1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * Contributions after 2012-10-29 are licensed under the terms of the 18 * GNU GPL, version 2 or (at your option) any later version. 19 * 20 * You should have received a copy of the GNU (Lesser) General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include <sys/ioctl.h> 26 27 #include <linux/kvm.h> 28 #include <asm/ptrace.h> 29 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "internal.h" 33 #include "kvm_s390x.h" 34 #include "qapi/error.h" 35 #include "qemu/error-report.h" 36 #include "qemu/timer.h" 37 #include "sysemu/sysemu.h" 38 #include "sysemu/hw_accel.h" 39 #include "hw/hw.h" 40 #include "sysemu/device_tree.h" 41 #include "exec/gdbstub.h" 42 #include "trace.h" 43 #include "hw/s390x/s390-pci-inst.h" 44 #include "hw/s390x/s390-pci-bus.h" 45 #include "hw/s390x/ipl.h" 46 #include "hw/s390x/ebcdic.h" 47 #include "exec/memattrs.h" 48 #include "hw/s390x/s390-virtio-ccw.h" 49 #include "hw/s390x/s390-virtio-hcall.h" 50 51 #ifndef DEBUG_KVM 52 #define DEBUG_KVM 0 53 #endif 54 55 #define DPRINTF(fmt, ...) do { \ 56 if (DEBUG_KVM) { \ 57 fprintf(stderr, fmt, ## __VA_ARGS__); \ 58 } \ 59 } while (0) 60 61 #define kvm_vm_check_mem_attr(s, attr) \ 62 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 63 64 #define IPA0_DIAG 0x8300 65 #define IPA0_SIGP 0xae00 66 #define IPA0_B2 0xb200 67 #define IPA0_B9 0xb900 68 #define IPA0_EB 0xeb00 69 #define IPA0_E3 0xe300 70 71 #define PRIV_B2_SCLP_CALL 0x20 72 #define PRIV_B2_CSCH 0x30 73 #define PRIV_B2_HSCH 0x31 74 #define PRIV_B2_MSCH 0x32 75 #define PRIV_B2_SSCH 0x33 76 #define PRIV_B2_STSCH 0x34 77 #define PRIV_B2_TSCH 0x35 78 #define PRIV_B2_TPI 0x36 79 #define PRIV_B2_SAL 0x37 80 #define PRIV_B2_RSCH 0x38 81 #define PRIV_B2_STCRW 0x39 82 #define PRIV_B2_STCPS 0x3a 83 #define PRIV_B2_RCHP 0x3b 84 #define PRIV_B2_SCHM 0x3c 85 #define PRIV_B2_CHSC 0x5f 86 #define PRIV_B2_SIGA 0x74 87 #define PRIV_B2_XSCH 0x76 88 89 #define PRIV_EB_SQBS 0x8a 90 #define PRIV_EB_PCISTB 0xd0 91 #define PRIV_EB_SIC 0xd1 92 93 #define PRIV_B9_EQBS 0x9c 94 #define PRIV_B9_CLP 0xa0 95 #define PRIV_B9_PCISTG 0xd0 96 #define PRIV_B9_PCILG 0xd2 97 #define PRIV_B9_RPCIT 0xd3 98 99 #define PRIV_E3_MPCIFC 0xd0 100 #define PRIV_E3_STPCIFC 0xd4 101 102 #define DIAG_TIMEREVENT 0x288 103 #define DIAG_IPL 0x308 104 #define DIAG_KVM_HYPERCALL 0x500 105 #define DIAG_KVM_BREAKPOINT 0x501 106 107 #define ICPT_INSTRUCTION 0x04 108 #define ICPT_PROGRAM 0x08 109 #define ICPT_EXT_INT 0x14 110 #define ICPT_WAITPSW 0x1c 111 #define ICPT_SOFT_INTERCEPT 0x24 112 #define ICPT_CPU_STOP 0x28 113 #define ICPT_OPEREXC 0x2c 114 #define ICPT_IO 0x40 115 116 #define NR_LOCAL_IRQS 32 117 /* 118 * Needs to be big enough to contain max_cpus emergency signals 119 * and in addition NR_LOCAL_IRQS interrupts 120 */ 121 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \ 122 (max_cpus + NR_LOCAL_IRQS)) 123 124 static CPUWatchpoint hw_watchpoint; 125 /* 126 * We don't use a list because this structure is also used to transmit the 127 * hardware breakpoints to the kernel. 128 */ 129 static struct kvm_hw_breakpoint *hw_breakpoints; 130 static int nb_hw_breakpoints; 131 132 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 133 KVM_CAP_LAST_INFO 134 }; 135 136 static int cap_sync_regs; 137 static int cap_async_pf; 138 static int cap_mem_op; 139 static int cap_s390_irq; 140 static int cap_ri; 141 static int cap_gs; 142 143 static int active_cmma; 144 145 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared); 146 147 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 148 { 149 struct kvm_device_attr attr = { 150 .group = KVM_S390_VM_MEM_CTRL, 151 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 152 .addr = (uint64_t) memory_limit, 153 }; 154 155 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 156 } 157 158 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 159 { 160 int rc; 161 162 struct kvm_device_attr attr = { 163 .group = KVM_S390_VM_MEM_CTRL, 164 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 165 .addr = (uint64_t) &new_limit, 166 }; 167 168 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 169 return 0; 170 } 171 172 rc = kvm_s390_query_mem_limit(hw_limit); 173 if (rc) { 174 return rc; 175 } else if (*hw_limit < new_limit) { 176 return -E2BIG; 177 } 178 179 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 180 } 181 182 int kvm_s390_cmma_active(void) 183 { 184 return active_cmma; 185 } 186 187 static bool kvm_s390_cmma_available(void) 188 { 189 static bool initialized, value; 190 191 if (!initialized) { 192 initialized = true; 193 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 194 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 195 } 196 return value; 197 } 198 199 void kvm_s390_cmma_reset(void) 200 { 201 int rc; 202 struct kvm_device_attr attr = { 203 .group = KVM_S390_VM_MEM_CTRL, 204 .attr = KVM_S390_VM_MEM_CLR_CMMA, 205 }; 206 207 if (!kvm_s390_cmma_active()) { 208 return; 209 } 210 211 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 212 trace_kvm_clear_cmma(rc); 213 } 214 215 static void kvm_s390_enable_cmma(void) 216 { 217 int rc; 218 struct kvm_device_attr attr = { 219 .group = KVM_S390_VM_MEM_CTRL, 220 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 221 }; 222 223 if (mem_path) { 224 warn_report("CMM will not be enabled because it is not " 225 "compatible with hugetlbfs."); 226 return; 227 } 228 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 229 active_cmma = !rc; 230 trace_kvm_enable_cmma(rc); 231 } 232 233 static void kvm_s390_set_attr(uint64_t attr) 234 { 235 struct kvm_device_attr attribute = { 236 .group = KVM_S390_VM_CRYPTO, 237 .attr = attr, 238 }; 239 240 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 241 242 if (ret) { 243 error_report("Failed to set crypto device attribute %lu: %s", 244 attr, strerror(-ret)); 245 } 246 } 247 248 static void kvm_s390_init_aes_kw(void) 249 { 250 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 251 252 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 253 NULL)) { 254 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 255 } 256 257 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 258 kvm_s390_set_attr(attr); 259 } 260 } 261 262 static void kvm_s390_init_dea_kw(void) 263 { 264 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 265 266 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 267 NULL)) { 268 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 269 } 270 271 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 272 kvm_s390_set_attr(attr); 273 } 274 } 275 276 void kvm_s390_crypto_reset(void) 277 { 278 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 279 kvm_s390_init_aes_kw(); 280 kvm_s390_init_dea_kw(); 281 } 282 } 283 284 int kvm_arch_init(MachineState *ms, KVMState *s) 285 { 286 MachineClass *mc = MACHINE_GET_CLASS(ms); 287 288 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 289 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 290 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 291 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 292 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 293 294 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 295 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 296 phys_mem_set_alloc(legacy_s390_alloc); 297 } 298 299 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 300 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 301 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 302 if (ri_allowed()) { 303 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 304 cap_ri = 1; 305 } 306 } 307 if (cpu_model_allowed()) { 308 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 309 cap_gs = 1; 310 } 311 } 312 313 /* 314 * The migration interface for ais was introduced with kernel 4.13 315 * but the capability itself had been active since 4.12. As migration 316 * support is considered necessary let's disable ais in the 2.10 317 * machine. 318 */ 319 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ 320 321 return 0; 322 } 323 324 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 325 { 326 return 0; 327 } 328 329 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 330 { 331 return cpu->cpu_index; 332 } 333 334 int kvm_arch_init_vcpu(CPUState *cs) 335 { 336 S390CPU *cpu = S390_CPU(cs); 337 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 338 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE); 339 return 0; 340 } 341 342 void kvm_s390_reset_vcpu(S390CPU *cpu) 343 { 344 CPUState *cs = CPU(cpu); 345 346 /* The initial reset call is needed here to reset in-kernel 347 * vcpu data that we can't access directly from QEMU 348 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 349 * Before this ioctl cpu_synchronize_state() is called in common kvm 350 * code (kvm-all) */ 351 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 352 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 353 } 354 } 355 356 static int can_sync_regs(CPUState *cs, int regs) 357 { 358 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 359 } 360 361 int kvm_arch_put_registers(CPUState *cs, int level) 362 { 363 S390CPU *cpu = S390_CPU(cs); 364 CPUS390XState *env = &cpu->env; 365 struct kvm_sregs sregs; 366 struct kvm_regs regs; 367 struct kvm_fpu fpu = {}; 368 int r; 369 int i; 370 371 /* always save the PSW and the GPRS*/ 372 cs->kvm_run->psw_addr = env->psw.addr; 373 cs->kvm_run->psw_mask = env->psw.mask; 374 375 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 376 for (i = 0; i < 16; i++) { 377 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 378 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 379 } 380 } else { 381 for (i = 0; i < 16; i++) { 382 regs.gprs[i] = env->regs[i]; 383 } 384 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 385 if (r < 0) { 386 return r; 387 } 388 } 389 390 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 391 for (i = 0; i < 32; i++) { 392 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll; 393 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll; 394 } 395 cs->kvm_run->s.regs.fpc = env->fpc; 396 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 397 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 398 for (i = 0; i < 16; i++) { 399 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll; 400 } 401 cs->kvm_run->s.regs.fpc = env->fpc; 402 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 403 } else { 404 /* Floating point */ 405 for (i = 0; i < 16; i++) { 406 fpu.fprs[i] = get_freg(env, i)->ll; 407 } 408 fpu.fpc = env->fpc; 409 410 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 411 if (r < 0) { 412 return r; 413 } 414 } 415 416 /* Do we need to save more than that? */ 417 if (level == KVM_PUT_RUNTIME_STATE) { 418 return 0; 419 } 420 421 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 422 cs->kvm_run->s.regs.cputm = env->cputm; 423 cs->kvm_run->s.regs.ckc = env->ckc; 424 cs->kvm_run->s.regs.todpr = env->todpr; 425 cs->kvm_run->s.regs.gbea = env->gbea; 426 cs->kvm_run->s.regs.pp = env->pp; 427 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 428 } else { 429 /* 430 * These ONE_REGS are not protected by a capability. As they are only 431 * necessary for migration we just trace a possible error, but don't 432 * return with an error return code. 433 */ 434 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 435 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 436 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 437 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 438 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 439 } 440 441 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 442 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 443 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 444 } 445 446 /* pfault parameters */ 447 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 448 cs->kvm_run->s.regs.pft = env->pfault_token; 449 cs->kvm_run->s.regs.pfs = env->pfault_select; 450 cs->kvm_run->s.regs.pfc = env->pfault_compare; 451 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 452 } else if (cap_async_pf) { 453 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 454 if (r < 0) { 455 return r; 456 } 457 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 458 if (r < 0) { 459 return r; 460 } 461 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 462 if (r < 0) { 463 return r; 464 } 465 } 466 467 /* access registers and control registers*/ 468 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 469 for (i = 0; i < 16; i++) { 470 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 471 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 472 } 473 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 474 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 475 } else { 476 for (i = 0; i < 16; i++) { 477 sregs.acrs[i] = env->aregs[i]; 478 sregs.crs[i] = env->cregs[i]; 479 } 480 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 481 if (r < 0) { 482 return r; 483 } 484 } 485 486 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 487 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 488 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 489 } 490 491 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 492 cs->kvm_run->s.regs.bpbc = env->bpbc; 493 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 494 } 495 496 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 497 cs->kvm_run->s.regs.etoken = env->etoken; 498 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 499 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 500 } 501 502 /* Finally the prefix */ 503 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 504 cs->kvm_run->s.regs.prefix = env->psa; 505 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 506 } else { 507 /* prefix is only supported via sync regs */ 508 } 509 return 0; 510 } 511 512 int kvm_arch_get_registers(CPUState *cs) 513 { 514 S390CPU *cpu = S390_CPU(cs); 515 CPUS390XState *env = &cpu->env; 516 struct kvm_sregs sregs; 517 struct kvm_regs regs; 518 struct kvm_fpu fpu; 519 int i, r; 520 521 /* get the PSW */ 522 env->psw.addr = cs->kvm_run->psw_addr; 523 env->psw.mask = cs->kvm_run->psw_mask; 524 525 /* the GPRS */ 526 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 527 for (i = 0; i < 16; i++) { 528 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 529 } 530 } else { 531 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 532 if (r < 0) { 533 return r; 534 } 535 for (i = 0; i < 16; i++) { 536 env->regs[i] = regs.gprs[i]; 537 } 538 } 539 540 /* The ACRS and CRS */ 541 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 542 for (i = 0; i < 16; i++) { 543 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 544 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 545 } 546 } else { 547 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 548 if (r < 0) { 549 return r; 550 } 551 for (i = 0; i < 16; i++) { 552 env->aregs[i] = sregs.acrs[i]; 553 env->cregs[i] = sregs.crs[i]; 554 } 555 } 556 557 /* Floating point and vector registers */ 558 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 559 for (i = 0; i < 32; i++) { 560 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0]; 561 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1]; 562 } 563 env->fpc = cs->kvm_run->s.regs.fpc; 564 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 565 for (i = 0; i < 16; i++) { 566 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i]; 567 } 568 env->fpc = cs->kvm_run->s.regs.fpc; 569 } else { 570 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 571 if (r < 0) { 572 return r; 573 } 574 for (i = 0; i < 16; i++) { 575 get_freg(env, i)->ll = fpu.fprs[i]; 576 } 577 env->fpc = fpu.fpc; 578 } 579 580 /* The prefix */ 581 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 582 env->psa = cs->kvm_run->s.regs.prefix; 583 } 584 585 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 586 env->cputm = cs->kvm_run->s.regs.cputm; 587 env->ckc = cs->kvm_run->s.regs.ckc; 588 env->todpr = cs->kvm_run->s.regs.todpr; 589 env->gbea = cs->kvm_run->s.regs.gbea; 590 env->pp = cs->kvm_run->s.regs.pp; 591 } else { 592 /* 593 * These ONE_REGS are not protected by a capability. As they are only 594 * necessary for migration we just trace a possible error, but don't 595 * return with an error return code. 596 */ 597 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 598 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 599 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 600 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 601 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 602 } 603 604 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 605 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 606 } 607 608 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 609 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 610 } 611 612 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 613 env->bpbc = cs->kvm_run->s.regs.bpbc; 614 } 615 616 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 617 env->etoken = cs->kvm_run->s.regs.etoken; 618 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 619 } 620 621 /* pfault parameters */ 622 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 623 env->pfault_token = cs->kvm_run->s.regs.pft; 624 env->pfault_select = cs->kvm_run->s.regs.pfs; 625 env->pfault_compare = cs->kvm_run->s.regs.pfc; 626 } else if (cap_async_pf) { 627 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 628 if (r < 0) { 629 return r; 630 } 631 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 632 if (r < 0) { 633 return r; 634 } 635 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 636 if (r < 0) { 637 return r; 638 } 639 } 640 641 return 0; 642 } 643 644 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 645 { 646 int r; 647 struct kvm_device_attr attr = { 648 .group = KVM_S390_VM_TOD, 649 .attr = KVM_S390_VM_TOD_LOW, 650 .addr = (uint64_t)tod_low, 651 }; 652 653 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 654 if (r) { 655 return r; 656 } 657 658 attr.attr = KVM_S390_VM_TOD_HIGH; 659 attr.addr = (uint64_t)tod_high; 660 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 661 } 662 663 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 664 { 665 int r; 666 struct kvm_s390_vm_tod_clock gtod; 667 struct kvm_device_attr attr = { 668 .group = KVM_S390_VM_TOD, 669 .attr = KVM_S390_VM_TOD_EXT, 670 .addr = (uint64_t)>od, 671 }; 672 673 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 674 *tod_high = gtod.epoch_idx; 675 *tod_low = gtod.tod; 676 677 return r; 678 } 679 680 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 681 { 682 int r; 683 struct kvm_device_attr attr = { 684 .group = KVM_S390_VM_TOD, 685 .attr = KVM_S390_VM_TOD_LOW, 686 .addr = (uint64_t)&tod_low, 687 }; 688 689 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 690 if (r) { 691 return r; 692 } 693 694 attr.attr = KVM_S390_VM_TOD_HIGH; 695 attr.addr = (uint64_t)&tod_high; 696 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 697 } 698 699 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 700 { 701 struct kvm_s390_vm_tod_clock gtod = { 702 .epoch_idx = tod_high, 703 .tod = tod_low, 704 }; 705 struct kvm_device_attr attr = { 706 .group = KVM_S390_VM_TOD, 707 .attr = KVM_S390_VM_TOD_EXT, 708 .addr = (uint64_t)>od, 709 }; 710 711 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 712 } 713 714 /** 715 * kvm_s390_mem_op: 716 * @addr: the logical start address in guest memory 717 * @ar: the access register number 718 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 719 * @len: length that should be transferred 720 * @is_write: true = write, false = read 721 * Returns: 0 on success, non-zero if an exception or error occurred 722 * 723 * Use KVM ioctl to read/write from/to guest memory. An access exception 724 * is injected into the vCPU in case of translation errors. 725 */ 726 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 727 int len, bool is_write) 728 { 729 struct kvm_s390_mem_op mem_op = { 730 .gaddr = addr, 731 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 732 .size = len, 733 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 734 : KVM_S390_MEMOP_LOGICAL_READ, 735 .buf = (uint64_t)hostbuf, 736 .ar = ar, 737 }; 738 int ret; 739 740 if (!cap_mem_op) { 741 return -ENOSYS; 742 } 743 if (!hostbuf) { 744 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 745 } 746 747 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 748 if (ret < 0) { 749 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret)); 750 } 751 return ret; 752 } 753 754 /* 755 * Legacy layout for s390: 756 * Older S390 KVM requires the topmost vma of the RAM to be 757 * smaller than an system defined value, which is at least 256GB. 758 * Larger systems have larger values. We put the guest between 759 * the end of data segment (system break) and this value. We 760 * use 32GB as a base to have enough room for the system break 761 * to grow. We also have to use MAP parameters that avoid 762 * read-only mapping of guest pages. 763 */ 764 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared) 765 { 766 static void *mem; 767 768 if (mem) { 769 /* we only support one allocation, which is enough for initial ram */ 770 return NULL; 771 } 772 773 mem = mmap((void *) 0x800000000ULL, size, 774 PROT_EXEC|PROT_READ|PROT_WRITE, 775 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 776 if (mem == MAP_FAILED) { 777 mem = NULL; 778 } 779 if (mem && align) { 780 *align = QEMU_VMALLOC_ALIGN; 781 } 782 return mem; 783 } 784 785 static uint8_t const *sw_bp_inst; 786 static uint8_t sw_bp_ilen; 787 788 static void determine_sw_breakpoint_instr(void) 789 { 790 /* DIAG 501 is used for sw breakpoints with old kernels */ 791 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 792 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 793 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 794 795 if (sw_bp_inst) { 796 return; 797 } 798 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 799 sw_bp_inst = diag_501; 800 sw_bp_ilen = sizeof(diag_501); 801 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 802 } else { 803 sw_bp_inst = instr_0x0000; 804 sw_bp_ilen = sizeof(instr_0x0000); 805 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 806 } 807 } 808 809 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 810 { 811 determine_sw_breakpoint_instr(); 812 813 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 814 sw_bp_ilen, 0) || 815 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 816 return -EINVAL; 817 } 818 return 0; 819 } 820 821 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 822 { 823 uint8_t t[MAX_ILEN]; 824 825 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 826 return -EINVAL; 827 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 828 return -EINVAL; 829 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 830 sw_bp_ilen, 1)) { 831 return -EINVAL; 832 } 833 834 return 0; 835 } 836 837 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 838 int len, int type) 839 { 840 int n; 841 842 for (n = 0; n < nb_hw_breakpoints; n++) { 843 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 844 (hw_breakpoints[n].len == len || len == -1)) { 845 return &hw_breakpoints[n]; 846 } 847 } 848 849 return NULL; 850 } 851 852 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 853 { 854 int size; 855 856 if (find_hw_breakpoint(addr, len, type)) { 857 return -EEXIST; 858 } 859 860 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 861 862 if (!hw_breakpoints) { 863 nb_hw_breakpoints = 0; 864 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 865 } else { 866 hw_breakpoints = 867 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 868 } 869 870 if (!hw_breakpoints) { 871 nb_hw_breakpoints = 0; 872 return -ENOMEM; 873 } 874 875 hw_breakpoints[nb_hw_breakpoints].addr = addr; 876 hw_breakpoints[nb_hw_breakpoints].len = len; 877 hw_breakpoints[nb_hw_breakpoints].type = type; 878 879 nb_hw_breakpoints++; 880 881 return 0; 882 } 883 884 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 885 target_ulong len, int type) 886 { 887 switch (type) { 888 case GDB_BREAKPOINT_HW: 889 type = KVM_HW_BP; 890 break; 891 case GDB_WATCHPOINT_WRITE: 892 if (len < 1) { 893 return -EINVAL; 894 } 895 type = KVM_HW_WP_WRITE; 896 break; 897 default: 898 return -ENOSYS; 899 } 900 return insert_hw_breakpoint(addr, len, type); 901 } 902 903 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 904 target_ulong len, int type) 905 { 906 int size; 907 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 908 909 if (bp == NULL) { 910 return -ENOENT; 911 } 912 913 nb_hw_breakpoints--; 914 if (nb_hw_breakpoints > 0) { 915 /* 916 * In order to trim the array, move the last element to the position to 917 * be removed - if necessary. 918 */ 919 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 920 *bp = hw_breakpoints[nb_hw_breakpoints]; 921 } 922 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 923 hw_breakpoints = 924 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 925 } else { 926 g_free(hw_breakpoints); 927 hw_breakpoints = NULL; 928 } 929 930 return 0; 931 } 932 933 void kvm_arch_remove_all_hw_breakpoints(void) 934 { 935 nb_hw_breakpoints = 0; 936 g_free(hw_breakpoints); 937 hw_breakpoints = NULL; 938 } 939 940 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 941 { 942 int i; 943 944 if (nb_hw_breakpoints > 0) { 945 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 946 dbg->arch.hw_bp = hw_breakpoints; 947 948 for (i = 0; i < nb_hw_breakpoints; ++i) { 949 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 950 hw_breakpoints[i].addr); 951 } 952 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 953 } else { 954 dbg->arch.nr_hw_bp = 0; 955 dbg->arch.hw_bp = NULL; 956 } 957 } 958 959 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 960 { 961 } 962 963 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 964 { 965 return MEMTXATTRS_UNSPECIFIED; 966 } 967 968 int kvm_arch_process_async_events(CPUState *cs) 969 { 970 return cs->halted; 971 } 972 973 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 974 struct kvm_s390_interrupt *interrupt) 975 { 976 int r = 0; 977 978 interrupt->type = irq->type; 979 switch (irq->type) { 980 case KVM_S390_INT_VIRTIO: 981 interrupt->parm = irq->u.ext.ext_params; 982 /* fall through */ 983 case KVM_S390_INT_PFAULT_INIT: 984 case KVM_S390_INT_PFAULT_DONE: 985 interrupt->parm64 = irq->u.ext.ext_params2; 986 break; 987 case KVM_S390_PROGRAM_INT: 988 interrupt->parm = irq->u.pgm.code; 989 break; 990 case KVM_S390_SIGP_SET_PREFIX: 991 interrupt->parm = irq->u.prefix.address; 992 break; 993 case KVM_S390_INT_SERVICE: 994 interrupt->parm = irq->u.ext.ext_params; 995 break; 996 case KVM_S390_MCHK: 997 interrupt->parm = irq->u.mchk.cr14; 998 interrupt->parm64 = irq->u.mchk.mcic; 999 break; 1000 case KVM_S390_INT_EXTERNAL_CALL: 1001 interrupt->parm = irq->u.extcall.code; 1002 break; 1003 case KVM_S390_INT_EMERGENCY: 1004 interrupt->parm = irq->u.emerg.code; 1005 break; 1006 case KVM_S390_SIGP_STOP: 1007 case KVM_S390_RESTART: 1008 break; /* These types have no parameters */ 1009 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1010 interrupt->parm = irq->u.io.subchannel_id << 16; 1011 interrupt->parm |= irq->u.io.subchannel_nr; 1012 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1013 interrupt->parm64 |= irq->u.io.io_int_word; 1014 break; 1015 default: 1016 r = -EINVAL; 1017 break; 1018 } 1019 return r; 1020 } 1021 1022 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1023 { 1024 struct kvm_s390_interrupt kvmint = {}; 1025 int r; 1026 1027 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1028 if (r < 0) { 1029 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1030 exit(1); 1031 } 1032 1033 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1034 if (r < 0) { 1035 fprintf(stderr, "KVM failed to inject interrupt\n"); 1036 exit(1); 1037 } 1038 } 1039 1040 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1041 { 1042 CPUState *cs = CPU(cpu); 1043 int r; 1044 1045 if (cap_s390_irq) { 1046 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1047 if (!r) { 1048 return; 1049 } 1050 error_report("KVM failed to inject interrupt %llx", irq->type); 1051 exit(1); 1052 } 1053 1054 inject_vcpu_irq_legacy(cs, irq); 1055 } 1056 1057 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1058 { 1059 struct kvm_s390_interrupt kvmint = {}; 1060 int r; 1061 1062 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1063 if (r < 0) { 1064 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1065 exit(1); 1066 } 1067 1068 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1069 if (r < 0) { 1070 fprintf(stderr, "KVM failed to inject interrupt\n"); 1071 exit(1); 1072 } 1073 } 1074 1075 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1076 { 1077 struct kvm_s390_irq irq = { 1078 .type = KVM_S390_PROGRAM_INT, 1079 .u.pgm.code = code, 1080 }; 1081 1082 kvm_s390_vcpu_interrupt(cpu, &irq); 1083 } 1084 1085 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1086 { 1087 struct kvm_s390_irq irq = { 1088 .type = KVM_S390_PROGRAM_INT, 1089 .u.pgm.code = code, 1090 .u.pgm.trans_exc_code = te_code, 1091 .u.pgm.exc_access_id = te_code & 3, 1092 }; 1093 1094 kvm_s390_vcpu_interrupt(cpu, &irq); 1095 } 1096 1097 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1098 uint16_t ipbh0) 1099 { 1100 CPUS390XState *env = &cpu->env; 1101 uint64_t sccb; 1102 uint32_t code; 1103 int r = 0; 1104 1105 sccb = env->regs[ipbh0 & 0xf]; 1106 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1107 1108 r = sclp_service_call(env, sccb, code); 1109 if (r < 0) { 1110 kvm_s390_program_interrupt(cpu, -r); 1111 } else { 1112 setcc(cpu, r); 1113 } 1114 1115 return 0; 1116 } 1117 1118 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1119 { 1120 CPUS390XState *env = &cpu->env; 1121 int rc = 0; 1122 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1123 1124 switch (ipa1) { 1125 case PRIV_B2_XSCH: 1126 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1127 break; 1128 case PRIV_B2_CSCH: 1129 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1130 break; 1131 case PRIV_B2_HSCH: 1132 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1133 break; 1134 case PRIV_B2_MSCH: 1135 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1136 break; 1137 case PRIV_B2_SSCH: 1138 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1139 break; 1140 case PRIV_B2_STCRW: 1141 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1142 break; 1143 case PRIV_B2_STSCH: 1144 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1145 break; 1146 case PRIV_B2_TSCH: 1147 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1148 fprintf(stderr, "Spurious tsch intercept\n"); 1149 break; 1150 case PRIV_B2_CHSC: 1151 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1152 break; 1153 case PRIV_B2_TPI: 1154 /* This should have been handled by kvm already. */ 1155 fprintf(stderr, "Spurious tpi intercept\n"); 1156 break; 1157 case PRIV_B2_SCHM: 1158 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1159 run->s390_sieic.ipb, RA_IGNORED); 1160 break; 1161 case PRIV_B2_RSCH: 1162 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1163 break; 1164 case PRIV_B2_RCHP: 1165 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1166 break; 1167 case PRIV_B2_STCPS: 1168 /* We do not provide this instruction, it is suppressed. */ 1169 break; 1170 case PRIV_B2_SAL: 1171 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1172 break; 1173 case PRIV_B2_SIGA: 1174 /* Not provided, set CC = 3 for subchannel not operational */ 1175 setcc(cpu, 3); 1176 break; 1177 case PRIV_B2_SCLP_CALL: 1178 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1179 break; 1180 default: 1181 rc = -1; 1182 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1183 break; 1184 } 1185 1186 return rc; 1187 } 1188 1189 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1190 uint8_t *ar) 1191 { 1192 CPUS390XState *env = &cpu->env; 1193 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1194 uint32_t base2 = run->s390_sieic.ipb >> 28; 1195 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1196 ((run->s390_sieic.ipb & 0xff00) << 4); 1197 1198 if (disp2 & 0x80000) { 1199 disp2 += 0xfff00000; 1200 } 1201 if (ar) { 1202 *ar = base2; 1203 } 1204 1205 return (base2 ? env->regs[base2] : 0) + 1206 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1207 } 1208 1209 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1210 uint8_t *ar) 1211 { 1212 CPUS390XState *env = &cpu->env; 1213 uint32_t base2 = run->s390_sieic.ipb >> 28; 1214 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1215 ((run->s390_sieic.ipb & 0xff00) << 4); 1216 1217 if (disp2 & 0x80000) { 1218 disp2 += 0xfff00000; 1219 } 1220 if (ar) { 1221 *ar = base2; 1222 } 1223 1224 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1225 } 1226 1227 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1228 { 1229 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1230 1231 if (s390_has_feat(S390_FEAT_ZPCI)) { 1232 return clp_service_call(cpu, r2, RA_IGNORED); 1233 } else { 1234 return -1; 1235 } 1236 } 1237 1238 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1239 { 1240 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1241 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1242 1243 if (s390_has_feat(S390_FEAT_ZPCI)) { 1244 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1245 } else { 1246 return -1; 1247 } 1248 } 1249 1250 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1251 { 1252 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1253 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1254 1255 if (s390_has_feat(S390_FEAT_ZPCI)) { 1256 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1257 } else { 1258 return -1; 1259 } 1260 } 1261 1262 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1263 { 1264 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1265 uint64_t fiba; 1266 uint8_t ar; 1267 1268 if (s390_has_feat(S390_FEAT_ZPCI)) { 1269 fiba = get_base_disp_rxy(cpu, run, &ar); 1270 1271 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1272 } else { 1273 return -1; 1274 } 1275 } 1276 1277 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1278 { 1279 CPUS390XState *env = &cpu->env; 1280 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1281 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1282 uint8_t isc; 1283 uint16_t mode; 1284 int r; 1285 1286 mode = env->regs[r1] & 0xffff; 1287 isc = (env->regs[r3] >> 27) & 0x7; 1288 r = css_do_sic(env, isc, mode); 1289 if (r) { 1290 kvm_s390_program_interrupt(cpu, -r); 1291 } 1292 1293 return 0; 1294 } 1295 1296 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1297 { 1298 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1299 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1300 1301 if (s390_has_feat(S390_FEAT_ZPCI)) { 1302 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1303 } else { 1304 return -1; 1305 } 1306 } 1307 1308 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1309 { 1310 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1311 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1312 uint64_t gaddr; 1313 uint8_t ar; 1314 1315 if (s390_has_feat(S390_FEAT_ZPCI)) { 1316 gaddr = get_base_disp_rsy(cpu, run, &ar); 1317 1318 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1319 } else { 1320 return -1; 1321 } 1322 } 1323 1324 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1325 { 1326 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1327 uint64_t fiba; 1328 uint8_t ar; 1329 1330 if (s390_has_feat(S390_FEAT_ZPCI)) { 1331 fiba = get_base_disp_rxy(cpu, run, &ar); 1332 1333 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1334 } else { 1335 return -1; 1336 } 1337 } 1338 1339 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1340 { 1341 int r = 0; 1342 1343 switch (ipa1) { 1344 case PRIV_B9_CLP: 1345 r = kvm_clp_service_call(cpu, run); 1346 break; 1347 case PRIV_B9_PCISTG: 1348 r = kvm_pcistg_service_call(cpu, run); 1349 break; 1350 case PRIV_B9_PCILG: 1351 r = kvm_pcilg_service_call(cpu, run); 1352 break; 1353 case PRIV_B9_RPCIT: 1354 r = kvm_rpcit_service_call(cpu, run); 1355 break; 1356 case PRIV_B9_EQBS: 1357 /* just inject exception */ 1358 r = -1; 1359 break; 1360 default: 1361 r = -1; 1362 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1363 break; 1364 } 1365 1366 return r; 1367 } 1368 1369 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1370 { 1371 int r = 0; 1372 1373 switch (ipbl) { 1374 case PRIV_EB_PCISTB: 1375 r = kvm_pcistb_service_call(cpu, run); 1376 break; 1377 case PRIV_EB_SIC: 1378 r = kvm_sic_service_call(cpu, run); 1379 break; 1380 case PRIV_EB_SQBS: 1381 /* just inject exception */ 1382 r = -1; 1383 break; 1384 default: 1385 r = -1; 1386 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1387 break; 1388 } 1389 1390 return r; 1391 } 1392 1393 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1394 { 1395 int r = 0; 1396 1397 switch (ipbl) { 1398 case PRIV_E3_MPCIFC: 1399 r = kvm_mpcifc_service_call(cpu, run); 1400 break; 1401 case PRIV_E3_STPCIFC: 1402 r = kvm_stpcifc_service_call(cpu, run); 1403 break; 1404 default: 1405 r = -1; 1406 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1407 break; 1408 } 1409 1410 return r; 1411 } 1412 1413 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1414 { 1415 CPUS390XState *env = &cpu->env; 1416 int ret; 1417 1418 ret = s390_virtio_hypercall(env); 1419 if (ret == -EINVAL) { 1420 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1421 return 0; 1422 } 1423 1424 return ret; 1425 } 1426 1427 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1428 { 1429 uint64_t r1, r3; 1430 int rc; 1431 1432 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1433 r3 = run->s390_sieic.ipa & 0x000f; 1434 rc = handle_diag_288(&cpu->env, r1, r3); 1435 if (rc) { 1436 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1437 } 1438 } 1439 1440 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1441 { 1442 uint64_t r1, r3; 1443 1444 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1445 r3 = run->s390_sieic.ipa & 0x000f; 1446 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1447 } 1448 1449 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1450 { 1451 CPUS390XState *env = &cpu->env; 1452 unsigned long pc; 1453 1454 pc = env->psw.addr - sw_bp_ilen; 1455 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1456 env->psw.addr = pc; 1457 return EXCP_DEBUG; 1458 } 1459 1460 return -ENOENT; 1461 } 1462 1463 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1464 1465 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1466 { 1467 int r = 0; 1468 uint16_t func_code; 1469 1470 /* 1471 * For any diagnose call we support, bits 48-63 of the resulting 1472 * address specify the function code; the remainder is ignored. 1473 */ 1474 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1475 switch (func_code) { 1476 case DIAG_TIMEREVENT: 1477 kvm_handle_diag_288(cpu, run); 1478 break; 1479 case DIAG_IPL: 1480 kvm_handle_diag_308(cpu, run); 1481 break; 1482 case DIAG_KVM_HYPERCALL: 1483 r = handle_hypercall(cpu, run); 1484 break; 1485 case DIAG_KVM_BREAKPOINT: 1486 r = handle_sw_breakpoint(cpu, run); 1487 break; 1488 default: 1489 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1490 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1491 break; 1492 } 1493 1494 return r; 1495 } 1496 1497 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1498 { 1499 CPUS390XState *env = &cpu->env; 1500 const uint8_t r1 = ipa1 >> 4; 1501 const uint8_t r3 = ipa1 & 0x0f; 1502 int ret; 1503 uint8_t order; 1504 1505 /* get order code */ 1506 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1507 1508 ret = handle_sigp(env, order, r1, r3); 1509 setcc(cpu, ret); 1510 return 0; 1511 } 1512 1513 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1514 { 1515 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1516 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1517 int r = -1; 1518 1519 DPRINTF("handle_instruction 0x%x 0x%x\n", 1520 run->s390_sieic.ipa, run->s390_sieic.ipb); 1521 switch (ipa0) { 1522 case IPA0_B2: 1523 r = handle_b2(cpu, run, ipa1); 1524 break; 1525 case IPA0_B9: 1526 r = handle_b9(cpu, run, ipa1); 1527 break; 1528 case IPA0_EB: 1529 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1530 break; 1531 case IPA0_E3: 1532 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1533 break; 1534 case IPA0_DIAG: 1535 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1536 break; 1537 case IPA0_SIGP: 1538 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1539 break; 1540 } 1541 1542 if (r < 0) { 1543 r = 0; 1544 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1545 } 1546 1547 return r; 1548 } 1549 1550 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1551 int pswoffset) 1552 { 1553 CPUState *cs = CPU(cpu); 1554 1555 s390_cpu_halt(cpu); 1556 cpu->env.crash_reason = reason; 1557 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1558 } 1559 1560 /* try to detect pgm check loops */ 1561 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1562 { 1563 CPUState *cs = CPU(cpu); 1564 PSW oldpsw, newpsw; 1565 1566 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1567 offsetof(LowCore, program_new_psw)); 1568 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1569 offsetof(LowCore, program_new_psw) + 8); 1570 oldpsw.mask = run->psw_mask; 1571 oldpsw.addr = run->psw_addr; 1572 /* 1573 * Avoid endless loops of operation exceptions, if the pgm new 1574 * PSW will cause a new operation exception. 1575 * The heuristic checks if the pgm new psw is within 6 bytes before 1576 * the faulting psw address (with same DAT, AS settings) and the 1577 * new psw is not a wait psw and the fault was not triggered by 1578 * problem state. In that case go into crashed state. 1579 */ 1580 1581 if (oldpsw.addr - newpsw.addr <= 6 && 1582 !(newpsw.mask & PSW_MASK_WAIT) && 1583 !(oldpsw.mask & PSW_MASK_PSTATE) && 1584 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1585 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1586 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1587 offsetof(LowCore, program_new_psw)); 1588 return EXCP_HALTED; 1589 } 1590 return 0; 1591 } 1592 1593 static int handle_intercept(S390CPU *cpu) 1594 { 1595 CPUState *cs = CPU(cpu); 1596 struct kvm_run *run = cs->kvm_run; 1597 int icpt_code = run->s390_sieic.icptcode; 1598 int r = 0; 1599 1600 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1601 (long)cs->kvm_run->psw_addr); 1602 switch (icpt_code) { 1603 case ICPT_INSTRUCTION: 1604 r = handle_instruction(cpu, run); 1605 break; 1606 case ICPT_PROGRAM: 1607 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1608 offsetof(LowCore, program_new_psw)); 1609 r = EXCP_HALTED; 1610 break; 1611 case ICPT_EXT_INT: 1612 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1613 offsetof(LowCore, external_new_psw)); 1614 r = EXCP_HALTED; 1615 break; 1616 case ICPT_WAITPSW: 1617 /* disabled wait, since enabled wait is handled in kernel */ 1618 s390_handle_wait(cpu); 1619 r = EXCP_HALTED; 1620 break; 1621 case ICPT_CPU_STOP: 1622 do_stop_interrupt(&cpu->env); 1623 r = EXCP_HALTED; 1624 break; 1625 case ICPT_OPEREXC: 1626 /* check for break points */ 1627 r = handle_sw_breakpoint(cpu, run); 1628 if (r == -ENOENT) { 1629 /* Then check for potential pgm check loops */ 1630 r = handle_oper_loop(cpu, run); 1631 if (r == 0) { 1632 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1633 } 1634 } 1635 break; 1636 case ICPT_SOFT_INTERCEPT: 1637 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1638 exit(1); 1639 break; 1640 case ICPT_IO: 1641 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1642 exit(1); 1643 break; 1644 default: 1645 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1646 exit(1); 1647 break; 1648 } 1649 1650 return r; 1651 } 1652 1653 static int handle_tsch(S390CPU *cpu) 1654 { 1655 CPUState *cs = CPU(cpu); 1656 struct kvm_run *run = cs->kvm_run; 1657 int ret; 1658 1659 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1660 RA_IGNORED); 1661 if (ret < 0) { 1662 /* 1663 * Failure. 1664 * If an I/O interrupt had been dequeued, we have to reinject it. 1665 */ 1666 if (run->s390_tsch.dequeued) { 1667 s390_io_interrupt(run->s390_tsch.subchannel_id, 1668 run->s390_tsch.subchannel_nr, 1669 run->s390_tsch.io_int_parm, 1670 run->s390_tsch.io_int_word); 1671 } 1672 ret = 0; 1673 } 1674 return ret; 1675 } 1676 1677 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1678 { 1679 SysIB_322 sysib; 1680 int del; 1681 1682 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1683 return; 1684 } 1685 /* Shift the stack of Extended Names to prepare for our own data */ 1686 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1687 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1688 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1689 * assumed it's not capable of managing Extended Names for lower levels. 1690 */ 1691 for (del = 1; del < sysib.count; del++) { 1692 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1693 break; 1694 } 1695 } 1696 if (del < sysib.count) { 1697 memset(sysib.ext_names[del], 0, 1698 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1699 } 1700 /* Insert short machine name in EBCDIC, padded with blanks */ 1701 if (qemu_name) { 1702 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1703 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1704 strlen(qemu_name))); 1705 } 1706 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1707 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1708 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1709 * considered by s390 as not capable of providing any Extended Name. 1710 * Therefore if no name was specified on qemu invocation, we go with the 1711 * same "KVMguest" default, which KVM has filled into short name field. 1712 */ 1713 if (qemu_name) { 1714 strncpy((char *)sysib.ext_names[0], qemu_name, 1715 sizeof(sysib.ext_names[0])); 1716 } else { 1717 strcpy((char *)sysib.ext_names[0], "KVMguest"); 1718 } 1719 /* Insert UUID */ 1720 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1721 1722 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1723 } 1724 1725 static int handle_stsi(S390CPU *cpu) 1726 { 1727 CPUState *cs = CPU(cpu); 1728 struct kvm_run *run = cs->kvm_run; 1729 1730 switch (run->s390_stsi.fc) { 1731 case 3: 1732 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1733 return 0; 1734 } 1735 /* Only sysib 3.2.2 needs post-handling for now. */ 1736 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1737 return 0; 1738 default: 1739 return 0; 1740 } 1741 } 1742 1743 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1744 { 1745 CPUState *cs = CPU(cpu); 1746 struct kvm_run *run = cs->kvm_run; 1747 1748 int ret = 0; 1749 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1750 1751 switch (arch_info->type) { 1752 case KVM_HW_WP_WRITE: 1753 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1754 cs->watchpoint_hit = &hw_watchpoint; 1755 hw_watchpoint.vaddr = arch_info->addr; 1756 hw_watchpoint.flags = BP_MEM_WRITE; 1757 ret = EXCP_DEBUG; 1758 } 1759 break; 1760 case KVM_HW_BP: 1761 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1762 ret = EXCP_DEBUG; 1763 } 1764 break; 1765 case KVM_SINGLESTEP: 1766 if (cs->singlestep_enabled) { 1767 ret = EXCP_DEBUG; 1768 } 1769 break; 1770 default: 1771 ret = -ENOSYS; 1772 } 1773 1774 return ret; 1775 } 1776 1777 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1778 { 1779 S390CPU *cpu = S390_CPU(cs); 1780 int ret = 0; 1781 1782 qemu_mutex_lock_iothread(); 1783 1784 kvm_cpu_synchronize_state(cs); 1785 1786 switch (run->exit_reason) { 1787 case KVM_EXIT_S390_SIEIC: 1788 ret = handle_intercept(cpu); 1789 break; 1790 case KVM_EXIT_S390_RESET: 1791 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1792 break; 1793 case KVM_EXIT_S390_TSCH: 1794 ret = handle_tsch(cpu); 1795 break; 1796 case KVM_EXIT_S390_STSI: 1797 ret = handle_stsi(cpu); 1798 break; 1799 case KVM_EXIT_DEBUG: 1800 ret = kvm_arch_handle_debug_exit(cpu); 1801 break; 1802 default: 1803 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1804 break; 1805 } 1806 qemu_mutex_unlock_iothread(); 1807 1808 if (ret == 0) { 1809 ret = EXCP_INTERRUPT; 1810 } 1811 return ret; 1812 } 1813 1814 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1815 { 1816 return true; 1817 } 1818 1819 void kvm_s390_enable_css_support(S390CPU *cpu) 1820 { 1821 int r; 1822 1823 /* Activate host kernel channel subsystem support. */ 1824 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1825 assert(r == 0); 1826 } 1827 1828 void kvm_arch_init_irq_routing(KVMState *s) 1829 { 1830 /* 1831 * Note that while irqchip capabilities generally imply that cpustates 1832 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1833 * have to override the common code kvm_halt_in_kernel_allowed setting. 1834 */ 1835 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1836 kvm_gsi_routing_allowed = true; 1837 kvm_halt_in_kernel_allowed = false; 1838 } 1839 } 1840 1841 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1842 int vq, bool assign) 1843 { 1844 struct kvm_ioeventfd kick = { 1845 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1846 KVM_IOEVENTFD_FLAG_DATAMATCH, 1847 .fd = event_notifier_get_fd(notifier), 1848 .datamatch = vq, 1849 .addr = sch, 1850 .len = 8, 1851 }; 1852 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1853 return -ENOSYS; 1854 } 1855 if (!assign) { 1856 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1857 } 1858 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1859 } 1860 1861 int kvm_s390_get_ri(void) 1862 { 1863 return cap_ri; 1864 } 1865 1866 int kvm_s390_get_gs(void) 1867 { 1868 return cap_gs; 1869 } 1870 1871 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1872 { 1873 struct kvm_mp_state mp_state = {}; 1874 int ret; 1875 1876 /* the kvm part might not have been initialized yet */ 1877 if (CPU(cpu)->kvm_state == NULL) { 1878 return 0; 1879 } 1880 1881 switch (cpu_state) { 1882 case S390_CPU_STATE_STOPPED: 1883 mp_state.mp_state = KVM_MP_STATE_STOPPED; 1884 break; 1885 case S390_CPU_STATE_CHECK_STOP: 1886 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 1887 break; 1888 case S390_CPU_STATE_OPERATING: 1889 mp_state.mp_state = KVM_MP_STATE_OPERATING; 1890 break; 1891 case S390_CPU_STATE_LOAD: 1892 mp_state.mp_state = KVM_MP_STATE_LOAD; 1893 break; 1894 default: 1895 error_report("Requested CPU state is not a valid S390 CPU state: %u", 1896 cpu_state); 1897 exit(1); 1898 } 1899 1900 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1901 if (ret) { 1902 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 1903 strerror(-ret)); 1904 } 1905 1906 return ret; 1907 } 1908 1909 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 1910 { 1911 struct kvm_s390_irq_state irq_state = { 1912 .buf = (uint64_t) cpu->irqstate, 1913 .len = VCPU_IRQ_BUF_SIZE, 1914 }; 1915 CPUState *cs = CPU(cpu); 1916 int32_t bytes; 1917 1918 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1919 return; 1920 } 1921 1922 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 1923 if (bytes < 0) { 1924 cpu->irqstate_saved_size = 0; 1925 error_report("Migration of interrupt state failed"); 1926 return; 1927 } 1928 1929 cpu->irqstate_saved_size = bytes; 1930 } 1931 1932 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 1933 { 1934 CPUState *cs = CPU(cpu); 1935 struct kvm_s390_irq_state irq_state = { 1936 .buf = (uint64_t) cpu->irqstate, 1937 .len = cpu->irqstate_saved_size, 1938 }; 1939 int r; 1940 1941 if (cpu->irqstate_saved_size == 0) { 1942 return 0; 1943 } 1944 1945 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1946 return -ENOSYS; 1947 } 1948 1949 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 1950 if (r) { 1951 error_report("Setting interrupt state failed %d", r); 1952 } 1953 return r; 1954 } 1955 1956 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1957 uint64_t address, uint32_t data, PCIDevice *dev) 1958 { 1959 S390PCIBusDevice *pbdev; 1960 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 1961 1962 if (!dev) { 1963 DPRINTF("add_msi_route no pci device\n"); 1964 return -ENODEV; 1965 } 1966 1967 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 1968 if (!pbdev) { 1969 DPRINTF("add_msi_route no zpci device\n"); 1970 return -ENODEV; 1971 } 1972 1973 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 1974 route->flags = 0; 1975 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 1976 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 1977 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 1978 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 1979 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 1980 return 0; 1981 } 1982 1983 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 1984 int vector, PCIDevice *dev) 1985 { 1986 return 0; 1987 } 1988 1989 int kvm_arch_release_virq_post(int virq) 1990 { 1991 return 0; 1992 } 1993 1994 int kvm_arch_msi_data_to_gsi(uint32_t data) 1995 { 1996 abort(); 1997 } 1998 1999 static int query_cpu_subfunc(S390FeatBitmap features) 2000 { 2001 struct kvm_s390_vm_cpu_subfunc prop; 2002 struct kvm_device_attr attr = { 2003 .group = KVM_S390_VM_CPU_MODEL, 2004 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2005 .addr = (uint64_t) &prop, 2006 }; 2007 int rc; 2008 2009 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2010 if (rc) { 2011 return rc; 2012 } 2013 2014 /* 2015 * We're going to add all subfunctions now, if the corresponding feature 2016 * is available that unlocks the query functions. 2017 */ 2018 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2019 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2020 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2021 } 2022 if (test_bit(S390_FEAT_MSA, features)) { 2023 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2024 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2025 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2026 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2027 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2028 } 2029 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2030 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2031 } 2032 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2033 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2034 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2035 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2036 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2037 } 2038 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2039 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2040 } 2041 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2042 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2043 } 2044 return 0; 2045 } 2046 2047 static int configure_cpu_subfunc(const S390FeatBitmap features) 2048 { 2049 struct kvm_s390_vm_cpu_subfunc prop = {}; 2050 struct kvm_device_attr attr = { 2051 .group = KVM_S390_VM_CPU_MODEL, 2052 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2053 .addr = (uint64_t) &prop, 2054 }; 2055 2056 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2057 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2058 /* hardware support might be missing, IBC will handle most of this */ 2059 return 0; 2060 } 2061 2062 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2063 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2064 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2065 } 2066 if (test_bit(S390_FEAT_MSA, features)) { 2067 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2068 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2069 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2070 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2071 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2072 } 2073 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2074 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2075 } 2076 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2077 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2078 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2079 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2080 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2081 } 2082 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2083 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2084 } 2085 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2086 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2087 } 2088 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2089 } 2090 2091 static int kvm_to_feat[][2] = { 2092 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2093 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2094 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2095 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2096 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2097 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2098 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2099 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2100 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2101 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2102 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2103 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2104 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2105 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2106 }; 2107 2108 static int query_cpu_feat(S390FeatBitmap features) 2109 { 2110 struct kvm_s390_vm_cpu_feat prop; 2111 struct kvm_device_attr attr = { 2112 .group = KVM_S390_VM_CPU_MODEL, 2113 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2114 .addr = (uint64_t) &prop, 2115 }; 2116 int rc; 2117 int i; 2118 2119 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2120 if (rc) { 2121 return rc; 2122 } 2123 2124 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2125 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2126 set_bit(kvm_to_feat[i][1], features); 2127 } 2128 } 2129 return 0; 2130 } 2131 2132 static int configure_cpu_feat(const S390FeatBitmap features) 2133 { 2134 struct kvm_s390_vm_cpu_feat prop = {}; 2135 struct kvm_device_attr attr = { 2136 .group = KVM_S390_VM_CPU_MODEL, 2137 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2138 .addr = (uint64_t) &prop, 2139 }; 2140 int i; 2141 2142 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2143 if (test_bit(kvm_to_feat[i][1], features)) { 2144 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2145 } 2146 } 2147 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2148 } 2149 2150 bool kvm_s390_cpu_models_supported(void) 2151 { 2152 if (!cpu_model_allowed()) { 2153 /* compatibility machines interfere with the cpu model */ 2154 return false; 2155 } 2156 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2157 KVM_S390_VM_CPU_MACHINE) && 2158 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2159 KVM_S390_VM_CPU_PROCESSOR) && 2160 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2161 KVM_S390_VM_CPU_MACHINE_FEAT) && 2162 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2163 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2164 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2165 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2166 } 2167 2168 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2169 { 2170 struct kvm_s390_vm_cpu_machine prop = {}; 2171 struct kvm_device_attr attr = { 2172 .group = KVM_S390_VM_CPU_MODEL, 2173 .attr = KVM_S390_VM_CPU_MACHINE, 2174 .addr = (uint64_t) &prop, 2175 }; 2176 uint16_t unblocked_ibc = 0, cpu_type = 0; 2177 int rc; 2178 2179 memset(model, 0, sizeof(*model)); 2180 2181 if (!kvm_s390_cpu_models_supported()) { 2182 error_setg(errp, "KVM doesn't support CPU models"); 2183 return; 2184 } 2185 2186 /* query the basic cpu model properties */ 2187 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2188 if (rc) { 2189 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2190 return; 2191 } 2192 2193 cpu_type = cpuid_type(prop.cpuid); 2194 if (has_ibc(prop.ibc)) { 2195 model->lowest_ibc = lowest_ibc(prop.ibc); 2196 unblocked_ibc = unblocked_ibc(prop.ibc); 2197 } 2198 model->cpu_id = cpuid_id(prop.cpuid); 2199 model->cpu_id_format = cpuid_format(prop.cpuid); 2200 model->cpu_ver = 0xff; 2201 2202 /* get supported cpu features indicated via STFL(E) */ 2203 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2204 (uint8_t *) prop.fac_mask); 2205 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2206 if (test_bit(S390_FEAT_STFLE, model->features)) { 2207 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2208 } 2209 /* get supported cpu features indicated e.g. via SCLP */ 2210 rc = query_cpu_feat(model->features); 2211 if (rc) { 2212 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2213 return; 2214 } 2215 /* get supported cpu subfunctions indicated via query / test bit */ 2216 rc = query_cpu_subfunc(model->features); 2217 if (rc) { 2218 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2219 return; 2220 } 2221 2222 /* PTFF subfunctions might be indicated although kernel support missing */ 2223 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2224 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2225 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2226 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2227 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2228 } 2229 2230 /* with cpu model support, CMM is only indicated if really available */ 2231 if (kvm_s390_cmma_available()) { 2232 set_bit(S390_FEAT_CMM, model->features); 2233 } else { 2234 /* no cmm -> no cmm nt */ 2235 clear_bit(S390_FEAT_CMM_NT, model->features); 2236 } 2237 2238 /* bpb needs kernel support for migration, VSIE and reset */ 2239 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2240 clear_bit(S390_FEAT_BPB, model->features); 2241 } 2242 2243 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2244 if (pci_available) { 2245 set_bit(S390_FEAT_ZPCI, model->features); 2246 } 2247 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2248 2249 if (s390_known_cpu_type(cpu_type)) { 2250 /* we want the exact model, even if some features are missing */ 2251 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2252 ibc_ec_ga(unblocked_ibc), NULL); 2253 } else { 2254 /* model unknown, e.g. too new - search using features */ 2255 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2256 ibc_ec_ga(unblocked_ibc), 2257 model->features); 2258 } 2259 if (!model->def) { 2260 error_setg(errp, "KVM: host CPU model could not be identified"); 2261 return; 2262 } 2263 /* strip of features that are not part of the maximum model */ 2264 bitmap_and(model->features, model->features, model->def->full_feat, 2265 S390_FEAT_MAX); 2266 } 2267 2268 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2269 { 2270 struct kvm_s390_vm_cpu_processor prop = { 2271 .fac_list = { 0 }, 2272 }; 2273 struct kvm_device_attr attr = { 2274 .group = KVM_S390_VM_CPU_MODEL, 2275 .attr = KVM_S390_VM_CPU_PROCESSOR, 2276 .addr = (uint64_t) &prop, 2277 }; 2278 int rc; 2279 2280 if (!model) { 2281 /* compatibility handling if cpu models are disabled */ 2282 if (kvm_s390_cmma_available()) { 2283 kvm_s390_enable_cmma(); 2284 } 2285 return; 2286 } 2287 if (!kvm_s390_cpu_models_supported()) { 2288 error_setg(errp, "KVM doesn't support CPU models"); 2289 return; 2290 } 2291 prop.cpuid = s390_cpuid_from_cpu_model(model); 2292 prop.ibc = s390_ibc_from_cpu_model(model); 2293 /* configure cpu features indicated via STFL(e) */ 2294 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2295 (uint8_t *) prop.fac_list); 2296 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2297 if (rc) { 2298 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2299 return; 2300 } 2301 /* configure cpu features indicated e.g. via SCLP */ 2302 rc = configure_cpu_feat(model->features); 2303 if (rc) { 2304 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2305 return; 2306 } 2307 /* configure cpu subfunctions indicated via query / test bit */ 2308 rc = configure_cpu_subfunc(model->features); 2309 if (rc) { 2310 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2311 return; 2312 } 2313 /* enable CMM via CMMA */ 2314 if (test_bit(S390_FEAT_CMM, model->features)) { 2315 kvm_s390_enable_cmma(); 2316 } 2317 } 2318 2319 void kvm_s390_restart_interrupt(S390CPU *cpu) 2320 { 2321 struct kvm_s390_irq irq = { 2322 .type = KVM_S390_RESTART, 2323 }; 2324 2325 kvm_s390_vcpu_interrupt(cpu, &irq); 2326 } 2327 2328 void kvm_s390_stop_interrupt(S390CPU *cpu) 2329 { 2330 struct kvm_s390_irq irq = { 2331 .type = KVM_S390_SIGP_STOP, 2332 }; 2333 2334 kvm_s390_vcpu_interrupt(cpu, &irq); 2335 } 2336