1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * Contributions after 2012-10-29 are licensed under the terms of the 18 * GNU GPL, version 2 or (at your option) any later version. 19 * 20 * You should have received a copy of the GNU (Lesser) General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include <sys/ioctl.h> 26 27 #include <linux/kvm.h> 28 #include <asm/ptrace.h> 29 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "internal.h" 33 #include "kvm_s390x.h" 34 #include "qapi/error.h" 35 #include "qemu/error-report.h" 36 #include "qemu/timer.h" 37 #include "qemu/units.h" 38 #include "qemu/mmap-alloc.h" 39 #include "qemu/log.h" 40 #include "sysemu/sysemu.h" 41 #include "sysemu/hw_accel.h" 42 #include "hw/hw.h" 43 #include "sysemu/device_tree.h" 44 #include "exec/gdbstub.h" 45 #include "trace.h" 46 #include "hw/s390x/s390-pci-inst.h" 47 #include "hw/s390x/s390-pci-bus.h" 48 #include "hw/s390x/ipl.h" 49 #include "hw/s390x/ebcdic.h" 50 #include "exec/memattrs.h" 51 #include "hw/s390x/s390-virtio-ccw.h" 52 #include "hw/s390x/s390-virtio-hcall.h" 53 54 #ifndef DEBUG_KVM 55 #define DEBUG_KVM 0 56 #endif 57 58 #define DPRINTF(fmt, ...) do { \ 59 if (DEBUG_KVM) { \ 60 fprintf(stderr, fmt, ## __VA_ARGS__); \ 61 } \ 62 } while (0) 63 64 #define kvm_vm_check_mem_attr(s, attr) \ 65 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 66 67 #define IPA0_DIAG 0x8300 68 #define IPA0_SIGP 0xae00 69 #define IPA0_B2 0xb200 70 #define IPA0_B9 0xb900 71 #define IPA0_EB 0xeb00 72 #define IPA0_E3 0xe300 73 74 #define PRIV_B2_SCLP_CALL 0x20 75 #define PRIV_B2_CSCH 0x30 76 #define PRIV_B2_HSCH 0x31 77 #define PRIV_B2_MSCH 0x32 78 #define PRIV_B2_SSCH 0x33 79 #define PRIV_B2_STSCH 0x34 80 #define PRIV_B2_TSCH 0x35 81 #define PRIV_B2_TPI 0x36 82 #define PRIV_B2_SAL 0x37 83 #define PRIV_B2_RSCH 0x38 84 #define PRIV_B2_STCRW 0x39 85 #define PRIV_B2_STCPS 0x3a 86 #define PRIV_B2_RCHP 0x3b 87 #define PRIV_B2_SCHM 0x3c 88 #define PRIV_B2_CHSC 0x5f 89 #define PRIV_B2_SIGA 0x74 90 #define PRIV_B2_XSCH 0x76 91 92 #define PRIV_EB_SQBS 0x8a 93 #define PRIV_EB_PCISTB 0xd0 94 #define PRIV_EB_SIC 0xd1 95 96 #define PRIV_B9_EQBS 0x9c 97 #define PRIV_B9_CLP 0xa0 98 #define PRIV_B9_PCISTG 0xd0 99 #define PRIV_B9_PCILG 0xd2 100 #define PRIV_B9_RPCIT 0xd3 101 102 #define PRIV_E3_MPCIFC 0xd0 103 #define PRIV_E3_STPCIFC 0xd4 104 105 #define DIAG_TIMEREVENT 0x288 106 #define DIAG_IPL 0x308 107 #define DIAG_KVM_HYPERCALL 0x500 108 #define DIAG_KVM_BREAKPOINT 0x501 109 110 #define ICPT_INSTRUCTION 0x04 111 #define ICPT_PROGRAM 0x08 112 #define ICPT_EXT_INT 0x14 113 #define ICPT_WAITPSW 0x1c 114 #define ICPT_SOFT_INTERCEPT 0x24 115 #define ICPT_CPU_STOP 0x28 116 #define ICPT_OPEREXC 0x2c 117 #define ICPT_IO 0x40 118 119 #define NR_LOCAL_IRQS 32 120 /* 121 * Needs to be big enough to contain max_cpus emergency signals 122 * and in addition NR_LOCAL_IRQS interrupts 123 */ 124 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \ 125 (max_cpus + NR_LOCAL_IRQS)) 126 127 static CPUWatchpoint hw_watchpoint; 128 /* 129 * We don't use a list because this structure is also used to transmit the 130 * hardware breakpoints to the kernel. 131 */ 132 static struct kvm_hw_breakpoint *hw_breakpoints; 133 static int nb_hw_breakpoints; 134 135 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 136 KVM_CAP_LAST_INFO 137 }; 138 139 static int cap_sync_regs; 140 static int cap_async_pf; 141 static int cap_mem_op; 142 static int cap_s390_irq; 143 static int cap_ri; 144 static int cap_gs; 145 static int cap_hpage_1m; 146 147 static int active_cmma; 148 149 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared); 150 151 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 152 { 153 struct kvm_device_attr attr = { 154 .group = KVM_S390_VM_MEM_CTRL, 155 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 156 .addr = (uint64_t) memory_limit, 157 }; 158 159 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 160 } 161 162 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 163 { 164 int rc; 165 166 struct kvm_device_attr attr = { 167 .group = KVM_S390_VM_MEM_CTRL, 168 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 169 .addr = (uint64_t) &new_limit, 170 }; 171 172 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 173 return 0; 174 } 175 176 rc = kvm_s390_query_mem_limit(hw_limit); 177 if (rc) { 178 return rc; 179 } else if (*hw_limit < new_limit) { 180 return -E2BIG; 181 } 182 183 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 184 } 185 186 int kvm_s390_cmma_active(void) 187 { 188 return active_cmma; 189 } 190 191 static bool kvm_s390_cmma_available(void) 192 { 193 static bool initialized, value; 194 195 if (!initialized) { 196 initialized = true; 197 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 198 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 199 } 200 return value; 201 } 202 203 void kvm_s390_cmma_reset(void) 204 { 205 int rc; 206 struct kvm_device_attr attr = { 207 .group = KVM_S390_VM_MEM_CTRL, 208 .attr = KVM_S390_VM_MEM_CLR_CMMA, 209 }; 210 211 if (!kvm_s390_cmma_active()) { 212 return; 213 } 214 215 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 216 trace_kvm_clear_cmma(rc); 217 } 218 219 static void kvm_s390_enable_cmma(void) 220 { 221 int rc; 222 struct kvm_device_attr attr = { 223 .group = KVM_S390_VM_MEM_CTRL, 224 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 225 }; 226 227 if (cap_hpage_1m) { 228 warn_report("CMM will not be enabled because it is not " 229 "compatible with huge memory backings."); 230 return; 231 } 232 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 233 active_cmma = !rc; 234 trace_kvm_enable_cmma(rc); 235 } 236 237 static void kvm_s390_set_attr(uint64_t attr) 238 { 239 struct kvm_device_attr attribute = { 240 .group = KVM_S390_VM_CRYPTO, 241 .attr = attr, 242 }; 243 244 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 245 246 if (ret) { 247 error_report("Failed to set crypto device attribute %lu: %s", 248 attr, strerror(-ret)); 249 } 250 } 251 252 static void kvm_s390_init_aes_kw(void) 253 { 254 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 255 256 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 257 NULL)) { 258 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 259 } 260 261 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 262 kvm_s390_set_attr(attr); 263 } 264 } 265 266 static void kvm_s390_init_dea_kw(void) 267 { 268 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 269 270 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 271 NULL)) { 272 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 273 } 274 275 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 276 kvm_s390_set_attr(attr); 277 } 278 } 279 280 void kvm_s390_crypto_reset(void) 281 { 282 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 283 kvm_s390_init_aes_kw(); 284 kvm_s390_init_dea_kw(); 285 } 286 } 287 288 static int kvm_s390_configure_mempath_backing(KVMState *s) 289 { 290 size_t path_psize = qemu_mempath_getpagesize(mem_path); 291 292 if (path_psize == 4 * KiB) { 293 return 0; 294 } 295 296 if (!hpage_1m_allowed()) { 297 error_report("This QEMU machine does not support huge page " 298 "mappings"); 299 return -EINVAL; 300 } 301 302 if (path_psize != 1 * MiB) { 303 error_report("Memory backing with 2G pages was specified, " 304 "but KVM does not support this memory backing"); 305 return -EINVAL; 306 } 307 308 if (kvm_vm_enable_cap(s, KVM_CAP_S390_HPAGE_1M, 0)) { 309 error_report("Memory backing with 1M pages was specified, " 310 "but KVM does not support this memory backing"); 311 return -EINVAL; 312 } 313 314 cap_hpage_1m = 1; 315 return 0; 316 } 317 318 int kvm_arch_init(MachineState *ms, KVMState *s) 319 { 320 MachineClass *mc = MACHINE_GET_CLASS(ms); 321 322 if (mem_path && kvm_s390_configure_mempath_backing(s)) { 323 return -EINVAL; 324 } 325 326 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 327 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 328 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 329 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 330 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 331 332 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 333 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 334 phys_mem_set_alloc(legacy_s390_alloc); 335 } 336 337 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 338 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 339 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 340 if (ri_allowed()) { 341 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 342 cap_ri = 1; 343 } 344 } 345 if (cpu_model_allowed()) { 346 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 347 cap_gs = 1; 348 } 349 } 350 351 /* 352 * The migration interface for ais was introduced with kernel 4.13 353 * but the capability itself had been active since 4.12. As migration 354 * support is considered necessary let's disable ais in the 2.10 355 * machine. 356 */ 357 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ 358 359 return 0; 360 } 361 362 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 363 { 364 return 0; 365 } 366 367 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 368 { 369 return cpu->cpu_index; 370 } 371 372 int kvm_arch_init_vcpu(CPUState *cs) 373 { 374 S390CPU *cpu = S390_CPU(cs); 375 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 376 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE); 377 return 0; 378 } 379 380 void kvm_s390_reset_vcpu(S390CPU *cpu) 381 { 382 CPUState *cs = CPU(cpu); 383 384 /* The initial reset call is needed here to reset in-kernel 385 * vcpu data that we can't access directly from QEMU 386 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 387 * Before this ioctl cpu_synchronize_state() is called in common kvm 388 * code (kvm-all) */ 389 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 390 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 391 } 392 } 393 394 static int can_sync_regs(CPUState *cs, int regs) 395 { 396 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 397 } 398 399 int kvm_arch_put_registers(CPUState *cs, int level) 400 { 401 S390CPU *cpu = S390_CPU(cs); 402 CPUS390XState *env = &cpu->env; 403 struct kvm_sregs sregs; 404 struct kvm_regs regs; 405 struct kvm_fpu fpu = {}; 406 int r; 407 int i; 408 409 /* always save the PSW and the GPRS*/ 410 cs->kvm_run->psw_addr = env->psw.addr; 411 cs->kvm_run->psw_mask = env->psw.mask; 412 413 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 414 for (i = 0; i < 16; i++) { 415 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 416 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 417 } 418 } else { 419 for (i = 0; i < 16; i++) { 420 regs.gprs[i] = env->regs[i]; 421 } 422 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 423 if (r < 0) { 424 return r; 425 } 426 } 427 428 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 429 for (i = 0; i < 32; i++) { 430 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll; 431 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll; 432 } 433 cs->kvm_run->s.regs.fpc = env->fpc; 434 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 435 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 436 for (i = 0; i < 16; i++) { 437 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll; 438 } 439 cs->kvm_run->s.regs.fpc = env->fpc; 440 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 441 } else { 442 /* Floating point */ 443 for (i = 0; i < 16; i++) { 444 fpu.fprs[i] = get_freg(env, i)->ll; 445 } 446 fpu.fpc = env->fpc; 447 448 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 449 if (r < 0) { 450 return r; 451 } 452 } 453 454 /* Do we need to save more than that? */ 455 if (level == KVM_PUT_RUNTIME_STATE) { 456 return 0; 457 } 458 459 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 460 cs->kvm_run->s.regs.cputm = env->cputm; 461 cs->kvm_run->s.regs.ckc = env->ckc; 462 cs->kvm_run->s.regs.todpr = env->todpr; 463 cs->kvm_run->s.regs.gbea = env->gbea; 464 cs->kvm_run->s.regs.pp = env->pp; 465 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 466 } else { 467 /* 468 * These ONE_REGS are not protected by a capability. As they are only 469 * necessary for migration we just trace a possible error, but don't 470 * return with an error return code. 471 */ 472 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 473 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 474 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 475 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 476 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 477 } 478 479 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 480 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 481 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 482 } 483 484 /* pfault parameters */ 485 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 486 cs->kvm_run->s.regs.pft = env->pfault_token; 487 cs->kvm_run->s.regs.pfs = env->pfault_select; 488 cs->kvm_run->s.regs.pfc = env->pfault_compare; 489 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 490 } else if (cap_async_pf) { 491 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 492 if (r < 0) { 493 return r; 494 } 495 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 496 if (r < 0) { 497 return r; 498 } 499 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 500 if (r < 0) { 501 return r; 502 } 503 } 504 505 /* access registers and control registers*/ 506 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 507 for (i = 0; i < 16; i++) { 508 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 509 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 510 } 511 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 512 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 513 } else { 514 for (i = 0; i < 16; i++) { 515 sregs.acrs[i] = env->aregs[i]; 516 sregs.crs[i] = env->cregs[i]; 517 } 518 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 519 if (r < 0) { 520 return r; 521 } 522 } 523 524 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 525 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 526 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 527 } 528 529 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 530 cs->kvm_run->s.regs.bpbc = env->bpbc; 531 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; 532 } 533 534 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 535 cs->kvm_run->s.regs.etoken = env->etoken; 536 cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; 537 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; 538 } 539 540 /* Finally the prefix */ 541 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 542 cs->kvm_run->s.regs.prefix = env->psa; 543 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 544 } else { 545 /* prefix is only supported via sync regs */ 546 } 547 return 0; 548 } 549 550 int kvm_arch_get_registers(CPUState *cs) 551 { 552 S390CPU *cpu = S390_CPU(cs); 553 CPUS390XState *env = &cpu->env; 554 struct kvm_sregs sregs; 555 struct kvm_regs regs; 556 struct kvm_fpu fpu; 557 int i, r; 558 559 /* get the PSW */ 560 env->psw.addr = cs->kvm_run->psw_addr; 561 env->psw.mask = cs->kvm_run->psw_mask; 562 563 /* the GPRS */ 564 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 565 for (i = 0; i < 16; i++) { 566 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 567 } 568 } else { 569 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 570 if (r < 0) { 571 return r; 572 } 573 for (i = 0; i < 16; i++) { 574 env->regs[i] = regs.gprs[i]; 575 } 576 } 577 578 /* The ACRS and CRS */ 579 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 580 for (i = 0; i < 16; i++) { 581 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 582 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 583 } 584 } else { 585 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 586 if (r < 0) { 587 return r; 588 } 589 for (i = 0; i < 16; i++) { 590 env->aregs[i] = sregs.acrs[i]; 591 env->cregs[i] = sregs.crs[i]; 592 } 593 } 594 595 /* Floating point and vector registers */ 596 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 597 for (i = 0; i < 32; i++) { 598 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0]; 599 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1]; 600 } 601 env->fpc = cs->kvm_run->s.regs.fpc; 602 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 603 for (i = 0; i < 16; i++) { 604 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i]; 605 } 606 env->fpc = cs->kvm_run->s.regs.fpc; 607 } else { 608 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 609 if (r < 0) { 610 return r; 611 } 612 for (i = 0; i < 16; i++) { 613 get_freg(env, i)->ll = fpu.fprs[i]; 614 } 615 env->fpc = fpu.fpc; 616 } 617 618 /* The prefix */ 619 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 620 env->psa = cs->kvm_run->s.regs.prefix; 621 } 622 623 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 624 env->cputm = cs->kvm_run->s.regs.cputm; 625 env->ckc = cs->kvm_run->s.regs.ckc; 626 env->todpr = cs->kvm_run->s.regs.todpr; 627 env->gbea = cs->kvm_run->s.regs.gbea; 628 env->pp = cs->kvm_run->s.regs.pp; 629 } else { 630 /* 631 * These ONE_REGS are not protected by a capability. As they are only 632 * necessary for migration we just trace a possible error, but don't 633 * return with an error return code. 634 */ 635 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 636 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 637 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 638 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 639 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 640 } 641 642 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 643 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 644 } 645 646 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 647 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 648 } 649 650 if (can_sync_regs(cs, KVM_SYNC_BPBC)) { 651 env->bpbc = cs->kvm_run->s.regs.bpbc; 652 } 653 654 if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { 655 env->etoken = cs->kvm_run->s.regs.etoken; 656 env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; 657 } 658 659 /* pfault parameters */ 660 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 661 env->pfault_token = cs->kvm_run->s.regs.pft; 662 env->pfault_select = cs->kvm_run->s.regs.pfs; 663 env->pfault_compare = cs->kvm_run->s.regs.pfc; 664 } else if (cap_async_pf) { 665 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 666 if (r < 0) { 667 return r; 668 } 669 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 670 if (r < 0) { 671 return r; 672 } 673 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 674 if (r < 0) { 675 return r; 676 } 677 } 678 679 return 0; 680 } 681 682 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 683 { 684 int r; 685 struct kvm_device_attr attr = { 686 .group = KVM_S390_VM_TOD, 687 .attr = KVM_S390_VM_TOD_LOW, 688 .addr = (uint64_t)tod_low, 689 }; 690 691 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 692 if (r) { 693 return r; 694 } 695 696 attr.attr = KVM_S390_VM_TOD_HIGH; 697 attr.addr = (uint64_t)tod_high; 698 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 699 } 700 701 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 702 { 703 int r; 704 struct kvm_s390_vm_tod_clock gtod; 705 struct kvm_device_attr attr = { 706 .group = KVM_S390_VM_TOD, 707 .attr = KVM_S390_VM_TOD_EXT, 708 .addr = (uint64_t)>od, 709 }; 710 711 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 712 *tod_high = gtod.epoch_idx; 713 *tod_low = gtod.tod; 714 715 return r; 716 } 717 718 int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) 719 { 720 int r; 721 struct kvm_device_attr attr = { 722 .group = KVM_S390_VM_TOD, 723 .attr = KVM_S390_VM_TOD_LOW, 724 .addr = (uint64_t)&tod_low, 725 }; 726 727 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 728 if (r) { 729 return r; 730 } 731 732 attr.attr = KVM_S390_VM_TOD_HIGH; 733 attr.addr = (uint64_t)&tod_high; 734 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 735 } 736 737 int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) 738 { 739 struct kvm_s390_vm_tod_clock gtod = { 740 .epoch_idx = tod_high, 741 .tod = tod_low, 742 }; 743 struct kvm_device_attr attr = { 744 .group = KVM_S390_VM_TOD, 745 .attr = KVM_S390_VM_TOD_EXT, 746 .addr = (uint64_t)>od, 747 }; 748 749 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 750 } 751 752 /** 753 * kvm_s390_mem_op: 754 * @addr: the logical start address in guest memory 755 * @ar: the access register number 756 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 757 * @len: length that should be transferred 758 * @is_write: true = write, false = read 759 * Returns: 0 on success, non-zero if an exception or error occurred 760 * 761 * Use KVM ioctl to read/write from/to guest memory. An access exception 762 * is injected into the vCPU in case of translation errors. 763 */ 764 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 765 int len, bool is_write) 766 { 767 struct kvm_s390_mem_op mem_op = { 768 .gaddr = addr, 769 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 770 .size = len, 771 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 772 : KVM_S390_MEMOP_LOGICAL_READ, 773 .buf = (uint64_t)hostbuf, 774 .ar = ar, 775 }; 776 int ret; 777 778 if (!cap_mem_op) { 779 return -ENOSYS; 780 } 781 if (!hostbuf) { 782 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 783 } 784 785 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 786 if (ret < 0) { 787 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret)); 788 } 789 return ret; 790 } 791 792 /* 793 * Legacy layout for s390: 794 * Older S390 KVM requires the topmost vma of the RAM to be 795 * smaller than an system defined value, which is at least 256GB. 796 * Larger systems have larger values. We put the guest between 797 * the end of data segment (system break) and this value. We 798 * use 32GB as a base to have enough room for the system break 799 * to grow. We also have to use MAP parameters that avoid 800 * read-only mapping of guest pages. 801 */ 802 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared) 803 { 804 static void *mem; 805 806 if (mem) { 807 /* we only support one allocation, which is enough for initial ram */ 808 return NULL; 809 } 810 811 mem = mmap((void *) 0x800000000ULL, size, 812 PROT_EXEC|PROT_READ|PROT_WRITE, 813 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 814 if (mem == MAP_FAILED) { 815 mem = NULL; 816 } 817 if (mem && align) { 818 *align = QEMU_VMALLOC_ALIGN; 819 } 820 return mem; 821 } 822 823 static uint8_t const *sw_bp_inst; 824 static uint8_t sw_bp_ilen; 825 826 static void determine_sw_breakpoint_instr(void) 827 { 828 /* DIAG 501 is used for sw breakpoints with old kernels */ 829 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 830 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 831 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 832 833 if (sw_bp_inst) { 834 return; 835 } 836 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 837 sw_bp_inst = diag_501; 838 sw_bp_ilen = sizeof(diag_501); 839 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 840 } else { 841 sw_bp_inst = instr_0x0000; 842 sw_bp_ilen = sizeof(instr_0x0000); 843 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 844 } 845 } 846 847 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 848 { 849 determine_sw_breakpoint_instr(); 850 851 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 852 sw_bp_ilen, 0) || 853 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 854 return -EINVAL; 855 } 856 return 0; 857 } 858 859 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 860 { 861 uint8_t t[MAX_ILEN]; 862 863 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 864 return -EINVAL; 865 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 866 return -EINVAL; 867 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 868 sw_bp_ilen, 1)) { 869 return -EINVAL; 870 } 871 872 return 0; 873 } 874 875 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 876 int len, int type) 877 { 878 int n; 879 880 for (n = 0; n < nb_hw_breakpoints; n++) { 881 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 882 (hw_breakpoints[n].len == len || len == -1)) { 883 return &hw_breakpoints[n]; 884 } 885 } 886 887 return NULL; 888 } 889 890 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 891 { 892 int size; 893 894 if (find_hw_breakpoint(addr, len, type)) { 895 return -EEXIST; 896 } 897 898 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 899 900 if (!hw_breakpoints) { 901 nb_hw_breakpoints = 0; 902 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 903 } else { 904 hw_breakpoints = 905 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 906 } 907 908 if (!hw_breakpoints) { 909 nb_hw_breakpoints = 0; 910 return -ENOMEM; 911 } 912 913 hw_breakpoints[nb_hw_breakpoints].addr = addr; 914 hw_breakpoints[nb_hw_breakpoints].len = len; 915 hw_breakpoints[nb_hw_breakpoints].type = type; 916 917 nb_hw_breakpoints++; 918 919 return 0; 920 } 921 922 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 923 target_ulong len, int type) 924 { 925 switch (type) { 926 case GDB_BREAKPOINT_HW: 927 type = KVM_HW_BP; 928 break; 929 case GDB_WATCHPOINT_WRITE: 930 if (len < 1) { 931 return -EINVAL; 932 } 933 type = KVM_HW_WP_WRITE; 934 break; 935 default: 936 return -ENOSYS; 937 } 938 return insert_hw_breakpoint(addr, len, type); 939 } 940 941 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 942 target_ulong len, int type) 943 { 944 int size; 945 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 946 947 if (bp == NULL) { 948 return -ENOENT; 949 } 950 951 nb_hw_breakpoints--; 952 if (nb_hw_breakpoints > 0) { 953 /* 954 * In order to trim the array, move the last element to the position to 955 * be removed - if necessary. 956 */ 957 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 958 *bp = hw_breakpoints[nb_hw_breakpoints]; 959 } 960 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 961 hw_breakpoints = 962 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 963 } else { 964 g_free(hw_breakpoints); 965 hw_breakpoints = NULL; 966 } 967 968 return 0; 969 } 970 971 void kvm_arch_remove_all_hw_breakpoints(void) 972 { 973 nb_hw_breakpoints = 0; 974 g_free(hw_breakpoints); 975 hw_breakpoints = NULL; 976 } 977 978 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 979 { 980 int i; 981 982 if (nb_hw_breakpoints > 0) { 983 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 984 dbg->arch.hw_bp = hw_breakpoints; 985 986 for (i = 0; i < nb_hw_breakpoints; ++i) { 987 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 988 hw_breakpoints[i].addr); 989 } 990 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 991 } else { 992 dbg->arch.nr_hw_bp = 0; 993 dbg->arch.hw_bp = NULL; 994 } 995 } 996 997 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 998 { 999 } 1000 1001 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 1002 { 1003 return MEMTXATTRS_UNSPECIFIED; 1004 } 1005 1006 int kvm_arch_process_async_events(CPUState *cs) 1007 { 1008 return cs->halted; 1009 } 1010 1011 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 1012 struct kvm_s390_interrupt *interrupt) 1013 { 1014 int r = 0; 1015 1016 interrupt->type = irq->type; 1017 switch (irq->type) { 1018 case KVM_S390_INT_VIRTIO: 1019 interrupt->parm = irq->u.ext.ext_params; 1020 /* fall through */ 1021 case KVM_S390_INT_PFAULT_INIT: 1022 case KVM_S390_INT_PFAULT_DONE: 1023 interrupt->parm64 = irq->u.ext.ext_params2; 1024 break; 1025 case KVM_S390_PROGRAM_INT: 1026 interrupt->parm = irq->u.pgm.code; 1027 break; 1028 case KVM_S390_SIGP_SET_PREFIX: 1029 interrupt->parm = irq->u.prefix.address; 1030 break; 1031 case KVM_S390_INT_SERVICE: 1032 interrupt->parm = irq->u.ext.ext_params; 1033 break; 1034 case KVM_S390_MCHK: 1035 interrupt->parm = irq->u.mchk.cr14; 1036 interrupt->parm64 = irq->u.mchk.mcic; 1037 break; 1038 case KVM_S390_INT_EXTERNAL_CALL: 1039 interrupt->parm = irq->u.extcall.code; 1040 break; 1041 case KVM_S390_INT_EMERGENCY: 1042 interrupt->parm = irq->u.emerg.code; 1043 break; 1044 case KVM_S390_SIGP_STOP: 1045 case KVM_S390_RESTART: 1046 break; /* These types have no parameters */ 1047 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 1048 interrupt->parm = irq->u.io.subchannel_id << 16; 1049 interrupt->parm |= irq->u.io.subchannel_nr; 1050 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 1051 interrupt->parm64 |= irq->u.io.io_int_word; 1052 break; 1053 default: 1054 r = -EINVAL; 1055 break; 1056 } 1057 return r; 1058 } 1059 1060 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 1061 { 1062 struct kvm_s390_interrupt kvmint = {}; 1063 int r; 1064 1065 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1066 if (r < 0) { 1067 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1068 exit(1); 1069 } 1070 1071 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1072 if (r < 0) { 1073 fprintf(stderr, "KVM failed to inject interrupt\n"); 1074 exit(1); 1075 } 1076 } 1077 1078 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1079 { 1080 CPUState *cs = CPU(cpu); 1081 int r; 1082 1083 if (cap_s390_irq) { 1084 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1085 if (!r) { 1086 return; 1087 } 1088 error_report("KVM failed to inject interrupt %llx", irq->type); 1089 exit(1); 1090 } 1091 1092 inject_vcpu_irq_legacy(cs, irq); 1093 } 1094 1095 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) 1096 { 1097 struct kvm_s390_interrupt kvmint = {}; 1098 int r; 1099 1100 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1101 if (r < 0) { 1102 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1103 exit(1); 1104 } 1105 1106 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1107 if (r < 0) { 1108 fprintf(stderr, "KVM failed to inject interrupt\n"); 1109 exit(1); 1110 } 1111 } 1112 1113 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1114 { 1115 struct kvm_s390_irq irq = { 1116 .type = KVM_S390_PROGRAM_INT, 1117 .u.pgm.code = code, 1118 }; 1119 qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", 1120 cpu->env.psw.addr); 1121 kvm_s390_vcpu_interrupt(cpu, &irq); 1122 } 1123 1124 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1125 { 1126 struct kvm_s390_irq irq = { 1127 .type = KVM_S390_PROGRAM_INT, 1128 .u.pgm.code = code, 1129 .u.pgm.trans_exc_code = te_code, 1130 .u.pgm.exc_access_id = te_code & 3, 1131 }; 1132 1133 kvm_s390_vcpu_interrupt(cpu, &irq); 1134 } 1135 1136 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1137 uint16_t ipbh0) 1138 { 1139 CPUS390XState *env = &cpu->env; 1140 uint64_t sccb; 1141 uint32_t code; 1142 int r = 0; 1143 1144 sccb = env->regs[ipbh0 & 0xf]; 1145 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1146 1147 r = sclp_service_call(env, sccb, code); 1148 if (r < 0) { 1149 kvm_s390_program_interrupt(cpu, -r); 1150 } else { 1151 setcc(cpu, r); 1152 } 1153 1154 return 0; 1155 } 1156 1157 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1158 { 1159 CPUS390XState *env = &cpu->env; 1160 int rc = 0; 1161 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1162 1163 switch (ipa1) { 1164 case PRIV_B2_XSCH: 1165 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1166 break; 1167 case PRIV_B2_CSCH: 1168 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1169 break; 1170 case PRIV_B2_HSCH: 1171 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1172 break; 1173 case PRIV_B2_MSCH: 1174 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1175 break; 1176 case PRIV_B2_SSCH: 1177 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1178 break; 1179 case PRIV_B2_STCRW: 1180 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1181 break; 1182 case PRIV_B2_STSCH: 1183 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1184 break; 1185 case PRIV_B2_TSCH: 1186 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1187 fprintf(stderr, "Spurious tsch intercept\n"); 1188 break; 1189 case PRIV_B2_CHSC: 1190 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1191 break; 1192 case PRIV_B2_TPI: 1193 /* This should have been handled by kvm already. */ 1194 fprintf(stderr, "Spurious tpi intercept\n"); 1195 break; 1196 case PRIV_B2_SCHM: 1197 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1198 run->s390_sieic.ipb, RA_IGNORED); 1199 break; 1200 case PRIV_B2_RSCH: 1201 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1202 break; 1203 case PRIV_B2_RCHP: 1204 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1205 break; 1206 case PRIV_B2_STCPS: 1207 /* We do not provide this instruction, it is suppressed. */ 1208 break; 1209 case PRIV_B2_SAL: 1210 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1211 break; 1212 case PRIV_B2_SIGA: 1213 /* Not provided, set CC = 3 for subchannel not operational */ 1214 setcc(cpu, 3); 1215 break; 1216 case PRIV_B2_SCLP_CALL: 1217 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1218 break; 1219 default: 1220 rc = -1; 1221 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1222 break; 1223 } 1224 1225 return rc; 1226 } 1227 1228 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1229 uint8_t *ar) 1230 { 1231 CPUS390XState *env = &cpu->env; 1232 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1233 uint32_t base2 = run->s390_sieic.ipb >> 28; 1234 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1235 ((run->s390_sieic.ipb & 0xff00) << 4); 1236 1237 if (disp2 & 0x80000) { 1238 disp2 += 0xfff00000; 1239 } 1240 if (ar) { 1241 *ar = base2; 1242 } 1243 1244 return (base2 ? env->regs[base2] : 0) + 1245 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1246 } 1247 1248 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1249 uint8_t *ar) 1250 { 1251 CPUS390XState *env = &cpu->env; 1252 uint32_t base2 = run->s390_sieic.ipb >> 28; 1253 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1254 ((run->s390_sieic.ipb & 0xff00) << 4); 1255 1256 if (disp2 & 0x80000) { 1257 disp2 += 0xfff00000; 1258 } 1259 if (ar) { 1260 *ar = base2; 1261 } 1262 1263 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1264 } 1265 1266 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1267 { 1268 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1269 1270 if (s390_has_feat(S390_FEAT_ZPCI)) { 1271 return clp_service_call(cpu, r2, RA_IGNORED); 1272 } else { 1273 return -1; 1274 } 1275 } 1276 1277 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1278 { 1279 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1280 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1281 1282 if (s390_has_feat(S390_FEAT_ZPCI)) { 1283 return pcilg_service_call(cpu, r1, r2, RA_IGNORED); 1284 } else { 1285 return -1; 1286 } 1287 } 1288 1289 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1290 { 1291 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1292 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1293 1294 if (s390_has_feat(S390_FEAT_ZPCI)) { 1295 return pcistg_service_call(cpu, r1, r2, RA_IGNORED); 1296 } else { 1297 return -1; 1298 } 1299 } 1300 1301 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1302 { 1303 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1304 uint64_t fiba; 1305 uint8_t ar; 1306 1307 if (s390_has_feat(S390_FEAT_ZPCI)) { 1308 fiba = get_base_disp_rxy(cpu, run, &ar); 1309 1310 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1311 } else { 1312 return -1; 1313 } 1314 } 1315 1316 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1317 { 1318 CPUS390XState *env = &cpu->env; 1319 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1320 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1321 uint8_t isc; 1322 uint16_t mode; 1323 int r; 1324 1325 mode = env->regs[r1] & 0xffff; 1326 isc = (env->regs[r3] >> 27) & 0x7; 1327 r = css_do_sic(env, isc, mode); 1328 if (r) { 1329 kvm_s390_program_interrupt(cpu, -r); 1330 } 1331 1332 return 0; 1333 } 1334 1335 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1336 { 1337 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1338 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1339 1340 if (s390_has_feat(S390_FEAT_ZPCI)) { 1341 return rpcit_service_call(cpu, r1, r2, RA_IGNORED); 1342 } else { 1343 return -1; 1344 } 1345 } 1346 1347 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1348 { 1349 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1350 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1351 uint64_t gaddr; 1352 uint8_t ar; 1353 1354 if (s390_has_feat(S390_FEAT_ZPCI)) { 1355 gaddr = get_base_disp_rsy(cpu, run, &ar); 1356 1357 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); 1358 } else { 1359 return -1; 1360 } 1361 } 1362 1363 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1364 { 1365 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1366 uint64_t fiba; 1367 uint8_t ar; 1368 1369 if (s390_has_feat(S390_FEAT_ZPCI)) { 1370 fiba = get_base_disp_rxy(cpu, run, &ar); 1371 1372 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); 1373 } else { 1374 return -1; 1375 } 1376 } 1377 1378 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1379 { 1380 int r = 0; 1381 1382 switch (ipa1) { 1383 case PRIV_B9_CLP: 1384 r = kvm_clp_service_call(cpu, run); 1385 break; 1386 case PRIV_B9_PCISTG: 1387 r = kvm_pcistg_service_call(cpu, run); 1388 break; 1389 case PRIV_B9_PCILG: 1390 r = kvm_pcilg_service_call(cpu, run); 1391 break; 1392 case PRIV_B9_RPCIT: 1393 r = kvm_rpcit_service_call(cpu, run); 1394 break; 1395 case PRIV_B9_EQBS: 1396 /* just inject exception */ 1397 r = -1; 1398 break; 1399 default: 1400 r = -1; 1401 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1402 break; 1403 } 1404 1405 return r; 1406 } 1407 1408 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1409 { 1410 int r = 0; 1411 1412 switch (ipbl) { 1413 case PRIV_EB_PCISTB: 1414 r = kvm_pcistb_service_call(cpu, run); 1415 break; 1416 case PRIV_EB_SIC: 1417 r = kvm_sic_service_call(cpu, run); 1418 break; 1419 case PRIV_EB_SQBS: 1420 /* just inject exception */ 1421 r = -1; 1422 break; 1423 default: 1424 r = -1; 1425 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1426 break; 1427 } 1428 1429 return r; 1430 } 1431 1432 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1433 { 1434 int r = 0; 1435 1436 switch (ipbl) { 1437 case PRIV_E3_MPCIFC: 1438 r = kvm_mpcifc_service_call(cpu, run); 1439 break; 1440 case PRIV_E3_STPCIFC: 1441 r = kvm_stpcifc_service_call(cpu, run); 1442 break; 1443 default: 1444 r = -1; 1445 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1446 break; 1447 } 1448 1449 return r; 1450 } 1451 1452 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1453 { 1454 CPUS390XState *env = &cpu->env; 1455 int ret; 1456 1457 ret = s390_virtio_hypercall(env); 1458 if (ret == -EINVAL) { 1459 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1460 return 0; 1461 } 1462 1463 return ret; 1464 } 1465 1466 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1467 { 1468 uint64_t r1, r3; 1469 int rc; 1470 1471 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1472 r3 = run->s390_sieic.ipa & 0x000f; 1473 rc = handle_diag_288(&cpu->env, r1, r3); 1474 if (rc) { 1475 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1476 } 1477 } 1478 1479 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1480 { 1481 uint64_t r1, r3; 1482 1483 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1484 r3 = run->s390_sieic.ipa & 0x000f; 1485 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); 1486 } 1487 1488 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1489 { 1490 CPUS390XState *env = &cpu->env; 1491 unsigned long pc; 1492 1493 pc = env->psw.addr - sw_bp_ilen; 1494 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1495 env->psw.addr = pc; 1496 return EXCP_DEBUG; 1497 } 1498 1499 return -ENOENT; 1500 } 1501 1502 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1503 1504 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1505 { 1506 int r = 0; 1507 uint16_t func_code; 1508 1509 /* 1510 * For any diagnose call we support, bits 48-63 of the resulting 1511 * address specify the function code; the remainder is ignored. 1512 */ 1513 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1514 switch (func_code) { 1515 case DIAG_TIMEREVENT: 1516 kvm_handle_diag_288(cpu, run); 1517 break; 1518 case DIAG_IPL: 1519 kvm_handle_diag_308(cpu, run); 1520 break; 1521 case DIAG_KVM_HYPERCALL: 1522 r = handle_hypercall(cpu, run); 1523 break; 1524 case DIAG_KVM_BREAKPOINT: 1525 r = handle_sw_breakpoint(cpu, run); 1526 break; 1527 default: 1528 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1529 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1530 break; 1531 } 1532 1533 return r; 1534 } 1535 1536 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1537 { 1538 CPUS390XState *env = &cpu->env; 1539 const uint8_t r1 = ipa1 >> 4; 1540 const uint8_t r3 = ipa1 & 0x0f; 1541 int ret; 1542 uint8_t order; 1543 1544 /* get order code */ 1545 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1546 1547 ret = handle_sigp(env, order, r1, r3); 1548 setcc(cpu, ret); 1549 return 0; 1550 } 1551 1552 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1553 { 1554 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1555 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1556 int r = -1; 1557 1558 DPRINTF("handle_instruction 0x%x 0x%x\n", 1559 run->s390_sieic.ipa, run->s390_sieic.ipb); 1560 switch (ipa0) { 1561 case IPA0_B2: 1562 r = handle_b2(cpu, run, ipa1); 1563 break; 1564 case IPA0_B9: 1565 r = handle_b9(cpu, run, ipa1); 1566 break; 1567 case IPA0_EB: 1568 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1569 break; 1570 case IPA0_E3: 1571 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1572 break; 1573 case IPA0_DIAG: 1574 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1575 break; 1576 case IPA0_SIGP: 1577 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1578 break; 1579 } 1580 1581 if (r < 0) { 1582 r = 0; 1583 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1584 } 1585 1586 return r; 1587 } 1588 1589 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, 1590 int pswoffset) 1591 { 1592 CPUState *cs = CPU(cpu); 1593 1594 s390_cpu_halt(cpu); 1595 cpu->env.crash_reason = reason; 1596 qemu_system_guest_panicked(cpu_get_crash_info(cs)); 1597 } 1598 1599 /* try to detect pgm check loops */ 1600 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1601 { 1602 CPUState *cs = CPU(cpu); 1603 PSW oldpsw, newpsw; 1604 1605 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1606 offsetof(LowCore, program_new_psw)); 1607 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1608 offsetof(LowCore, program_new_psw) + 8); 1609 oldpsw.mask = run->psw_mask; 1610 oldpsw.addr = run->psw_addr; 1611 /* 1612 * Avoid endless loops of operation exceptions, if the pgm new 1613 * PSW will cause a new operation exception. 1614 * The heuristic checks if the pgm new psw is within 6 bytes before 1615 * the faulting psw address (with same DAT, AS settings) and the 1616 * new psw is not a wait psw and the fault was not triggered by 1617 * problem state. In that case go into crashed state. 1618 */ 1619 1620 if (oldpsw.addr - newpsw.addr <= 6 && 1621 !(newpsw.mask & PSW_MASK_WAIT) && 1622 !(oldpsw.mask & PSW_MASK_PSTATE) && 1623 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1624 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1625 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, 1626 offsetof(LowCore, program_new_psw)); 1627 return EXCP_HALTED; 1628 } 1629 return 0; 1630 } 1631 1632 static int handle_intercept(S390CPU *cpu) 1633 { 1634 CPUState *cs = CPU(cpu); 1635 struct kvm_run *run = cs->kvm_run; 1636 int icpt_code = run->s390_sieic.icptcode; 1637 int r = 0; 1638 1639 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1640 (long)cs->kvm_run->psw_addr); 1641 switch (icpt_code) { 1642 case ICPT_INSTRUCTION: 1643 r = handle_instruction(cpu, run); 1644 break; 1645 case ICPT_PROGRAM: 1646 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, 1647 offsetof(LowCore, program_new_psw)); 1648 r = EXCP_HALTED; 1649 break; 1650 case ICPT_EXT_INT: 1651 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, 1652 offsetof(LowCore, external_new_psw)); 1653 r = EXCP_HALTED; 1654 break; 1655 case ICPT_WAITPSW: 1656 /* disabled wait, since enabled wait is handled in kernel */ 1657 s390_handle_wait(cpu); 1658 r = EXCP_HALTED; 1659 break; 1660 case ICPT_CPU_STOP: 1661 do_stop_interrupt(&cpu->env); 1662 r = EXCP_HALTED; 1663 break; 1664 case ICPT_OPEREXC: 1665 /* check for break points */ 1666 r = handle_sw_breakpoint(cpu, run); 1667 if (r == -ENOENT) { 1668 /* Then check for potential pgm check loops */ 1669 r = handle_oper_loop(cpu, run); 1670 if (r == 0) { 1671 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1672 } 1673 } 1674 break; 1675 case ICPT_SOFT_INTERCEPT: 1676 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1677 exit(1); 1678 break; 1679 case ICPT_IO: 1680 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1681 exit(1); 1682 break; 1683 default: 1684 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1685 exit(1); 1686 break; 1687 } 1688 1689 return r; 1690 } 1691 1692 static int handle_tsch(S390CPU *cpu) 1693 { 1694 CPUState *cs = CPU(cpu); 1695 struct kvm_run *run = cs->kvm_run; 1696 int ret; 1697 1698 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1699 RA_IGNORED); 1700 if (ret < 0) { 1701 /* 1702 * Failure. 1703 * If an I/O interrupt had been dequeued, we have to reinject it. 1704 */ 1705 if (run->s390_tsch.dequeued) { 1706 s390_io_interrupt(run->s390_tsch.subchannel_id, 1707 run->s390_tsch.subchannel_nr, 1708 run->s390_tsch.io_int_parm, 1709 run->s390_tsch.io_int_word); 1710 } 1711 ret = 0; 1712 } 1713 return ret; 1714 } 1715 1716 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1717 { 1718 SysIB_322 sysib; 1719 int del; 1720 1721 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1722 return; 1723 } 1724 /* Shift the stack of Extended Names to prepare for our own data */ 1725 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1726 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1727 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1728 * assumed it's not capable of managing Extended Names for lower levels. 1729 */ 1730 for (del = 1; del < sysib.count; del++) { 1731 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1732 break; 1733 } 1734 } 1735 if (del < sysib.count) { 1736 memset(sysib.ext_names[del], 0, 1737 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1738 } 1739 /* Insert short machine name in EBCDIC, padded with blanks */ 1740 if (qemu_name) { 1741 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1742 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1743 strlen(qemu_name))); 1744 } 1745 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1746 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1747 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1748 * considered by s390 as not capable of providing any Extended Name. 1749 * Therefore if no name was specified on qemu invocation, we go with the 1750 * same "KVMguest" default, which KVM has filled into short name field. 1751 */ 1752 if (qemu_name) { 1753 strncpy((char *)sysib.ext_names[0], qemu_name, 1754 sizeof(sysib.ext_names[0])); 1755 } else { 1756 strcpy((char *)sysib.ext_names[0], "KVMguest"); 1757 } 1758 /* Insert UUID */ 1759 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1760 1761 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1762 } 1763 1764 static int handle_stsi(S390CPU *cpu) 1765 { 1766 CPUState *cs = CPU(cpu); 1767 struct kvm_run *run = cs->kvm_run; 1768 1769 switch (run->s390_stsi.fc) { 1770 case 3: 1771 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1772 return 0; 1773 } 1774 /* Only sysib 3.2.2 needs post-handling for now. */ 1775 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1776 return 0; 1777 default: 1778 return 0; 1779 } 1780 } 1781 1782 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1783 { 1784 CPUState *cs = CPU(cpu); 1785 struct kvm_run *run = cs->kvm_run; 1786 1787 int ret = 0; 1788 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1789 1790 switch (arch_info->type) { 1791 case KVM_HW_WP_WRITE: 1792 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1793 cs->watchpoint_hit = &hw_watchpoint; 1794 hw_watchpoint.vaddr = arch_info->addr; 1795 hw_watchpoint.flags = BP_MEM_WRITE; 1796 ret = EXCP_DEBUG; 1797 } 1798 break; 1799 case KVM_HW_BP: 1800 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1801 ret = EXCP_DEBUG; 1802 } 1803 break; 1804 case KVM_SINGLESTEP: 1805 if (cs->singlestep_enabled) { 1806 ret = EXCP_DEBUG; 1807 } 1808 break; 1809 default: 1810 ret = -ENOSYS; 1811 } 1812 1813 return ret; 1814 } 1815 1816 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1817 { 1818 S390CPU *cpu = S390_CPU(cs); 1819 int ret = 0; 1820 1821 qemu_mutex_lock_iothread(); 1822 1823 kvm_cpu_synchronize_state(cs); 1824 1825 switch (run->exit_reason) { 1826 case KVM_EXIT_S390_SIEIC: 1827 ret = handle_intercept(cpu); 1828 break; 1829 case KVM_EXIT_S390_RESET: 1830 s390_ipl_reset_request(cs, S390_RESET_REIPL); 1831 break; 1832 case KVM_EXIT_S390_TSCH: 1833 ret = handle_tsch(cpu); 1834 break; 1835 case KVM_EXIT_S390_STSI: 1836 ret = handle_stsi(cpu); 1837 break; 1838 case KVM_EXIT_DEBUG: 1839 ret = kvm_arch_handle_debug_exit(cpu); 1840 break; 1841 default: 1842 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1843 break; 1844 } 1845 qemu_mutex_unlock_iothread(); 1846 1847 if (ret == 0) { 1848 ret = EXCP_INTERRUPT; 1849 } 1850 return ret; 1851 } 1852 1853 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1854 { 1855 return true; 1856 } 1857 1858 void kvm_s390_enable_css_support(S390CPU *cpu) 1859 { 1860 int r; 1861 1862 /* Activate host kernel channel subsystem support. */ 1863 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1864 assert(r == 0); 1865 } 1866 1867 void kvm_arch_init_irq_routing(KVMState *s) 1868 { 1869 /* 1870 * Note that while irqchip capabilities generally imply that cpustates 1871 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1872 * have to override the common code kvm_halt_in_kernel_allowed setting. 1873 */ 1874 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1875 kvm_gsi_routing_allowed = true; 1876 kvm_halt_in_kernel_allowed = false; 1877 } 1878 } 1879 1880 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1881 int vq, bool assign) 1882 { 1883 struct kvm_ioeventfd kick = { 1884 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1885 KVM_IOEVENTFD_FLAG_DATAMATCH, 1886 .fd = event_notifier_get_fd(notifier), 1887 .datamatch = vq, 1888 .addr = sch, 1889 .len = 8, 1890 }; 1891 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1892 return -ENOSYS; 1893 } 1894 if (!assign) { 1895 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1896 } 1897 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1898 } 1899 1900 int kvm_s390_get_ri(void) 1901 { 1902 return cap_ri; 1903 } 1904 1905 int kvm_s390_get_gs(void) 1906 { 1907 return cap_gs; 1908 } 1909 1910 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1911 { 1912 struct kvm_mp_state mp_state = {}; 1913 int ret; 1914 1915 /* the kvm part might not have been initialized yet */ 1916 if (CPU(cpu)->kvm_state == NULL) { 1917 return 0; 1918 } 1919 1920 switch (cpu_state) { 1921 case S390_CPU_STATE_STOPPED: 1922 mp_state.mp_state = KVM_MP_STATE_STOPPED; 1923 break; 1924 case S390_CPU_STATE_CHECK_STOP: 1925 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 1926 break; 1927 case S390_CPU_STATE_OPERATING: 1928 mp_state.mp_state = KVM_MP_STATE_OPERATING; 1929 break; 1930 case S390_CPU_STATE_LOAD: 1931 mp_state.mp_state = KVM_MP_STATE_LOAD; 1932 break; 1933 default: 1934 error_report("Requested CPU state is not a valid S390 CPU state: %u", 1935 cpu_state); 1936 exit(1); 1937 } 1938 1939 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1940 if (ret) { 1941 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 1942 strerror(-ret)); 1943 } 1944 1945 return ret; 1946 } 1947 1948 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 1949 { 1950 struct kvm_s390_irq_state irq_state = { 1951 .buf = (uint64_t) cpu->irqstate, 1952 .len = VCPU_IRQ_BUF_SIZE, 1953 }; 1954 CPUState *cs = CPU(cpu); 1955 int32_t bytes; 1956 1957 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1958 return; 1959 } 1960 1961 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 1962 if (bytes < 0) { 1963 cpu->irqstate_saved_size = 0; 1964 error_report("Migration of interrupt state failed"); 1965 return; 1966 } 1967 1968 cpu->irqstate_saved_size = bytes; 1969 } 1970 1971 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 1972 { 1973 CPUState *cs = CPU(cpu); 1974 struct kvm_s390_irq_state irq_state = { 1975 .buf = (uint64_t) cpu->irqstate, 1976 .len = cpu->irqstate_saved_size, 1977 }; 1978 int r; 1979 1980 if (cpu->irqstate_saved_size == 0) { 1981 return 0; 1982 } 1983 1984 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1985 return -ENOSYS; 1986 } 1987 1988 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 1989 if (r) { 1990 error_report("Setting interrupt state failed %d", r); 1991 } 1992 return r; 1993 } 1994 1995 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 1996 uint64_t address, uint32_t data, PCIDevice *dev) 1997 { 1998 S390PCIBusDevice *pbdev; 1999 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2000 2001 if (!dev) { 2002 DPRINTF("add_msi_route no pci device\n"); 2003 return -ENODEV; 2004 } 2005 2006 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2007 if (!pbdev) { 2008 DPRINTF("add_msi_route no zpci device\n"); 2009 return -ENODEV; 2010 } 2011 2012 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2013 route->flags = 0; 2014 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2015 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2016 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2017 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2018 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2019 return 0; 2020 } 2021 2022 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2023 int vector, PCIDevice *dev) 2024 { 2025 return 0; 2026 } 2027 2028 int kvm_arch_release_virq_post(int virq) 2029 { 2030 return 0; 2031 } 2032 2033 int kvm_arch_msi_data_to_gsi(uint32_t data) 2034 { 2035 abort(); 2036 } 2037 2038 static int query_cpu_subfunc(S390FeatBitmap features) 2039 { 2040 struct kvm_s390_vm_cpu_subfunc prop; 2041 struct kvm_device_attr attr = { 2042 .group = KVM_S390_VM_CPU_MODEL, 2043 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2044 .addr = (uint64_t) &prop, 2045 }; 2046 int rc; 2047 2048 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2049 if (rc) { 2050 return rc; 2051 } 2052 2053 /* 2054 * We're going to add all subfunctions now, if the corresponding feature 2055 * is available that unlocks the query functions. 2056 */ 2057 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2058 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2059 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2060 } 2061 if (test_bit(S390_FEAT_MSA, features)) { 2062 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2063 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2064 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2065 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2066 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2067 } 2068 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2069 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2070 } 2071 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2072 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2073 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2074 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2075 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2076 } 2077 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2078 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2079 } 2080 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2081 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2082 } 2083 return 0; 2084 } 2085 2086 static int configure_cpu_subfunc(const S390FeatBitmap features) 2087 { 2088 struct kvm_s390_vm_cpu_subfunc prop = {}; 2089 struct kvm_device_attr attr = { 2090 .group = KVM_S390_VM_CPU_MODEL, 2091 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2092 .addr = (uint64_t) &prop, 2093 }; 2094 2095 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2096 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2097 /* hardware support might be missing, IBC will handle most of this */ 2098 return 0; 2099 } 2100 2101 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2102 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2103 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2104 } 2105 if (test_bit(S390_FEAT_MSA, features)) { 2106 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2107 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2108 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2109 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2110 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2111 } 2112 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2113 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2114 } 2115 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2116 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2117 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2118 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2119 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2120 } 2121 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2122 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2123 } 2124 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2125 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2126 } 2127 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2128 } 2129 2130 static int kvm_to_feat[][2] = { 2131 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2132 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2133 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2134 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2135 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2136 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2137 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2138 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2139 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2140 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2141 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2142 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2143 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2144 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2145 }; 2146 2147 static int query_cpu_feat(S390FeatBitmap features) 2148 { 2149 struct kvm_s390_vm_cpu_feat prop; 2150 struct kvm_device_attr attr = { 2151 .group = KVM_S390_VM_CPU_MODEL, 2152 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2153 .addr = (uint64_t) &prop, 2154 }; 2155 int rc; 2156 int i; 2157 2158 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2159 if (rc) { 2160 return rc; 2161 } 2162 2163 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2164 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2165 set_bit(kvm_to_feat[i][1], features); 2166 } 2167 } 2168 return 0; 2169 } 2170 2171 static int configure_cpu_feat(const S390FeatBitmap features) 2172 { 2173 struct kvm_s390_vm_cpu_feat prop = {}; 2174 struct kvm_device_attr attr = { 2175 .group = KVM_S390_VM_CPU_MODEL, 2176 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2177 .addr = (uint64_t) &prop, 2178 }; 2179 int i; 2180 2181 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2182 if (test_bit(kvm_to_feat[i][1], features)) { 2183 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2184 } 2185 } 2186 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2187 } 2188 2189 bool kvm_s390_cpu_models_supported(void) 2190 { 2191 if (!cpu_model_allowed()) { 2192 /* compatibility machines interfere with the cpu model */ 2193 return false; 2194 } 2195 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2196 KVM_S390_VM_CPU_MACHINE) && 2197 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2198 KVM_S390_VM_CPU_PROCESSOR) && 2199 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2200 KVM_S390_VM_CPU_MACHINE_FEAT) && 2201 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2202 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2203 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2204 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2205 } 2206 2207 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2208 { 2209 struct kvm_s390_vm_cpu_machine prop = {}; 2210 struct kvm_device_attr attr = { 2211 .group = KVM_S390_VM_CPU_MODEL, 2212 .attr = KVM_S390_VM_CPU_MACHINE, 2213 .addr = (uint64_t) &prop, 2214 }; 2215 uint16_t unblocked_ibc = 0, cpu_type = 0; 2216 int rc; 2217 2218 memset(model, 0, sizeof(*model)); 2219 2220 if (!kvm_s390_cpu_models_supported()) { 2221 error_setg(errp, "KVM doesn't support CPU models"); 2222 return; 2223 } 2224 2225 /* query the basic cpu model properties */ 2226 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2227 if (rc) { 2228 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2229 return; 2230 } 2231 2232 cpu_type = cpuid_type(prop.cpuid); 2233 if (has_ibc(prop.ibc)) { 2234 model->lowest_ibc = lowest_ibc(prop.ibc); 2235 unblocked_ibc = unblocked_ibc(prop.ibc); 2236 } 2237 model->cpu_id = cpuid_id(prop.cpuid); 2238 model->cpu_id_format = cpuid_format(prop.cpuid); 2239 model->cpu_ver = 0xff; 2240 2241 /* get supported cpu features indicated via STFL(E) */ 2242 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2243 (uint8_t *) prop.fac_mask); 2244 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2245 if (test_bit(S390_FEAT_STFLE, model->features)) { 2246 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2247 } 2248 /* get supported cpu features indicated e.g. via SCLP */ 2249 rc = query_cpu_feat(model->features); 2250 if (rc) { 2251 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2252 return; 2253 } 2254 /* get supported cpu subfunctions indicated via query / test bit */ 2255 rc = query_cpu_subfunc(model->features); 2256 if (rc) { 2257 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2258 return; 2259 } 2260 2261 /* PTFF subfunctions might be indicated although kernel support missing */ 2262 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { 2263 clear_bit(S390_FEAT_PTFF_QSIE, model->features); 2264 clear_bit(S390_FEAT_PTFF_QTOUE, model->features); 2265 clear_bit(S390_FEAT_PTFF_STOE, model->features); 2266 clear_bit(S390_FEAT_PTFF_STOUE, model->features); 2267 } 2268 2269 /* with cpu model support, CMM is only indicated if really available */ 2270 if (kvm_s390_cmma_available()) { 2271 set_bit(S390_FEAT_CMM, model->features); 2272 } else { 2273 /* no cmm -> no cmm nt */ 2274 clear_bit(S390_FEAT_CMM_NT, model->features); 2275 } 2276 2277 /* bpb needs kernel support for migration, VSIE and reset */ 2278 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { 2279 clear_bit(S390_FEAT_BPB, model->features); 2280 } 2281 2282 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2283 if (pci_available) { 2284 set_bit(S390_FEAT_ZPCI, model->features); 2285 } 2286 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2287 2288 if (s390_known_cpu_type(cpu_type)) { 2289 /* we want the exact model, even if some features are missing */ 2290 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2291 ibc_ec_ga(unblocked_ibc), NULL); 2292 } else { 2293 /* model unknown, e.g. too new - search using features */ 2294 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2295 ibc_ec_ga(unblocked_ibc), 2296 model->features); 2297 } 2298 if (!model->def) { 2299 error_setg(errp, "KVM: host CPU model could not be identified"); 2300 return; 2301 } 2302 /* for now, we can only provide the AP feature with HW support */ 2303 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, 2304 KVM_S390_VM_CRYPTO_ENABLE_APIE)) { 2305 set_bit(S390_FEAT_AP, model->features); 2306 } 2307 /* strip of features that are not part of the maximum model */ 2308 bitmap_and(model->features, model->features, model->def->full_feat, 2309 S390_FEAT_MAX); 2310 } 2311 2312 static void kvm_s390_configure_apie(bool interpret) 2313 { 2314 uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : 2315 KVM_S390_VM_CRYPTO_DISABLE_APIE; 2316 2317 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 2318 kvm_s390_set_attr(attr); 2319 } 2320 } 2321 2322 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2323 { 2324 struct kvm_s390_vm_cpu_processor prop = { 2325 .fac_list = { 0 }, 2326 }; 2327 struct kvm_device_attr attr = { 2328 .group = KVM_S390_VM_CPU_MODEL, 2329 .attr = KVM_S390_VM_CPU_PROCESSOR, 2330 .addr = (uint64_t) &prop, 2331 }; 2332 int rc; 2333 2334 if (!model) { 2335 /* compatibility handling if cpu models are disabled */ 2336 if (kvm_s390_cmma_available()) { 2337 kvm_s390_enable_cmma(); 2338 } 2339 return; 2340 } 2341 if (!kvm_s390_cpu_models_supported()) { 2342 error_setg(errp, "KVM doesn't support CPU models"); 2343 return; 2344 } 2345 prop.cpuid = s390_cpuid_from_cpu_model(model); 2346 prop.ibc = s390_ibc_from_cpu_model(model); 2347 /* configure cpu features indicated via STFL(e) */ 2348 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2349 (uint8_t *) prop.fac_list); 2350 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2351 if (rc) { 2352 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2353 return; 2354 } 2355 /* configure cpu features indicated e.g. via SCLP */ 2356 rc = configure_cpu_feat(model->features); 2357 if (rc) { 2358 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2359 return; 2360 } 2361 /* configure cpu subfunctions indicated via query / test bit */ 2362 rc = configure_cpu_subfunc(model->features); 2363 if (rc) { 2364 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2365 return; 2366 } 2367 /* enable CMM via CMMA */ 2368 if (test_bit(S390_FEAT_CMM, model->features)) { 2369 kvm_s390_enable_cmma(); 2370 } 2371 2372 if (test_bit(S390_FEAT_AP, model->features)) { 2373 kvm_s390_configure_apie(true); 2374 } 2375 } 2376 2377 void kvm_s390_restart_interrupt(S390CPU *cpu) 2378 { 2379 struct kvm_s390_irq irq = { 2380 .type = KVM_S390_RESTART, 2381 }; 2382 2383 kvm_s390_vcpu_interrupt(cpu, &irq); 2384 } 2385 2386 void kvm_s390_stop_interrupt(S390CPU *cpu) 2387 { 2388 struct kvm_s390_irq irq = { 2389 .type = KVM_S390_SIGP_STOP, 2390 }; 2391 2392 kvm_s390_vcpu_interrupt(cpu, &irq); 2393 } 2394