2073 switch (run->exit_reason) { 2074 case KVM_EXIT_S390_SIEIC: 2075 ret = handle_intercept(cpu); 2076 break; 2077 case KVM_EXIT_S390_RESET: 2078 s390_reipl_request(); 2079 break; 2080 case KVM_EXIT_S390_TSCH: 2081 ret = handle_tsch(cpu); 2082 break; 2083 case KVM_EXIT_S390_STSI: 2084 ret = handle_stsi(cpu); 2085 break; 2086 case KVM_EXIT_DEBUG: 2087 ret = kvm_arch_handle_debug_exit(cpu); 2088 break; 2089 default: 2090 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 2091 break; 2092 } 2093 qemu_mutex_unlock_iothread(); 2094 2095 if (ret == 0) { 2096 ret = EXCP_INTERRUPT; 2097 } 2098 return ret; 2099 } 2100 2101 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 2102 { 2103 return true; 2104 } 2105 2106 int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) 2107 { 2108 return 1; 2109 } 2110 2111 int kvm_arch_on_sigbus(int code, void *addr) 2112 { 2113 return 1; 2114 } 2115 2116 void kvm_s390_io_interrupt(uint16_t subchannel_id, 2117 uint16_t subchannel_nr, uint32_t io_int_parm, 2118 uint32_t io_int_word) 2119 { 2120 struct kvm_s390_irq irq = { 2121 .u.io.subchannel_id = subchannel_id, 2122 .u.io.subchannel_nr = subchannel_nr, 2123 .u.io.io_int_parm = io_int_parm, 2124 .u.io.io_int_word = io_int_word, 2125 }; 2126 2127 if (io_int_word & IO_INT_WORD_AI) { 2128 irq.type = KVM_S390_INT_IO(1, 0, 0, 0); 2129 } else { 2130 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8, 2131 (subchannel_id & 0x0006), 2132 subchannel_nr); 2133 } 2134 kvm_s390_floating_interrupt(&irq); 2135 } 2136 2137 static uint64_t build_channel_report_mcic(void) 2138 { 2139 uint64_t mcic; 2140 2141 /* subclass: indicate channel report pending */ 2142 mcic = MCIC_SC_CP | 2143 /* subclass modifiers: none */ 2144 /* storage errors: none */ 2145 /* validity bits: no damage */ 2146 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP | 2147 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR | 2148 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC; 2149 if (s390_has_feat(S390_FEAT_VECTOR)) { 2150 mcic |= MCIC_VB_VR; 2151 } 2152 return mcic; 2153 } 2154 2155 void kvm_s390_crw_mchk(void) 2156 { 2157 struct kvm_s390_irq irq = { 2158 .type = KVM_S390_MCHK, 2159 .u.mchk.cr14 = 1 << 28, 2160 .u.mchk.mcic = build_channel_report_mcic(), 2161 }; 2162 kvm_s390_floating_interrupt(&irq); 2163 } 2164 2165 void kvm_s390_enable_css_support(S390CPU *cpu) 2166 { 2167 int r; 2168 2169 /* Activate host kernel channel subsystem support. */ 2170 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 2171 assert(r == 0); 2172 } 2173 2174 void kvm_arch_init_irq_routing(KVMState *s) 2175 { 2176 /* 2177 * Note that while irqchip capabilities generally imply that cpustates 2178 * are handled in-kernel, it is not true for s390 (yet); therefore, we 2179 * have to override the common code kvm_halt_in_kernel_allowed setting. 2180 */ 2181 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 2182 kvm_gsi_routing_allowed = true; 2183 kvm_halt_in_kernel_allowed = false; 2184 } 2185 } 2186 2187 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 2188 int vq, bool assign) 2189 { 2190 struct kvm_ioeventfd kick = { 2191 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 2192 KVM_IOEVENTFD_FLAG_DATAMATCH, 2193 .fd = event_notifier_get_fd(notifier), 2194 .datamatch = vq, 2195 .addr = sch, 2196 .len = 8, 2197 }; 2198 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 2199 return -ENOSYS; 2200 } 2201 if (!assign) { 2202 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 2203 } 2204 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 2205 } 2206 2207 int kvm_s390_get_memslot_count(KVMState *s) 2208 { 2209 return kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); 2210 } 2211 2212 int kvm_s390_get_ri(void) 2213 { 2214 return cap_ri; 2215 } 2216 2217 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 2218 { 2219 struct kvm_mp_state mp_state = {}; 2220 int ret; 2221 2222 /* the kvm part might not have been initialized yet */ 2223 if (CPU(cpu)->kvm_state == NULL) { 2224 return 0; 2225 } 2226 2227 switch (cpu_state) { 2228 case CPU_STATE_STOPPED: 2229 mp_state.mp_state = KVM_MP_STATE_STOPPED; 2230 break; 2231 case CPU_STATE_CHECK_STOP: 2232 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 2233 break; 2234 case CPU_STATE_OPERATING: 2235 mp_state.mp_state = KVM_MP_STATE_OPERATING; 2236 break; 2237 case CPU_STATE_LOAD: 2238 mp_state.mp_state = KVM_MP_STATE_LOAD; 2239 break; 2240 default: 2241 error_report("Requested CPU state is not a valid S390 CPU state: %u", 2242 cpu_state); 2243 exit(1); 2244 } 2245 2246 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 2247 if (ret) { 2248 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 2249 strerror(-ret)); 2250 } 2251 2252 return ret; 2253 } 2254 2255 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 2256 { 2257 struct kvm_s390_irq_state irq_state; 2258 CPUState *cs = CPU(cpu); 2259 int32_t bytes; 2260 2261 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2262 return; 2263 } 2264 2265 irq_state.buf = (uint64_t) cpu->irqstate; 2266 irq_state.len = VCPU_IRQ_BUF_SIZE; 2267 2268 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 2269 if (bytes < 0) { 2270 cpu->irqstate_saved_size = 0; 2271 error_report("Migration of interrupt state failed"); 2272 return; 2273 } 2274 2275 cpu->irqstate_saved_size = bytes; 2276 } 2277 2278 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2279 { 2280 CPUState *cs = CPU(cpu); 2281 struct kvm_s390_irq_state irq_state; 2282 int r; 2283 2284 if (cpu->irqstate_saved_size == 0) { 2285 return 0; 2286 } 2287 2288 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2289 return -ENOSYS; 2290 } 2291 2292 irq_state.buf = (uint64_t) cpu->irqstate; 2293 irq_state.len = cpu->irqstate_saved_size; 2294 2295 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2296 if (r) { 2297 error_report("Setting interrupt state failed %d", r); 2298 } 2299 return r; 2300 } 2301 2302 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2303 uint64_t address, uint32_t data, PCIDevice *dev) 2304 { 2305 S390PCIBusDevice *pbdev; 2306 uint32_t idx = data >> ZPCI_MSI_VEC_BITS; 2307 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2308 2309 pbdev = s390_pci_find_dev_by_idx(s390_get_phb(), idx); 2310 if (!pbdev) { 2311 DPRINTF("add_msi_route no dev\n"); 2312 return -ENODEV; 2313 } 2314 2315 pbdev->routes.adapter.ind_offset = vec; 2316 2317 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2318 route->flags = 0; 2319 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2320 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2321 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2322 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset; 2323 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2324 return 0; 2325 } 2326 2327 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2328 int vector, PCIDevice *dev) 2329 { 2330 return 0; 2331 } 2332 2333 int kvm_arch_release_virq_post(int virq) 2334 { 2335 return 0; 2336 } 2337 2338 int kvm_arch_msi_data_to_gsi(uint32_t data) 2339 { 2340 abort(); 2341 } 2342 2343 static inline int test_bit_inv(long nr, const unsigned long *addr) 2344 { 2345 return test_bit(BE_BIT_NR(nr), addr); 2346 } 2347 2348 static inline void set_bit_inv(long nr, unsigned long *addr) 2349 { 2350 set_bit(BE_BIT_NR(nr), addr); 2351 } 2352 2353 static int query_cpu_subfunc(S390FeatBitmap features) 2354 { 2355 struct kvm_s390_vm_cpu_subfunc prop; 2356 struct kvm_device_attr attr = { 2357 .group = KVM_S390_VM_CPU_MODEL, 2358 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2359 .addr = (uint64_t) &prop, 2360 }; 2361 int rc; 2362 2363 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2364 if (rc) { 2365 return rc; 2366 } 2367 2368 /* 2369 * We're going to add all subfunctions now, if the corresponding feature 2370 * is available that unlocks the query functions. 2371 */ 2372 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2373 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2374 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2375 } 2376 if (test_bit(S390_FEAT_MSA, features)) { 2377 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2378 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2379 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2380 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2381 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2382 } 2383 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2384 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2385 } 2386 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2387 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2388 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2389 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2390 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2391 } 2392 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2393 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2394 } 2395 return 0; 2396 } 2397 2398 static int configure_cpu_subfunc(const S390FeatBitmap features) 2399 { 2400 struct kvm_s390_vm_cpu_subfunc prop = {}; 2401 struct kvm_device_attr attr = { 2402 .group = KVM_S390_VM_CPU_MODEL, 2403 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2404 .addr = (uint64_t) &prop, 2405 }; 2406 2407 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2408 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2409 /* hardware support might be missing, IBC will handle most of this */ 2410 return 0; 2411 } 2412 2413 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2414 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2415 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2416 prop.ptff[0] |= 0x80; /* query is always available */ 2417 } 2418 if (test_bit(S390_FEAT_MSA, features)) { 2419 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2420 prop.kmac[0] |= 0x80; /* query is always available */ 2421 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2422 prop.kmc[0] |= 0x80; /* query is always available */ 2423 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2424 prop.km[0] |= 0x80; /* query is always available */ 2425 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2426 prop.kimd[0] |= 0x80; /* query is always available */ 2427 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2428 prop.klmd[0] |= 0x80; /* query is always available */ 2429 } 2430 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2431 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2432 prop.pckmo[0] |= 0x80; /* query is always available */ 2433 } 2434 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2435 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2436 prop.kmctr[0] |= 0x80; /* query is always available */ 2437 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2438 prop.kmf[0] |= 0x80; /* query is always available */ 2439 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2440 prop.kmo[0] |= 0x80; /* query is always available */ 2441 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2442 prop.pcc[0] |= 0x80; /* query is always available */ 2443 } 2444 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2445 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2446 prop.ppno[0] |= 0x80; /* query is always available */ 2447 } 2448 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2449 } 2450 2451 static int kvm_to_feat[][2] = { 2452 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2453 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2454 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2455 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2456 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2457 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2458 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2459 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2460 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2461 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2462 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2463 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2464 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2465 }; 2466 2467 static int query_cpu_feat(S390FeatBitmap features) 2468 { 2469 struct kvm_s390_vm_cpu_feat prop; 2470 struct kvm_device_attr attr = { 2471 .group = KVM_S390_VM_CPU_MODEL, 2472 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2473 .addr = (uint64_t) &prop, 2474 }; 2475 int rc; 2476 int i; 2477 2478 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2479 if (rc) { 2480 return rc; 2481 } 2482 2483 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2484 if (test_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat)) { 2485 set_bit(kvm_to_feat[i][1], features); 2486 } 2487 } 2488 return 0; 2489 } 2490 2491 static int configure_cpu_feat(const S390FeatBitmap features) 2492 { 2493 struct kvm_s390_vm_cpu_feat prop = {}; 2494 struct kvm_device_attr attr = { 2495 .group = KVM_S390_VM_CPU_MODEL, 2496 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2497 .addr = (uint64_t) &prop, 2498 }; 2499 int i; 2500 2501 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2502 if (test_bit(kvm_to_feat[i][1], features)) { 2503 set_bit_inv(kvm_to_feat[i][0], (unsigned long *)prop.feat); 2504 } 2505 } 2506 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2507 } 2508 2509 bool kvm_s390_cpu_models_supported(void) 2510 { 2511 if (!cpu_model_allowed()) { 2512 /* compatibility machines interfere with the cpu model */ 2513 return false; 2514 } 2515 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2516 KVM_S390_VM_CPU_MACHINE) && 2517 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2518 KVM_S390_VM_CPU_PROCESSOR) && 2519 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2520 KVM_S390_VM_CPU_MACHINE_FEAT) && 2521 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2522 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2523 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2524 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2525 } 2526 2527 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2528 { 2529 struct kvm_s390_vm_cpu_machine prop = {}; 2530 struct kvm_device_attr attr = { 2531 .group = KVM_S390_VM_CPU_MODEL, 2532 .attr = KVM_S390_VM_CPU_MACHINE, 2533 .addr = (uint64_t) &prop, 2534 }; 2535 uint16_t unblocked_ibc = 0, cpu_type = 0; 2536 int rc; 2537 2538 memset(model, 0, sizeof(*model)); 2539 2540 if (!kvm_s390_cpu_models_supported()) { 2541 error_setg(errp, "KVM doesn't support CPU models"); 2542 return; 2543 } 2544 2545 /* query the basic cpu model properties */ 2546 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2547 if (rc) { 2548 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2549 return; 2550 } 2551 2552 cpu_type = cpuid_type(prop.cpuid); 2553 if (has_ibc(prop.ibc)) { 2554 model->lowest_ibc = lowest_ibc(prop.ibc); 2555 unblocked_ibc = unblocked_ibc(prop.ibc); 2556 } 2557 model->cpu_id = cpuid_id(prop.cpuid); 2558 model->cpu_ver = 0xff; 2559 2560 /* get supported cpu features indicated via STFL(E) */ 2561 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2562 (uint8_t *) prop.fac_mask); 2563 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2564 if (test_bit(S390_FEAT_STFLE, model->features)) { 2565 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2566 } 2567 /* get supported cpu features indicated e.g. via SCLP */ 2568 rc = query_cpu_feat(model->features); 2569 if (rc) { 2570 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2571 return; 2572 } 2573 /* get supported cpu subfunctions indicated via query / test bit */ 2574 rc = query_cpu_subfunc(model->features); 2575 if (rc) { 2576 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2577 return; 2578 } 2579 2580 /* with cpu model support, CMM is only indicated if really available */ 2581 if (kvm_s390_cmma_available()) { 2582 set_bit(S390_FEAT_CMM, model->features); 2583 } 2584 2585 if (s390_known_cpu_type(cpu_type)) { 2586 /* we want the exact model, even if some features are missing */ 2587 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2588 ibc_ec_ga(unblocked_ibc), NULL); 2589 } else { 2590 /* model unknown, e.g. too new - search using features */ 2591 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2592 ibc_ec_ga(unblocked_ibc), 2593 model->features); 2594 } 2595 if (!model->def) { 2596 error_setg(errp, "KVM: host CPU model could not be identified"); 2597 return; 2598 } 2599 /* strip of features that are not part of the maximum model */ 2600 bitmap_and(model->features, model->features, model->def->full_feat, 2601 S390_FEAT_MAX); 2602 } 2603 2604 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2605 { 2606 struct kvm_s390_vm_cpu_processor prop = { 2607 .fac_list = { 0 }, 2608 }; 2609 struct kvm_device_attr attr = { 2610 .group = KVM_S390_VM_CPU_MODEL, 2611 .attr = KVM_S390_VM_CPU_PROCESSOR, 2612 .addr = (uint64_t) &prop, 2613 }; 2614 int rc; 2615 2616 if (!model) { 2617 /* compatibility handling if cpu models are disabled */ 2618 if (kvm_s390_cmma_available() && !mem_path) { 2619 kvm_s390_enable_cmma(); 2620 } 2621 return; 2622 } 2623 if (!kvm_s390_cpu_models_supported()) { 2624 error_setg(errp, "KVM doesn't support CPU models"); 2625 return; 2626 } 2627 prop.cpuid = s390_cpuid_from_cpu_model(model); 2628 prop.ibc = s390_ibc_from_cpu_model(model); 2629 /* configure cpu features indicated via STFL(e) */ 2630 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2631 (uint8_t *) prop.fac_list); 2632 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2633 if (rc) { 2634 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2635 return; 2636 } 2637 /* configure cpu features indicated e.g. via SCLP */ 2638 rc = configure_cpu_feat(model->features); 2639 if (rc) { 2640 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2641 return; 2642 } 2643 /* configure cpu subfunctions indicated via query / test bit */ 2644 rc = configure_cpu_subfunc(model->features); 2645 if (rc) { 2646 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2647 return; 2648 } 2649 /* enable CMM via CMMA - disable on hugetlbfs */ 2650 if (test_bit(S390_FEAT_CMM, model->features)) { 2651 if (mem_path) { 2652 error_report("Warning: CMM will not be enabled because it is not " 2653 "compatible to hugetlbfs."); 2654 } else { 2655 kvm_s390_enable_cmma(); 2656 } 2657 } 2658 } 2659