xref: /qemu/target/s390x/kvm/kvm.c (revision 4f83d7d2121a8b4cce59c06f7d74c47cdedd79eb)
1 /*
2  * QEMU S390x KVM implementation
3  *
4  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5  * Copyright IBM Corp. 2012
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26 
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "internal.h"
30 #include "kvm_s390x.h"
31 #include "qapi/error.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "qemu/units.h"
35 #include "qemu/mmap-alloc.h"
36 #include "qemu/log.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/hw_accel.h"
39 #include "hw/hw.h"
40 #include "sysemu/device_tree.h"
41 #include "exec/gdbstub.h"
42 #include "exec/ram_addr.h"
43 #include "trace.h"
44 #include "hw/s390x/s390-pci-inst.h"
45 #include "hw/s390x/s390-pci-bus.h"
46 #include "hw/s390x/ipl.h"
47 #include "hw/s390x/ebcdic.h"
48 #include "exec/memattrs.h"
49 #include "hw/s390x/s390-virtio-ccw.h"
50 #include "hw/s390x/s390-virtio-hcall.h"
51 
52 #ifndef DEBUG_KVM
53 #define DEBUG_KVM  0
54 #endif
55 
56 #define DPRINTF(fmt, ...) do {                \
57     if (DEBUG_KVM) {                          \
58         fprintf(stderr, fmt, ## __VA_ARGS__); \
59     }                                         \
60 } while (0)
61 
62 #define kvm_vm_check_mem_attr(s, attr) \
63     kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
64 
65 #define IPA0_DIAG                       0x8300
66 #define IPA0_SIGP                       0xae00
67 #define IPA0_B2                         0xb200
68 #define IPA0_B9                         0xb900
69 #define IPA0_EB                         0xeb00
70 #define IPA0_E3                         0xe300
71 
72 #define PRIV_B2_SCLP_CALL               0x20
73 #define PRIV_B2_CSCH                    0x30
74 #define PRIV_B2_HSCH                    0x31
75 #define PRIV_B2_MSCH                    0x32
76 #define PRIV_B2_SSCH                    0x33
77 #define PRIV_B2_STSCH                   0x34
78 #define PRIV_B2_TSCH                    0x35
79 #define PRIV_B2_TPI                     0x36
80 #define PRIV_B2_SAL                     0x37
81 #define PRIV_B2_RSCH                    0x38
82 #define PRIV_B2_STCRW                   0x39
83 #define PRIV_B2_STCPS                   0x3a
84 #define PRIV_B2_RCHP                    0x3b
85 #define PRIV_B2_SCHM                    0x3c
86 #define PRIV_B2_CHSC                    0x5f
87 #define PRIV_B2_SIGA                    0x74
88 #define PRIV_B2_XSCH                    0x76
89 
90 #define PRIV_EB_SQBS                    0x8a
91 #define PRIV_EB_PCISTB                  0xd0
92 #define PRIV_EB_SIC                     0xd1
93 
94 #define PRIV_B9_EQBS                    0x9c
95 #define PRIV_B9_CLP                     0xa0
96 #define PRIV_B9_PCISTG                  0xd0
97 #define PRIV_B9_PCILG                   0xd2
98 #define PRIV_B9_RPCIT                   0xd3
99 
100 #define PRIV_E3_MPCIFC                  0xd0
101 #define PRIV_E3_STPCIFC                 0xd4
102 
103 #define DIAG_TIMEREVENT                 0x288
104 #define DIAG_IPL                        0x308
105 #define DIAG_KVM_HYPERCALL              0x500
106 #define DIAG_KVM_BREAKPOINT             0x501
107 
108 #define ICPT_INSTRUCTION                0x04
109 #define ICPT_PROGRAM                    0x08
110 #define ICPT_EXT_INT                    0x14
111 #define ICPT_WAITPSW                    0x1c
112 #define ICPT_SOFT_INTERCEPT             0x24
113 #define ICPT_CPU_STOP                   0x28
114 #define ICPT_OPEREXC                    0x2c
115 #define ICPT_IO                         0x40
116 
117 #define NR_LOCAL_IRQS 32
118 /*
119  * Needs to be big enough to contain max_cpus emergency signals
120  * and in addition NR_LOCAL_IRQS interrupts
121  */
122 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
123                            (max_cpus + NR_LOCAL_IRQS))
124 
125 static CPUWatchpoint hw_watchpoint;
126 /*
127  * We don't use a list because this structure is also used to transmit the
128  * hardware breakpoints to the kernel.
129  */
130 static struct kvm_hw_breakpoint *hw_breakpoints;
131 static int nb_hw_breakpoints;
132 
133 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
134     KVM_CAP_LAST_INFO
135 };
136 
137 static int cap_sync_regs;
138 static int cap_async_pf;
139 static int cap_mem_op;
140 static int cap_s390_irq;
141 static int cap_ri;
142 static int cap_gs;
143 static int cap_hpage_1m;
144 
145 static int active_cmma;
146 
147 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
148 
149 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
150 {
151     struct kvm_device_attr attr = {
152         .group = KVM_S390_VM_MEM_CTRL,
153         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
154         .addr = (uint64_t) memory_limit,
155     };
156 
157     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
158 }
159 
160 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
161 {
162     int rc;
163 
164     struct kvm_device_attr attr = {
165         .group = KVM_S390_VM_MEM_CTRL,
166         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
167         .addr = (uint64_t) &new_limit,
168     };
169 
170     if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
171         return 0;
172     }
173 
174     rc = kvm_s390_query_mem_limit(hw_limit);
175     if (rc) {
176         return rc;
177     } else if (*hw_limit < new_limit) {
178         return -E2BIG;
179     }
180 
181     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
182 }
183 
184 int kvm_s390_cmma_active(void)
185 {
186     return active_cmma;
187 }
188 
189 static bool kvm_s390_cmma_available(void)
190 {
191     static bool initialized, value;
192 
193     if (!initialized) {
194         initialized = true;
195         value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
196                 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
197     }
198     return value;
199 }
200 
201 void kvm_s390_cmma_reset(void)
202 {
203     int rc;
204     struct kvm_device_attr attr = {
205         .group = KVM_S390_VM_MEM_CTRL,
206         .attr = KVM_S390_VM_MEM_CLR_CMMA,
207     };
208 
209     if (!kvm_s390_cmma_active()) {
210         return;
211     }
212 
213     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
214     trace_kvm_clear_cmma(rc);
215 }
216 
217 static void kvm_s390_enable_cmma(void)
218 {
219     int rc;
220     struct kvm_device_attr attr = {
221         .group = KVM_S390_VM_MEM_CTRL,
222         .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
223     };
224 
225     if (cap_hpage_1m) {
226         warn_report("CMM will not be enabled because it is not "
227                     "compatible with huge memory backings.");
228         return;
229     }
230     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
231     active_cmma = !rc;
232     trace_kvm_enable_cmma(rc);
233 }
234 
235 static void kvm_s390_set_attr(uint64_t attr)
236 {
237     struct kvm_device_attr attribute = {
238         .group = KVM_S390_VM_CRYPTO,
239         .attr  = attr,
240     };
241 
242     int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
243 
244     if (ret) {
245         error_report("Failed to set crypto device attribute %lu: %s",
246                      attr, strerror(-ret));
247     }
248 }
249 
250 static void kvm_s390_init_aes_kw(void)
251 {
252     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
253 
254     if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
255                                  NULL)) {
256             attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
257     }
258 
259     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
260             kvm_s390_set_attr(attr);
261     }
262 }
263 
264 static void kvm_s390_init_dea_kw(void)
265 {
266     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
267 
268     if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
269                                  NULL)) {
270             attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
271     }
272 
273     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
274             kvm_s390_set_attr(attr);
275     }
276 }
277 
278 void kvm_s390_crypto_reset(void)
279 {
280     if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
281         kvm_s390_init_aes_kw();
282         kvm_s390_init_dea_kw();
283     }
284 }
285 
286 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
287 {
288     if (pagesize == 4 * KiB) {
289         return;
290     }
291 
292     if (!hpage_1m_allowed()) {
293         error_setg(errp, "This QEMU machine does not support huge page "
294                    "mappings");
295         return;
296     }
297 
298     if (pagesize != 1 * MiB) {
299         error_setg(errp, "Memory backing with 2G pages was specified, "
300                    "but KVM does not support this memory backing");
301         return;
302     }
303 
304     if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
305         error_setg(errp, "Memory backing with 1M pages was specified, "
306                    "but KVM does not support this memory backing");
307         return;
308     }
309 
310     cap_hpage_1m = 1;
311 }
312 
313 int kvm_arch_init(MachineState *ms, KVMState *s)
314 {
315     MachineClass *mc = MACHINE_GET_CLASS(ms);
316 
317     mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
318     cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
319     cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
320     cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
321     cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
322 
323     if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
324         || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
325         phys_mem_set_alloc(legacy_s390_alloc);
326     }
327 
328     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
329     kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
330     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
331     if (ri_allowed()) {
332         if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
333             cap_ri = 1;
334         }
335     }
336     if (cpu_model_allowed()) {
337         if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
338             cap_gs = 1;
339         }
340     }
341 
342     /*
343      * The migration interface for ais was introduced with kernel 4.13
344      * but the capability itself had been active since 4.12. As migration
345      * support is considered necessary let's disable ais in the 2.10
346      * machine.
347      */
348     /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
349 
350     return 0;
351 }
352 
353 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
354 {
355     return 0;
356 }
357 
358 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
359 {
360     return cpu->cpu_index;
361 }
362 
363 int kvm_arch_init_vcpu(CPUState *cs)
364 {
365     S390CPU *cpu = S390_CPU(cs);
366     kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
367     cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
368     return 0;
369 }
370 
371 void kvm_s390_reset_vcpu(S390CPU *cpu)
372 {
373     CPUState *cs = CPU(cpu);
374 
375     /* The initial reset call is needed here to reset in-kernel
376      * vcpu data that we can't access directly from QEMU
377      * (i.e. with older kernels which don't support sync_regs/ONE_REG).
378      * Before this ioctl cpu_synchronize_state() is called in common kvm
379      * code (kvm-all) */
380     if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
381         error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
382     }
383 }
384 
385 static int can_sync_regs(CPUState *cs, int regs)
386 {
387     return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
388 }
389 
390 int kvm_arch_put_registers(CPUState *cs, int level)
391 {
392     S390CPU *cpu = S390_CPU(cs);
393     CPUS390XState *env = &cpu->env;
394     struct kvm_sregs sregs;
395     struct kvm_regs regs;
396     struct kvm_fpu fpu = {};
397     int r;
398     int i;
399 
400     /* always save the PSW  and the GPRS*/
401     cs->kvm_run->psw_addr = env->psw.addr;
402     cs->kvm_run->psw_mask = env->psw.mask;
403 
404     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
405         for (i = 0; i < 16; i++) {
406             cs->kvm_run->s.regs.gprs[i] = env->regs[i];
407             cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
408         }
409     } else {
410         for (i = 0; i < 16; i++) {
411             regs.gprs[i] = env->regs[i];
412         }
413         r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
414         if (r < 0) {
415             return r;
416         }
417     }
418 
419     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
420         for (i = 0; i < 32; i++) {
421             cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
422             cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
423         }
424         cs->kvm_run->s.regs.fpc = env->fpc;
425         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
426     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
427         for (i = 0; i < 16; i++) {
428             cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
429         }
430         cs->kvm_run->s.regs.fpc = env->fpc;
431         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
432     } else {
433         /* Floating point */
434         for (i = 0; i < 16; i++) {
435             fpu.fprs[i] = *get_freg(env, i);
436         }
437         fpu.fpc = env->fpc;
438 
439         r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
440         if (r < 0) {
441             return r;
442         }
443     }
444 
445     /* Do we need to save more than that? */
446     if (level == KVM_PUT_RUNTIME_STATE) {
447         return 0;
448     }
449 
450     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
451         cs->kvm_run->s.regs.cputm = env->cputm;
452         cs->kvm_run->s.regs.ckc = env->ckc;
453         cs->kvm_run->s.regs.todpr = env->todpr;
454         cs->kvm_run->s.regs.gbea = env->gbea;
455         cs->kvm_run->s.regs.pp = env->pp;
456         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
457     } else {
458         /*
459          * These ONE_REGS are not protected by a capability. As they are only
460          * necessary for migration we just trace a possible error, but don't
461          * return with an error return code.
462          */
463         kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
464         kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
465         kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
466         kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
467         kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
468     }
469 
470     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
471         memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
472         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
473     }
474 
475     /* pfault parameters */
476     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
477         cs->kvm_run->s.regs.pft = env->pfault_token;
478         cs->kvm_run->s.regs.pfs = env->pfault_select;
479         cs->kvm_run->s.regs.pfc = env->pfault_compare;
480         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
481     } else if (cap_async_pf) {
482         r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
483         if (r < 0) {
484             return r;
485         }
486         r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
487         if (r < 0) {
488             return r;
489         }
490         r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
491         if (r < 0) {
492             return r;
493         }
494     }
495 
496     /* access registers and control registers*/
497     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
498         for (i = 0; i < 16; i++) {
499             cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
500             cs->kvm_run->s.regs.crs[i] = env->cregs[i];
501         }
502         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
503         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
504     } else {
505         for (i = 0; i < 16; i++) {
506             sregs.acrs[i] = env->aregs[i];
507             sregs.crs[i] = env->cregs[i];
508         }
509         r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
510         if (r < 0) {
511             return r;
512         }
513     }
514 
515     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
516         memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
517         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
518     }
519 
520     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
521         cs->kvm_run->s.regs.bpbc = env->bpbc;
522         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
523     }
524 
525     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
526         cs->kvm_run->s.regs.etoken = env->etoken;
527         cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
528         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
529     }
530 
531     /* Finally the prefix */
532     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
533         cs->kvm_run->s.regs.prefix = env->psa;
534         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
535     } else {
536         /* prefix is only supported via sync regs */
537     }
538     return 0;
539 }
540 
541 int kvm_arch_get_registers(CPUState *cs)
542 {
543     S390CPU *cpu = S390_CPU(cs);
544     CPUS390XState *env = &cpu->env;
545     struct kvm_sregs sregs;
546     struct kvm_regs regs;
547     struct kvm_fpu fpu;
548     int i, r;
549 
550     /* get the PSW */
551     env->psw.addr = cs->kvm_run->psw_addr;
552     env->psw.mask = cs->kvm_run->psw_mask;
553 
554     /* the GPRS */
555     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
556         for (i = 0; i < 16; i++) {
557             env->regs[i] = cs->kvm_run->s.regs.gprs[i];
558         }
559     } else {
560         r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
561         if (r < 0) {
562             return r;
563         }
564          for (i = 0; i < 16; i++) {
565             env->regs[i] = regs.gprs[i];
566         }
567     }
568 
569     /* The ACRS and CRS */
570     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
571         for (i = 0; i < 16; i++) {
572             env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
573             env->cregs[i] = cs->kvm_run->s.regs.crs[i];
574         }
575     } else {
576         r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
577         if (r < 0) {
578             return r;
579         }
580          for (i = 0; i < 16; i++) {
581             env->aregs[i] = sregs.acrs[i];
582             env->cregs[i] = sregs.crs[i];
583         }
584     }
585 
586     /* Floating point and vector registers */
587     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
588         for (i = 0; i < 32; i++) {
589             env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
590             env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
591         }
592         env->fpc = cs->kvm_run->s.regs.fpc;
593     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
594         for (i = 0; i < 16; i++) {
595             *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
596         }
597         env->fpc = cs->kvm_run->s.regs.fpc;
598     } else {
599         r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
600         if (r < 0) {
601             return r;
602         }
603         for (i = 0; i < 16; i++) {
604             *get_freg(env, i) = fpu.fprs[i];
605         }
606         env->fpc = fpu.fpc;
607     }
608 
609     /* The prefix */
610     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
611         env->psa = cs->kvm_run->s.regs.prefix;
612     }
613 
614     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
615         env->cputm = cs->kvm_run->s.regs.cputm;
616         env->ckc = cs->kvm_run->s.regs.ckc;
617         env->todpr = cs->kvm_run->s.regs.todpr;
618         env->gbea = cs->kvm_run->s.regs.gbea;
619         env->pp = cs->kvm_run->s.regs.pp;
620     } else {
621         /*
622          * These ONE_REGS are not protected by a capability. As they are only
623          * necessary for migration we just trace a possible error, but don't
624          * return with an error return code.
625          */
626         kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
627         kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
628         kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
629         kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
630         kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
631     }
632 
633     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
634         memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
635     }
636 
637     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
638         memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
639     }
640 
641     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
642         env->bpbc = cs->kvm_run->s.regs.bpbc;
643     }
644 
645     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
646         env->etoken = cs->kvm_run->s.regs.etoken;
647         env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
648     }
649 
650     /* pfault parameters */
651     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
652         env->pfault_token = cs->kvm_run->s.regs.pft;
653         env->pfault_select = cs->kvm_run->s.regs.pfs;
654         env->pfault_compare = cs->kvm_run->s.regs.pfc;
655     } else if (cap_async_pf) {
656         r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
657         if (r < 0) {
658             return r;
659         }
660         r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
661         if (r < 0) {
662             return r;
663         }
664         r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
665         if (r < 0) {
666             return r;
667         }
668     }
669 
670     return 0;
671 }
672 
673 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
674 {
675     int r;
676     struct kvm_device_attr attr = {
677         .group = KVM_S390_VM_TOD,
678         .attr = KVM_S390_VM_TOD_LOW,
679         .addr = (uint64_t)tod_low,
680     };
681 
682     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
683     if (r) {
684         return r;
685     }
686 
687     attr.attr = KVM_S390_VM_TOD_HIGH;
688     attr.addr = (uint64_t)tod_high;
689     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
690 }
691 
692 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
693 {
694     int r;
695     struct kvm_s390_vm_tod_clock gtod;
696     struct kvm_device_attr attr = {
697         .group = KVM_S390_VM_TOD,
698         .attr = KVM_S390_VM_TOD_EXT,
699         .addr = (uint64_t)&gtod,
700     };
701 
702     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
703     *tod_high = gtod.epoch_idx;
704     *tod_low  = gtod.tod;
705 
706     return r;
707 }
708 
709 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
710 {
711     int r;
712     struct kvm_device_attr attr = {
713         .group = KVM_S390_VM_TOD,
714         .attr = KVM_S390_VM_TOD_LOW,
715         .addr = (uint64_t)&tod_low,
716     };
717 
718     r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
719     if (r) {
720         return r;
721     }
722 
723     attr.attr = KVM_S390_VM_TOD_HIGH;
724     attr.addr = (uint64_t)&tod_high;
725     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
726 }
727 
728 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
729 {
730     struct kvm_s390_vm_tod_clock gtod = {
731         .epoch_idx = tod_high,
732         .tod  = tod_low,
733     };
734     struct kvm_device_attr attr = {
735         .group = KVM_S390_VM_TOD,
736         .attr = KVM_S390_VM_TOD_EXT,
737         .addr = (uint64_t)&gtod,
738     };
739 
740     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
741 }
742 
743 /**
744  * kvm_s390_mem_op:
745  * @addr:      the logical start address in guest memory
746  * @ar:        the access register number
747  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
748  * @len:       length that should be transferred
749  * @is_write:  true = write, false = read
750  * Returns:    0 on success, non-zero if an exception or error occurred
751  *
752  * Use KVM ioctl to read/write from/to guest memory. An access exception
753  * is injected into the vCPU in case of translation errors.
754  */
755 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
756                     int len, bool is_write)
757 {
758     struct kvm_s390_mem_op mem_op = {
759         .gaddr = addr,
760         .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
761         .size = len,
762         .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
763                        : KVM_S390_MEMOP_LOGICAL_READ,
764         .buf = (uint64_t)hostbuf,
765         .ar = ar,
766     };
767     int ret;
768 
769     if (!cap_mem_op) {
770         return -ENOSYS;
771     }
772     if (!hostbuf) {
773         mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
774     }
775 
776     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
777     if (ret < 0) {
778         warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
779     }
780     return ret;
781 }
782 
783 /*
784  * Legacy layout for s390:
785  * Older S390 KVM requires the topmost vma of the RAM to be
786  * smaller than an system defined value, which is at least 256GB.
787  * Larger systems have larger values. We put the guest between
788  * the end of data segment (system break) and this value. We
789  * use 32GB as a base to have enough room for the system break
790  * to grow. We also have to use MAP parameters that avoid
791  * read-only mapping of guest pages.
792  */
793 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
794 {
795     static void *mem;
796 
797     if (mem) {
798         /* we only support one allocation, which is enough for initial ram */
799         return NULL;
800     }
801 
802     mem = mmap((void *) 0x800000000ULL, size,
803                PROT_EXEC|PROT_READ|PROT_WRITE,
804                MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
805     if (mem == MAP_FAILED) {
806         mem = NULL;
807     }
808     if (mem && align) {
809         *align = QEMU_VMALLOC_ALIGN;
810     }
811     return mem;
812 }
813 
814 static uint8_t const *sw_bp_inst;
815 static uint8_t sw_bp_ilen;
816 
817 static void determine_sw_breakpoint_instr(void)
818 {
819         /* DIAG 501 is used for sw breakpoints with old kernels */
820         static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
821         /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
822         static const uint8_t instr_0x0000[] = {0x00, 0x00};
823 
824         if (sw_bp_inst) {
825             return;
826         }
827         if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
828             sw_bp_inst = diag_501;
829             sw_bp_ilen = sizeof(diag_501);
830             DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
831         } else {
832             sw_bp_inst = instr_0x0000;
833             sw_bp_ilen = sizeof(instr_0x0000);
834             DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
835         }
836 }
837 
838 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
839 {
840     determine_sw_breakpoint_instr();
841 
842     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
843                             sw_bp_ilen, 0) ||
844         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
845         return -EINVAL;
846     }
847     return 0;
848 }
849 
850 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
851 {
852     uint8_t t[MAX_ILEN];
853 
854     if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
855         return -EINVAL;
856     } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
857         return -EINVAL;
858     } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
859                                    sw_bp_ilen, 1)) {
860         return -EINVAL;
861     }
862 
863     return 0;
864 }
865 
866 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
867                                                     int len, int type)
868 {
869     int n;
870 
871     for (n = 0; n < nb_hw_breakpoints; n++) {
872         if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
873             (hw_breakpoints[n].len == len || len == -1)) {
874             return &hw_breakpoints[n];
875         }
876     }
877 
878     return NULL;
879 }
880 
881 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
882 {
883     int size;
884 
885     if (find_hw_breakpoint(addr, len, type)) {
886         return -EEXIST;
887     }
888 
889     size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
890 
891     if (!hw_breakpoints) {
892         nb_hw_breakpoints = 0;
893         hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
894     } else {
895         hw_breakpoints =
896             (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
897     }
898 
899     if (!hw_breakpoints) {
900         nb_hw_breakpoints = 0;
901         return -ENOMEM;
902     }
903 
904     hw_breakpoints[nb_hw_breakpoints].addr = addr;
905     hw_breakpoints[nb_hw_breakpoints].len = len;
906     hw_breakpoints[nb_hw_breakpoints].type = type;
907 
908     nb_hw_breakpoints++;
909 
910     return 0;
911 }
912 
913 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
914                                   target_ulong len, int type)
915 {
916     switch (type) {
917     case GDB_BREAKPOINT_HW:
918         type = KVM_HW_BP;
919         break;
920     case GDB_WATCHPOINT_WRITE:
921         if (len < 1) {
922             return -EINVAL;
923         }
924         type = KVM_HW_WP_WRITE;
925         break;
926     default:
927         return -ENOSYS;
928     }
929     return insert_hw_breakpoint(addr, len, type);
930 }
931 
932 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
933                                   target_ulong len, int type)
934 {
935     int size;
936     struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
937 
938     if (bp == NULL) {
939         return -ENOENT;
940     }
941 
942     nb_hw_breakpoints--;
943     if (nb_hw_breakpoints > 0) {
944         /*
945          * In order to trim the array, move the last element to the position to
946          * be removed - if necessary.
947          */
948         if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
949             *bp = hw_breakpoints[nb_hw_breakpoints];
950         }
951         size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
952         hw_breakpoints =
953              (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
954     } else {
955         g_free(hw_breakpoints);
956         hw_breakpoints = NULL;
957     }
958 
959     return 0;
960 }
961 
962 void kvm_arch_remove_all_hw_breakpoints(void)
963 {
964     nb_hw_breakpoints = 0;
965     g_free(hw_breakpoints);
966     hw_breakpoints = NULL;
967 }
968 
969 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
970 {
971     int i;
972 
973     if (nb_hw_breakpoints > 0) {
974         dbg->arch.nr_hw_bp = nb_hw_breakpoints;
975         dbg->arch.hw_bp = hw_breakpoints;
976 
977         for (i = 0; i < nb_hw_breakpoints; ++i) {
978             hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
979                                                        hw_breakpoints[i].addr);
980         }
981         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
982     } else {
983         dbg->arch.nr_hw_bp = 0;
984         dbg->arch.hw_bp = NULL;
985     }
986 }
987 
988 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
989 {
990 }
991 
992 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
993 {
994     return MEMTXATTRS_UNSPECIFIED;
995 }
996 
997 int kvm_arch_process_async_events(CPUState *cs)
998 {
999     return cs->halted;
1000 }
1001 
1002 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1003                                      struct kvm_s390_interrupt *interrupt)
1004 {
1005     int r = 0;
1006 
1007     interrupt->type = irq->type;
1008     switch (irq->type) {
1009     case KVM_S390_INT_VIRTIO:
1010         interrupt->parm = irq->u.ext.ext_params;
1011         /* fall through */
1012     case KVM_S390_INT_PFAULT_INIT:
1013     case KVM_S390_INT_PFAULT_DONE:
1014         interrupt->parm64 = irq->u.ext.ext_params2;
1015         break;
1016     case KVM_S390_PROGRAM_INT:
1017         interrupt->parm = irq->u.pgm.code;
1018         break;
1019     case KVM_S390_SIGP_SET_PREFIX:
1020         interrupt->parm = irq->u.prefix.address;
1021         break;
1022     case KVM_S390_INT_SERVICE:
1023         interrupt->parm = irq->u.ext.ext_params;
1024         break;
1025     case KVM_S390_MCHK:
1026         interrupt->parm = irq->u.mchk.cr14;
1027         interrupt->parm64 = irq->u.mchk.mcic;
1028         break;
1029     case KVM_S390_INT_EXTERNAL_CALL:
1030         interrupt->parm = irq->u.extcall.code;
1031         break;
1032     case KVM_S390_INT_EMERGENCY:
1033         interrupt->parm = irq->u.emerg.code;
1034         break;
1035     case KVM_S390_SIGP_STOP:
1036     case KVM_S390_RESTART:
1037         break; /* These types have no parameters */
1038     case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1039         interrupt->parm = irq->u.io.subchannel_id << 16;
1040         interrupt->parm |= irq->u.io.subchannel_nr;
1041         interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1042         interrupt->parm64 |= irq->u.io.io_int_word;
1043         break;
1044     default:
1045         r = -EINVAL;
1046         break;
1047     }
1048     return r;
1049 }
1050 
1051 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1052 {
1053     struct kvm_s390_interrupt kvmint = {};
1054     int r;
1055 
1056     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1057     if (r < 0) {
1058         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1059         exit(1);
1060     }
1061 
1062     r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1063     if (r < 0) {
1064         fprintf(stderr, "KVM failed to inject interrupt\n");
1065         exit(1);
1066     }
1067 }
1068 
1069 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1070 {
1071     CPUState *cs = CPU(cpu);
1072     int r;
1073 
1074     if (cap_s390_irq) {
1075         r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1076         if (!r) {
1077             return;
1078         }
1079         error_report("KVM failed to inject interrupt %llx", irq->type);
1080         exit(1);
1081     }
1082 
1083     inject_vcpu_irq_legacy(cs, irq);
1084 }
1085 
1086 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1087 {
1088     struct kvm_s390_interrupt kvmint = {};
1089     int r;
1090 
1091     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1092     if (r < 0) {
1093         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1094         exit(1);
1095     }
1096 
1097     r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1098     if (r < 0) {
1099         fprintf(stderr, "KVM failed to inject interrupt\n");
1100         exit(1);
1101     }
1102 }
1103 
1104 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1105 {
1106     struct kvm_s390_irq irq = {
1107         .type = KVM_S390_PROGRAM_INT,
1108         .u.pgm.code = code,
1109     };
1110     qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1111                   cpu->env.psw.addr);
1112     kvm_s390_vcpu_interrupt(cpu, &irq);
1113 }
1114 
1115 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1116 {
1117     struct kvm_s390_irq irq = {
1118         .type = KVM_S390_PROGRAM_INT,
1119         .u.pgm.code = code,
1120         .u.pgm.trans_exc_code = te_code,
1121         .u.pgm.exc_access_id = te_code & 3,
1122     };
1123 
1124     kvm_s390_vcpu_interrupt(cpu, &irq);
1125 }
1126 
1127 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1128                                  uint16_t ipbh0)
1129 {
1130     CPUS390XState *env = &cpu->env;
1131     uint64_t sccb;
1132     uint32_t code;
1133     int r = 0;
1134 
1135     sccb = env->regs[ipbh0 & 0xf];
1136     code = env->regs[(ipbh0 & 0xf0) >> 4];
1137 
1138     r = sclp_service_call(env, sccb, code);
1139     if (r < 0) {
1140         kvm_s390_program_interrupt(cpu, -r);
1141     } else {
1142         setcc(cpu, r);
1143     }
1144 
1145     return 0;
1146 }
1147 
1148 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1149 {
1150     CPUS390XState *env = &cpu->env;
1151     int rc = 0;
1152     uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1153 
1154     switch (ipa1) {
1155     case PRIV_B2_XSCH:
1156         ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1157         break;
1158     case PRIV_B2_CSCH:
1159         ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1160         break;
1161     case PRIV_B2_HSCH:
1162         ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1163         break;
1164     case PRIV_B2_MSCH:
1165         ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1166         break;
1167     case PRIV_B2_SSCH:
1168         ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1169         break;
1170     case PRIV_B2_STCRW:
1171         ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1172         break;
1173     case PRIV_B2_STSCH:
1174         ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1175         break;
1176     case PRIV_B2_TSCH:
1177         /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1178         fprintf(stderr, "Spurious tsch intercept\n");
1179         break;
1180     case PRIV_B2_CHSC:
1181         ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1182         break;
1183     case PRIV_B2_TPI:
1184         /* This should have been handled by kvm already. */
1185         fprintf(stderr, "Spurious tpi intercept\n");
1186         break;
1187     case PRIV_B2_SCHM:
1188         ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1189                            run->s390_sieic.ipb, RA_IGNORED);
1190         break;
1191     case PRIV_B2_RSCH:
1192         ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1193         break;
1194     case PRIV_B2_RCHP:
1195         ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1196         break;
1197     case PRIV_B2_STCPS:
1198         /* We do not provide this instruction, it is suppressed. */
1199         break;
1200     case PRIV_B2_SAL:
1201         ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1202         break;
1203     case PRIV_B2_SIGA:
1204         /* Not provided, set CC = 3 for subchannel not operational */
1205         setcc(cpu, 3);
1206         break;
1207     case PRIV_B2_SCLP_CALL:
1208         rc = kvm_sclp_service_call(cpu, run, ipbh0);
1209         break;
1210     default:
1211         rc = -1;
1212         DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1213         break;
1214     }
1215 
1216     return rc;
1217 }
1218 
1219 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1220                                   uint8_t *ar)
1221 {
1222     CPUS390XState *env = &cpu->env;
1223     uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1224     uint32_t base2 = run->s390_sieic.ipb >> 28;
1225     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1226                      ((run->s390_sieic.ipb & 0xff00) << 4);
1227 
1228     if (disp2 & 0x80000) {
1229         disp2 += 0xfff00000;
1230     }
1231     if (ar) {
1232         *ar = base2;
1233     }
1234 
1235     return (base2 ? env->regs[base2] : 0) +
1236            (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1237 }
1238 
1239 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1240                                   uint8_t *ar)
1241 {
1242     CPUS390XState *env = &cpu->env;
1243     uint32_t base2 = run->s390_sieic.ipb >> 28;
1244     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1245                      ((run->s390_sieic.ipb & 0xff00) << 4);
1246 
1247     if (disp2 & 0x80000) {
1248         disp2 += 0xfff00000;
1249     }
1250     if (ar) {
1251         *ar = base2;
1252     }
1253 
1254     return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1255 }
1256 
1257 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1258 {
1259     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1260 
1261     if (s390_has_feat(S390_FEAT_ZPCI)) {
1262         return clp_service_call(cpu, r2, RA_IGNORED);
1263     } else {
1264         return -1;
1265     }
1266 }
1267 
1268 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1269 {
1270     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1271     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1272 
1273     if (s390_has_feat(S390_FEAT_ZPCI)) {
1274         return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1275     } else {
1276         return -1;
1277     }
1278 }
1279 
1280 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1281 {
1282     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1283     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1284 
1285     if (s390_has_feat(S390_FEAT_ZPCI)) {
1286         return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1287     } else {
1288         return -1;
1289     }
1290 }
1291 
1292 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1293 {
1294     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1295     uint64_t fiba;
1296     uint8_t ar;
1297 
1298     if (s390_has_feat(S390_FEAT_ZPCI)) {
1299         fiba = get_base_disp_rxy(cpu, run, &ar);
1300 
1301         return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1302     } else {
1303         return -1;
1304     }
1305 }
1306 
1307 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1308 {
1309     CPUS390XState *env = &cpu->env;
1310     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1311     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1312     uint8_t isc;
1313     uint16_t mode;
1314     int r;
1315 
1316     mode = env->regs[r1] & 0xffff;
1317     isc = (env->regs[r3] >> 27) & 0x7;
1318     r = css_do_sic(env, isc, mode);
1319     if (r) {
1320         kvm_s390_program_interrupt(cpu, -r);
1321     }
1322 
1323     return 0;
1324 }
1325 
1326 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1327 {
1328     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1329     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1330 
1331     if (s390_has_feat(S390_FEAT_ZPCI)) {
1332         return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1333     } else {
1334         return -1;
1335     }
1336 }
1337 
1338 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1339 {
1340     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1341     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1342     uint64_t gaddr;
1343     uint8_t ar;
1344 
1345     if (s390_has_feat(S390_FEAT_ZPCI)) {
1346         gaddr = get_base_disp_rsy(cpu, run, &ar);
1347 
1348         return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1349     } else {
1350         return -1;
1351     }
1352 }
1353 
1354 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1355 {
1356     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1357     uint64_t fiba;
1358     uint8_t ar;
1359 
1360     if (s390_has_feat(S390_FEAT_ZPCI)) {
1361         fiba = get_base_disp_rxy(cpu, run, &ar);
1362 
1363         return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1364     } else {
1365         return -1;
1366     }
1367 }
1368 
1369 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1370 {
1371     int r = 0;
1372 
1373     switch (ipa1) {
1374     case PRIV_B9_CLP:
1375         r = kvm_clp_service_call(cpu, run);
1376         break;
1377     case PRIV_B9_PCISTG:
1378         r = kvm_pcistg_service_call(cpu, run);
1379         break;
1380     case PRIV_B9_PCILG:
1381         r = kvm_pcilg_service_call(cpu, run);
1382         break;
1383     case PRIV_B9_RPCIT:
1384         r = kvm_rpcit_service_call(cpu, run);
1385         break;
1386     case PRIV_B9_EQBS:
1387         /* just inject exception */
1388         r = -1;
1389         break;
1390     default:
1391         r = -1;
1392         DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1393         break;
1394     }
1395 
1396     return r;
1397 }
1398 
1399 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1400 {
1401     int r = 0;
1402 
1403     switch (ipbl) {
1404     case PRIV_EB_PCISTB:
1405         r = kvm_pcistb_service_call(cpu, run);
1406         break;
1407     case PRIV_EB_SIC:
1408         r = kvm_sic_service_call(cpu, run);
1409         break;
1410     case PRIV_EB_SQBS:
1411         /* just inject exception */
1412         r = -1;
1413         break;
1414     default:
1415         r = -1;
1416         DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1417         break;
1418     }
1419 
1420     return r;
1421 }
1422 
1423 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1424 {
1425     int r = 0;
1426 
1427     switch (ipbl) {
1428     case PRIV_E3_MPCIFC:
1429         r = kvm_mpcifc_service_call(cpu, run);
1430         break;
1431     case PRIV_E3_STPCIFC:
1432         r = kvm_stpcifc_service_call(cpu, run);
1433         break;
1434     default:
1435         r = -1;
1436         DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1437         break;
1438     }
1439 
1440     return r;
1441 }
1442 
1443 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1444 {
1445     CPUS390XState *env = &cpu->env;
1446     int ret;
1447 
1448     ret = s390_virtio_hypercall(env);
1449     if (ret == -EINVAL) {
1450         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1451         return 0;
1452     }
1453 
1454     return ret;
1455 }
1456 
1457 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1458 {
1459     uint64_t r1, r3;
1460     int rc;
1461 
1462     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1463     r3 = run->s390_sieic.ipa & 0x000f;
1464     rc = handle_diag_288(&cpu->env, r1, r3);
1465     if (rc) {
1466         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1467     }
1468 }
1469 
1470 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1471 {
1472     uint64_t r1, r3;
1473 
1474     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1475     r3 = run->s390_sieic.ipa & 0x000f;
1476     handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1477 }
1478 
1479 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1480 {
1481     CPUS390XState *env = &cpu->env;
1482     unsigned long pc;
1483 
1484     pc = env->psw.addr - sw_bp_ilen;
1485     if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1486         env->psw.addr = pc;
1487         return EXCP_DEBUG;
1488     }
1489 
1490     return -ENOENT;
1491 }
1492 
1493 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1494 
1495 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1496 {
1497     int r = 0;
1498     uint16_t func_code;
1499 
1500     /*
1501      * For any diagnose call we support, bits 48-63 of the resulting
1502      * address specify the function code; the remainder is ignored.
1503      */
1504     func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1505     switch (func_code) {
1506     case DIAG_TIMEREVENT:
1507         kvm_handle_diag_288(cpu, run);
1508         break;
1509     case DIAG_IPL:
1510         kvm_handle_diag_308(cpu, run);
1511         break;
1512     case DIAG_KVM_HYPERCALL:
1513         r = handle_hypercall(cpu, run);
1514         break;
1515     case DIAG_KVM_BREAKPOINT:
1516         r = handle_sw_breakpoint(cpu, run);
1517         break;
1518     default:
1519         DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1520         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1521         break;
1522     }
1523 
1524     return r;
1525 }
1526 
1527 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1528 {
1529     CPUS390XState *env = &cpu->env;
1530     const uint8_t r1 = ipa1 >> 4;
1531     const uint8_t r3 = ipa1 & 0x0f;
1532     int ret;
1533     uint8_t order;
1534 
1535     /* get order code */
1536     order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1537 
1538     ret = handle_sigp(env, order, r1, r3);
1539     setcc(cpu, ret);
1540     return 0;
1541 }
1542 
1543 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1544 {
1545     unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1546     uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1547     int r = -1;
1548 
1549     DPRINTF("handle_instruction 0x%x 0x%x\n",
1550             run->s390_sieic.ipa, run->s390_sieic.ipb);
1551     switch (ipa0) {
1552     case IPA0_B2:
1553         r = handle_b2(cpu, run, ipa1);
1554         break;
1555     case IPA0_B9:
1556         r = handle_b9(cpu, run, ipa1);
1557         break;
1558     case IPA0_EB:
1559         r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1560         break;
1561     case IPA0_E3:
1562         r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1563         break;
1564     case IPA0_DIAG:
1565         r = handle_diag(cpu, run, run->s390_sieic.ipb);
1566         break;
1567     case IPA0_SIGP:
1568         r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1569         break;
1570     }
1571 
1572     if (r < 0) {
1573         r = 0;
1574         kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1575     }
1576 
1577     return r;
1578 }
1579 
1580 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1581                                    int pswoffset)
1582 {
1583     CPUState *cs = CPU(cpu);
1584 
1585     s390_cpu_halt(cpu);
1586     cpu->env.crash_reason = reason;
1587     qemu_system_guest_panicked(cpu_get_crash_info(cs));
1588 }
1589 
1590 /* try to detect pgm check loops */
1591 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1592 {
1593     CPUState *cs = CPU(cpu);
1594     PSW oldpsw, newpsw;
1595 
1596     newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1597                            offsetof(LowCore, program_new_psw));
1598     newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1599                            offsetof(LowCore, program_new_psw) + 8);
1600     oldpsw.mask  = run->psw_mask;
1601     oldpsw.addr  = run->psw_addr;
1602     /*
1603      * Avoid endless loops of operation exceptions, if the pgm new
1604      * PSW will cause a new operation exception.
1605      * The heuristic checks if the pgm new psw is within 6 bytes before
1606      * the faulting psw address (with same DAT, AS settings) and the
1607      * new psw is not a wait psw and the fault was not triggered by
1608      * problem state. In that case go into crashed state.
1609      */
1610 
1611     if (oldpsw.addr - newpsw.addr <= 6 &&
1612         !(newpsw.mask & PSW_MASK_WAIT) &&
1613         !(oldpsw.mask & PSW_MASK_PSTATE) &&
1614         (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1615         (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1616         unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1617                                offsetof(LowCore, program_new_psw));
1618         return EXCP_HALTED;
1619     }
1620     return 0;
1621 }
1622 
1623 static int handle_intercept(S390CPU *cpu)
1624 {
1625     CPUState *cs = CPU(cpu);
1626     struct kvm_run *run = cs->kvm_run;
1627     int icpt_code = run->s390_sieic.icptcode;
1628     int r = 0;
1629 
1630     DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1631             (long)cs->kvm_run->psw_addr);
1632     switch (icpt_code) {
1633         case ICPT_INSTRUCTION:
1634             r = handle_instruction(cpu, run);
1635             break;
1636         case ICPT_PROGRAM:
1637             unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1638                                    offsetof(LowCore, program_new_psw));
1639             r = EXCP_HALTED;
1640             break;
1641         case ICPT_EXT_INT:
1642             unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1643                                    offsetof(LowCore, external_new_psw));
1644             r = EXCP_HALTED;
1645             break;
1646         case ICPT_WAITPSW:
1647             /* disabled wait, since enabled wait is handled in kernel */
1648             s390_handle_wait(cpu);
1649             r = EXCP_HALTED;
1650             break;
1651         case ICPT_CPU_STOP:
1652             do_stop_interrupt(&cpu->env);
1653             r = EXCP_HALTED;
1654             break;
1655         case ICPT_OPEREXC:
1656             /* check for break points */
1657             r = handle_sw_breakpoint(cpu, run);
1658             if (r == -ENOENT) {
1659                 /* Then check for potential pgm check loops */
1660                 r = handle_oper_loop(cpu, run);
1661                 if (r == 0) {
1662                     kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1663                 }
1664             }
1665             break;
1666         case ICPT_SOFT_INTERCEPT:
1667             fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1668             exit(1);
1669             break;
1670         case ICPT_IO:
1671             fprintf(stderr, "KVM unimplemented icpt IO\n");
1672             exit(1);
1673             break;
1674         default:
1675             fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1676             exit(1);
1677             break;
1678     }
1679 
1680     return r;
1681 }
1682 
1683 static int handle_tsch(S390CPU *cpu)
1684 {
1685     CPUState *cs = CPU(cpu);
1686     struct kvm_run *run = cs->kvm_run;
1687     int ret;
1688 
1689     ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1690                              RA_IGNORED);
1691     if (ret < 0) {
1692         /*
1693          * Failure.
1694          * If an I/O interrupt had been dequeued, we have to reinject it.
1695          */
1696         if (run->s390_tsch.dequeued) {
1697             s390_io_interrupt(run->s390_tsch.subchannel_id,
1698                               run->s390_tsch.subchannel_nr,
1699                               run->s390_tsch.io_int_parm,
1700                               run->s390_tsch.io_int_word);
1701         }
1702         ret = 0;
1703     }
1704     return ret;
1705 }
1706 
1707 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1708 {
1709     SysIB_322 sysib;
1710     int del;
1711 
1712     if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1713         return;
1714     }
1715     /* Shift the stack of Extended Names to prepare for our own data */
1716     memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1717             sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1718     /* First virt level, that doesn't provide Ext Names delimits stack. It is
1719      * assumed it's not capable of managing Extended Names for lower levels.
1720      */
1721     for (del = 1; del < sysib.count; del++) {
1722         if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1723             break;
1724         }
1725     }
1726     if (del < sysib.count) {
1727         memset(sysib.ext_names[del], 0,
1728                sizeof(sysib.ext_names[0]) * (sysib.count - del));
1729     }
1730     /* Insert short machine name in EBCDIC, padded with blanks */
1731     if (qemu_name) {
1732         memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1733         ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1734                                                     strlen(qemu_name)));
1735     }
1736     sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1737     memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1738     /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1739      * considered by s390 as not capable of providing any Extended Name.
1740      * Therefore if no name was specified on qemu invocation, we go with the
1741      * same "KVMguest" default, which KVM has filled into short name field.
1742      */
1743     if (qemu_name) {
1744         strncpy((char *)sysib.ext_names[0], qemu_name,
1745                 sizeof(sysib.ext_names[0]));
1746     } else {
1747         strcpy((char *)sysib.ext_names[0], "KVMguest");
1748     }
1749     /* Insert UUID */
1750     memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1751 
1752     s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1753 }
1754 
1755 static int handle_stsi(S390CPU *cpu)
1756 {
1757     CPUState *cs = CPU(cpu);
1758     struct kvm_run *run = cs->kvm_run;
1759 
1760     switch (run->s390_stsi.fc) {
1761     case 3:
1762         if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1763             return 0;
1764         }
1765         /* Only sysib 3.2.2 needs post-handling for now. */
1766         insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1767         return 0;
1768     default:
1769         return 0;
1770     }
1771 }
1772 
1773 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1774 {
1775     CPUState *cs = CPU(cpu);
1776     struct kvm_run *run = cs->kvm_run;
1777 
1778     int ret = 0;
1779     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1780 
1781     switch (arch_info->type) {
1782     case KVM_HW_WP_WRITE:
1783         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1784             cs->watchpoint_hit = &hw_watchpoint;
1785             hw_watchpoint.vaddr = arch_info->addr;
1786             hw_watchpoint.flags = BP_MEM_WRITE;
1787             ret = EXCP_DEBUG;
1788         }
1789         break;
1790     case KVM_HW_BP:
1791         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1792             ret = EXCP_DEBUG;
1793         }
1794         break;
1795     case KVM_SINGLESTEP:
1796         if (cs->singlestep_enabled) {
1797             ret = EXCP_DEBUG;
1798         }
1799         break;
1800     default:
1801         ret = -ENOSYS;
1802     }
1803 
1804     return ret;
1805 }
1806 
1807 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1808 {
1809     S390CPU *cpu = S390_CPU(cs);
1810     int ret = 0;
1811 
1812     qemu_mutex_lock_iothread();
1813 
1814     kvm_cpu_synchronize_state(cs);
1815 
1816     switch (run->exit_reason) {
1817         case KVM_EXIT_S390_SIEIC:
1818             ret = handle_intercept(cpu);
1819             break;
1820         case KVM_EXIT_S390_RESET:
1821             s390_ipl_reset_request(cs, S390_RESET_REIPL);
1822             break;
1823         case KVM_EXIT_S390_TSCH:
1824             ret = handle_tsch(cpu);
1825             break;
1826         case KVM_EXIT_S390_STSI:
1827             ret = handle_stsi(cpu);
1828             break;
1829         case KVM_EXIT_DEBUG:
1830             ret = kvm_arch_handle_debug_exit(cpu);
1831             break;
1832         default:
1833             fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1834             break;
1835     }
1836     qemu_mutex_unlock_iothread();
1837 
1838     if (ret == 0) {
1839         ret = EXCP_INTERRUPT;
1840     }
1841     return ret;
1842 }
1843 
1844 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1845 {
1846     return true;
1847 }
1848 
1849 void kvm_s390_enable_css_support(S390CPU *cpu)
1850 {
1851     int r;
1852 
1853     /* Activate host kernel channel subsystem support. */
1854     r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1855     assert(r == 0);
1856 }
1857 
1858 void kvm_arch_init_irq_routing(KVMState *s)
1859 {
1860     /*
1861      * Note that while irqchip capabilities generally imply that cpustates
1862      * are handled in-kernel, it is not true for s390 (yet); therefore, we
1863      * have to override the common code kvm_halt_in_kernel_allowed setting.
1864      */
1865     if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1866         kvm_gsi_routing_allowed = true;
1867         kvm_halt_in_kernel_allowed = false;
1868     }
1869 }
1870 
1871 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1872                                     int vq, bool assign)
1873 {
1874     struct kvm_ioeventfd kick = {
1875         .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1876         KVM_IOEVENTFD_FLAG_DATAMATCH,
1877         .fd = event_notifier_get_fd(notifier),
1878         .datamatch = vq,
1879         .addr = sch,
1880         .len = 8,
1881     };
1882     trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1883                                      kick.datamatch);
1884     if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1885         return -ENOSYS;
1886     }
1887     if (!assign) {
1888         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1889     }
1890     return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1891 }
1892 
1893 int kvm_s390_get_ri(void)
1894 {
1895     return cap_ri;
1896 }
1897 
1898 int kvm_s390_get_gs(void)
1899 {
1900     return cap_gs;
1901 }
1902 
1903 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1904 {
1905     struct kvm_mp_state mp_state = {};
1906     int ret;
1907 
1908     /* the kvm part might not have been initialized yet */
1909     if (CPU(cpu)->kvm_state == NULL) {
1910         return 0;
1911     }
1912 
1913     switch (cpu_state) {
1914     case S390_CPU_STATE_STOPPED:
1915         mp_state.mp_state = KVM_MP_STATE_STOPPED;
1916         break;
1917     case S390_CPU_STATE_CHECK_STOP:
1918         mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1919         break;
1920     case S390_CPU_STATE_OPERATING:
1921         mp_state.mp_state = KVM_MP_STATE_OPERATING;
1922         break;
1923     case S390_CPU_STATE_LOAD:
1924         mp_state.mp_state = KVM_MP_STATE_LOAD;
1925         break;
1926     default:
1927         error_report("Requested CPU state is not a valid S390 CPU state: %u",
1928                      cpu_state);
1929         exit(1);
1930     }
1931 
1932     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1933     if (ret) {
1934         trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1935                                        strerror(-ret));
1936     }
1937 
1938     return ret;
1939 }
1940 
1941 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
1942 {
1943     struct kvm_s390_irq_state irq_state = {
1944         .buf = (uint64_t) cpu->irqstate,
1945         .len = VCPU_IRQ_BUF_SIZE,
1946     };
1947     CPUState *cs = CPU(cpu);
1948     int32_t bytes;
1949 
1950     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1951         return;
1952     }
1953 
1954     bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
1955     if (bytes < 0) {
1956         cpu->irqstate_saved_size = 0;
1957         error_report("Migration of interrupt state failed");
1958         return;
1959     }
1960 
1961     cpu->irqstate_saved_size = bytes;
1962 }
1963 
1964 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
1965 {
1966     CPUState *cs = CPU(cpu);
1967     struct kvm_s390_irq_state irq_state = {
1968         .buf = (uint64_t) cpu->irqstate,
1969         .len = cpu->irqstate_saved_size,
1970     };
1971     int r;
1972 
1973     if (cpu->irqstate_saved_size == 0) {
1974         return 0;
1975     }
1976 
1977     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1978         return -ENOSYS;
1979     }
1980 
1981     r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
1982     if (r) {
1983         error_report("Setting interrupt state failed %d", r);
1984     }
1985     return r;
1986 }
1987 
1988 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1989                              uint64_t address, uint32_t data, PCIDevice *dev)
1990 {
1991     S390PCIBusDevice *pbdev;
1992     uint32_t vec = data & ZPCI_MSI_VEC_MASK;
1993 
1994     if (!dev) {
1995         DPRINTF("add_msi_route no pci device\n");
1996         return -ENODEV;
1997     }
1998 
1999     pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2000     if (!pbdev) {
2001         DPRINTF("add_msi_route no zpci device\n");
2002         return -ENODEV;
2003     }
2004 
2005     route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2006     route->flags = 0;
2007     route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2008     route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2009     route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2010     route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2011     route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2012     return 0;
2013 }
2014 
2015 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2016                                 int vector, PCIDevice *dev)
2017 {
2018     return 0;
2019 }
2020 
2021 int kvm_arch_release_virq_post(int virq)
2022 {
2023     return 0;
2024 }
2025 
2026 int kvm_arch_msi_data_to_gsi(uint32_t data)
2027 {
2028     abort();
2029 }
2030 
2031 static int query_cpu_subfunc(S390FeatBitmap features)
2032 {
2033     struct kvm_s390_vm_cpu_subfunc prop;
2034     struct kvm_device_attr attr = {
2035         .group = KVM_S390_VM_CPU_MODEL,
2036         .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2037         .addr = (uint64_t) &prop,
2038     };
2039     int rc;
2040 
2041     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2042     if (rc) {
2043         return  rc;
2044     }
2045 
2046     /*
2047      * We're going to add all subfunctions now, if the corresponding feature
2048      * is available that unlocks the query functions.
2049      */
2050     s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2051     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2052         s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2053     }
2054     if (test_bit(S390_FEAT_MSA, features)) {
2055         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2056         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2057         s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2058         s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2059         s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2060     }
2061     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2062         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2063     }
2064     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2065         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2066         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2067         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2068         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2069     }
2070     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2071         s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2072     }
2073     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2074         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2075     }
2076     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2077         s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2078     }
2079     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2080         s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2081     }
2082     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2083         s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2084     }
2085     return 0;
2086 }
2087 
2088 static int configure_cpu_subfunc(const S390FeatBitmap features)
2089 {
2090     struct kvm_s390_vm_cpu_subfunc prop = {};
2091     struct kvm_device_attr attr = {
2092         .group = KVM_S390_VM_CPU_MODEL,
2093         .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2094         .addr = (uint64_t) &prop,
2095     };
2096 
2097     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2098                            KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2099         /* hardware support might be missing, IBC will handle most of this */
2100         return 0;
2101     }
2102 
2103     s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2104     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2105         s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2106     }
2107     if (test_bit(S390_FEAT_MSA, features)) {
2108         s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2109         s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2110         s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2111         s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2112         s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2113     }
2114     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2115         s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2116     }
2117     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2118         s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2119         s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2120         s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2121         s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2122     }
2123     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2124         s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2125     }
2126     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2127         s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2128     }
2129     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2130         s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2131     }
2132     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2133         s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2134     }
2135     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2136         s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2137     }
2138     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2139 }
2140 
2141 static int kvm_to_feat[][2] = {
2142     { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2143     { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2144     { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2145     { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2146     { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2147     { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2148     { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2149     { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2150     { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2151     { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2152     { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2153     { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2154     { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2155     { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2156 };
2157 
2158 static int query_cpu_feat(S390FeatBitmap features)
2159 {
2160     struct kvm_s390_vm_cpu_feat prop;
2161     struct kvm_device_attr attr = {
2162         .group = KVM_S390_VM_CPU_MODEL,
2163         .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2164         .addr = (uint64_t) &prop,
2165     };
2166     int rc;
2167     int i;
2168 
2169     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2170     if (rc) {
2171         return  rc;
2172     }
2173 
2174     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2175         if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2176             set_bit(kvm_to_feat[i][1], features);
2177         }
2178     }
2179     return 0;
2180 }
2181 
2182 static int configure_cpu_feat(const S390FeatBitmap features)
2183 {
2184     struct kvm_s390_vm_cpu_feat prop = {};
2185     struct kvm_device_attr attr = {
2186         .group = KVM_S390_VM_CPU_MODEL,
2187         .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2188         .addr = (uint64_t) &prop,
2189     };
2190     int i;
2191 
2192     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2193         if (test_bit(kvm_to_feat[i][1], features)) {
2194             set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2195         }
2196     }
2197     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2198 }
2199 
2200 bool kvm_s390_cpu_models_supported(void)
2201 {
2202     if (!cpu_model_allowed()) {
2203         /* compatibility machines interfere with the cpu model */
2204         return false;
2205     }
2206     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2207                              KVM_S390_VM_CPU_MACHINE) &&
2208            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2209                              KVM_S390_VM_CPU_PROCESSOR) &&
2210            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2211                              KVM_S390_VM_CPU_MACHINE_FEAT) &&
2212            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2213                              KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2214            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2215                              KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2216 }
2217 
2218 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2219 {
2220     struct kvm_s390_vm_cpu_machine prop = {};
2221     struct kvm_device_attr attr = {
2222         .group = KVM_S390_VM_CPU_MODEL,
2223         .attr = KVM_S390_VM_CPU_MACHINE,
2224         .addr = (uint64_t) &prop,
2225     };
2226     uint16_t unblocked_ibc = 0, cpu_type = 0;
2227     int rc;
2228 
2229     memset(model, 0, sizeof(*model));
2230 
2231     if (!kvm_s390_cpu_models_supported()) {
2232         error_setg(errp, "KVM doesn't support CPU models");
2233         return;
2234     }
2235 
2236     /* query the basic cpu model properties */
2237     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2238     if (rc) {
2239         error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2240         return;
2241     }
2242 
2243     cpu_type = cpuid_type(prop.cpuid);
2244     if (has_ibc(prop.ibc)) {
2245         model->lowest_ibc = lowest_ibc(prop.ibc);
2246         unblocked_ibc = unblocked_ibc(prop.ibc);
2247     }
2248     model->cpu_id = cpuid_id(prop.cpuid);
2249     model->cpu_id_format = cpuid_format(prop.cpuid);
2250     model->cpu_ver = 0xff;
2251 
2252     /* get supported cpu features indicated via STFL(E) */
2253     s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2254                              (uint8_t *) prop.fac_mask);
2255     /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2256     if (test_bit(S390_FEAT_STFLE, model->features)) {
2257         set_bit(S390_FEAT_DAT_ENH_2, model->features);
2258     }
2259     /* get supported cpu features indicated e.g. via SCLP */
2260     rc = query_cpu_feat(model->features);
2261     if (rc) {
2262         error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2263         return;
2264     }
2265     /* get supported cpu subfunctions indicated via query / test bit */
2266     rc = query_cpu_subfunc(model->features);
2267     if (rc) {
2268         error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2269         return;
2270     }
2271 
2272     /* PTFF subfunctions might be indicated although kernel support missing */
2273     if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2274         clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2275         clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2276         clear_bit(S390_FEAT_PTFF_STOE, model->features);
2277         clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2278     }
2279 
2280     /* with cpu model support, CMM is only indicated if really available */
2281     if (kvm_s390_cmma_available()) {
2282         set_bit(S390_FEAT_CMM, model->features);
2283     } else {
2284         /* no cmm -> no cmm nt */
2285         clear_bit(S390_FEAT_CMM_NT, model->features);
2286     }
2287 
2288     /* bpb needs kernel support for migration, VSIE and reset */
2289     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2290         clear_bit(S390_FEAT_BPB, model->features);
2291     }
2292 
2293     /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2294     set_bit(S390_FEAT_ZPCI, model->features);
2295     set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2296 
2297     if (s390_known_cpu_type(cpu_type)) {
2298         /* we want the exact model, even if some features are missing */
2299         model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2300                                        ibc_ec_ga(unblocked_ibc), NULL);
2301     } else {
2302         /* model unknown, e.g. too new - search using features */
2303         model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2304                                        ibc_ec_ga(unblocked_ibc),
2305                                        model->features);
2306     }
2307     if (!model->def) {
2308         error_setg(errp, "KVM: host CPU model could not be identified");
2309         return;
2310     }
2311     /* for now, we can only provide the AP feature with HW support */
2312     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2313         KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2314         set_bit(S390_FEAT_AP, model->features);
2315     }
2316     /* strip of features that are not part of the maximum model */
2317     bitmap_and(model->features, model->features, model->def->full_feat,
2318                S390_FEAT_MAX);
2319 }
2320 
2321 static void kvm_s390_configure_apie(bool interpret)
2322 {
2323     uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2324                                 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2325 
2326     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2327         kvm_s390_set_attr(attr);
2328     }
2329 }
2330 
2331 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2332 {
2333     struct kvm_s390_vm_cpu_processor prop  = {
2334         .fac_list = { 0 },
2335     };
2336     struct kvm_device_attr attr = {
2337         .group = KVM_S390_VM_CPU_MODEL,
2338         .attr = KVM_S390_VM_CPU_PROCESSOR,
2339         .addr = (uint64_t) &prop,
2340     };
2341     int rc;
2342 
2343     if (!model) {
2344         /* compatibility handling if cpu models are disabled */
2345         if (kvm_s390_cmma_available()) {
2346             kvm_s390_enable_cmma();
2347         }
2348         return;
2349     }
2350     if (!kvm_s390_cpu_models_supported()) {
2351         error_setg(errp, "KVM doesn't support CPU models");
2352         return;
2353     }
2354     prop.cpuid = s390_cpuid_from_cpu_model(model);
2355     prop.ibc = s390_ibc_from_cpu_model(model);
2356     /* configure cpu features indicated via STFL(e) */
2357     s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2358                          (uint8_t *) prop.fac_list);
2359     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2360     if (rc) {
2361         error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2362         return;
2363     }
2364     /* configure cpu features indicated e.g. via SCLP */
2365     rc = configure_cpu_feat(model->features);
2366     if (rc) {
2367         error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2368         return;
2369     }
2370     /* configure cpu subfunctions indicated via query / test bit */
2371     rc = configure_cpu_subfunc(model->features);
2372     if (rc) {
2373         error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2374         return;
2375     }
2376     /* enable CMM via CMMA */
2377     if (test_bit(S390_FEAT_CMM, model->features)) {
2378         kvm_s390_enable_cmma();
2379     }
2380 
2381     if (test_bit(S390_FEAT_AP, model->features)) {
2382         kvm_s390_configure_apie(true);
2383     }
2384 }
2385 
2386 void kvm_s390_restart_interrupt(S390CPU *cpu)
2387 {
2388     struct kvm_s390_irq irq = {
2389         .type = KVM_S390_RESTART,
2390     };
2391 
2392     kvm_s390_vcpu_interrupt(cpu, &irq);
2393 }
2394 
2395 void kvm_s390_stop_interrupt(S390CPU *cpu)
2396 {
2397     struct kvm_s390_irq irq = {
2398         .type = KVM_S390_SIGP_STOP,
2399     };
2400 
2401     kvm_s390_vcpu_interrupt(cpu, &irq);
2402 }
2403