xref: /qemu/target/s390x/kvm/kvm.c (revision 2585e507ffa1da01b57dbea26b1e1fe507d27198)
1 /*
2  * QEMU S390x KVM implementation
3  *
4  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5  * Copyright IBM Corp. 2012
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include <sys/ioctl.h>
23 
24 #include <linux/kvm.h>
25 #include <asm/ptrace.h>
26 
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "internal.h"
30 #include "kvm_s390x.h"
31 #include "sysemu/kvm_int.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "qemu/units.h"
36 #include "qemu/main-loop.h"
37 #include "qemu/mmap-alloc.h"
38 #include "qemu/log.h"
39 #include "sysemu/sysemu.h"
40 #include "sysemu/hw_accel.h"
41 #include "sysemu/runstate.h"
42 #include "sysemu/device_tree.h"
43 #include "exec/gdbstub.h"
44 #include "exec/ram_addr.h"
45 #include "trace.h"
46 #include "hw/s390x/s390-pci-inst.h"
47 #include "hw/s390x/s390-pci-bus.h"
48 #include "hw/s390x/ipl.h"
49 #include "hw/s390x/ebcdic.h"
50 #include "exec/memattrs.h"
51 #include "hw/s390x/s390-virtio-ccw.h"
52 #include "hw/s390x/s390-virtio-hcall.h"
53 
54 #ifndef DEBUG_KVM
55 #define DEBUG_KVM  0
56 #endif
57 
58 #define DPRINTF(fmt, ...) do {                \
59     if (DEBUG_KVM) {                          \
60         fprintf(stderr, fmt, ## __VA_ARGS__); \
61     }                                         \
62 } while (0)
63 
64 #define kvm_vm_check_mem_attr(s, attr) \
65     kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
66 
67 #define IPA0_DIAG                       0x8300
68 #define IPA0_SIGP                       0xae00
69 #define IPA0_B2                         0xb200
70 #define IPA0_B9                         0xb900
71 #define IPA0_EB                         0xeb00
72 #define IPA0_E3                         0xe300
73 
74 #define PRIV_B2_SCLP_CALL               0x20
75 #define PRIV_B2_CSCH                    0x30
76 #define PRIV_B2_HSCH                    0x31
77 #define PRIV_B2_MSCH                    0x32
78 #define PRIV_B2_SSCH                    0x33
79 #define PRIV_B2_STSCH                   0x34
80 #define PRIV_B2_TSCH                    0x35
81 #define PRIV_B2_TPI                     0x36
82 #define PRIV_B2_SAL                     0x37
83 #define PRIV_B2_RSCH                    0x38
84 #define PRIV_B2_STCRW                   0x39
85 #define PRIV_B2_STCPS                   0x3a
86 #define PRIV_B2_RCHP                    0x3b
87 #define PRIV_B2_SCHM                    0x3c
88 #define PRIV_B2_CHSC                    0x5f
89 #define PRIV_B2_SIGA                    0x74
90 #define PRIV_B2_XSCH                    0x76
91 
92 #define PRIV_EB_SQBS                    0x8a
93 #define PRIV_EB_PCISTB                  0xd0
94 #define PRIV_EB_SIC                     0xd1
95 
96 #define PRIV_B9_EQBS                    0x9c
97 #define PRIV_B9_CLP                     0xa0
98 #define PRIV_B9_PCISTG                  0xd0
99 #define PRIV_B9_PCILG                   0xd2
100 #define PRIV_B9_RPCIT                   0xd3
101 
102 #define PRIV_E3_MPCIFC                  0xd0
103 #define PRIV_E3_STPCIFC                 0xd4
104 
105 #define DIAG_TIMEREVENT                 0x288
106 #define DIAG_IPL                        0x308
107 #define DIAG_KVM_HYPERCALL              0x500
108 #define DIAG_KVM_BREAKPOINT             0x501
109 
110 #define ICPT_INSTRUCTION                0x04
111 #define ICPT_PROGRAM                    0x08
112 #define ICPT_EXT_INT                    0x14
113 #define ICPT_WAITPSW                    0x1c
114 #define ICPT_SOFT_INTERCEPT             0x24
115 #define ICPT_CPU_STOP                   0x28
116 #define ICPT_OPEREXC                    0x2c
117 #define ICPT_IO                         0x40
118 #define ICPT_PV_INSTR                   0x68
119 #define ICPT_PV_INSTR_NOTIFICATION      0x6c
120 
121 #define NR_LOCAL_IRQS 32
122 /*
123  * Needs to be big enough to contain max_cpus emergency signals
124  * and in addition NR_LOCAL_IRQS interrupts
125  */
126 #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \
127                                      (max_cpus + NR_LOCAL_IRQS))
128 /*
129  * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages
130  * as the dirty bitmap must be managed by bitops that take an int as
131  * position indicator. This would end at an unaligned  address
132  * (0x7fffff00000). As future variants might provide larger pages
133  * and to make all addresses properly aligned, let us split at 4TB.
134  */
135 #define KVM_SLOT_MAX_BYTES (4UL * TiB)
136 
137 static CPUWatchpoint hw_watchpoint;
138 /*
139  * We don't use a list because this structure is also used to transmit the
140  * hardware breakpoints to the kernel.
141  */
142 static struct kvm_hw_breakpoint *hw_breakpoints;
143 static int nb_hw_breakpoints;
144 
145 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
146     KVM_CAP_LAST_INFO
147 };
148 
149 static int cap_sync_regs;
150 static int cap_async_pf;
151 static int cap_mem_op;
152 static int cap_s390_irq;
153 static int cap_ri;
154 static int cap_gs;
155 static int cap_hpage_1m;
156 static int cap_vcpu_resets;
157 
158 static int active_cmma;
159 
160 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
161 
162 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
163 {
164     struct kvm_device_attr attr = {
165         .group = KVM_S390_VM_MEM_CTRL,
166         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
167         .addr = (uint64_t) memory_limit,
168     };
169 
170     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
171 }
172 
173 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
174 {
175     int rc;
176 
177     struct kvm_device_attr attr = {
178         .group = KVM_S390_VM_MEM_CTRL,
179         .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
180         .addr = (uint64_t) &new_limit,
181     };
182 
183     if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
184         return 0;
185     }
186 
187     rc = kvm_s390_query_mem_limit(hw_limit);
188     if (rc) {
189         return rc;
190     } else if (*hw_limit < new_limit) {
191         return -E2BIG;
192     }
193 
194     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
195 }
196 
197 int kvm_s390_cmma_active(void)
198 {
199     return active_cmma;
200 }
201 
202 static bool kvm_s390_cmma_available(void)
203 {
204     static bool initialized, value;
205 
206     if (!initialized) {
207         initialized = true;
208         value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
209                 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
210     }
211     return value;
212 }
213 
214 void kvm_s390_cmma_reset(void)
215 {
216     int rc;
217     struct kvm_device_attr attr = {
218         .group = KVM_S390_VM_MEM_CTRL,
219         .attr = KVM_S390_VM_MEM_CLR_CMMA,
220     };
221 
222     if (!kvm_s390_cmma_active()) {
223         return;
224     }
225 
226     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
227     trace_kvm_clear_cmma(rc);
228 }
229 
230 static void kvm_s390_enable_cmma(void)
231 {
232     int rc;
233     struct kvm_device_attr attr = {
234         .group = KVM_S390_VM_MEM_CTRL,
235         .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
236     };
237 
238     if (cap_hpage_1m) {
239         warn_report("CMM will not be enabled because it is not "
240                     "compatible with huge memory backings.");
241         return;
242     }
243     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
244     active_cmma = !rc;
245     trace_kvm_enable_cmma(rc);
246 }
247 
248 static void kvm_s390_set_attr(uint64_t attr)
249 {
250     struct kvm_device_attr attribute = {
251         .group = KVM_S390_VM_CRYPTO,
252         .attr  = attr,
253     };
254 
255     int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
256 
257     if (ret) {
258         error_report("Failed to set crypto device attribute %lu: %s",
259                      attr, strerror(-ret));
260     }
261 }
262 
263 static void kvm_s390_init_aes_kw(void)
264 {
265     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
266 
267     if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
268                                  NULL)) {
269             attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
270     }
271 
272     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
273             kvm_s390_set_attr(attr);
274     }
275 }
276 
277 static void kvm_s390_init_dea_kw(void)
278 {
279     uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
280 
281     if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
282                                  NULL)) {
283             attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
284     }
285 
286     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
287             kvm_s390_set_attr(attr);
288     }
289 }
290 
291 void kvm_s390_crypto_reset(void)
292 {
293     if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
294         kvm_s390_init_aes_kw();
295         kvm_s390_init_dea_kw();
296     }
297 }
298 
299 void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp)
300 {
301     if (pagesize == 4 * KiB) {
302         return;
303     }
304 
305     if (!hpage_1m_allowed()) {
306         error_setg(errp, "This QEMU machine does not support huge page "
307                    "mappings");
308         return;
309     }
310 
311     if (pagesize != 1 * MiB) {
312         error_setg(errp, "Memory backing with 2G pages was specified, "
313                    "but KVM does not support this memory backing");
314         return;
315     }
316 
317     if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) {
318         error_setg(errp, "Memory backing with 1M pages was specified, "
319                    "but KVM does not support this memory backing");
320         return;
321     }
322 
323     cap_hpage_1m = 1;
324 }
325 
326 int kvm_s390_get_hpage_1m(void)
327 {
328     return cap_hpage_1m;
329 }
330 
331 static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque)
332 {
333     MachineClass *mc = MACHINE_CLASS(oc);
334 
335     mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
336 }
337 
338 int kvm_arch_init(MachineState *ms, KVMState *s)
339 {
340     object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE,
341                          false, NULL);
342 
343     if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) {
344         error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - "
345                      "please use kernel 3.15 or newer");
346         return -1;
347     }
348 
349     cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
350     cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
351     cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
352     cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
353     cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS);
354 
355     if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
356         || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
357         phys_mem_set_alloc(legacy_s390_alloc);
358     }
359 
360     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
361     kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
362     kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
363     if (ri_allowed()) {
364         if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
365             cap_ri = 1;
366         }
367     }
368     if (cpu_model_allowed()) {
369         if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
370             cap_gs = 1;
371         }
372     }
373 
374     /*
375      * The migration interface for ais was introduced with kernel 4.13
376      * but the capability itself had been active since 4.12. As migration
377      * support is considered necessary, we only try to enable this for
378      * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available.
379      */
380     if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() &&
381         kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) {
382         kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0);
383     }
384 
385     kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES);
386     return 0;
387 }
388 
389 int kvm_arch_irqchip_create(KVMState *s)
390 {
391     return 0;
392 }
393 
394 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
395 {
396     return cpu->cpu_index;
397 }
398 
399 int kvm_arch_init_vcpu(CPUState *cs)
400 {
401     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
402     S390CPU *cpu = S390_CPU(cs);
403     kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
404     cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus));
405     return 0;
406 }
407 
408 int kvm_arch_destroy_vcpu(CPUState *cs)
409 {
410     S390CPU *cpu = S390_CPU(cs);
411 
412     g_free(cpu->irqstate);
413     cpu->irqstate = NULL;
414 
415     return 0;
416 }
417 
418 static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type)
419 {
420     CPUState *cs = CPU(cpu);
421 
422     /*
423      * The reset call is needed here to reset in-kernel vcpu data that
424      * we can't access directly from QEMU (i.e. with older kernels
425      * which don't support sync_regs/ONE_REG).  Before this ioctl
426      * cpu_synchronize_state() is called in common kvm code
427      * (kvm-all).
428      */
429     if (kvm_vcpu_ioctl(cs, type)) {
430         error_report("CPU reset failed on CPU %i type %lx",
431                      cs->cpu_index, type);
432     }
433 }
434 
435 void kvm_s390_reset_vcpu_initial(S390CPU *cpu)
436 {
437     kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
438 }
439 
440 void kvm_s390_reset_vcpu_clear(S390CPU *cpu)
441 {
442     if (cap_vcpu_resets) {
443         kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET);
444     } else {
445         kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET);
446     }
447 }
448 
449 void kvm_s390_reset_vcpu_normal(S390CPU *cpu)
450 {
451     if (cap_vcpu_resets) {
452         kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET);
453     }
454 }
455 
456 static int can_sync_regs(CPUState *cs, int regs)
457 {
458     return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
459 }
460 
461 int kvm_arch_put_registers(CPUState *cs, int level)
462 {
463     S390CPU *cpu = S390_CPU(cs);
464     CPUS390XState *env = &cpu->env;
465     struct kvm_sregs sregs;
466     struct kvm_regs regs;
467     struct kvm_fpu fpu = {};
468     int r;
469     int i;
470 
471     /* always save the PSW  and the GPRS*/
472     cs->kvm_run->psw_addr = env->psw.addr;
473     cs->kvm_run->psw_mask = env->psw.mask;
474 
475     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
476         for (i = 0; i < 16; i++) {
477             cs->kvm_run->s.regs.gprs[i] = env->regs[i];
478             cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
479         }
480     } else {
481         for (i = 0; i < 16; i++) {
482             regs.gprs[i] = env->regs[i];
483         }
484         r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
485         if (r < 0) {
486             return r;
487         }
488     }
489 
490     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
491         for (i = 0; i < 32; i++) {
492             cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0];
493             cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1];
494         }
495         cs->kvm_run->s.regs.fpc = env->fpc;
496         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
497     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
498         for (i = 0; i < 16; i++) {
499             cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i);
500         }
501         cs->kvm_run->s.regs.fpc = env->fpc;
502         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
503     } else {
504         /* Floating point */
505         for (i = 0; i < 16; i++) {
506             fpu.fprs[i] = *get_freg(env, i);
507         }
508         fpu.fpc = env->fpc;
509 
510         r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
511         if (r < 0) {
512             return r;
513         }
514     }
515 
516     /* Do we need to save more than that? */
517     if (level == KVM_PUT_RUNTIME_STATE) {
518         return 0;
519     }
520 
521     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
522         cs->kvm_run->s.regs.cputm = env->cputm;
523         cs->kvm_run->s.regs.ckc = env->ckc;
524         cs->kvm_run->s.regs.todpr = env->todpr;
525         cs->kvm_run->s.regs.gbea = env->gbea;
526         cs->kvm_run->s.regs.pp = env->pp;
527         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
528     } else {
529         /*
530          * These ONE_REGS are not protected by a capability. As they are only
531          * necessary for migration we just trace a possible error, but don't
532          * return with an error return code.
533          */
534         kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
535         kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
536         kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
537         kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
538         kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
539     }
540 
541     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
542         memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
543         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
544     }
545 
546     /* pfault parameters */
547     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
548         cs->kvm_run->s.regs.pft = env->pfault_token;
549         cs->kvm_run->s.regs.pfs = env->pfault_select;
550         cs->kvm_run->s.regs.pfc = env->pfault_compare;
551         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
552     } else if (cap_async_pf) {
553         r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
554         if (r < 0) {
555             return r;
556         }
557         r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
558         if (r < 0) {
559             return r;
560         }
561         r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
562         if (r < 0) {
563             return r;
564         }
565     }
566 
567     /* access registers and control registers*/
568     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
569         for (i = 0; i < 16; i++) {
570             cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
571             cs->kvm_run->s.regs.crs[i] = env->cregs[i];
572         }
573         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
574         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
575     } else {
576         for (i = 0; i < 16; i++) {
577             sregs.acrs[i] = env->aregs[i];
578             sregs.crs[i] = env->cregs[i];
579         }
580         r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
581         if (r < 0) {
582             return r;
583         }
584     }
585 
586     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
587         memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
588         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
589     }
590 
591     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
592         cs->kvm_run->s.regs.bpbc = env->bpbc;
593         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
594     }
595 
596     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
597         cs->kvm_run->s.regs.etoken = env->etoken;
598         cs->kvm_run->s.regs.etoken_extension  = env->etoken_extension;
599         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN;
600     }
601 
602     /* Finally the prefix */
603     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
604         cs->kvm_run->s.regs.prefix = env->psa;
605         cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
606     } else {
607         /* prefix is only supported via sync regs */
608     }
609     return 0;
610 }
611 
612 int kvm_arch_get_registers(CPUState *cs)
613 {
614     S390CPU *cpu = S390_CPU(cs);
615     CPUS390XState *env = &cpu->env;
616     struct kvm_sregs sregs;
617     struct kvm_regs regs;
618     struct kvm_fpu fpu;
619     int i, r;
620 
621     /* get the PSW */
622     env->psw.addr = cs->kvm_run->psw_addr;
623     env->psw.mask = cs->kvm_run->psw_mask;
624 
625     /* the GPRS */
626     if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
627         for (i = 0; i < 16; i++) {
628             env->regs[i] = cs->kvm_run->s.regs.gprs[i];
629         }
630     } else {
631         r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
632         if (r < 0) {
633             return r;
634         }
635          for (i = 0; i < 16; i++) {
636             env->regs[i] = regs.gprs[i];
637         }
638     }
639 
640     /* The ACRS and CRS */
641     if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
642         for (i = 0; i < 16; i++) {
643             env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
644             env->cregs[i] = cs->kvm_run->s.regs.crs[i];
645         }
646     } else {
647         r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
648         if (r < 0) {
649             return r;
650         }
651          for (i = 0; i < 16; i++) {
652             env->aregs[i] = sregs.acrs[i];
653             env->cregs[i] = sregs.crs[i];
654         }
655     }
656 
657     /* Floating point and vector registers */
658     if (can_sync_regs(cs, KVM_SYNC_VRS)) {
659         for (i = 0; i < 32; i++) {
660             env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0];
661             env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1];
662         }
663         env->fpc = cs->kvm_run->s.regs.fpc;
664     } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
665         for (i = 0; i < 16; i++) {
666             *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i];
667         }
668         env->fpc = cs->kvm_run->s.regs.fpc;
669     } else {
670         r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
671         if (r < 0) {
672             return r;
673         }
674         for (i = 0; i < 16; i++) {
675             *get_freg(env, i) = fpu.fprs[i];
676         }
677         env->fpc = fpu.fpc;
678     }
679 
680     /* The prefix */
681     if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
682         env->psa = cs->kvm_run->s.regs.prefix;
683     }
684 
685     if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
686         env->cputm = cs->kvm_run->s.regs.cputm;
687         env->ckc = cs->kvm_run->s.regs.ckc;
688         env->todpr = cs->kvm_run->s.regs.todpr;
689         env->gbea = cs->kvm_run->s.regs.gbea;
690         env->pp = cs->kvm_run->s.regs.pp;
691     } else {
692         /*
693          * These ONE_REGS are not protected by a capability. As they are only
694          * necessary for migration we just trace a possible error, but don't
695          * return with an error return code.
696          */
697         kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
698         kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
699         kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
700         kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
701         kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
702     }
703 
704     if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
705         memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
706     }
707 
708     if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
709         memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
710     }
711 
712     if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
713         env->bpbc = cs->kvm_run->s.regs.bpbc;
714     }
715 
716     if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) {
717         env->etoken = cs->kvm_run->s.regs.etoken;
718         env->etoken_extension = cs->kvm_run->s.regs.etoken_extension;
719     }
720 
721     /* pfault parameters */
722     if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
723         env->pfault_token = cs->kvm_run->s.regs.pft;
724         env->pfault_select = cs->kvm_run->s.regs.pfs;
725         env->pfault_compare = cs->kvm_run->s.regs.pfc;
726     } else if (cap_async_pf) {
727         r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
728         if (r < 0) {
729             return r;
730         }
731         r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
732         if (r < 0) {
733             return r;
734         }
735         r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
736         if (r < 0) {
737             return r;
738         }
739     }
740 
741     return 0;
742 }
743 
744 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
745 {
746     int r;
747     struct kvm_device_attr attr = {
748         .group = KVM_S390_VM_TOD,
749         .attr = KVM_S390_VM_TOD_LOW,
750         .addr = (uint64_t)tod_low,
751     };
752 
753     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
754     if (r) {
755         return r;
756     }
757 
758     attr.attr = KVM_S390_VM_TOD_HIGH;
759     attr.addr = (uint64_t)tod_high;
760     return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
761 }
762 
763 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
764 {
765     int r;
766     struct kvm_s390_vm_tod_clock gtod;
767     struct kvm_device_attr attr = {
768         .group = KVM_S390_VM_TOD,
769         .attr = KVM_S390_VM_TOD_EXT,
770         .addr = (uint64_t)&gtod,
771     };
772 
773     r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
774     *tod_high = gtod.epoch_idx;
775     *tod_low  = gtod.tod;
776 
777     return r;
778 }
779 
780 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low)
781 {
782     int r;
783     struct kvm_device_attr attr = {
784         .group = KVM_S390_VM_TOD,
785         .attr = KVM_S390_VM_TOD_LOW,
786         .addr = (uint64_t)&tod_low,
787     };
788 
789     r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
790     if (r) {
791         return r;
792     }
793 
794     attr.attr = KVM_S390_VM_TOD_HIGH;
795     attr.addr = (uint64_t)&tod_high;
796     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
797 }
798 
799 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low)
800 {
801     struct kvm_s390_vm_tod_clock gtod = {
802         .epoch_idx = tod_high,
803         .tod  = tod_low,
804     };
805     struct kvm_device_attr attr = {
806         .group = KVM_S390_VM_TOD,
807         .attr = KVM_S390_VM_TOD_EXT,
808         .addr = (uint64_t)&gtod,
809     };
810 
811     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
812 }
813 
814 /**
815  * kvm_s390_mem_op:
816  * @addr:      the logical start address in guest memory
817  * @ar:        the access register number
818  * @hostbuf:   buffer in host memory. NULL = do only checks w/o copying
819  * @len:       length that should be transferred
820  * @is_write:  true = write, false = read
821  * Returns:    0 on success, non-zero if an exception or error occurred
822  *
823  * Use KVM ioctl to read/write from/to guest memory. An access exception
824  * is injected into the vCPU in case of translation errors.
825  */
826 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
827                     int len, bool is_write)
828 {
829     struct kvm_s390_mem_op mem_op = {
830         .gaddr = addr,
831         .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
832         .size = len,
833         .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
834                        : KVM_S390_MEMOP_LOGICAL_READ,
835         .buf = (uint64_t)hostbuf,
836         .ar = ar,
837     };
838     int ret;
839 
840     if (!cap_mem_op) {
841         return -ENOSYS;
842     }
843     if (!hostbuf) {
844         mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
845     }
846 
847     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
848     if (ret < 0) {
849         warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret));
850     }
851     return ret;
852 }
853 
854 /*
855  * Legacy layout for s390:
856  * Older S390 KVM requires the topmost vma of the RAM to be
857  * smaller than an system defined value, which is at least 256GB.
858  * Larger systems have larger values. We put the guest between
859  * the end of data segment (system break) and this value. We
860  * use 32GB as a base to have enough room for the system break
861  * to grow. We also have to use MAP parameters that avoid
862  * read-only mapping of guest pages.
863  */
864 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
865 {
866     static void *mem;
867 
868     if (mem) {
869         /* we only support one allocation, which is enough for initial ram */
870         return NULL;
871     }
872 
873     mem = mmap((void *) 0x800000000ULL, size,
874                PROT_EXEC|PROT_READ|PROT_WRITE,
875                MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
876     if (mem == MAP_FAILED) {
877         mem = NULL;
878     }
879     if (mem && align) {
880         *align = QEMU_VMALLOC_ALIGN;
881     }
882     return mem;
883 }
884 
885 static uint8_t const *sw_bp_inst;
886 static uint8_t sw_bp_ilen;
887 
888 static void determine_sw_breakpoint_instr(void)
889 {
890         /* DIAG 501 is used for sw breakpoints with old kernels */
891         static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
892         /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
893         static const uint8_t instr_0x0000[] = {0x00, 0x00};
894 
895         if (sw_bp_inst) {
896             return;
897         }
898         if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
899             sw_bp_inst = diag_501;
900             sw_bp_ilen = sizeof(diag_501);
901             DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
902         } else {
903             sw_bp_inst = instr_0x0000;
904             sw_bp_ilen = sizeof(instr_0x0000);
905             DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
906         }
907 }
908 
909 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
910 {
911     determine_sw_breakpoint_instr();
912 
913     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
914                             sw_bp_ilen, 0) ||
915         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
916         return -EINVAL;
917     }
918     return 0;
919 }
920 
921 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
922 {
923     uint8_t t[MAX_ILEN];
924 
925     if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
926         return -EINVAL;
927     } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
928         return -EINVAL;
929     } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
930                                    sw_bp_ilen, 1)) {
931         return -EINVAL;
932     }
933 
934     return 0;
935 }
936 
937 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
938                                                     int len, int type)
939 {
940     int n;
941 
942     for (n = 0; n < nb_hw_breakpoints; n++) {
943         if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
944             (hw_breakpoints[n].len == len || len == -1)) {
945             return &hw_breakpoints[n];
946         }
947     }
948 
949     return NULL;
950 }
951 
952 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
953 {
954     int size;
955 
956     if (find_hw_breakpoint(addr, len, type)) {
957         return -EEXIST;
958     }
959 
960     size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
961 
962     if (!hw_breakpoints) {
963         nb_hw_breakpoints = 0;
964         hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
965     } else {
966         hw_breakpoints =
967             (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
968     }
969 
970     if (!hw_breakpoints) {
971         nb_hw_breakpoints = 0;
972         return -ENOMEM;
973     }
974 
975     hw_breakpoints[nb_hw_breakpoints].addr = addr;
976     hw_breakpoints[nb_hw_breakpoints].len = len;
977     hw_breakpoints[nb_hw_breakpoints].type = type;
978 
979     nb_hw_breakpoints++;
980 
981     return 0;
982 }
983 
984 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
985                                   target_ulong len, int type)
986 {
987     switch (type) {
988     case GDB_BREAKPOINT_HW:
989         type = KVM_HW_BP;
990         break;
991     case GDB_WATCHPOINT_WRITE:
992         if (len < 1) {
993             return -EINVAL;
994         }
995         type = KVM_HW_WP_WRITE;
996         break;
997     default:
998         return -ENOSYS;
999     }
1000     return insert_hw_breakpoint(addr, len, type);
1001 }
1002 
1003 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1004                                   target_ulong len, int type)
1005 {
1006     int size;
1007     struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
1008 
1009     if (bp == NULL) {
1010         return -ENOENT;
1011     }
1012 
1013     nb_hw_breakpoints--;
1014     if (nb_hw_breakpoints > 0) {
1015         /*
1016          * In order to trim the array, move the last element to the position to
1017          * be removed - if necessary.
1018          */
1019         if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
1020             *bp = hw_breakpoints[nb_hw_breakpoints];
1021         }
1022         size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
1023         hw_breakpoints =
1024              (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
1025     } else {
1026         g_free(hw_breakpoints);
1027         hw_breakpoints = NULL;
1028     }
1029 
1030     return 0;
1031 }
1032 
1033 void kvm_arch_remove_all_hw_breakpoints(void)
1034 {
1035     nb_hw_breakpoints = 0;
1036     g_free(hw_breakpoints);
1037     hw_breakpoints = NULL;
1038 }
1039 
1040 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
1041 {
1042     int i;
1043 
1044     if (nb_hw_breakpoints > 0) {
1045         dbg->arch.nr_hw_bp = nb_hw_breakpoints;
1046         dbg->arch.hw_bp = hw_breakpoints;
1047 
1048         for (i = 0; i < nb_hw_breakpoints; ++i) {
1049             hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
1050                                                        hw_breakpoints[i].addr);
1051         }
1052         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1053     } else {
1054         dbg->arch.nr_hw_bp = 0;
1055         dbg->arch.hw_bp = NULL;
1056     }
1057 }
1058 
1059 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1060 {
1061 }
1062 
1063 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1064 {
1065     return MEMTXATTRS_UNSPECIFIED;
1066 }
1067 
1068 int kvm_arch_process_async_events(CPUState *cs)
1069 {
1070     return cs->halted;
1071 }
1072 
1073 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
1074                                      struct kvm_s390_interrupt *interrupt)
1075 {
1076     int r = 0;
1077 
1078     interrupt->type = irq->type;
1079     switch (irq->type) {
1080     case KVM_S390_INT_VIRTIO:
1081         interrupt->parm = irq->u.ext.ext_params;
1082         /* fall through */
1083     case KVM_S390_INT_PFAULT_INIT:
1084     case KVM_S390_INT_PFAULT_DONE:
1085         interrupt->parm64 = irq->u.ext.ext_params2;
1086         break;
1087     case KVM_S390_PROGRAM_INT:
1088         interrupt->parm = irq->u.pgm.code;
1089         break;
1090     case KVM_S390_SIGP_SET_PREFIX:
1091         interrupt->parm = irq->u.prefix.address;
1092         break;
1093     case KVM_S390_INT_SERVICE:
1094         interrupt->parm = irq->u.ext.ext_params;
1095         break;
1096     case KVM_S390_MCHK:
1097         interrupt->parm = irq->u.mchk.cr14;
1098         interrupt->parm64 = irq->u.mchk.mcic;
1099         break;
1100     case KVM_S390_INT_EXTERNAL_CALL:
1101         interrupt->parm = irq->u.extcall.code;
1102         break;
1103     case KVM_S390_INT_EMERGENCY:
1104         interrupt->parm = irq->u.emerg.code;
1105         break;
1106     case KVM_S390_SIGP_STOP:
1107     case KVM_S390_RESTART:
1108         break; /* These types have no parameters */
1109     case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1110         interrupt->parm = irq->u.io.subchannel_id << 16;
1111         interrupt->parm |= irq->u.io.subchannel_nr;
1112         interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
1113         interrupt->parm64 |= irq->u.io.io_int_word;
1114         break;
1115     default:
1116         r = -EINVAL;
1117         break;
1118     }
1119     return r;
1120 }
1121 
1122 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1123 {
1124     struct kvm_s390_interrupt kvmint = {};
1125     int r;
1126 
1127     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1128     if (r < 0) {
1129         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1130         exit(1);
1131     }
1132 
1133     r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1134     if (r < 0) {
1135         fprintf(stderr, "KVM failed to inject interrupt\n");
1136         exit(1);
1137     }
1138 }
1139 
1140 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1141 {
1142     CPUState *cs = CPU(cpu);
1143     int r;
1144 
1145     if (cap_s390_irq) {
1146         r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1147         if (!r) {
1148             return;
1149         }
1150         error_report("KVM failed to inject interrupt %llx", irq->type);
1151         exit(1);
1152     }
1153 
1154     inject_vcpu_irq_legacy(cs, irq);
1155 }
1156 
1157 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1158 {
1159     struct kvm_s390_interrupt kvmint = {};
1160     int r;
1161 
1162     r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1163     if (r < 0) {
1164         fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1165         exit(1);
1166     }
1167 
1168     r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1169     if (r < 0) {
1170         fprintf(stderr, "KVM failed to inject interrupt\n");
1171         exit(1);
1172     }
1173 }
1174 
1175 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1176 {
1177     struct kvm_s390_irq irq = {
1178         .type = KVM_S390_PROGRAM_INT,
1179         .u.pgm.code = code,
1180     };
1181     qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n",
1182                   cpu->env.psw.addr);
1183     kvm_s390_vcpu_interrupt(cpu, &irq);
1184 }
1185 
1186 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1187 {
1188     struct kvm_s390_irq irq = {
1189         .type = KVM_S390_PROGRAM_INT,
1190         .u.pgm.code = code,
1191         .u.pgm.trans_exc_code = te_code,
1192         .u.pgm.exc_access_id = te_code & 3,
1193     };
1194 
1195     kvm_s390_vcpu_interrupt(cpu, &irq);
1196 }
1197 
1198 static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1199                                  uint16_t ipbh0)
1200 {
1201     CPUS390XState *env = &cpu->env;
1202     uint64_t sccb;
1203     uint32_t code;
1204     int r;
1205 
1206     sccb = env->regs[ipbh0 & 0xf];
1207     code = env->regs[(ipbh0 & 0xf0) >> 4];
1208 
1209     r = sclp_service_call(env, sccb, code);
1210     if (r < 0) {
1211         kvm_s390_program_interrupt(cpu, -r);
1212         return;
1213     }
1214     setcc(cpu, r);
1215 }
1216 
1217 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1218 {
1219     CPUS390XState *env = &cpu->env;
1220     int rc = 0;
1221     uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1222 
1223     switch (ipa1) {
1224     case PRIV_B2_XSCH:
1225         ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1226         break;
1227     case PRIV_B2_CSCH:
1228         ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1229         break;
1230     case PRIV_B2_HSCH:
1231         ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1232         break;
1233     case PRIV_B2_MSCH:
1234         ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1235         break;
1236     case PRIV_B2_SSCH:
1237         ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1238         break;
1239     case PRIV_B2_STCRW:
1240         ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1241         break;
1242     case PRIV_B2_STSCH:
1243         ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1244         break;
1245     case PRIV_B2_TSCH:
1246         /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1247         fprintf(stderr, "Spurious tsch intercept\n");
1248         break;
1249     case PRIV_B2_CHSC:
1250         ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1251         break;
1252     case PRIV_B2_TPI:
1253         /* This should have been handled by kvm already. */
1254         fprintf(stderr, "Spurious tpi intercept\n");
1255         break;
1256     case PRIV_B2_SCHM:
1257         ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1258                            run->s390_sieic.ipb, RA_IGNORED);
1259         break;
1260     case PRIV_B2_RSCH:
1261         ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1262         break;
1263     case PRIV_B2_RCHP:
1264         ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1265         break;
1266     case PRIV_B2_STCPS:
1267         /* We do not provide this instruction, it is suppressed. */
1268         break;
1269     case PRIV_B2_SAL:
1270         ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1271         break;
1272     case PRIV_B2_SIGA:
1273         /* Not provided, set CC = 3 for subchannel not operational */
1274         setcc(cpu, 3);
1275         break;
1276     case PRIV_B2_SCLP_CALL:
1277         kvm_sclp_service_call(cpu, run, ipbh0);
1278         break;
1279     default:
1280         rc = -1;
1281         DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1282         break;
1283     }
1284 
1285     return rc;
1286 }
1287 
1288 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1289                                   uint8_t *ar)
1290 {
1291     CPUS390XState *env = &cpu->env;
1292     uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1293     uint32_t base2 = run->s390_sieic.ipb >> 28;
1294     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1295                      ((run->s390_sieic.ipb & 0xff00) << 4);
1296 
1297     if (disp2 & 0x80000) {
1298         disp2 += 0xfff00000;
1299     }
1300     if (ar) {
1301         *ar = base2;
1302     }
1303 
1304     return (base2 ? env->regs[base2] : 0) +
1305            (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1306 }
1307 
1308 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1309                                   uint8_t *ar)
1310 {
1311     CPUS390XState *env = &cpu->env;
1312     uint32_t base2 = run->s390_sieic.ipb >> 28;
1313     uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1314                      ((run->s390_sieic.ipb & 0xff00) << 4);
1315 
1316     if (disp2 & 0x80000) {
1317         disp2 += 0xfff00000;
1318     }
1319     if (ar) {
1320         *ar = base2;
1321     }
1322 
1323     return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1324 }
1325 
1326 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1327 {
1328     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1329 
1330     if (s390_has_feat(S390_FEAT_ZPCI)) {
1331         return clp_service_call(cpu, r2, RA_IGNORED);
1332     } else {
1333         return -1;
1334     }
1335 }
1336 
1337 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1338 {
1339     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1340     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1341 
1342     if (s390_has_feat(S390_FEAT_ZPCI)) {
1343         return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1344     } else {
1345         return -1;
1346     }
1347 }
1348 
1349 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1350 {
1351     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1352     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1353 
1354     if (s390_has_feat(S390_FEAT_ZPCI)) {
1355         return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1356     } else {
1357         return -1;
1358     }
1359 }
1360 
1361 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1362 {
1363     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1364     uint64_t fiba;
1365     uint8_t ar;
1366 
1367     if (s390_has_feat(S390_FEAT_ZPCI)) {
1368         fiba = get_base_disp_rxy(cpu, run, &ar);
1369 
1370         return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1371     } else {
1372         return -1;
1373     }
1374 }
1375 
1376 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1377 {
1378     CPUS390XState *env = &cpu->env;
1379     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1380     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1381     uint8_t isc;
1382     uint16_t mode;
1383     int r;
1384 
1385     mode = env->regs[r1] & 0xffff;
1386     isc = (env->regs[r3] >> 27) & 0x7;
1387     r = css_do_sic(env, isc, mode);
1388     if (r) {
1389         kvm_s390_program_interrupt(cpu, -r);
1390     }
1391 
1392     return 0;
1393 }
1394 
1395 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1396 {
1397     uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1398     uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1399 
1400     if (s390_has_feat(S390_FEAT_ZPCI)) {
1401         return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1402     } else {
1403         return -1;
1404     }
1405 }
1406 
1407 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1408 {
1409     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1410     uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1411     uint64_t gaddr;
1412     uint8_t ar;
1413 
1414     if (s390_has_feat(S390_FEAT_ZPCI)) {
1415         gaddr = get_base_disp_rsy(cpu, run, &ar);
1416 
1417         return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1418     } else {
1419         return -1;
1420     }
1421 }
1422 
1423 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1424 {
1425     uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1426     uint64_t fiba;
1427     uint8_t ar;
1428 
1429     if (s390_has_feat(S390_FEAT_ZPCI)) {
1430         fiba = get_base_disp_rxy(cpu, run, &ar);
1431 
1432         return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1433     } else {
1434         return -1;
1435     }
1436 }
1437 
1438 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1439 {
1440     int r = 0;
1441 
1442     switch (ipa1) {
1443     case PRIV_B9_CLP:
1444         r = kvm_clp_service_call(cpu, run);
1445         break;
1446     case PRIV_B9_PCISTG:
1447         r = kvm_pcistg_service_call(cpu, run);
1448         break;
1449     case PRIV_B9_PCILG:
1450         r = kvm_pcilg_service_call(cpu, run);
1451         break;
1452     case PRIV_B9_RPCIT:
1453         r = kvm_rpcit_service_call(cpu, run);
1454         break;
1455     case PRIV_B9_EQBS:
1456         /* just inject exception */
1457         r = -1;
1458         break;
1459     default:
1460         r = -1;
1461         DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1462         break;
1463     }
1464 
1465     return r;
1466 }
1467 
1468 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1469 {
1470     int r = 0;
1471 
1472     switch (ipbl) {
1473     case PRIV_EB_PCISTB:
1474         r = kvm_pcistb_service_call(cpu, run);
1475         break;
1476     case PRIV_EB_SIC:
1477         r = kvm_sic_service_call(cpu, run);
1478         break;
1479     case PRIV_EB_SQBS:
1480         /* just inject exception */
1481         r = -1;
1482         break;
1483     default:
1484         r = -1;
1485         DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1486         break;
1487     }
1488 
1489     return r;
1490 }
1491 
1492 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1493 {
1494     int r = 0;
1495 
1496     switch (ipbl) {
1497     case PRIV_E3_MPCIFC:
1498         r = kvm_mpcifc_service_call(cpu, run);
1499         break;
1500     case PRIV_E3_STPCIFC:
1501         r = kvm_stpcifc_service_call(cpu, run);
1502         break;
1503     default:
1504         r = -1;
1505         DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1506         break;
1507     }
1508 
1509     return r;
1510 }
1511 
1512 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1513 {
1514     CPUS390XState *env = &cpu->env;
1515     int ret;
1516 
1517     ret = s390_virtio_hypercall(env);
1518     if (ret == -EINVAL) {
1519         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1520         return 0;
1521     }
1522 
1523     return ret;
1524 }
1525 
1526 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1527 {
1528     uint64_t r1, r3;
1529     int rc;
1530 
1531     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1532     r3 = run->s390_sieic.ipa & 0x000f;
1533     rc = handle_diag_288(&cpu->env, r1, r3);
1534     if (rc) {
1535         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1536     }
1537 }
1538 
1539 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1540 {
1541     uint64_t r1, r3;
1542 
1543     r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1544     r3 = run->s390_sieic.ipa & 0x000f;
1545     handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1546 }
1547 
1548 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1549 {
1550     CPUS390XState *env = &cpu->env;
1551     unsigned long pc;
1552 
1553     pc = env->psw.addr - sw_bp_ilen;
1554     if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1555         env->psw.addr = pc;
1556         return EXCP_DEBUG;
1557     }
1558 
1559     return -ENOENT;
1560 }
1561 
1562 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1563 
1564 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1565 {
1566     int r = 0;
1567     uint16_t func_code;
1568 
1569     /*
1570      * For any diagnose call we support, bits 48-63 of the resulting
1571      * address specify the function code; the remainder is ignored.
1572      */
1573     func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1574     switch (func_code) {
1575     case DIAG_TIMEREVENT:
1576         kvm_handle_diag_288(cpu, run);
1577         break;
1578     case DIAG_IPL:
1579         kvm_handle_diag_308(cpu, run);
1580         break;
1581     case DIAG_KVM_HYPERCALL:
1582         r = handle_hypercall(cpu, run);
1583         break;
1584     case DIAG_KVM_BREAKPOINT:
1585         r = handle_sw_breakpoint(cpu, run);
1586         break;
1587     default:
1588         DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1589         kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1590         break;
1591     }
1592 
1593     return r;
1594 }
1595 
1596 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1597 {
1598     CPUS390XState *env = &cpu->env;
1599     const uint8_t r1 = ipa1 >> 4;
1600     const uint8_t r3 = ipa1 & 0x0f;
1601     int ret;
1602     uint8_t order;
1603 
1604     /* get order code */
1605     order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1606 
1607     ret = handle_sigp(env, order, r1, r3);
1608     setcc(cpu, ret);
1609     return 0;
1610 }
1611 
1612 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1613 {
1614     unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1615     uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1616     int r = -1;
1617 
1618     DPRINTF("handle_instruction 0x%x 0x%x\n",
1619             run->s390_sieic.ipa, run->s390_sieic.ipb);
1620     switch (ipa0) {
1621     case IPA0_B2:
1622         r = handle_b2(cpu, run, ipa1);
1623         break;
1624     case IPA0_B9:
1625         r = handle_b9(cpu, run, ipa1);
1626         break;
1627     case IPA0_EB:
1628         r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1629         break;
1630     case IPA0_E3:
1631         r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1632         break;
1633     case IPA0_DIAG:
1634         r = handle_diag(cpu, run, run->s390_sieic.ipb);
1635         break;
1636     case IPA0_SIGP:
1637         r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1638         break;
1639     }
1640 
1641     if (r < 0) {
1642         r = 0;
1643         kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1644     }
1645 
1646     return r;
1647 }
1648 
1649 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1650                                    int pswoffset)
1651 {
1652     CPUState *cs = CPU(cpu);
1653 
1654     s390_cpu_halt(cpu);
1655     cpu->env.crash_reason = reason;
1656     qemu_system_guest_panicked(cpu_get_crash_info(cs));
1657 }
1658 
1659 /* try to detect pgm check loops */
1660 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1661 {
1662     CPUState *cs = CPU(cpu);
1663     PSW oldpsw, newpsw;
1664 
1665     newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1666                            offsetof(LowCore, program_new_psw));
1667     newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1668                            offsetof(LowCore, program_new_psw) + 8);
1669     oldpsw.mask  = run->psw_mask;
1670     oldpsw.addr  = run->psw_addr;
1671     /*
1672      * Avoid endless loops of operation exceptions, if the pgm new
1673      * PSW will cause a new operation exception.
1674      * The heuristic checks if the pgm new psw is within 6 bytes before
1675      * the faulting psw address (with same DAT, AS settings) and the
1676      * new psw is not a wait psw and the fault was not triggered by
1677      * problem state. In that case go into crashed state.
1678      */
1679 
1680     if (oldpsw.addr - newpsw.addr <= 6 &&
1681         !(newpsw.mask & PSW_MASK_WAIT) &&
1682         !(oldpsw.mask & PSW_MASK_PSTATE) &&
1683         (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1684         (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1685         unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1686                                offsetof(LowCore, program_new_psw));
1687         return EXCP_HALTED;
1688     }
1689     return 0;
1690 }
1691 
1692 static int handle_intercept(S390CPU *cpu)
1693 {
1694     CPUState *cs = CPU(cpu);
1695     struct kvm_run *run = cs->kvm_run;
1696     int icpt_code = run->s390_sieic.icptcode;
1697     int r = 0;
1698 
1699     DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1700             (long)cs->kvm_run->psw_addr);
1701     switch (icpt_code) {
1702         case ICPT_INSTRUCTION:
1703         case ICPT_PV_INSTR:
1704         case ICPT_PV_INSTR_NOTIFICATION:
1705             r = handle_instruction(cpu, run);
1706             break;
1707         case ICPT_PROGRAM:
1708             unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1709                                    offsetof(LowCore, program_new_psw));
1710             r = EXCP_HALTED;
1711             break;
1712         case ICPT_EXT_INT:
1713             unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1714                                    offsetof(LowCore, external_new_psw));
1715             r = EXCP_HALTED;
1716             break;
1717         case ICPT_WAITPSW:
1718             /* disabled wait, since enabled wait is handled in kernel */
1719             s390_handle_wait(cpu);
1720             r = EXCP_HALTED;
1721             break;
1722         case ICPT_CPU_STOP:
1723             do_stop_interrupt(&cpu->env);
1724             r = EXCP_HALTED;
1725             break;
1726         case ICPT_OPEREXC:
1727             /* check for break points */
1728             r = handle_sw_breakpoint(cpu, run);
1729             if (r == -ENOENT) {
1730                 /* Then check for potential pgm check loops */
1731                 r = handle_oper_loop(cpu, run);
1732                 if (r == 0) {
1733                     kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1734                 }
1735             }
1736             break;
1737         case ICPT_SOFT_INTERCEPT:
1738             fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1739             exit(1);
1740             break;
1741         case ICPT_IO:
1742             fprintf(stderr, "KVM unimplemented icpt IO\n");
1743             exit(1);
1744             break;
1745         default:
1746             fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1747             exit(1);
1748             break;
1749     }
1750 
1751     return r;
1752 }
1753 
1754 static int handle_tsch(S390CPU *cpu)
1755 {
1756     CPUState *cs = CPU(cpu);
1757     struct kvm_run *run = cs->kvm_run;
1758     int ret;
1759 
1760     ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1761                              RA_IGNORED);
1762     if (ret < 0) {
1763         /*
1764          * Failure.
1765          * If an I/O interrupt had been dequeued, we have to reinject it.
1766          */
1767         if (run->s390_tsch.dequeued) {
1768             s390_io_interrupt(run->s390_tsch.subchannel_id,
1769                               run->s390_tsch.subchannel_nr,
1770                               run->s390_tsch.io_int_parm,
1771                               run->s390_tsch.io_int_word);
1772         }
1773         ret = 0;
1774     }
1775     return ret;
1776 }
1777 
1778 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1779 {
1780     const MachineState *ms = MACHINE(qdev_get_machine());
1781     uint16_t conf_cpus = 0, reserved_cpus = 0;
1782     SysIB_322 sysib;
1783     int del, i;
1784 
1785     if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1786         return;
1787     }
1788     /* Shift the stack of Extended Names to prepare for our own data */
1789     memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1790             sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1791     /* First virt level, that doesn't provide Ext Names delimits stack. It is
1792      * assumed it's not capable of managing Extended Names for lower levels.
1793      */
1794     for (del = 1; del < sysib.count; del++) {
1795         if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1796             break;
1797         }
1798     }
1799     if (del < sysib.count) {
1800         memset(sysib.ext_names[del], 0,
1801                sizeof(sysib.ext_names[0]) * (sysib.count - del));
1802     }
1803 
1804     /* count the cpus and split them into configured and reserved ones */
1805     for (i = 0; i < ms->possible_cpus->len; i++) {
1806         if (ms->possible_cpus->cpus[i].cpu) {
1807             conf_cpus++;
1808         } else {
1809             reserved_cpus++;
1810         }
1811     }
1812     sysib.vm[0].total_cpus = conf_cpus + reserved_cpus;
1813     sysib.vm[0].conf_cpus = conf_cpus;
1814     sysib.vm[0].reserved_cpus = reserved_cpus;
1815 
1816     /* Insert short machine name in EBCDIC, padded with blanks */
1817     if (qemu_name) {
1818         memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1819         ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1820                                                     strlen(qemu_name)));
1821     }
1822     sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1823     memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1824     /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1825      * considered by s390 as not capable of providing any Extended Name.
1826      * Therefore if no name was specified on qemu invocation, we go with the
1827      * same "KVMguest" default, which KVM has filled into short name field.
1828      */
1829     if (qemu_name) {
1830         strncpy((char *)sysib.ext_names[0], qemu_name,
1831                 sizeof(sysib.ext_names[0]));
1832     } else {
1833         strcpy((char *)sysib.ext_names[0], "KVMguest");
1834     }
1835     /* Insert UUID */
1836     memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1837 
1838     s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1839 }
1840 
1841 static int handle_stsi(S390CPU *cpu)
1842 {
1843     CPUState *cs = CPU(cpu);
1844     struct kvm_run *run = cs->kvm_run;
1845 
1846     switch (run->s390_stsi.fc) {
1847     case 3:
1848         if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1849             return 0;
1850         }
1851         /* Only sysib 3.2.2 needs post-handling for now. */
1852         insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1853         return 0;
1854     default:
1855         return 0;
1856     }
1857 }
1858 
1859 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1860 {
1861     CPUState *cs = CPU(cpu);
1862     struct kvm_run *run = cs->kvm_run;
1863 
1864     int ret = 0;
1865     struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1866 
1867     switch (arch_info->type) {
1868     case KVM_HW_WP_WRITE:
1869         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1870             cs->watchpoint_hit = &hw_watchpoint;
1871             hw_watchpoint.vaddr = arch_info->addr;
1872             hw_watchpoint.flags = BP_MEM_WRITE;
1873             ret = EXCP_DEBUG;
1874         }
1875         break;
1876     case KVM_HW_BP:
1877         if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1878             ret = EXCP_DEBUG;
1879         }
1880         break;
1881     case KVM_SINGLESTEP:
1882         if (cs->singlestep_enabled) {
1883             ret = EXCP_DEBUG;
1884         }
1885         break;
1886     default:
1887         ret = -ENOSYS;
1888     }
1889 
1890     return ret;
1891 }
1892 
1893 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1894 {
1895     S390CPU *cpu = S390_CPU(cs);
1896     int ret = 0;
1897 
1898     qemu_mutex_lock_iothread();
1899 
1900     kvm_cpu_synchronize_state(cs);
1901 
1902     switch (run->exit_reason) {
1903         case KVM_EXIT_S390_SIEIC:
1904             ret = handle_intercept(cpu);
1905             break;
1906         case KVM_EXIT_S390_RESET:
1907             s390_ipl_reset_request(cs, S390_RESET_REIPL);
1908             break;
1909         case KVM_EXIT_S390_TSCH:
1910             ret = handle_tsch(cpu);
1911             break;
1912         case KVM_EXIT_S390_STSI:
1913             ret = handle_stsi(cpu);
1914             break;
1915         case KVM_EXIT_DEBUG:
1916             ret = kvm_arch_handle_debug_exit(cpu);
1917             break;
1918         default:
1919             fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1920             break;
1921     }
1922     qemu_mutex_unlock_iothread();
1923 
1924     if (ret == 0) {
1925         ret = EXCP_INTERRUPT;
1926     }
1927     return ret;
1928 }
1929 
1930 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1931 {
1932     return true;
1933 }
1934 
1935 void kvm_s390_enable_css_support(S390CPU *cpu)
1936 {
1937     int r;
1938 
1939     /* Activate host kernel channel subsystem support. */
1940     r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1941     assert(r == 0);
1942 }
1943 
1944 void kvm_arch_init_irq_routing(KVMState *s)
1945 {
1946     /*
1947      * Note that while irqchip capabilities generally imply that cpustates
1948      * are handled in-kernel, it is not true for s390 (yet); therefore, we
1949      * have to override the common code kvm_halt_in_kernel_allowed setting.
1950      */
1951     if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1952         kvm_gsi_routing_allowed = true;
1953         kvm_halt_in_kernel_allowed = false;
1954     }
1955 }
1956 
1957 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1958                                     int vq, bool assign)
1959 {
1960     struct kvm_ioeventfd kick = {
1961         .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1962         KVM_IOEVENTFD_FLAG_DATAMATCH,
1963         .fd = event_notifier_get_fd(notifier),
1964         .datamatch = vq,
1965         .addr = sch,
1966         .len = 8,
1967     };
1968     trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign,
1969                                      kick.datamatch);
1970     if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1971         return -ENOSYS;
1972     }
1973     if (!assign) {
1974         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1975     }
1976     return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1977 }
1978 
1979 int kvm_s390_get_ri(void)
1980 {
1981     return cap_ri;
1982 }
1983 
1984 int kvm_s390_get_gs(void)
1985 {
1986     return cap_gs;
1987 }
1988 
1989 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1990 {
1991     struct kvm_mp_state mp_state = {};
1992     int ret;
1993 
1994     /* the kvm part might not have been initialized yet */
1995     if (CPU(cpu)->kvm_state == NULL) {
1996         return 0;
1997     }
1998 
1999     switch (cpu_state) {
2000     case S390_CPU_STATE_STOPPED:
2001         mp_state.mp_state = KVM_MP_STATE_STOPPED;
2002         break;
2003     case S390_CPU_STATE_CHECK_STOP:
2004         mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
2005         break;
2006     case S390_CPU_STATE_OPERATING:
2007         mp_state.mp_state = KVM_MP_STATE_OPERATING;
2008         break;
2009     case S390_CPU_STATE_LOAD:
2010         mp_state.mp_state = KVM_MP_STATE_LOAD;
2011         break;
2012     default:
2013         error_report("Requested CPU state is not a valid S390 CPU state: %u",
2014                      cpu_state);
2015         exit(1);
2016     }
2017 
2018     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2019     if (ret) {
2020         trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
2021                                        strerror(-ret));
2022     }
2023 
2024     return ret;
2025 }
2026 
2027 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
2028 {
2029     unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus;
2030     struct kvm_s390_irq_state irq_state = {
2031         .buf = (uint64_t) cpu->irqstate,
2032         .len = VCPU_IRQ_BUF_SIZE(max_cpus),
2033     };
2034     CPUState *cs = CPU(cpu);
2035     int32_t bytes;
2036 
2037     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2038         return;
2039     }
2040 
2041     bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
2042     if (bytes < 0) {
2043         cpu->irqstate_saved_size = 0;
2044         error_report("Migration of interrupt state failed");
2045         return;
2046     }
2047 
2048     cpu->irqstate_saved_size = bytes;
2049 }
2050 
2051 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
2052 {
2053     CPUState *cs = CPU(cpu);
2054     struct kvm_s390_irq_state irq_state = {
2055         .buf = (uint64_t) cpu->irqstate,
2056         .len = cpu->irqstate_saved_size,
2057     };
2058     int r;
2059 
2060     if (cpu->irqstate_saved_size == 0) {
2061         return 0;
2062     }
2063 
2064     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
2065         return -ENOSYS;
2066     }
2067 
2068     r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
2069     if (r) {
2070         error_report("Setting interrupt state failed %d", r);
2071     }
2072     return r;
2073 }
2074 
2075 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
2076                              uint64_t address, uint32_t data, PCIDevice *dev)
2077 {
2078     S390PCIBusDevice *pbdev;
2079     uint32_t vec = data & ZPCI_MSI_VEC_MASK;
2080 
2081     if (!dev) {
2082         DPRINTF("add_msi_route no pci device\n");
2083         return -ENODEV;
2084     }
2085 
2086     pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
2087     if (!pbdev) {
2088         DPRINTF("add_msi_route no zpci device\n");
2089         return -ENODEV;
2090     }
2091 
2092     route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
2093     route->flags = 0;
2094     route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
2095     route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
2096     route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
2097     route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
2098     route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
2099     return 0;
2100 }
2101 
2102 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
2103                                 int vector, PCIDevice *dev)
2104 {
2105     return 0;
2106 }
2107 
2108 int kvm_arch_release_virq_post(int virq)
2109 {
2110     return 0;
2111 }
2112 
2113 int kvm_arch_msi_data_to_gsi(uint32_t data)
2114 {
2115     abort();
2116 }
2117 
2118 static int query_cpu_subfunc(S390FeatBitmap features)
2119 {
2120     struct kvm_s390_vm_cpu_subfunc prop;
2121     struct kvm_device_attr attr = {
2122         .group = KVM_S390_VM_CPU_MODEL,
2123         .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2124         .addr = (uint64_t) &prop,
2125     };
2126     int rc;
2127 
2128     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2129     if (rc) {
2130         return  rc;
2131     }
2132 
2133     /*
2134      * We're going to add all subfunctions now, if the corresponding feature
2135      * is available that unlocks the query functions.
2136      */
2137     s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2138     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2139         s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2140     }
2141     if (test_bit(S390_FEAT_MSA, features)) {
2142         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2143         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2144         s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2145         s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2146         s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2147     }
2148     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2149         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2150     }
2151     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2152         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2153         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2154         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2155         s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2156     }
2157     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2158         s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2159     }
2160     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2161         s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2162     }
2163     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2164         s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2165     }
2166     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2167         s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2168     }
2169     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2170         s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2171     }
2172     return 0;
2173 }
2174 
2175 static int configure_cpu_subfunc(const S390FeatBitmap features)
2176 {
2177     struct kvm_s390_vm_cpu_subfunc prop = {};
2178     struct kvm_device_attr attr = {
2179         .group = KVM_S390_VM_CPU_MODEL,
2180         .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2181         .addr = (uint64_t) &prop,
2182     };
2183 
2184     if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2185                            KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2186         /* hardware support might be missing, IBC will handle most of this */
2187         return 0;
2188     }
2189 
2190     s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2191     if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2192         s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2193     }
2194     if (test_bit(S390_FEAT_MSA, features)) {
2195         s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2196         s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2197         s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2198         s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2199         s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2200     }
2201     if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2202         s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2203     }
2204     if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2205         s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2206         s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2207         s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2208         s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2209     }
2210     if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2211         s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2212     }
2213     if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2214         s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2215     }
2216     if (test_bit(S390_FEAT_MSA_EXT_9, features)) {
2217         s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa);
2218     }
2219     if (test_bit(S390_FEAT_ESORT_BASE, features)) {
2220         s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl);
2221     }
2222     if (test_bit(S390_FEAT_DEFLATE_BASE, features)) {
2223         s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc);
2224     }
2225     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2226 }
2227 
2228 static int kvm_to_feat[][2] = {
2229     { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2230     { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2231     { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2232     { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2233     { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2234     { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2235     { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2236     { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2237     { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2238     { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2239     { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2240     { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2241     { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2242     { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2243 };
2244 
2245 static int query_cpu_feat(S390FeatBitmap features)
2246 {
2247     struct kvm_s390_vm_cpu_feat prop;
2248     struct kvm_device_attr attr = {
2249         .group = KVM_S390_VM_CPU_MODEL,
2250         .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2251         .addr = (uint64_t) &prop,
2252     };
2253     int rc;
2254     int i;
2255 
2256     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2257     if (rc) {
2258         return  rc;
2259     }
2260 
2261     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2262         if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2263             set_bit(kvm_to_feat[i][1], features);
2264         }
2265     }
2266     return 0;
2267 }
2268 
2269 static int configure_cpu_feat(const S390FeatBitmap features)
2270 {
2271     struct kvm_s390_vm_cpu_feat prop = {};
2272     struct kvm_device_attr attr = {
2273         .group = KVM_S390_VM_CPU_MODEL,
2274         .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2275         .addr = (uint64_t) &prop,
2276     };
2277     int i;
2278 
2279     for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2280         if (test_bit(kvm_to_feat[i][1], features)) {
2281             set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2282         }
2283     }
2284     return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2285 }
2286 
2287 bool kvm_s390_cpu_models_supported(void)
2288 {
2289     if (!cpu_model_allowed()) {
2290         /* compatibility machines interfere with the cpu model */
2291         return false;
2292     }
2293     return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2294                              KVM_S390_VM_CPU_MACHINE) &&
2295            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2296                              KVM_S390_VM_CPU_PROCESSOR) &&
2297            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2298                              KVM_S390_VM_CPU_MACHINE_FEAT) &&
2299            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2300                              KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2301            kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2302                              KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2303 }
2304 
2305 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2306 {
2307     struct kvm_s390_vm_cpu_machine prop = {};
2308     struct kvm_device_attr attr = {
2309         .group = KVM_S390_VM_CPU_MODEL,
2310         .attr = KVM_S390_VM_CPU_MACHINE,
2311         .addr = (uint64_t) &prop,
2312     };
2313     uint16_t unblocked_ibc = 0, cpu_type = 0;
2314     int rc;
2315 
2316     memset(model, 0, sizeof(*model));
2317 
2318     if (!kvm_s390_cpu_models_supported()) {
2319         error_setg(errp, "KVM doesn't support CPU models");
2320         return;
2321     }
2322 
2323     /* query the basic cpu model properties */
2324     rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2325     if (rc) {
2326         error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2327         return;
2328     }
2329 
2330     cpu_type = cpuid_type(prop.cpuid);
2331     if (has_ibc(prop.ibc)) {
2332         model->lowest_ibc = lowest_ibc(prop.ibc);
2333         unblocked_ibc = unblocked_ibc(prop.ibc);
2334     }
2335     model->cpu_id = cpuid_id(prop.cpuid);
2336     model->cpu_id_format = cpuid_format(prop.cpuid);
2337     model->cpu_ver = 0xff;
2338 
2339     /* get supported cpu features indicated via STFL(E) */
2340     s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2341                              (uint8_t *) prop.fac_mask);
2342     /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2343     if (test_bit(S390_FEAT_STFLE, model->features)) {
2344         set_bit(S390_FEAT_DAT_ENH_2, model->features);
2345     }
2346     /* get supported cpu features indicated e.g. via SCLP */
2347     rc = query_cpu_feat(model->features);
2348     if (rc) {
2349         error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2350         return;
2351     }
2352     /* get supported cpu subfunctions indicated via query / test bit */
2353     rc = query_cpu_subfunc(model->features);
2354     if (rc) {
2355         error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2356         return;
2357     }
2358 
2359     /* PTFF subfunctions might be indicated although kernel support missing */
2360     if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2361         clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2362         clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2363         clear_bit(S390_FEAT_PTFF_STOE, model->features);
2364         clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2365     }
2366 
2367     /* with cpu model support, CMM is only indicated if really available */
2368     if (kvm_s390_cmma_available()) {
2369         set_bit(S390_FEAT_CMM, model->features);
2370     } else {
2371         /* no cmm -> no cmm nt */
2372         clear_bit(S390_FEAT_CMM_NT, model->features);
2373     }
2374 
2375     /* bpb needs kernel support for migration, VSIE and reset */
2376     if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2377         clear_bit(S390_FEAT_BPB, model->features);
2378     }
2379 
2380     /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2381     set_bit(S390_FEAT_ZPCI, model->features);
2382     set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2383 
2384     if (s390_known_cpu_type(cpu_type)) {
2385         /* we want the exact model, even if some features are missing */
2386         model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2387                                        ibc_ec_ga(unblocked_ibc), NULL);
2388     } else {
2389         /* model unknown, e.g. too new - search using features */
2390         model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2391                                        ibc_ec_ga(unblocked_ibc),
2392                                        model->features);
2393     }
2394     if (!model->def) {
2395         error_setg(errp, "KVM: host CPU model could not be identified");
2396         return;
2397     }
2398     /* for now, we can only provide the AP feature with HW support */
2399     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO,
2400         KVM_S390_VM_CRYPTO_ENABLE_APIE)) {
2401         set_bit(S390_FEAT_AP, model->features);
2402     }
2403     /* strip of features that are not part of the maximum model */
2404     bitmap_and(model->features, model->features, model->def->full_feat,
2405                S390_FEAT_MAX);
2406 }
2407 
2408 static void kvm_s390_configure_apie(bool interpret)
2409 {
2410     uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE :
2411                                 KVM_S390_VM_CRYPTO_DISABLE_APIE;
2412 
2413     if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
2414         kvm_s390_set_attr(attr);
2415     }
2416 }
2417 
2418 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2419 {
2420     struct kvm_s390_vm_cpu_processor prop  = {
2421         .fac_list = { 0 },
2422     };
2423     struct kvm_device_attr attr = {
2424         .group = KVM_S390_VM_CPU_MODEL,
2425         .attr = KVM_S390_VM_CPU_PROCESSOR,
2426         .addr = (uint64_t) &prop,
2427     };
2428     int rc;
2429 
2430     if (!model) {
2431         /* compatibility handling if cpu models are disabled */
2432         if (kvm_s390_cmma_available()) {
2433             kvm_s390_enable_cmma();
2434         }
2435         return;
2436     }
2437     if (!kvm_s390_cpu_models_supported()) {
2438         error_setg(errp, "KVM doesn't support CPU models");
2439         return;
2440     }
2441     prop.cpuid = s390_cpuid_from_cpu_model(model);
2442     prop.ibc = s390_ibc_from_cpu_model(model);
2443     /* configure cpu features indicated via STFL(e) */
2444     s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2445                          (uint8_t *) prop.fac_list);
2446     rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2447     if (rc) {
2448         error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2449         return;
2450     }
2451     /* configure cpu features indicated e.g. via SCLP */
2452     rc = configure_cpu_feat(model->features);
2453     if (rc) {
2454         error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2455         return;
2456     }
2457     /* configure cpu subfunctions indicated via query / test bit */
2458     rc = configure_cpu_subfunc(model->features);
2459     if (rc) {
2460         error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2461         return;
2462     }
2463     /* enable CMM via CMMA */
2464     if (test_bit(S390_FEAT_CMM, model->features)) {
2465         kvm_s390_enable_cmma();
2466     }
2467 
2468     if (test_bit(S390_FEAT_AP, model->features)) {
2469         kvm_s390_configure_apie(true);
2470     }
2471 }
2472 
2473 void kvm_s390_restart_interrupt(S390CPU *cpu)
2474 {
2475     struct kvm_s390_irq irq = {
2476         .type = KVM_S390_RESTART,
2477     };
2478 
2479     kvm_s390_vcpu_interrupt(cpu, &irq);
2480 }
2481 
2482 void kvm_s390_stop_interrupt(S390CPU *cpu)
2483 {
2484     struct kvm_s390_irq irq = {
2485         .type = KVM_S390_SIGP_STOP,
2486     };
2487 
2488     kvm_s390_vcpu_interrupt(cpu, &irq);
2489 }
2490