1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License as published by 9 * the Free Software Foundation; either version 2 of the License, or 10 * (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include "qemu/osdep.h" 22 #include <sys/ioctl.h> 23 24 #include <linux/kvm.h> 25 #include <asm/ptrace.h> 26 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "internal.h" 30 #include "kvm_s390x.h" 31 #include "qapi/error.h" 32 #include "qemu/error-report.h" 33 #include "qemu/timer.h" 34 #include "qemu/units.h" 35 #include "qemu/mmap-alloc.h" 36 #include "qemu/log.h" 37 #include "sysemu/sysemu.h" 38 #include "sysemu/hw_accel.h" 39 #include "hw/hw.h" 40 #include "sysemu/device_tree.h" 41 #include "exec/gdbstub.h" 42 #include "exec/ram_addr.h" 43 #include "trace.h" 44 #include "hw/s390x/s390-pci-inst.h" 45 #include "hw/s390x/s390-pci-bus.h" 46 #include "hw/s390x/ipl.h" 47 #include "hw/s390x/ebcdic.h" 48 #include "exec/memattrs.h" 49 #include "hw/s390x/s390-virtio-ccw.h" 50 #include "hw/s390x/s390-virtio-hcall.h" 51 52 #ifndef DEBUG_KVM 53 #define DEBUG_KVM 0 54 #endif 55 56 #define DPRINTF(fmt, ...) do { \ 57 if (DEBUG_KVM) { \ 58 fprintf(stderr, fmt, ## __VA_ARGS__); \ 59 } \ 60 } while (0) 61 62 #define kvm_vm_check_mem_attr(s, attr) \ 63 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 64 65 #define IPA0_DIAG 0x8300 66 #define IPA0_SIGP 0xae00 67 #define IPA0_B2 0xb200 68 #define IPA0_B9 0xb900 69 #define IPA0_EB 0xeb00 70 #define IPA0_E3 0xe300 71 72 #define PRIV_B2_SCLP_CALL 0x20 73 #define PRIV_B2_CSCH 0x30 74 #define PRIV_B2_HSCH 0x31 75 #define PRIV_B2_MSCH 0x32 76 #define PRIV_B2_SSCH 0x33 77 #define PRIV_B2_STSCH 0x34 78 #define PRIV_B2_TSCH 0x35 79 #define PRIV_B2_TPI 0x36 80 #define PRIV_B2_SAL 0x37 81 #define PRIV_B2_RSCH 0x38 82 #define PRIV_B2_STCRW 0x39 83 #define PRIV_B2_STCPS 0x3a 84 #define PRIV_B2_RCHP 0x3b 85 #define PRIV_B2_SCHM 0x3c 86 #define PRIV_B2_CHSC 0x5f 87 #define PRIV_B2_SIGA 0x74 88 #define PRIV_B2_XSCH 0x76 89 90 #define PRIV_EB_SQBS 0x8a 91 #define PRIV_EB_PCISTB 0xd0 92 #define PRIV_EB_SIC 0xd1 93 94 #define PRIV_B9_EQBS 0x9c 95 #define PRIV_B9_CLP 0xa0 96 #define PRIV_B9_PCISTG 0xd0 97 #define PRIV_B9_PCILG 0xd2 98 #define PRIV_B9_RPCIT 0xd3 99 100 #define PRIV_E3_MPCIFC 0xd0 101 #define PRIV_E3_STPCIFC 0xd4 102 103 #define DIAG_TIMEREVENT 0x288 104 #define DIAG_IPL 0x308 105 #define DIAG_KVM_HYPERCALL 0x500 106 #define DIAG_KVM_BREAKPOINT 0x501 107 108 #define ICPT_INSTRUCTION 0x04 109 #define ICPT_PROGRAM 0x08 110 #define ICPT_EXT_INT 0x14 111 #define ICPT_WAITPSW 0x1c 112 #define ICPT_SOFT_INTERCEPT 0x24 113 #define ICPT_CPU_STOP 0x28 114 #define ICPT_OPEREXC 0x2c 115 #define ICPT_IO 0x40 116 117 #define NR_LOCAL_IRQS 32 118 /* 119 * Needs to be big enough to contain max_cpus emergency signals 120 * and in addition NR_LOCAL_IRQS interrupts 121 */ 122 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \ 123 (max_cpus + NR_LOCAL_IRQS)) 124 125 static CPUWatchpoint hw_watchpoint; 126 /* 127 * We don't use a list because this structure is also used to transmit the 128 * hardware breakpoints to the kernel. 129 */ 130 static struct kvm_hw_breakpoint *hw_breakpoints; 131 static int nb_hw_breakpoints; 132 133 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 134 KVM_CAP_LAST_INFO 135 }; 136 137 static int cap_sync_regs; 138 static int cap_async_pf; 139 static int cap_mem_op; 140 static int cap_s390_irq; 141 static int cap_ri; 142 static int cap_gs; 143 static int cap_hpage_1m; 144 145 static int active_cmma; 146 147 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared); 148 149 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 150 { 151 struct kvm_device_attr attr = { 152 .group = KVM_S390_VM_MEM_CTRL, 153 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 154 .addr = (uint64_t) memory_limit, 155 }; 156 157 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 158 } 159 160 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 161 { 162 int rc; 163 164 struct kvm_device_attr attr = { 165 .group = KVM_S390_VM_MEM_CTRL, 166 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 167 .addr = (uint64_t) &new_limit, 168 }; 169 170 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 171 return 0; 172 } 173 174 rc = kvm_s390_query_mem_limit(hw_limit); 175 if (rc) { 176 return rc; 177 } else if (*hw_limit < new_limit) { 178 return -E2BIG; 179 } 180 181 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 182 } 183 184 int kvm_s390_cmma_active(void) 185 { 186 return active_cmma; 187 } 188 189 static bool kvm_s390_cmma_available(void) 190 { 191 static bool initialized, value; 192 193 if (!initialized) { 194 initialized = true; 195 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 196 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 197 } 198 return value; 199 } 200 201 void kvm_s390_cmma_reset(void) 202 { 203 int rc; 204 struct kvm_device_attr attr = { 205 .group = KVM_S390_VM_MEM_CTRL, 206 .attr = KVM_S390_VM_MEM_CLR_CMMA, 207 }; 208 209 if (!kvm_s390_cmma_active()) { 210 return; 211 } 212 213 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 214 trace_kvm_clear_cmma(rc); 215 } 216 217 static void kvm_s390_enable_cmma(void) 218 { 219 int rc; 220 struct kvm_device_attr attr = { 221 .group = KVM_S390_VM_MEM_CTRL, 222 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 223 }; 224 225 if (cap_hpage_1m) { 226 warn_report("CMM will not be enabled because it is not " 227 "compatible with huge memory backings."); 228 return; 229 } 230 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 231 active_cmma = !rc; 232 trace_kvm_enable_cmma(rc); 233 } 234 235 static void kvm_s390_set_attr(uint64_t attr) 236 { 237 struct kvm_device_attr attribute = { 238 .group = KVM_S390_VM_CRYPTO, 239 .attr = attr, 240 }; 241 242 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 243 244 if (ret) { 245 error_report("Failed to set crypto device attribute %lu: %s", 246 attr, strerror(-ret)); 247 } 248 } 249 250 static void kvm_s390_init_aes_kw(void) 251 { 252 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 253 254 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 255 NULL)) { 256 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 257 } 258 259 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 260 kvm_s390_set_attr(attr); 261 } 262 } 263 264 static void kvm_s390_init_dea_kw(void) 265 { 266 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 267 268 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 269 NULL)) { 270 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 271 } 272 273 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 274 kvm_s390_set_attr(attr); 275 } 276 } 277 278 void kvm_s390_crypto_reset(void) 279 { 280 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 281 kvm_s390_init_aes_kw(); 282 kvm_s390_init_dea_kw(); 283 } 284 } 285 286 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) 287 { 288 if (pagesize == 4 * KiB) { 289 return; 290 } 291 292 if (!hpage_1m_allowed()) { 293 error_setg(errp, "This QEMU machine does not support huge page " 294 "mappings"); 295 return; 296 } 297 298 if (pagesize != 1 * MiB) { 299 error_setg(errp, "Memory backing with 2G pages was specified, " 300 "but KVM does not support this memory backing"); 301 return; 302 } 303 304 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { 305 error_setg(errp, "Memory backing with 1M pages was specified, " 306 "but KVM does not support this memory backing"); 307 return; 308 } 309 310 cap_hpage_1m = 1; 311 } 312 313 int kvm_arch_init(MachineState *ms, KVMState *s) 314 { 315 MachineClass *mc = MACHINE_GET_CLASS(ms); 316 317 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 318 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 319 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 320 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 321 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 322 323 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 324 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 325 phys_mem_set_alloc(legacy_s390_alloc); 326 } 327 328 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 329 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 330 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 331 if (ri_allowed()) { 332 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 333 cap_ri = 1; 334 } 335 } 336 if (cpu_model_allowed()) { 337 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 338 cap_gs = 1; 339 } 340 } 341 342 /* 343 * The migration interface for ais was introduced with kernel 4.13 344 * but the capability itself had been active since 4.12. As migration 345 * support is considered necessary let's disable ais in the 2.10 346 * machine. 347 */ 348 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ 349 350 return 0; 351 } 352 353 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 354 { 355 return 0; 356 } 357 358 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 359 { 360 return cpu->cpu_index; 361 } 362 363 int kvm_arch_init_vcpu(CPUState *cs) 364 { 365 S390CPU *cpu = S390_CPU(cs); 366 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 367 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE); 368 return 0; 369 } 370 371 void kvm_s390_reset_vcpu(S390CPU *cpu) 372 { 373 CPUState *cs = CPU(cpu); 374 375 /* The initial reset call is needed here to reset in-kernel 376 * vcpu data that we can't access directly from QEMU 377 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 378 * Before this ioctl cpu_synchronize_state() is called in common kvm 379 * code (kvm-all) */ 380 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 381 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 382 } 383 } 384 385 static int can_sync_regs(CPUState *cs, int regs) 386 { 387 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 388 } 389 390 int kvm_arch_put_registers(CPUState *cs, int level) 391 { 392 S390CPU *cpu = S390_CPU(cs); 393 CPUS390XState *env = &cpu->env; 394 struct kvm_sregs sregs; 395 struct kvm_regs regs; 396 struct kvm_fpu fpu = {}; 397 int r; 398 int i; 399 400 /* always save the PSW and the GPRS*/ 401 cs->kvm_run->psw_addr = env->psw.addr; 402 cs->kvm_run->psw_mask = env->psw.mask; 403 404 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 405 for (i = 0; i < 16; i++) { 406 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 407 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 408 } 409 } else { 410 for (i = 0; i < 16; i++) { 411 regs.gprs[i] = env->regs[i]; 412 } 413 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 414 if (r < 0) { 415 return r; 416 } 417 } 418 419 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 420 for (i = 0; i < 32; i++) { 421 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; 422 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; 423 } 424 cs->kvm_run->s.regs.fpc = env->fpc; 425 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 426 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 427 for (i = 0; i < 16; i++) { 428 cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); 429 } 430 cs->kvm_run->s.regs.fpc = env->fpc; 431 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 432 } else { 433 /* Floating point */ 434 for (i = 0; i < 16; i++) { 435 fpu.fprs[i] = *get_freg(env, i); 436 } 437 fpu.fpc = env->fpc; 438 439 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 440 if (r < 0) { 441 return r; 442 } 443 } 444 445 /* Do we need to save more than that? */ 446 if (level == KVM_PUT_RUNTIME_STATE) { 447 return 0; 448 } 449 450 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 451 cs->kvm_run->s.regs.cputm = env->cputm; 452 cs->kvm_run->s.regs.ckc = env->ckc; 453 cs->kvm_run->s.regs.todpr = env->todpr; 454 cs->kvm_run->s.regs.gbea = env->gbea; 455 cs->kvm_run->s.regs.pp = env->pp; 456 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 457 } else { 458 /* 459 * These ONE_REGS are not protected by a capability. As they are only 460 * necessary for migration we just trace a possible error, but don't 461 * return with an error return code. 462 */ 463 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 464 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 465 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 466 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 467 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 468 } 469 470 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 471 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 472 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 473 } 474 475 /* pfault parameters */ 476 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 477 cs->kvm_run->s.regs.pft = env->pfault_token; 478 cs->kvm_run->s.regs.pfs = env->pfault_select; 479 cs->kvm_run->s.regs.pfc = env->pfault_compare; 480 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 481 } else if (cap_async_pf) { 482 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 483 if (r < 0) { 484 return r; 485 } 486 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 487 if (r < 0) { 488 return r; 489 } 490 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 491 if (r < 0) { 492 return r; 493 } 494 } 495 496 /* access registers and control registers*/ 497 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 498 for (i = 0; i < 16; i++) { 499 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 500 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 501 } 502 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 503 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 504 } else { 505 for (i = 0; i < 16; i++) { 506 sregs.acrs[i] = env->aregs[i]; 507 sregs.crs[i] = env->cregs[i]; 508 } 509 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 510 if (r < 0) { 511 return r; 512 } 513 } 514 515 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 516 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 517 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 518 } 519 520 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 521 cs->kvm_run->s.regs.bpbc = env->bpbc; 522 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 523 } 524 525 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 526 cs->kvm_run->s.regs.etoken = env->etoken; 527 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 528 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 529 } 530 531 /* Finally the prefix */ 532 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 533 cs->kvm_run->s.regs.prefix = env->psa; 534 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 535 } else { 536 /* prefix is only supported via sync regs */ 537 } 538 return 0; 539 } 540 541 int kvm_arch_get_registers(CPUState *cs) 542 { 543 S390CPU *cpu = S390_CPU(cs); 544 CPUS390XState *env = &cpu->env; 545 struct kvm_sregs sregs; 546 struct kvm_regs regs; 547 struct kvm_fpu fpu; 548 int i, r; 549 550 /* get the PSW */ 551 env->psw.addr = cs->kvm_run->psw_addr; 552 env->psw.mask = cs->kvm_run->psw_mask; 553 554 /* the GPRS */ 555 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 556 for (i = 0; i < 16; i++) { 557 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 558 } 559 } else { 560 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 561 if (r < 0) { 562 return r; 563 } 564 for (i = 0; i < 16; i++) { 565 env->regs[i] = regs.gprs[i]; 566 } 567 } 568 569 /* The ACRS and CRS */ 570 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 571 for (i = 0; i < 16; i++) { 572 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 573 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 574 } 575 } else { 576 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 577 if (r < 0) { 578 return r; 579 } 580 for (i = 0; i < 16; i++) { 581 env->aregs[i] = sregs.acrs[i]; 582 env->cregs[i] = sregs.crs[i]; 583 } 584 } 585 586 /* Floating point and vector registers */ 587 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 588 for (i = 0; i < 32; i++) { 589 env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; 590 env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; 591 } 592 env->fpc = cs->kvm_run->s.regs.fpc; 593 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 594 for (i = 0; i < 16; i++) { 595 *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; 596 } 597 env->fpc = cs->kvm_run->s.regs.fpc; 598 } else { 599 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 600 if (r < 0) { 601 return r; 602 } 603 for (i = 0; i < 16; i++) { 604 *get_freg(env, i) = fpu.fprs[i]; 605 } 606 env->fpc = fpu.fpc; 607 } 608 609 /* The prefix */ 610 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 611 env->psa = cs->kvm_run->s.regs.prefix; 612 } 613 614 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 615 env->cputm = cs->kvm_run->s.regs.cputm; 616 env->ckc = cs->kvm_run->s.regs.ckc; 617 env->todpr = cs->kvm_run->s.regs.todpr; 618 env->gbea = cs->kvm_run->s.regs.gbea; 619 env->pp = cs->kvm_run->s.regs.pp; 620 } else { 621 /* 622 * These ONE_REGS are not protected by a capability. As they are only 623 * necessary for migration we just trace a possible error, but don't 624 * return with an error return code. 625 */ 626 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 627 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 628 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 629 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 630 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 631 } 632 633 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 634 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 635 } 636 637 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 638 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 639 } 640 641 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 642 env->bpbc = cs->kvm_run->s.regs.bpbc; 643 } 644 645 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 646 env->etoken = cs->kvm_run->s.regs.etoken; 647 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 648 } 649 650 /* pfault parameters */ 651 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 652 env->pfault_token = cs->kvm_run->s.regs.pft; 653 env->pfault_select = cs->kvm_run->s.regs.pfs; 654 env->pfault_compare = cs->kvm_run->s.regs.pfc; 655 } else if (cap_async_pf) { 656 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 657 if (r < 0) { 658 return r; 659 } 660 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 661 if (r < 0) { 662 return r; 663 } 664 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 665 if (r < 0) { 666 return r; 667 } 668 } 669 670 return 0; 671 } 672 673 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 674 { 675 int r; 676 struct kvm_device_attr attr = { 677 .group = KVM_S390_VM_TOD, 678 .attr = KVM_S390_VM_TOD_LOW, 679 .addr = (uint64_t)tod_low, 680 }; 681 682 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 683 if (r) { 684 return r; 685 } 686 687 attr.attr = KVM_S390_VM_TOD_HIGH; 688 attr.addr = (uint64_t)tod_high; 689 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 690 } 691 692 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 693 { 694 int r; 695 struct kvm_s390_vm_tod_clock gtod; 696 struct kvm_device_attr attr = { 697 .group = KVM_S390_VM_TOD, 698 .attr = KVM_S390_VM_TOD_EXT, 699 .addr = (uint64_t)>od, 700 }; 701 702 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 703 *tod_high = gtod.epoch_idx; 704 *tod_low = gtod.tod; 705 706 return r; 707 } 708 709 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 710 { 711 int r; 712 struct kvm_device_attr attr = { 713 .group = KVM_S390_VM_TOD, 714 .attr = KVM_S390_VM_TOD_LOW, 715 .addr = (uint64_t)&tod_low, 716 }; 717 718 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 719 if (r) { 720 return r; 721 } 722 723 attr.attr = KVM_S390_VM_TOD_HIGH; 724 attr.addr = (uint64_t)&tod_high; 725 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 726 } 727 728 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 729 { 730 struct kvm_s390_vm_tod_clock gtod = { 731 .epoch_idx = tod_high, 732 .tod = tod_low, 733 }; 734 struct kvm_device_attr attr = { 735 .group = KVM_S390_VM_TOD, 736 .attr = KVM_S390_VM_TOD_EXT, 737 .addr = (uint64_t)>od, 738 }; 739 740 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 741 } 742 743 /** 744 * kvm_s390_mem_op: 745 * @addr: the logical start address in guest memory 746 * @ar: the access register number 747 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 748 * @len: length that should be transferred 749 * @is_write: true = write, false = read 750 * Returns: 0 on success, non-zero if an exception or error occurred 751 * 752 * Use KVM ioctl to read/write from/to guest memory. An access exception 753 * is injected into the vCPU in case of translation errors. 754 */ 755 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 756 int len, bool is_write) 757 { 758 struct kvm_s390_mem_op mem_op = { 759 .gaddr = addr, 760 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 761 .size = len, 762 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 763 : KVM_S390_MEMOP_LOGICAL_READ, 764 .buf = (uint64_t)hostbuf, 765 .ar = ar, 766 }; 767 int ret; 768 769 if (!cap_mem_op) { 770 return -ENOSYS; 771 } 772 if (!hostbuf) { 773 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 774 } 775 776 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 777 if (ret < 0) { 778 warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); 779 } 780 return ret; 781 } 782 783 /* 784 * Legacy layout for s390: 785 * Older S390 KVM requires the topmost vma of the RAM to be 786 * smaller than an system defined value, which is at least 256GB. 787 * Larger systems have larger values. We put the guest between 788 * the end of data segment (system break) and this value. We 789 * use 32GB as a base to have enough room for the system break 790 * to grow. We also have to use MAP parameters that avoid 791 * read-only mapping of guest pages. 792 */ 793 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared) 794 { 795 static void *mem; 796 797 if (mem) { 798 /* we only support one allocation, which is enough for initial ram */ 799 return NULL; 800 } 801 802 mem = mmap((void *) 0x800000000ULL, size, 803 PROT_EXEC|PROT_READ|PROT_WRITE, 804 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 805 if (mem == MAP_FAILED) { 806 mem = NULL; 807 } 808 if (mem && align) { 809 *align = QEMU_VMALLOC_ALIGN; 810 } 811 return mem; 812 } 813 814 static uint8_t const *sw_bp_inst; 815 static uint8_t sw_bp_ilen; 816 817 static void determine_sw_breakpoint_instr(void) 818 { 819 /* DIAG 501 is used for sw breakpoints with old kernels */ 820 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 821 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 822 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 823 824 if (sw_bp_inst) { 825 return; 826 } 827 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 828 sw_bp_inst = diag_501; 829 sw_bp_ilen = sizeof(diag_501); 830 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 831 } else { 832 sw_bp_inst = instr_0x0000; 833 sw_bp_ilen = sizeof(instr_0x0000); 834 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 835 } 836 } 837 838 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 839 { 840 determine_sw_breakpoint_instr(); 841 842 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 843 sw_bp_ilen, 0) || 844 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 845 return -EINVAL; 846 } 847 return 0; 848 } 849 850 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 851 { 852 uint8_t t[MAX_ILEN]; 853 854 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 855 return -EINVAL; 856 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 857 return -EINVAL; 858 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 859 sw_bp_ilen, 1)) { 860 return -EINVAL; 861 } 862 863 return 0; 864 } 865 866 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 867 int len, int type) 868 { 869 int n; 870 871 for (n = 0; n < nb_hw_breakpoints; n++) { 872 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 873 (hw_breakpoints[n].len == len || len == -1)) { 874 return &hw_breakpoints[n]; 875 } 876 } 877 878 return NULL; 879 } 880 881 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 882 { 883 int size; 884 885 if (find_hw_breakpoint(addr, len, type)) { 886 return -EEXIST; 887 } 888 889 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 890 891 if (!hw_breakpoints) { 892 nb_hw_breakpoints = 0; 893 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 894 } else { 895 hw_breakpoints = 896 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 897 } 898 899 if (!hw_breakpoints) { 900 nb_hw_breakpoints = 0; 901 return -ENOMEM; 902 } 903 904 hw_breakpoints[nb_hw_breakpoints].addr = addr; 905 hw_breakpoints[nb_hw_breakpoints].len = len; 906 hw_breakpoints[nb_hw_breakpoints].type = type; 907 908 nb_hw_breakpoints++; 909 910 return 0; 911 } 912 913 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 914 target_ulong len, int type) 915 { 916 switch (type) { 917 case GDB_BREAKPOINT_HW: 918 type = KVM_HW_BP; 919 break; 920 case GDB_WATCHPOINT_WRITE: 921 if (len < 1) { 922 return -EINVAL; 923 } 924 type = KVM_HW_WP_WRITE; 925 break; 926 default: 927 return -ENOSYS; 928 } 929 return insert_hw_breakpoint(addr, len, type); 930 } 931 932 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 933 target_ulong len, int type) 934 { 935 int size; 936 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 937 938 if (bp == NULL) { 939 return -ENOENT; 940 } 941 942 nb_hw_breakpoints--; 943 if (nb_hw_breakpoints > 0) { 944 /* 945 * In order to trim the array, move the last element to the position to 946 * be removed - if necessary. 947 */ 948 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 949 *bp = hw_breakpoints[nb_hw_breakpoints]; 950 } 951 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 952 hw_breakpoints = 953 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 954 } else { 955 g_free(hw_breakpoints); 956 hw_breakpoints = NULL; 957 } 958 959 return 0; 960 } 961 962 void kvm_arch_remove_all_hw_breakpoints(void) 963 { 964 nb_hw_breakpoints = 0; 965 g_free(hw_breakpoints); 966 hw_breakpoints = NULL; 967 } 968 969 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 970 { 971 int i; 972 973 if (nb_hw_breakpoints > 0) { 974 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 975 dbg->arch.hw_bp = hw_breakpoints; 976 977 for (i = 0; i < nb_hw_breakpoints; ++i) { 978 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 979 hw_breakpoints[i].addr); 980 } 981 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 982 } else { 983 dbg->arch.nr_hw_bp = 0; 984 dbg->arch.hw_bp = NULL; 985 } 986 } 987 988 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 989 { 990 } 991 992 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 993 { 994 return MEMTXATTRS_UNSPECIFIED; 995 } 996 997 int kvm_arch_process_async_events(CPUState *cs) 998 { 999 return cs->halted; 1000 } 1001 1002 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1003 struct kvm_s390_interrupt *interrupt) 1004 { 1005 int r = 0; 1006 1007 interrupt->type = irq->type; 1008 switch (irq->type) { 1009 case KVM_S390_INT_VIRTIO: 1010 interrupt->parm = irq->u.ext.ext_params; 1011 /* fall through */ 1012 case KVM_S390_INT_PFAULT_INIT: 1013 case KVM_S390_INT_PFAULT_DONE: 1014 interrupt->parm64 = irq->u.ext.ext_params2; 1015 break; 1016 case KVM_S390_PROGRAM_INT: 1017 interrupt->parm = irq->u.pgm.code; 1018 break; 1019 case KVM_S390_SIGP_SET_PREFIX: 1020 interrupt->parm = irq->u.prefix.address; 1021 break; 1022 case KVM_S390_INT_SERVICE: 1023 interrupt->parm = irq->u.ext.ext_params; 1024 break; 1025 case KVM_S390_MCHK: 1026 interrupt->parm = irq->u.mchk.cr14; 1027 interrupt->parm64 = irq->u.mchk.mcic; 1028 break; 1029 case KVM_S390_INT_EXTERNAL_CALL: 1030 interrupt->parm = irq->u.extcall.code; 1031 break; 1032 case KVM_S390_INT_EMERGENCY: 1033 interrupt->parm = irq->u.emerg.code; 1034 break; 1035 case KVM_S390_SIGP_STOP: 1036 case KVM_S390_RESTART: 1037 break; /* These types have no parameters */ 1038 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1039 interrupt->parm = irq->u.io.subchannel_id << 16; 1040 interrupt->parm |= irq->u.io.subchannel_nr; 1041 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1042 interrupt->parm64 |= irq->u.io.io_int_word; 1043 break; 1044 default: 1045 r = -EINVAL; 1046 break; 1047 } 1048 return r; 1049 } 1050 1051 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1052 { 1053 struct kvm_s390_interrupt kvmint = {}; 1054 int r; 1055 1056 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1057 if (r < 0) { 1058 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1059 exit(1); 1060 } 1061 1062 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1063 if (r < 0) { 1064 fprintf(stderr, "KVM failed to inject interrupt\n"); 1065 exit(1); 1066 } 1067 } 1068 1069 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1070 { 1071 CPUState *cs = CPU(cpu); 1072 int r; 1073 1074 if (cap_s390_irq) { 1075 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1076 if (!r) { 1077 return; 1078 } 1079 error_report("KVM failed to inject interrupt %llx", irq->type); 1080 exit(1); 1081 } 1082 1083 inject_vcpu_irq_legacy(cs, irq); 1084 } 1085 1086 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1087 { 1088 struct kvm_s390_interrupt kvmint = {}; 1089 int r; 1090 1091 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1092 if (r < 0) { 1093 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1094 exit(1); 1095 } 1096 1097 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1098 if (r < 0) { 1099 fprintf(stderr, "KVM failed to inject interrupt\n"); 1100 exit(1); 1101 } 1102 } 1103 1104 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1105 { 1106 struct kvm_s390_irq irq = { 1107 .type = KVM_S390_PROGRAM_INT, 1108 .u.pgm.code = code, 1109 }; 1110 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1111 cpu->env.psw.addr); 1112 kvm_s390_vcpu_interrupt(cpu, &irq); 1113 } 1114 1115 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1116 { 1117 struct kvm_s390_irq irq = { 1118 .type = KVM_S390_PROGRAM_INT, 1119 .u.pgm.code = code, 1120 .u.pgm.trans_exc_code = te_code, 1121 .u.pgm.exc_access_id = te_code & 3, 1122 }; 1123 1124 kvm_s390_vcpu_interrupt(cpu, &irq); 1125 } 1126 1127 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1128 uint16_t ipbh0) 1129 { 1130 CPUS390XState *env = &cpu->env; 1131 uint64_t sccb; 1132 uint32_t code; 1133 int r = 0; 1134 1135 sccb = env->regs[ipbh0 & 0xf]; 1136 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1137 1138 r = sclp_service_call(env, sccb, code); 1139 if (r < 0) { 1140 kvm_s390_program_interrupt(cpu, -r); 1141 } else { 1142 setcc(cpu, r); 1143 } 1144 1145 return 0; 1146 } 1147 1148 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1149 { 1150 CPUS390XState *env = &cpu->env; 1151 int rc = 0; 1152 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1153 1154 switch (ipa1) { 1155 case PRIV_B2_XSCH: 1156 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1157 break; 1158 case PRIV_B2_CSCH: 1159 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1160 break; 1161 case PRIV_B2_HSCH: 1162 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1163 break; 1164 case PRIV_B2_MSCH: 1165 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1166 break; 1167 case PRIV_B2_SSCH: 1168 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1169 break; 1170 case PRIV_B2_STCRW: 1171 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1172 break; 1173 case PRIV_B2_STSCH: 1174 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1175 break; 1176 case PRIV_B2_TSCH: 1177 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1178 fprintf(stderr, "Spurious tsch intercept\n"); 1179 break; 1180 case PRIV_B2_CHSC: 1181 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1182 break; 1183 case PRIV_B2_TPI: 1184 /* This should have been handled by kvm already. */ 1185 fprintf(stderr, "Spurious tpi intercept\n"); 1186 break; 1187 case PRIV_B2_SCHM: 1188 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1189 run->s390_sieic.ipb, RA_IGNORED); 1190 break; 1191 case PRIV_B2_RSCH: 1192 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1193 break; 1194 case PRIV_B2_RCHP: 1195 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1196 break; 1197 case PRIV_B2_STCPS: 1198 /* We do not provide this instruction, it is suppressed. */ 1199 break; 1200 case PRIV_B2_SAL: 1201 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1202 break; 1203 case PRIV_B2_SIGA: 1204 /* Not provided, set CC = 3 for subchannel not operational */ 1205 setcc(cpu, 3); 1206 break; 1207 case PRIV_B2_SCLP_CALL: 1208 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1209 break; 1210 default: 1211 rc = -1; 1212 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1213 break; 1214 } 1215 1216 return rc; 1217 } 1218 1219 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1220 uint8_t *ar) 1221 { 1222 CPUS390XState *env = &cpu->env; 1223 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1224 uint32_t base2 = run->s390_sieic.ipb >> 28; 1225 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1226 ((run->s390_sieic.ipb & 0xff00) << 4); 1227 1228 if (disp2 & 0x80000) { 1229 disp2 += 0xfff00000; 1230 } 1231 if (ar) { 1232 *ar = base2; 1233 } 1234 1235 return (base2 ? env->regs[base2] : 0) + 1236 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1237 } 1238 1239 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1240 uint8_t *ar) 1241 { 1242 CPUS390XState *env = &cpu->env; 1243 uint32_t base2 = run->s390_sieic.ipb >> 28; 1244 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1245 ((run->s390_sieic.ipb & 0xff00) << 4); 1246 1247 if (disp2 & 0x80000) { 1248 disp2 += 0xfff00000; 1249 } 1250 if (ar) { 1251 *ar = base2; 1252 } 1253 1254 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1255 } 1256 1257 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1258 { 1259 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1260 1261 if (s390_has_feat(S390_FEAT_ZPCI)) { 1262 return clp_service_call(cpu, r2, RA_IGNORED); 1263 } else { 1264 return -1; 1265 } 1266 } 1267 1268 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1269 { 1270 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1271 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1272 1273 if (s390_has_feat(S390_FEAT_ZPCI)) { 1274 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1275 } else { 1276 return -1; 1277 } 1278 } 1279 1280 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1281 { 1282 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1283 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1284 1285 if (s390_has_feat(S390_FEAT_ZPCI)) { 1286 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1287 } else { 1288 return -1; 1289 } 1290 } 1291 1292 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1293 { 1294 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1295 uint64_t fiba; 1296 uint8_t ar; 1297 1298 if (s390_has_feat(S390_FEAT_ZPCI)) { 1299 fiba = get_base_disp_rxy(cpu, run, &ar); 1300 1301 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1302 } else { 1303 return -1; 1304 } 1305 } 1306 1307 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1308 { 1309 CPUS390XState *env = &cpu->env; 1310 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1311 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1312 uint8_t isc; 1313 uint16_t mode; 1314 int r; 1315 1316 mode = env->regs[r1] & 0xffff; 1317 isc = (env->regs[r3] >> 27) & 0x7; 1318 r = css_do_sic(env, isc, mode); 1319 if (r) { 1320 kvm_s390_program_interrupt(cpu, -r); 1321 } 1322 1323 return 0; 1324 } 1325 1326 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1327 { 1328 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1329 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1330 1331 if (s390_has_feat(S390_FEAT_ZPCI)) { 1332 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1333 } else { 1334 return -1; 1335 } 1336 } 1337 1338 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1339 { 1340 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1341 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1342 uint64_t gaddr; 1343 uint8_t ar; 1344 1345 if (s390_has_feat(S390_FEAT_ZPCI)) { 1346 gaddr = get_base_disp_rsy(cpu, run, &ar); 1347 1348 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1349 } else { 1350 return -1; 1351 } 1352 } 1353 1354 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1355 { 1356 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1357 uint64_t fiba; 1358 uint8_t ar; 1359 1360 if (s390_has_feat(S390_FEAT_ZPCI)) { 1361 fiba = get_base_disp_rxy(cpu, run, &ar); 1362 1363 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1364 } else { 1365 return -1; 1366 } 1367 } 1368 1369 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1370 { 1371 int r = 0; 1372 1373 switch (ipa1) { 1374 case PRIV_B9_CLP: 1375 r = kvm_clp_service_call(cpu, run); 1376 break; 1377 case PRIV_B9_PCISTG: 1378 r = kvm_pcistg_service_call(cpu, run); 1379 break; 1380 case PRIV_B9_PCILG: 1381 r = kvm_pcilg_service_call(cpu, run); 1382 break; 1383 case PRIV_B9_RPCIT: 1384 r = kvm_rpcit_service_call(cpu, run); 1385 break; 1386 case PRIV_B9_EQBS: 1387 /* just inject exception */ 1388 r = -1; 1389 break; 1390 default: 1391 r = -1; 1392 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1393 break; 1394 } 1395 1396 return r; 1397 } 1398 1399 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1400 { 1401 int r = 0; 1402 1403 switch (ipbl) { 1404 case PRIV_EB_PCISTB: 1405 r = kvm_pcistb_service_call(cpu, run); 1406 break; 1407 case PRIV_EB_SIC: 1408 r = kvm_sic_service_call(cpu, run); 1409 break; 1410 case PRIV_EB_SQBS: 1411 /* just inject exception */ 1412 r = -1; 1413 break; 1414 default: 1415 r = -1; 1416 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1417 break; 1418 } 1419 1420 return r; 1421 } 1422 1423 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1424 { 1425 int r = 0; 1426 1427 switch (ipbl) { 1428 case PRIV_E3_MPCIFC: 1429 r = kvm_mpcifc_service_call(cpu, run); 1430 break; 1431 case PRIV_E3_STPCIFC: 1432 r = kvm_stpcifc_service_call(cpu, run); 1433 break; 1434 default: 1435 r = -1; 1436 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1437 break; 1438 } 1439 1440 return r; 1441 } 1442 1443 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1444 { 1445 CPUS390XState *env = &cpu->env; 1446 int ret; 1447 1448 ret = s390_virtio_hypercall(env); 1449 if (ret == -EINVAL) { 1450 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1451 return 0; 1452 } 1453 1454 return ret; 1455 } 1456 1457 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1458 { 1459 uint64_t r1, r3; 1460 int rc; 1461 1462 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1463 r3 = run->s390_sieic.ipa & 0x000f; 1464 rc = handle_diag_288(&cpu->env, r1, r3); 1465 if (rc) { 1466 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1467 } 1468 } 1469 1470 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1471 { 1472 uint64_t r1, r3; 1473 1474 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1475 r3 = run->s390_sieic.ipa & 0x000f; 1476 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1477 } 1478 1479 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1480 { 1481 CPUS390XState *env = &cpu->env; 1482 unsigned long pc; 1483 1484 pc = env->psw.addr - sw_bp_ilen; 1485 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1486 env->psw.addr = pc; 1487 return EXCP_DEBUG; 1488 } 1489 1490 return -ENOENT; 1491 } 1492 1493 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1494 1495 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1496 { 1497 int r = 0; 1498 uint16_t func_code; 1499 1500 /* 1501 * For any diagnose call we support, bits 48-63 of the resulting 1502 * address specify the function code; the remainder is ignored. 1503 */ 1504 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1505 switch (func_code) { 1506 case DIAG_TIMEREVENT: 1507 kvm_handle_diag_288(cpu, run); 1508 break; 1509 case DIAG_IPL: 1510 kvm_handle_diag_308(cpu, run); 1511 break; 1512 case DIAG_KVM_HYPERCALL: 1513 r = handle_hypercall(cpu, run); 1514 break; 1515 case DIAG_KVM_BREAKPOINT: 1516 r = handle_sw_breakpoint(cpu, run); 1517 break; 1518 default: 1519 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1520 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1521 break; 1522 } 1523 1524 return r; 1525 } 1526 1527 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1528 { 1529 CPUS390XState *env = &cpu->env; 1530 const uint8_t r1 = ipa1 >> 4; 1531 const uint8_t r3 = ipa1 & 0x0f; 1532 int ret; 1533 uint8_t order; 1534 1535 /* get order code */ 1536 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1537 1538 ret = handle_sigp(env, order, r1, r3); 1539 setcc(cpu, ret); 1540 return 0; 1541 } 1542 1543 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1544 { 1545 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1546 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1547 int r = -1; 1548 1549 DPRINTF("handle_instruction 0x%x 0x%x\n", 1550 run->s390_sieic.ipa, run->s390_sieic.ipb); 1551 switch (ipa0) { 1552 case IPA0_B2: 1553 r = handle_b2(cpu, run, ipa1); 1554 break; 1555 case IPA0_B9: 1556 r = handle_b9(cpu, run, ipa1); 1557 break; 1558 case IPA0_EB: 1559 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1560 break; 1561 case IPA0_E3: 1562 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1563 break; 1564 case IPA0_DIAG: 1565 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1566 break; 1567 case IPA0_SIGP: 1568 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1569 break; 1570 } 1571 1572 if (r < 0) { 1573 r = 0; 1574 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1575 } 1576 1577 return r; 1578 } 1579 1580 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1581 int pswoffset) 1582 { 1583 CPUState *cs = CPU(cpu); 1584 1585 s390_cpu_halt(cpu); 1586 cpu->env.crash_reason = reason; 1587 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1588 } 1589 1590 /* try to detect pgm check loops */ 1591 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1592 { 1593 CPUState *cs = CPU(cpu); 1594 PSW oldpsw, newpsw; 1595 1596 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1597 offsetof(LowCore, program_new_psw)); 1598 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1599 offsetof(LowCore, program_new_psw) + 8); 1600 oldpsw.mask = run->psw_mask; 1601 oldpsw.addr = run->psw_addr; 1602 /* 1603 * Avoid endless loops of operation exceptions, if the pgm new 1604 * PSW will cause a new operation exception. 1605 * The heuristic checks if the pgm new psw is within 6 bytes before 1606 * the faulting psw address (with same DAT, AS settings) and the 1607 * new psw is not a wait psw and the fault was not triggered by 1608 * problem state. In that case go into crashed state. 1609 */ 1610 1611 if (oldpsw.addr - newpsw.addr <= 6 && 1612 !(newpsw.mask & PSW_MASK_WAIT) && 1613 !(oldpsw.mask & PSW_MASK_PSTATE) && 1614 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1615 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1616 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1617 offsetof(LowCore, program_new_psw)); 1618 return EXCP_HALTED; 1619 } 1620 return 0; 1621 } 1622 1623 static int handle_intercept(S390CPU *cpu) 1624 { 1625 CPUState *cs = CPU(cpu); 1626 struct kvm_run *run = cs->kvm_run; 1627 int icpt_code = run->s390_sieic.icptcode; 1628 int r = 0; 1629 1630 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1631 (long)cs->kvm_run->psw_addr); 1632 switch (icpt_code) { 1633 case ICPT_INSTRUCTION: 1634 r = handle_instruction(cpu, run); 1635 break; 1636 case ICPT_PROGRAM: 1637 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1638 offsetof(LowCore, program_new_psw)); 1639 r = EXCP_HALTED; 1640 break; 1641 case ICPT_EXT_INT: 1642 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1643 offsetof(LowCore, external_new_psw)); 1644 r = EXCP_HALTED; 1645 break; 1646 case ICPT_WAITPSW: 1647 /* disabled wait, since enabled wait is handled in kernel */ 1648 s390_handle_wait(cpu); 1649 r = EXCP_HALTED; 1650 break; 1651 case ICPT_CPU_STOP: 1652 do_stop_interrupt(&cpu->env); 1653 r = EXCP_HALTED; 1654 break; 1655 case ICPT_OPEREXC: 1656 /* check for break points */ 1657 r = handle_sw_breakpoint(cpu, run); 1658 if (r == -ENOENT) { 1659 /* Then check for potential pgm check loops */ 1660 r = handle_oper_loop(cpu, run); 1661 if (r == 0) { 1662 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1663 } 1664 } 1665 break; 1666 case ICPT_SOFT_INTERCEPT: 1667 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1668 exit(1); 1669 break; 1670 case ICPT_IO: 1671 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1672 exit(1); 1673 break; 1674 default: 1675 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1676 exit(1); 1677 break; 1678 } 1679 1680 return r; 1681 } 1682 1683 static int handle_tsch(S390CPU *cpu) 1684 { 1685 CPUState *cs = CPU(cpu); 1686 struct kvm_run *run = cs->kvm_run; 1687 int ret; 1688 1689 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1690 RA_IGNORED); 1691 if (ret < 0) { 1692 /* 1693 * Failure. 1694 * If an I/O interrupt had been dequeued, we have to reinject it. 1695 */ 1696 if (run->s390_tsch.dequeued) { 1697 s390_io_interrupt(run->s390_tsch.subchannel_id, 1698 run->s390_tsch.subchannel_nr, 1699 run->s390_tsch.io_int_parm, 1700 run->s390_tsch.io_int_word); 1701 } 1702 ret = 0; 1703 } 1704 return ret; 1705 } 1706 1707 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1708 { 1709 SysIB_322 sysib; 1710 int del; 1711 1712 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1713 return; 1714 } 1715 /* Shift the stack of Extended Names to prepare for our own data */ 1716 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1717 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1718 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1719 * assumed it's not capable of managing Extended Names for lower levels. 1720 */ 1721 for (del = 1; del < sysib.count; del++) { 1722 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1723 break; 1724 } 1725 } 1726 if (del < sysib.count) { 1727 memset(sysib.ext_names[del], 0, 1728 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1729 } 1730 /* Insert short machine name in EBCDIC, padded with blanks */ 1731 if (qemu_name) { 1732 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1733 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1734 strlen(qemu_name))); 1735 } 1736 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1737 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1738 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1739 * considered by s390 as not capable of providing any Extended Name. 1740 * Therefore if no name was specified on qemu invocation, we go with the 1741 * same "KVMguest" default, which KVM has filled into short name field. 1742 */ 1743 if (qemu_name) { 1744 strncpy((char *)sysib.ext_names[0], qemu_name, 1745 sizeof(sysib.ext_names[0])); 1746 } else { 1747 strcpy((char *)sysib.ext_names[0], "KVMguest"); 1748 } 1749 /* Insert UUID */ 1750 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1751 1752 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1753 } 1754 1755 static int handle_stsi(S390CPU *cpu) 1756 { 1757 CPUState *cs = CPU(cpu); 1758 struct kvm_run *run = cs->kvm_run; 1759 1760 switch (run->s390_stsi.fc) { 1761 case 3: 1762 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1763 return 0; 1764 } 1765 /* Only sysib 3.2.2 needs post-handling for now. */ 1766 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1767 return 0; 1768 default: 1769 return 0; 1770 } 1771 } 1772 1773 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1774 { 1775 CPUState *cs = CPU(cpu); 1776 struct kvm_run *run = cs->kvm_run; 1777 1778 int ret = 0; 1779 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1780 1781 switch (arch_info->type) { 1782 case KVM_HW_WP_WRITE: 1783 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1784 cs->watchpoint_hit = &hw_watchpoint; 1785 hw_watchpoint.vaddr = arch_info->addr; 1786 hw_watchpoint.flags = BP_MEM_WRITE; 1787 ret = EXCP_DEBUG; 1788 } 1789 break; 1790 case KVM_HW_BP: 1791 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1792 ret = EXCP_DEBUG; 1793 } 1794 break; 1795 case KVM_SINGLESTEP: 1796 if (cs->singlestep_enabled) { 1797 ret = EXCP_DEBUG; 1798 } 1799 break; 1800 default: 1801 ret = -ENOSYS; 1802 } 1803 1804 return ret; 1805 } 1806 1807 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1808 { 1809 S390CPU *cpu = S390_CPU(cs); 1810 int ret = 0; 1811 1812 qemu_mutex_lock_iothread(); 1813 1814 kvm_cpu_synchronize_state(cs); 1815 1816 switch (run->exit_reason) { 1817 case KVM_EXIT_S390_SIEIC: 1818 ret = handle_intercept(cpu); 1819 break; 1820 case KVM_EXIT_S390_RESET: 1821 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1822 break; 1823 case KVM_EXIT_S390_TSCH: 1824 ret = handle_tsch(cpu); 1825 break; 1826 case KVM_EXIT_S390_STSI: 1827 ret = handle_stsi(cpu); 1828 break; 1829 case KVM_EXIT_DEBUG: 1830 ret = kvm_arch_handle_debug_exit(cpu); 1831 break; 1832 default: 1833 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1834 break; 1835 } 1836 qemu_mutex_unlock_iothread(); 1837 1838 if (ret == 0) { 1839 ret = EXCP_INTERRUPT; 1840 } 1841 return ret; 1842 } 1843 1844 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1845 { 1846 return true; 1847 } 1848 1849 void kvm_s390_enable_css_support(S390CPU *cpu) 1850 { 1851 int r; 1852 1853 /* Activate host kernel channel subsystem support. */ 1854 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1855 assert(r == 0); 1856 } 1857 1858 void kvm_arch_init_irq_routing(KVMState *s) 1859 { 1860 /* 1861 * Note that while irqchip capabilities generally imply that cpustates 1862 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1863 * have to override the common code kvm_halt_in_kernel_allowed setting. 1864 */ 1865 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1866 kvm_gsi_routing_allowed = true; 1867 kvm_halt_in_kernel_allowed = false; 1868 } 1869 } 1870 1871 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1872 int vq, bool assign) 1873 { 1874 struct kvm_ioeventfd kick = { 1875 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1876 KVM_IOEVENTFD_FLAG_DATAMATCH, 1877 .fd = event_notifier_get_fd(notifier), 1878 .datamatch = vq, 1879 .addr = sch, 1880 .len = 8, 1881 }; 1882 trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, 1883 kick.datamatch); 1884 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1885 return -ENOSYS; 1886 } 1887 if (!assign) { 1888 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1889 } 1890 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1891 } 1892 1893 int kvm_s390_get_ri(void) 1894 { 1895 return cap_ri; 1896 } 1897 1898 int kvm_s390_get_gs(void) 1899 { 1900 return cap_gs; 1901 } 1902 1903 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1904 { 1905 struct kvm_mp_state mp_state = {}; 1906 int ret; 1907 1908 /* the kvm part might not have been initialized yet */ 1909 if (CPU(cpu)->kvm_state == NULL) { 1910 return 0; 1911 } 1912 1913 switch (cpu_state) { 1914 case S390_CPU_STATE_STOPPED: 1915 mp_state.mp_state = KVM_MP_STATE_STOPPED; 1916 break; 1917 case S390_CPU_STATE_CHECK_STOP: 1918 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 1919 break; 1920 case S390_CPU_STATE_OPERATING: 1921 mp_state.mp_state = KVM_MP_STATE_OPERATING; 1922 break; 1923 case S390_CPU_STATE_LOAD: 1924 mp_state.mp_state = KVM_MP_STATE_LOAD; 1925 break; 1926 default: 1927 error_report("Requested CPU state is not a valid S390 CPU state: %u", 1928 cpu_state); 1929 exit(1); 1930 } 1931 1932 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1933 if (ret) { 1934 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 1935 strerror(-ret)); 1936 } 1937 1938 return ret; 1939 } 1940 1941 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 1942 { 1943 struct kvm_s390_irq_state irq_state = { 1944 .buf = (uint64_t) cpu->irqstate, 1945 .len = VCPU_IRQ_BUF_SIZE, 1946 }; 1947 CPUState *cs = CPU(cpu); 1948 int32_t bytes; 1949 1950 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1951 return; 1952 } 1953 1954 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 1955 if (bytes < 0) { 1956 cpu->irqstate_saved_size = 0; 1957 error_report("Migration of interrupt state failed"); 1958 return; 1959 } 1960 1961 cpu->irqstate_saved_size = bytes; 1962 } 1963 1964 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 1965 { 1966 CPUState *cs = CPU(cpu); 1967 struct kvm_s390_irq_state irq_state = { 1968 .buf = (uint64_t) cpu->irqstate, 1969 .len = cpu->irqstate_saved_size, 1970 }; 1971 int r; 1972 1973 if (cpu->irqstate_saved_size == 0) { 1974 return 0; 1975 } 1976 1977 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1978 return -ENOSYS; 1979 } 1980 1981 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 1982 if (r) { 1983 error_report("Setting interrupt state failed %d", r); 1984 } 1985 return r; 1986 } 1987 1988 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1989 uint64_t address, uint32_t data, PCIDevice *dev) 1990 { 1991 S390PCIBusDevice *pbdev; 1992 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 1993 1994 if (!dev) { 1995 DPRINTF("add_msi_route no pci device\n"); 1996 return -ENODEV; 1997 } 1998 1999 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2000 if (!pbdev) { 2001 DPRINTF("add_msi_route no zpci device\n"); 2002 return -ENODEV; 2003 } 2004 2005 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2006 route->flags = 0; 2007 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2008 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2009 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2010 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2011 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2012 return 0; 2013 } 2014 2015 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2016 int vector, PCIDevice *dev) 2017 { 2018 return 0; 2019 } 2020 2021 int kvm_arch_release_virq_post(int virq) 2022 { 2023 return 0; 2024 } 2025 2026 int kvm_arch_msi_data_to_gsi(uint32_t data) 2027 { 2028 abort(); 2029 } 2030 2031 static int query_cpu_subfunc(S390FeatBitmap features) 2032 { 2033 struct kvm_s390_vm_cpu_subfunc prop; 2034 struct kvm_device_attr attr = { 2035 .group = KVM_S390_VM_CPU_MODEL, 2036 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2037 .addr = (uint64_t) &prop, 2038 }; 2039 int rc; 2040 2041 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2042 if (rc) { 2043 return rc; 2044 } 2045 2046 /* 2047 * We're going to add all subfunctions now, if the corresponding feature 2048 * is available that unlocks the query functions. 2049 */ 2050 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2051 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2052 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2053 } 2054 if (test_bit(S390_FEAT_MSA, features)) { 2055 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2056 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2057 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2058 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2059 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2060 } 2061 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2062 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2063 } 2064 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2065 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2066 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2067 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2068 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2069 } 2070 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2071 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2072 } 2073 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2074 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2075 } 2076 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2077 s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2078 } 2079 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2080 s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2081 } 2082 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2083 s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2084 } 2085 return 0; 2086 } 2087 2088 static int configure_cpu_subfunc(const S390FeatBitmap features) 2089 { 2090 struct kvm_s390_vm_cpu_subfunc prop = {}; 2091 struct kvm_device_attr attr = { 2092 .group = KVM_S390_VM_CPU_MODEL, 2093 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2094 .addr = (uint64_t) &prop, 2095 }; 2096 2097 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2098 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2099 /* hardware support might be missing, IBC will handle most of this */ 2100 return 0; 2101 } 2102 2103 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2104 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2105 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2106 } 2107 if (test_bit(S390_FEAT_MSA, features)) { 2108 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2109 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2110 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2111 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2112 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2113 } 2114 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2115 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2116 } 2117 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2118 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2119 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2120 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2121 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2122 } 2123 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2124 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2125 } 2126 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2127 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2128 } 2129 if (test_bit(S390_FEAT_MSA_EXT_9, features)) { 2130 s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); 2131 } 2132 if (test_bit(S390_FEAT_ESORT_BASE, features)) { 2133 s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); 2134 } 2135 if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { 2136 s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); 2137 } 2138 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2139 } 2140 2141 static int kvm_to_feat[][2] = { 2142 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2143 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2144 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2145 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2146 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2147 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2148 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2149 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2150 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2151 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2152 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2153 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2154 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2155 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2156 }; 2157 2158 static int query_cpu_feat(S390FeatBitmap features) 2159 { 2160 struct kvm_s390_vm_cpu_feat prop; 2161 struct kvm_device_attr attr = { 2162 .group = KVM_S390_VM_CPU_MODEL, 2163 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2164 .addr = (uint64_t) &prop, 2165 }; 2166 int rc; 2167 int i; 2168 2169 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2170 if (rc) { 2171 return rc; 2172 } 2173 2174 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2175 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2176 set_bit(kvm_to_feat[i][1], features); 2177 } 2178 } 2179 return 0; 2180 } 2181 2182 static int configure_cpu_feat(const S390FeatBitmap features) 2183 { 2184 struct kvm_s390_vm_cpu_feat prop = {}; 2185 struct kvm_device_attr attr = { 2186 .group = KVM_S390_VM_CPU_MODEL, 2187 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2188 .addr = (uint64_t) &prop, 2189 }; 2190 int i; 2191 2192 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2193 if (test_bit(kvm_to_feat[i][1], features)) { 2194 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2195 } 2196 } 2197 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2198 } 2199 2200 bool kvm_s390_cpu_models_supported(void) 2201 { 2202 if (!cpu_model_allowed()) { 2203 /* compatibility machines interfere with the cpu model */ 2204 return false; 2205 } 2206 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2207 KVM_S390_VM_CPU_MACHINE) && 2208 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2209 KVM_S390_VM_CPU_PROCESSOR) && 2210 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2211 KVM_S390_VM_CPU_MACHINE_FEAT) && 2212 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2213 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2214 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2215 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2216 } 2217 2218 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2219 { 2220 struct kvm_s390_vm_cpu_machine prop = {}; 2221 struct kvm_device_attr attr = { 2222 .group = KVM_S390_VM_CPU_MODEL, 2223 .attr = KVM_S390_VM_CPU_MACHINE, 2224 .addr = (uint64_t) &prop, 2225 }; 2226 uint16_t unblocked_ibc = 0, cpu_type = 0; 2227 int rc; 2228 2229 memset(model, 0, sizeof(*model)); 2230 2231 if (!kvm_s390_cpu_models_supported()) { 2232 error_setg(errp, "KVM doesn't support CPU models"); 2233 return; 2234 } 2235 2236 /* query the basic cpu model properties */ 2237 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2238 if (rc) { 2239 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2240 return; 2241 } 2242 2243 cpu_type = cpuid_type(prop.cpuid); 2244 if (has_ibc(prop.ibc)) { 2245 model->lowest_ibc = lowest_ibc(prop.ibc); 2246 unblocked_ibc = unblocked_ibc(prop.ibc); 2247 } 2248 model->cpu_id = cpuid_id(prop.cpuid); 2249 model->cpu_id_format = cpuid_format(prop.cpuid); 2250 model->cpu_ver = 0xff; 2251 2252 /* get supported cpu features indicated via STFL(E) */ 2253 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2254 (uint8_t *) prop.fac_mask); 2255 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2256 if (test_bit(S390_FEAT_STFLE, model->features)) { 2257 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2258 } 2259 /* get supported cpu features indicated e.g. via SCLP */ 2260 rc = query_cpu_feat(model->features); 2261 if (rc) { 2262 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2263 return; 2264 } 2265 /* get supported cpu subfunctions indicated via query / test bit */ 2266 rc = query_cpu_subfunc(model->features); 2267 if (rc) { 2268 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2269 return; 2270 } 2271 2272 /* PTFF subfunctions might be indicated although kernel support missing */ 2273 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2274 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2275 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2276 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2277 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2278 } 2279 2280 /* with cpu model support, CMM is only indicated if really available */ 2281 if (kvm_s390_cmma_available()) { 2282 set_bit(S390_FEAT_CMM, model->features); 2283 } else { 2284 /* no cmm -> no cmm nt */ 2285 clear_bit(S390_FEAT_CMM_NT, model->features); 2286 } 2287 2288 /* bpb needs kernel support for migration, VSIE and reset */ 2289 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2290 clear_bit(S390_FEAT_BPB, model->features); 2291 } 2292 2293 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2294 set_bit(S390_FEAT_ZPCI, model->features); 2295 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2296 2297 if (s390_known_cpu_type(cpu_type)) { 2298 /* we want the exact model, even if some features are missing */ 2299 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2300 ibc_ec_ga(unblocked_ibc), NULL); 2301 } else { 2302 /* model unknown, e.g. too new - search using features */ 2303 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2304 ibc_ec_ga(unblocked_ibc), 2305 model->features); 2306 } 2307 if (!model->def) { 2308 error_setg(errp, "KVM: host CPU model could not be identified"); 2309 return; 2310 } 2311 /* for now, we can only provide the AP feature with HW support */ 2312 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2313 KVM_S390_VM_CRYPTO_ENABLE_APIE)) { 2314 set_bit(S390_FEAT_AP, model->features); 2315 } 2316 /* strip of features that are not part of the maximum model */ 2317 bitmap_and(model->features, model->features, model->def->full_feat, 2318 S390_FEAT_MAX); 2319 } 2320 2321 static void kvm_s390_configure_apie(bool interpret) 2322 { 2323 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2324 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2325 2326 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2327 kvm_s390_set_attr(attr); 2328 } 2329 } 2330 2331 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2332 { 2333 struct kvm_s390_vm_cpu_processor prop = { 2334 .fac_list = { 0 }, 2335 }; 2336 struct kvm_device_attr attr = { 2337 .group = KVM_S390_VM_CPU_MODEL, 2338 .attr = KVM_S390_VM_CPU_PROCESSOR, 2339 .addr = (uint64_t) &prop, 2340 }; 2341 int rc; 2342 2343 if (!model) { 2344 /* compatibility handling if cpu models are disabled */ 2345 if (kvm_s390_cmma_available()) { 2346 kvm_s390_enable_cmma(); 2347 } 2348 return; 2349 } 2350 if (!kvm_s390_cpu_models_supported()) { 2351 error_setg(errp, "KVM doesn't support CPU models"); 2352 return; 2353 } 2354 prop.cpuid = s390_cpuid_from_cpu_model(model); 2355 prop.ibc = s390_ibc_from_cpu_model(model); 2356 /* configure cpu features indicated via STFL(e) */ 2357 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2358 (uint8_t *) prop.fac_list); 2359 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2360 if (rc) { 2361 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2362 return; 2363 } 2364 /* configure cpu features indicated e.g. via SCLP */ 2365 rc = configure_cpu_feat(model->features); 2366 if (rc) { 2367 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2368 return; 2369 } 2370 /* configure cpu subfunctions indicated via query / test bit */ 2371 rc = configure_cpu_subfunc(model->features); 2372 if (rc) { 2373 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2374 return; 2375 } 2376 /* enable CMM via CMMA */ 2377 if (test_bit(S390_FEAT_CMM, model->features)) { 2378 kvm_s390_enable_cmma(); 2379 } 2380 2381 if (test_bit(S390_FEAT_AP, model->features)) { 2382 kvm_s390_configure_apie(true); 2383 } 2384 } 2385 2386 void kvm_s390_restart_interrupt(S390CPU *cpu) 2387 { 2388 struct kvm_s390_irq irq = { 2389 .type = KVM_S390_RESTART, 2390 }; 2391 2392 kvm_s390_vcpu_interrupt(cpu, &irq); 2393 } 2394 2395 void kvm_s390_stop_interrupt(S390CPU *cpu) 2396 { 2397 struct kvm_s390_irq irq = { 2398 .type = KVM_S390_SIGP_STOP, 2399 }; 2400 2401 kvm_s390_vcpu_interrupt(cpu, &irq); 2402 } 2403