1 /* 2 * QEMU S390x KVM implementation 3 * 4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de> 5 * Copyright IBM Corp. 2012 6 * 7 * This library is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2 of the License, or (at your option) any later version. 11 * 12 * This library is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * Contributions after 2012-10-29 are licensed under the terms of the 18 * GNU GPL, version 2 or (at your option) any later version. 19 * 20 * You should have received a copy of the GNU (Lesser) General Public 21 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include <sys/ioctl.h> 26 27 #include <linux/kvm.h> 28 #include <asm/ptrace.h> 29 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "internal.h" 33 #include "kvm_s390x.h" 34 #include "qemu/error-report.h" 35 #include "qemu/timer.h" 36 #include "sysemu/sysemu.h" 37 #include "sysemu/hw_accel.h" 38 #include "hw/hw.h" 39 #include "sysemu/device_tree.h" 40 #include "qapi/qmp/qjson.h" 41 #include "exec/gdbstub.h" 42 #include "exec/address-spaces.h" 43 #include "trace.h" 44 #include "qapi-event.h" 45 #include "hw/s390x/s390-pci-inst.h" 46 #include "hw/s390x/s390-pci-bus.h" 47 #include "hw/s390x/ipl.h" 48 #include "hw/s390x/ebcdic.h" 49 #include "exec/memattrs.h" 50 #include "hw/s390x/s390-virtio-ccw.h" 51 #include "hw/s390x/s390-virtio-hcall.h" 52 53 #ifndef DEBUG_KVM 54 #define DEBUG_KVM 0 55 #endif 56 57 #define DPRINTF(fmt, ...) do { \ 58 if (DEBUG_KVM) { \ 59 fprintf(stderr, fmt, ## __VA_ARGS__); \ 60 } \ 61 } while (0); 62 63 #define kvm_vm_check_mem_attr(s, attr) \ 64 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) 65 66 #define IPA0_DIAG 0x8300 67 #define IPA0_SIGP 0xae00 68 #define IPA0_B2 0xb200 69 #define IPA0_B9 0xb900 70 #define IPA0_EB 0xeb00 71 #define IPA0_E3 0xe300 72 73 #define PRIV_B2_SCLP_CALL 0x20 74 #define PRIV_B2_CSCH 0x30 75 #define PRIV_B2_HSCH 0x31 76 #define PRIV_B2_MSCH 0x32 77 #define PRIV_B2_SSCH 0x33 78 #define PRIV_B2_STSCH 0x34 79 #define PRIV_B2_TSCH 0x35 80 #define PRIV_B2_TPI 0x36 81 #define PRIV_B2_SAL 0x37 82 #define PRIV_B2_RSCH 0x38 83 #define PRIV_B2_STCRW 0x39 84 #define PRIV_B2_STCPS 0x3a 85 #define PRIV_B2_RCHP 0x3b 86 #define PRIV_B2_SCHM 0x3c 87 #define PRIV_B2_CHSC 0x5f 88 #define PRIV_B2_SIGA 0x74 89 #define PRIV_B2_XSCH 0x76 90 91 #define PRIV_EB_SQBS 0x8a 92 #define PRIV_EB_PCISTB 0xd0 93 #define PRIV_EB_SIC 0xd1 94 95 #define PRIV_B9_EQBS 0x9c 96 #define PRIV_B9_CLP 0xa0 97 #define PRIV_B9_PCISTG 0xd0 98 #define PRIV_B9_PCILG 0xd2 99 #define PRIV_B9_RPCIT 0xd3 100 101 #define PRIV_E3_MPCIFC 0xd0 102 #define PRIV_E3_STPCIFC 0xd4 103 104 #define DIAG_TIMEREVENT 0x288 105 #define DIAG_IPL 0x308 106 #define DIAG_KVM_HYPERCALL 0x500 107 #define DIAG_KVM_BREAKPOINT 0x501 108 109 #define ICPT_INSTRUCTION 0x04 110 #define ICPT_PROGRAM 0x08 111 #define ICPT_EXT_INT 0x14 112 #define ICPT_WAITPSW 0x1c 113 #define ICPT_SOFT_INTERCEPT 0x24 114 #define ICPT_CPU_STOP 0x28 115 #define ICPT_OPEREXC 0x2c 116 #define ICPT_IO 0x40 117 118 #define NR_LOCAL_IRQS 32 119 /* 120 * Needs to be big enough to contain max_cpus emergency signals 121 * and in addition NR_LOCAL_IRQS interrupts 122 */ 123 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \ 124 (max_cpus + NR_LOCAL_IRQS)) 125 126 static CPUWatchpoint hw_watchpoint; 127 /* 128 * We don't use a list because this structure is also used to transmit the 129 * hardware breakpoints to the kernel. 130 */ 131 static struct kvm_hw_breakpoint *hw_breakpoints; 132 static int nb_hw_breakpoints; 133 134 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 135 KVM_CAP_LAST_INFO 136 }; 137 138 static int cap_sync_regs; 139 static int cap_async_pf; 140 static int cap_mem_op; 141 static int cap_s390_irq; 142 static int cap_ri; 143 static int cap_gs; 144 145 static int active_cmma; 146 147 static void *legacy_s390_alloc(size_t size, uint64_t *align); 148 149 static int kvm_s390_query_mem_limit(uint64_t *memory_limit) 150 { 151 struct kvm_device_attr attr = { 152 .group = KVM_S390_VM_MEM_CTRL, 153 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 154 .addr = (uint64_t) memory_limit, 155 }; 156 157 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 158 } 159 160 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) 161 { 162 int rc; 163 164 struct kvm_device_attr attr = { 165 .group = KVM_S390_VM_MEM_CTRL, 166 .attr = KVM_S390_VM_MEM_LIMIT_SIZE, 167 .addr = (uint64_t) &new_limit, 168 }; 169 170 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { 171 return 0; 172 } 173 174 rc = kvm_s390_query_mem_limit(hw_limit); 175 if (rc) { 176 return rc; 177 } else if (*hw_limit < new_limit) { 178 return -E2BIG; 179 } 180 181 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 182 } 183 184 int kvm_s390_cmma_active(void) 185 { 186 return active_cmma; 187 } 188 189 static bool kvm_s390_cmma_available(void) 190 { 191 static bool initialized, value; 192 193 if (!initialized) { 194 initialized = true; 195 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && 196 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); 197 } 198 return value; 199 } 200 201 void kvm_s390_cmma_reset(void) 202 { 203 int rc; 204 struct kvm_device_attr attr = { 205 .group = KVM_S390_VM_MEM_CTRL, 206 .attr = KVM_S390_VM_MEM_CLR_CMMA, 207 }; 208 209 if (!kvm_s390_cmma_active()) { 210 return; 211 } 212 213 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 214 trace_kvm_clear_cmma(rc); 215 } 216 217 static void kvm_s390_enable_cmma(void) 218 { 219 int rc; 220 struct kvm_device_attr attr = { 221 .group = KVM_S390_VM_MEM_CTRL, 222 .attr = KVM_S390_VM_MEM_ENABLE_CMMA, 223 }; 224 225 if (mem_path) { 226 warn_report("CMM will not be enabled because it is not " 227 "compatible with hugetlbfs."); 228 return; 229 } 230 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 231 active_cmma = !rc; 232 trace_kvm_enable_cmma(rc); 233 } 234 235 static void kvm_s390_set_attr(uint64_t attr) 236 { 237 struct kvm_device_attr attribute = { 238 .group = KVM_S390_VM_CRYPTO, 239 .attr = attr, 240 }; 241 242 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); 243 244 if (ret) { 245 error_report("Failed to set crypto device attribute %lu: %s", 246 attr, strerror(-ret)); 247 } 248 } 249 250 static void kvm_s390_init_aes_kw(void) 251 { 252 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; 253 254 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", 255 NULL)) { 256 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; 257 } 258 259 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 260 kvm_s390_set_attr(attr); 261 } 262 } 263 264 static void kvm_s390_init_dea_kw(void) 265 { 266 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; 267 268 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", 269 NULL)) { 270 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; 271 } 272 273 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { 274 kvm_s390_set_attr(attr); 275 } 276 } 277 278 void kvm_s390_crypto_reset(void) 279 { 280 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { 281 kvm_s390_init_aes_kw(); 282 kvm_s390_init_dea_kw(); 283 } 284 } 285 286 int kvm_arch_init(MachineState *ms, KVMState *s) 287 { 288 MachineClass *mc = MACHINE_GET_CLASS(ms); 289 290 mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); 291 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); 292 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); 293 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); 294 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); 295 296 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP) 297 || !kvm_check_extension(s, KVM_CAP_S390_COW)) { 298 phys_mem_set_alloc(legacy_s390_alloc); 299 } 300 301 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); 302 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); 303 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); 304 if (ri_allowed()) { 305 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { 306 cap_ri = 1; 307 } 308 } 309 if (cpu_model_allowed()) { 310 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) { 311 cap_gs = 1; 312 } 313 } 314 315 /* 316 * The migration interface for ais was introduced with kernel 4.13 317 * but the capability itself had been active since 4.12. As migration 318 * support is considered necessary let's disable ais in the 2.10 319 * machine. 320 */ 321 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */ 322 323 return 0; 324 } 325 326 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) 327 { 328 return 0; 329 } 330 331 unsigned long kvm_arch_vcpu_id(CPUState *cpu) 332 { 333 return cpu->cpu_index; 334 } 335 336 int kvm_arch_init_vcpu(CPUState *cs) 337 { 338 S390CPU *cpu = S390_CPU(cs); 339 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); 340 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE); 341 return 0; 342 } 343 344 void kvm_s390_reset_vcpu(S390CPU *cpu) 345 { 346 CPUState *cs = CPU(cpu); 347 348 /* The initial reset call is needed here to reset in-kernel 349 * vcpu data that we can't access directly from QEMU 350 * (i.e. with older kernels which don't support sync_regs/ONE_REG). 351 * Before this ioctl cpu_synchronize_state() is called in common kvm 352 * code (kvm-all) */ 353 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) { 354 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index); 355 } 356 } 357 358 static int can_sync_regs(CPUState *cs, int regs) 359 { 360 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; 361 } 362 363 int kvm_arch_put_registers(CPUState *cs, int level) 364 { 365 S390CPU *cpu = S390_CPU(cs); 366 CPUS390XState *env = &cpu->env; 367 struct kvm_sregs sregs; 368 struct kvm_regs regs; 369 struct kvm_fpu fpu = {}; 370 int r; 371 int i; 372 373 /* always save the PSW and the GPRS*/ 374 cs->kvm_run->psw_addr = env->psw.addr; 375 cs->kvm_run->psw_mask = env->psw.mask; 376 377 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 378 for (i = 0; i < 16; i++) { 379 cs->kvm_run->s.regs.gprs[i] = env->regs[i]; 380 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; 381 } 382 } else { 383 for (i = 0; i < 16; i++) { 384 regs.gprs[i] = env->regs[i]; 385 } 386 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); 387 if (r < 0) { 388 return r; 389 } 390 } 391 392 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 393 for (i = 0; i < 32; i++) { 394 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll; 395 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll; 396 } 397 cs->kvm_run->s.regs.fpc = env->fpc; 398 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; 399 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 400 for (i = 0; i < 16; i++) { 401 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll; 402 } 403 cs->kvm_run->s.regs.fpc = env->fpc; 404 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; 405 } else { 406 /* Floating point */ 407 for (i = 0; i < 16; i++) { 408 fpu.fprs[i] = get_freg(env, i)->ll; 409 } 410 fpu.fpc = env->fpc; 411 412 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); 413 if (r < 0) { 414 return r; 415 } 416 } 417 418 /* Do we need to save more than that? */ 419 if (level == KVM_PUT_RUNTIME_STATE) { 420 return 0; 421 } 422 423 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 424 cs->kvm_run->s.regs.cputm = env->cputm; 425 cs->kvm_run->s.regs.ckc = env->ckc; 426 cs->kvm_run->s.regs.todpr = env->todpr; 427 cs->kvm_run->s.regs.gbea = env->gbea; 428 cs->kvm_run->s.regs.pp = env->pp; 429 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; 430 } else { 431 /* 432 * These ONE_REGS are not protected by a capability. As they are only 433 * necessary for migration we just trace a possible error, but don't 434 * return with an error return code. 435 */ 436 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 437 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 438 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 439 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 440 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); 441 } 442 443 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 444 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); 445 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; 446 } 447 448 /* pfault parameters */ 449 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 450 cs->kvm_run->s.regs.pft = env->pfault_token; 451 cs->kvm_run->s.regs.pfs = env->pfault_select; 452 cs->kvm_run->s.regs.pfc = env->pfault_compare; 453 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; 454 } else if (cap_async_pf) { 455 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 456 if (r < 0) { 457 return r; 458 } 459 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 460 if (r < 0) { 461 return r; 462 } 463 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 464 if (r < 0) { 465 return r; 466 } 467 } 468 469 /* access registers and control registers*/ 470 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 471 for (i = 0; i < 16; i++) { 472 cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; 473 cs->kvm_run->s.regs.crs[i] = env->cregs[i]; 474 } 475 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; 476 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; 477 } else { 478 for (i = 0; i < 16; i++) { 479 sregs.acrs[i] = env->aregs[i]; 480 sregs.crs[i] = env->cregs[i]; 481 } 482 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); 483 if (r < 0) { 484 return r; 485 } 486 } 487 488 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 489 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); 490 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; 491 } 492 493 /* Finally the prefix */ 494 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 495 cs->kvm_run->s.regs.prefix = env->psa; 496 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; 497 } else { 498 /* prefix is only supported via sync regs */ 499 } 500 return 0; 501 } 502 503 int kvm_arch_get_registers(CPUState *cs) 504 { 505 S390CPU *cpu = S390_CPU(cs); 506 CPUS390XState *env = &cpu->env; 507 struct kvm_sregs sregs; 508 struct kvm_regs regs; 509 struct kvm_fpu fpu; 510 int i, r; 511 512 /* get the PSW */ 513 env->psw.addr = cs->kvm_run->psw_addr; 514 env->psw.mask = cs->kvm_run->psw_mask; 515 516 /* the GPRS */ 517 if (can_sync_regs(cs, KVM_SYNC_GPRS)) { 518 for (i = 0; i < 16; i++) { 519 env->regs[i] = cs->kvm_run->s.regs.gprs[i]; 520 } 521 } else { 522 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); 523 if (r < 0) { 524 return r; 525 } 526 for (i = 0; i < 16; i++) { 527 env->regs[i] = regs.gprs[i]; 528 } 529 } 530 531 /* The ACRS and CRS */ 532 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { 533 for (i = 0; i < 16; i++) { 534 env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; 535 env->cregs[i] = cs->kvm_run->s.regs.crs[i]; 536 } 537 } else { 538 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); 539 if (r < 0) { 540 return r; 541 } 542 for (i = 0; i < 16; i++) { 543 env->aregs[i] = sregs.acrs[i]; 544 env->cregs[i] = sregs.crs[i]; 545 } 546 } 547 548 /* Floating point and vector registers */ 549 if (can_sync_regs(cs, KVM_SYNC_VRS)) { 550 for (i = 0; i < 32; i++) { 551 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0]; 552 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1]; 553 } 554 env->fpc = cs->kvm_run->s.regs.fpc; 555 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { 556 for (i = 0; i < 16; i++) { 557 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i]; 558 } 559 env->fpc = cs->kvm_run->s.regs.fpc; 560 } else { 561 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); 562 if (r < 0) { 563 return r; 564 } 565 for (i = 0; i < 16; i++) { 566 get_freg(env, i)->ll = fpu.fprs[i]; 567 } 568 env->fpc = fpu.fpc; 569 } 570 571 /* The prefix */ 572 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { 573 env->psa = cs->kvm_run->s.regs.prefix; 574 } 575 576 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { 577 env->cputm = cs->kvm_run->s.regs.cputm; 578 env->ckc = cs->kvm_run->s.regs.ckc; 579 env->todpr = cs->kvm_run->s.regs.todpr; 580 env->gbea = cs->kvm_run->s.regs.gbea; 581 env->pp = cs->kvm_run->s.regs.pp; 582 } else { 583 /* 584 * These ONE_REGS are not protected by a capability. As they are only 585 * necessary for migration we just trace a possible error, but don't 586 * return with an error return code. 587 */ 588 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); 589 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); 590 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); 591 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); 592 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); 593 } 594 595 if (can_sync_regs(cs, KVM_SYNC_RICCB)) { 596 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); 597 } 598 599 if (can_sync_regs(cs, KVM_SYNC_GSCB)) { 600 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); 601 } 602 603 /* pfault parameters */ 604 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { 605 env->pfault_token = cs->kvm_run->s.regs.pft; 606 env->pfault_select = cs->kvm_run->s.regs.pfs; 607 env->pfault_compare = cs->kvm_run->s.regs.pfc; 608 } else if (cap_async_pf) { 609 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); 610 if (r < 0) { 611 return r; 612 } 613 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); 614 if (r < 0) { 615 return r; 616 } 617 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); 618 if (r < 0) { 619 return r; 620 } 621 } 622 623 return 0; 624 } 625 626 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) 627 { 628 int r; 629 struct kvm_device_attr attr = { 630 .group = KVM_S390_VM_TOD, 631 .attr = KVM_S390_VM_TOD_LOW, 632 .addr = (uint64_t)tod_low, 633 }; 634 635 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 636 if (r) { 637 return r; 638 } 639 640 attr.attr = KVM_S390_VM_TOD_HIGH; 641 attr.addr = (uint64_t)tod_high; 642 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 643 } 644 645 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 646 { 647 int r; 648 struct kvm_s390_vm_tod_clock gtod; 649 struct kvm_device_attr attr = { 650 .group = KVM_S390_VM_TOD, 651 .attr = KVM_S390_VM_TOD_EXT, 652 .addr = (uint64_t)>od, 653 }; 654 655 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 656 *tod_high = gtod.epoch_idx; 657 *tod_low = gtod.tod; 658 659 return r; 660 } 661 662 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low) 663 { 664 int r; 665 struct kvm_device_attr attr = { 666 .group = KVM_S390_VM_TOD, 667 .attr = KVM_S390_VM_TOD_LOW, 668 .addr = (uint64_t)tod_low, 669 }; 670 671 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 672 if (r) { 673 return r; 674 } 675 676 attr.attr = KVM_S390_VM_TOD_HIGH; 677 attr.addr = (uint64_t)tod_high; 678 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 679 } 680 681 int kvm_s390_set_clock_ext(uint8_t *tod_high, uint64_t *tod_low) 682 { 683 struct kvm_s390_vm_tod_clock gtod = { 684 .epoch_idx = *tod_high, 685 .tod = *tod_low, 686 }; 687 struct kvm_device_attr attr = { 688 .group = KVM_S390_VM_TOD, 689 .attr = KVM_S390_VM_TOD_EXT, 690 .addr = (uint64_t)>od, 691 }; 692 693 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 694 } 695 696 /** 697 * kvm_s390_mem_op: 698 * @addr: the logical start address in guest memory 699 * @ar: the access register number 700 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying 701 * @len: length that should be transferred 702 * @is_write: true = write, false = read 703 * Returns: 0 on success, non-zero if an exception or error occurred 704 * 705 * Use KVM ioctl to read/write from/to guest memory. An access exception 706 * is injected into the vCPU in case of translation errors. 707 */ 708 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, 709 int len, bool is_write) 710 { 711 struct kvm_s390_mem_op mem_op = { 712 .gaddr = addr, 713 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, 714 .size = len, 715 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE 716 : KVM_S390_MEMOP_LOGICAL_READ, 717 .buf = (uint64_t)hostbuf, 718 .ar = ar, 719 }; 720 int ret; 721 722 if (!cap_mem_op) { 723 return -ENOSYS; 724 } 725 if (!hostbuf) { 726 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; 727 } 728 729 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); 730 if (ret < 0) { 731 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret)); 732 } 733 return ret; 734 } 735 736 /* 737 * Legacy layout for s390: 738 * Older S390 KVM requires the topmost vma of the RAM to be 739 * smaller than an system defined value, which is at least 256GB. 740 * Larger systems have larger values. We put the guest between 741 * the end of data segment (system break) and this value. We 742 * use 32GB as a base to have enough room for the system break 743 * to grow. We also have to use MAP parameters that avoid 744 * read-only mapping of guest pages. 745 */ 746 static void *legacy_s390_alloc(size_t size, uint64_t *align) 747 { 748 void *mem; 749 750 mem = mmap((void *) 0x800000000ULL, size, 751 PROT_EXEC|PROT_READ|PROT_WRITE, 752 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0); 753 return mem == MAP_FAILED ? NULL : mem; 754 } 755 756 static uint8_t const *sw_bp_inst; 757 static uint8_t sw_bp_ilen; 758 759 static void determine_sw_breakpoint_instr(void) 760 { 761 /* DIAG 501 is used for sw breakpoints with old kernels */ 762 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; 763 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ 764 static const uint8_t instr_0x0000[] = {0x00, 0x00}; 765 766 if (sw_bp_inst) { 767 return; 768 } 769 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { 770 sw_bp_inst = diag_501; 771 sw_bp_ilen = sizeof(diag_501); 772 DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); 773 } else { 774 sw_bp_inst = instr_0x0000; 775 sw_bp_ilen = sizeof(instr_0x0000); 776 DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); 777 } 778 } 779 780 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 781 { 782 determine_sw_breakpoint_instr(); 783 784 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 785 sw_bp_ilen, 0) || 786 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { 787 return -EINVAL; 788 } 789 return 0; 790 } 791 792 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 793 { 794 uint8_t t[MAX_ILEN]; 795 796 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { 797 return -EINVAL; 798 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { 799 return -EINVAL; 800 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 801 sw_bp_ilen, 1)) { 802 return -EINVAL; 803 } 804 805 return 0; 806 } 807 808 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, 809 int len, int type) 810 { 811 int n; 812 813 for (n = 0; n < nb_hw_breakpoints; n++) { 814 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && 815 (hw_breakpoints[n].len == len || len == -1)) { 816 return &hw_breakpoints[n]; 817 } 818 } 819 820 return NULL; 821 } 822 823 static int insert_hw_breakpoint(target_ulong addr, int len, int type) 824 { 825 int size; 826 827 if (find_hw_breakpoint(addr, len, type)) { 828 return -EEXIST; 829 } 830 831 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); 832 833 if (!hw_breakpoints) { 834 nb_hw_breakpoints = 0; 835 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); 836 } else { 837 hw_breakpoints = 838 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); 839 } 840 841 if (!hw_breakpoints) { 842 nb_hw_breakpoints = 0; 843 return -ENOMEM; 844 } 845 846 hw_breakpoints[nb_hw_breakpoints].addr = addr; 847 hw_breakpoints[nb_hw_breakpoints].len = len; 848 hw_breakpoints[nb_hw_breakpoints].type = type; 849 850 nb_hw_breakpoints++; 851 852 return 0; 853 } 854 855 int kvm_arch_insert_hw_breakpoint(target_ulong addr, 856 target_ulong len, int type) 857 { 858 switch (type) { 859 case GDB_BREAKPOINT_HW: 860 type = KVM_HW_BP; 861 break; 862 case GDB_WATCHPOINT_WRITE: 863 if (len < 1) { 864 return -EINVAL; 865 } 866 type = KVM_HW_WP_WRITE; 867 break; 868 default: 869 return -ENOSYS; 870 } 871 return insert_hw_breakpoint(addr, len, type); 872 } 873 874 int kvm_arch_remove_hw_breakpoint(target_ulong addr, 875 target_ulong len, int type) 876 { 877 int size; 878 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); 879 880 if (bp == NULL) { 881 return -ENOENT; 882 } 883 884 nb_hw_breakpoints--; 885 if (nb_hw_breakpoints > 0) { 886 /* 887 * In order to trim the array, move the last element to the position to 888 * be removed - if necessary. 889 */ 890 if (bp != &hw_breakpoints[nb_hw_breakpoints]) { 891 *bp = hw_breakpoints[nb_hw_breakpoints]; 892 } 893 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); 894 hw_breakpoints = 895 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size); 896 } else { 897 g_free(hw_breakpoints); 898 hw_breakpoints = NULL; 899 } 900 901 return 0; 902 } 903 904 void kvm_arch_remove_all_hw_breakpoints(void) 905 { 906 nb_hw_breakpoints = 0; 907 g_free(hw_breakpoints); 908 hw_breakpoints = NULL; 909 } 910 911 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 912 { 913 int i; 914 915 if (nb_hw_breakpoints > 0) { 916 dbg->arch.nr_hw_bp = nb_hw_breakpoints; 917 dbg->arch.hw_bp = hw_breakpoints; 918 919 for (i = 0; i < nb_hw_breakpoints; ++i) { 920 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, 921 hw_breakpoints[i].addr); 922 } 923 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 924 } else { 925 dbg->arch.nr_hw_bp = 0; 926 dbg->arch.hw_bp = NULL; 927 } 928 } 929 930 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 931 { 932 } 933 934 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) 935 { 936 return MEMTXATTRS_UNSPECIFIED; 937 } 938 939 int kvm_arch_process_async_events(CPUState *cs) 940 { 941 return cs->halted; 942 } 943 944 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, 945 struct kvm_s390_interrupt *interrupt) 946 { 947 int r = 0; 948 949 interrupt->type = irq->type; 950 switch (irq->type) { 951 case KVM_S390_INT_VIRTIO: 952 interrupt->parm = irq->u.ext.ext_params; 953 /* fall through */ 954 case KVM_S390_INT_PFAULT_INIT: 955 case KVM_S390_INT_PFAULT_DONE: 956 interrupt->parm64 = irq->u.ext.ext_params2; 957 break; 958 case KVM_S390_PROGRAM_INT: 959 interrupt->parm = irq->u.pgm.code; 960 break; 961 case KVM_S390_SIGP_SET_PREFIX: 962 interrupt->parm = irq->u.prefix.address; 963 break; 964 case KVM_S390_INT_SERVICE: 965 interrupt->parm = irq->u.ext.ext_params; 966 break; 967 case KVM_S390_MCHK: 968 interrupt->parm = irq->u.mchk.cr14; 969 interrupt->parm64 = irq->u.mchk.mcic; 970 break; 971 case KVM_S390_INT_EXTERNAL_CALL: 972 interrupt->parm = irq->u.extcall.code; 973 break; 974 case KVM_S390_INT_EMERGENCY: 975 interrupt->parm = irq->u.emerg.code; 976 break; 977 case KVM_S390_SIGP_STOP: 978 case KVM_S390_RESTART: 979 break; /* These types have no parameters */ 980 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: 981 interrupt->parm = irq->u.io.subchannel_id << 16; 982 interrupt->parm |= irq->u.io.subchannel_nr; 983 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; 984 interrupt->parm64 |= irq->u.io.io_int_word; 985 break; 986 default: 987 r = -EINVAL; 988 break; 989 } 990 return r; 991 } 992 993 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) 994 { 995 struct kvm_s390_interrupt kvmint = {}; 996 int r; 997 998 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 999 if (r < 0) { 1000 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1001 exit(1); 1002 } 1003 1004 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); 1005 if (r < 0) { 1006 fprintf(stderr, "KVM failed to inject interrupt\n"); 1007 exit(1); 1008 } 1009 } 1010 1011 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) 1012 { 1013 CPUState *cs = CPU(cpu); 1014 int r; 1015 1016 if (cap_s390_irq) { 1017 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); 1018 if (!r) { 1019 return; 1020 } 1021 error_report("KVM failed to inject interrupt %llx", irq->type); 1022 exit(1); 1023 } 1024 1025 inject_vcpu_irq_legacy(cs, irq); 1026 } 1027 1028 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) 1029 { 1030 struct kvm_s390_interrupt kvmint = {}; 1031 int r; 1032 1033 r = s390_kvm_irq_to_interrupt(irq, &kvmint); 1034 if (r < 0) { 1035 fprintf(stderr, "%s called with bogus interrupt\n", __func__); 1036 exit(1); 1037 } 1038 1039 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); 1040 if (r < 0) { 1041 fprintf(stderr, "KVM failed to inject interrupt\n"); 1042 exit(1); 1043 } 1044 } 1045 1046 void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq) 1047 { 1048 static bool use_flic = true; 1049 int r; 1050 1051 if (use_flic) { 1052 r = kvm_s390_inject_flic(irq); 1053 if (r == -ENOSYS) { 1054 use_flic = false; 1055 } 1056 if (!r) { 1057 return; 1058 } 1059 } 1060 __kvm_s390_floating_interrupt(irq); 1061 } 1062 1063 void kvm_s390_service_interrupt(uint32_t parm) 1064 { 1065 struct kvm_s390_irq irq = { 1066 .type = KVM_S390_INT_SERVICE, 1067 .u.ext.ext_params = parm, 1068 }; 1069 1070 kvm_s390_floating_interrupt(&irq); 1071 } 1072 1073 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) 1074 { 1075 struct kvm_s390_irq irq = { 1076 .type = KVM_S390_PROGRAM_INT, 1077 .u.pgm.code = code, 1078 }; 1079 1080 kvm_s390_vcpu_interrupt(cpu, &irq); 1081 } 1082 1083 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) 1084 { 1085 struct kvm_s390_irq irq = { 1086 .type = KVM_S390_PROGRAM_INT, 1087 .u.pgm.code = code, 1088 .u.pgm.trans_exc_code = te_code, 1089 .u.pgm.exc_access_id = te_code & 3, 1090 }; 1091 1092 kvm_s390_vcpu_interrupt(cpu, &irq); 1093 } 1094 1095 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, 1096 uint16_t ipbh0) 1097 { 1098 CPUS390XState *env = &cpu->env; 1099 uint64_t sccb; 1100 uint32_t code; 1101 int r = 0; 1102 1103 cpu_synchronize_state(CPU(cpu)); 1104 sccb = env->regs[ipbh0 & 0xf]; 1105 code = env->regs[(ipbh0 & 0xf0) >> 4]; 1106 1107 r = sclp_service_call(env, sccb, code); 1108 if (r < 0) { 1109 kvm_s390_program_interrupt(cpu, -r); 1110 } else { 1111 setcc(cpu, r); 1112 } 1113 1114 return 0; 1115 } 1116 1117 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1118 { 1119 CPUS390XState *env = &cpu->env; 1120 int rc = 0; 1121 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; 1122 1123 cpu_synchronize_state(CPU(cpu)); 1124 1125 switch (ipa1) { 1126 case PRIV_B2_XSCH: 1127 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); 1128 break; 1129 case PRIV_B2_CSCH: 1130 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); 1131 break; 1132 case PRIV_B2_HSCH: 1133 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); 1134 break; 1135 case PRIV_B2_MSCH: 1136 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1137 break; 1138 case PRIV_B2_SSCH: 1139 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1140 break; 1141 case PRIV_B2_STCRW: 1142 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); 1143 break; 1144 case PRIV_B2_STSCH: 1145 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); 1146 break; 1147 case PRIV_B2_TSCH: 1148 /* We should only get tsch via KVM_EXIT_S390_TSCH. */ 1149 fprintf(stderr, "Spurious tsch intercept\n"); 1150 break; 1151 case PRIV_B2_CHSC: 1152 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); 1153 break; 1154 case PRIV_B2_TPI: 1155 /* This should have been handled by kvm already. */ 1156 fprintf(stderr, "Spurious tpi intercept\n"); 1157 break; 1158 case PRIV_B2_SCHM: 1159 ioinst_handle_schm(cpu, env->regs[1], env->regs[2], 1160 run->s390_sieic.ipb, RA_IGNORED); 1161 break; 1162 case PRIV_B2_RSCH: 1163 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); 1164 break; 1165 case PRIV_B2_RCHP: 1166 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); 1167 break; 1168 case PRIV_B2_STCPS: 1169 /* We do not provide this instruction, it is suppressed. */ 1170 break; 1171 case PRIV_B2_SAL: 1172 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); 1173 break; 1174 case PRIV_B2_SIGA: 1175 /* Not provided, set CC = 3 for subchannel not operational */ 1176 setcc(cpu, 3); 1177 break; 1178 case PRIV_B2_SCLP_CALL: 1179 rc = kvm_sclp_service_call(cpu, run, ipbh0); 1180 break; 1181 default: 1182 rc = -1; 1183 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); 1184 break; 1185 } 1186 1187 return rc; 1188 } 1189 1190 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, 1191 uint8_t *ar) 1192 { 1193 CPUS390XState *env = &cpu->env; 1194 uint32_t x2 = (run->s390_sieic.ipa & 0x000f); 1195 uint32_t base2 = run->s390_sieic.ipb >> 28; 1196 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1197 ((run->s390_sieic.ipb & 0xff00) << 4); 1198 1199 if (disp2 & 0x80000) { 1200 disp2 += 0xfff00000; 1201 } 1202 if (ar) { 1203 *ar = base2; 1204 } 1205 1206 return (base2 ? env->regs[base2] : 0) + 1207 (x2 ? env->regs[x2] : 0) + (long)(int)disp2; 1208 } 1209 1210 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, 1211 uint8_t *ar) 1212 { 1213 CPUS390XState *env = &cpu->env; 1214 uint32_t base2 = run->s390_sieic.ipb >> 28; 1215 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + 1216 ((run->s390_sieic.ipb & 0xff00) << 4); 1217 1218 if (disp2 & 0x80000) { 1219 disp2 += 0xfff00000; 1220 } 1221 if (ar) { 1222 *ar = base2; 1223 } 1224 1225 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; 1226 } 1227 1228 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) 1229 { 1230 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1231 1232 if (s390_has_feat(S390_FEAT_ZPCI)) { 1233 return clp_service_call(cpu, r2); 1234 } else { 1235 return -1; 1236 } 1237 } 1238 1239 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) 1240 { 1241 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1242 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1243 1244 if (s390_has_feat(S390_FEAT_ZPCI)) { 1245 return pcilg_service_call(cpu, r1, r2); 1246 } else { 1247 return -1; 1248 } 1249 } 1250 1251 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) 1252 { 1253 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1254 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1255 1256 if (s390_has_feat(S390_FEAT_ZPCI)) { 1257 return pcistg_service_call(cpu, r1, r2); 1258 } else { 1259 return -1; 1260 } 1261 } 1262 1263 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1264 { 1265 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1266 uint64_t fiba; 1267 uint8_t ar; 1268 1269 if (s390_has_feat(S390_FEAT_ZPCI)) { 1270 cpu_synchronize_state(CPU(cpu)); 1271 fiba = get_base_disp_rxy(cpu, run, &ar); 1272 1273 return stpcifc_service_call(cpu, r1, fiba, ar); 1274 } else { 1275 return -1; 1276 } 1277 } 1278 1279 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) 1280 { 1281 CPUS390XState *env = &cpu->env; 1282 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1283 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1284 uint8_t isc; 1285 uint16_t mode; 1286 int r; 1287 1288 cpu_synchronize_state(CPU(cpu)); 1289 mode = env->regs[r1] & 0xffff; 1290 isc = (env->regs[r3] >> 27) & 0x7; 1291 r = css_do_sic(env, isc, mode); 1292 if (r) { 1293 kvm_s390_program_interrupt(cpu, -r); 1294 } 1295 1296 return 0; 1297 } 1298 1299 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) 1300 { 1301 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; 1302 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; 1303 1304 if (s390_has_feat(S390_FEAT_ZPCI)) { 1305 return rpcit_service_call(cpu, r1, r2); 1306 } else { 1307 return -1; 1308 } 1309 } 1310 1311 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) 1312 { 1313 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1314 uint8_t r3 = run->s390_sieic.ipa & 0x000f; 1315 uint64_t gaddr; 1316 uint8_t ar; 1317 1318 if (s390_has_feat(S390_FEAT_ZPCI)) { 1319 cpu_synchronize_state(CPU(cpu)); 1320 gaddr = get_base_disp_rsy(cpu, run, &ar); 1321 1322 return pcistb_service_call(cpu, r1, r3, gaddr, ar); 1323 } else { 1324 return -1; 1325 } 1326 } 1327 1328 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) 1329 { 1330 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1331 uint64_t fiba; 1332 uint8_t ar; 1333 1334 if (s390_has_feat(S390_FEAT_ZPCI)) { 1335 cpu_synchronize_state(CPU(cpu)); 1336 fiba = get_base_disp_rxy(cpu, run, &ar); 1337 1338 return mpcifc_service_call(cpu, r1, fiba, ar); 1339 } else { 1340 return -1; 1341 } 1342 } 1343 1344 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) 1345 { 1346 int r = 0; 1347 1348 switch (ipa1) { 1349 case PRIV_B9_CLP: 1350 r = kvm_clp_service_call(cpu, run); 1351 break; 1352 case PRIV_B9_PCISTG: 1353 r = kvm_pcistg_service_call(cpu, run); 1354 break; 1355 case PRIV_B9_PCILG: 1356 r = kvm_pcilg_service_call(cpu, run); 1357 break; 1358 case PRIV_B9_RPCIT: 1359 r = kvm_rpcit_service_call(cpu, run); 1360 break; 1361 case PRIV_B9_EQBS: 1362 /* just inject exception */ 1363 r = -1; 1364 break; 1365 default: 1366 r = -1; 1367 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); 1368 break; 1369 } 1370 1371 return r; 1372 } 1373 1374 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1375 { 1376 int r = 0; 1377 1378 switch (ipbl) { 1379 case PRIV_EB_PCISTB: 1380 r = kvm_pcistb_service_call(cpu, run); 1381 break; 1382 case PRIV_EB_SIC: 1383 r = kvm_sic_service_call(cpu, run); 1384 break; 1385 case PRIV_EB_SQBS: 1386 /* just inject exception */ 1387 r = -1; 1388 break; 1389 default: 1390 r = -1; 1391 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); 1392 break; 1393 } 1394 1395 return r; 1396 } 1397 1398 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) 1399 { 1400 int r = 0; 1401 1402 switch (ipbl) { 1403 case PRIV_E3_MPCIFC: 1404 r = kvm_mpcifc_service_call(cpu, run); 1405 break; 1406 case PRIV_E3_STPCIFC: 1407 r = kvm_stpcifc_service_call(cpu, run); 1408 break; 1409 default: 1410 r = -1; 1411 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); 1412 break; 1413 } 1414 1415 return r; 1416 } 1417 1418 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) 1419 { 1420 CPUS390XState *env = &cpu->env; 1421 int ret; 1422 1423 cpu_synchronize_state(CPU(cpu)); 1424 ret = s390_virtio_hypercall(env); 1425 if (ret == -EINVAL) { 1426 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1427 return 0; 1428 } 1429 1430 return ret; 1431 } 1432 1433 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) 1434 { 1435 uint64_t r1, r3; 1436 int rc; 1437 1438 cpu_synchronize_state(CPU(cpu)); 1439 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1440 r3 = run->s390_sieic.ipa & 0x000f; 1441 rc = handle_diag_288(&cpu->env, r1, r3); 1442 if (rc) { 1443 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1444 } 1445 } 1446 1447 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) 1448 { 1449 uint64_t r1, r3; 1450 1451 cpu_synchronize_state(CPU(cpu)); 1452 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; 1453 r3 = run->s390_sieic.ipa & 0x000f; 1454 handle_diag_308(&cpu->env, r1, r3); 1455 } 1456 1457 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) 1458 { 1459 CPUS390XState *env = &cpu->env; 1460 unsigned long pc; 1461 1462 cpu_synchronize_state(CPU(cpu)); 1463 1464 pc = env->psw.addr - sw_bp_ilen; 1465 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { 1466 env->psw.addr = pc; 1467 return EXCP_DEBUG; 1468 } 1469 1470 return -ENOENT; 1471 } 1472 1473 #define DIAG_KVM_CODE_MASK 0x000000000000ffff 1474 1475 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) 1476 { 1477 int r = 0; 1478 uint16_t func_code; 1479 1480 /* 1481 * For any diagnose call we support, bits 48-63 of the resulting 1482 * address specify the function code; the remainder is ignored. 1483 */ 1484 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; 1485 switch (func_code) { 1486 case DIAG_TIMEREVENT: 1487 kvm_handle_diag_288(cpu, run); 1488 break; 1489 case DIAG_IPL: 1490 kvm_handle_diag_308(cpu, run); 1491 break; 1492 case DIAG_KVM_HYPERCALL: 1493 r = handle_hypercall(cpu, run); 1494 break; 1495 case DIAG_KVM_BREAKPOINT: 1496 r = handle_sw_breakpoint(cpu, run); 1497 break; 1498 default: 1499 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); 1500 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); 1501 break; 1502 } 1503 1504 return r; 1505 } 1506 1507 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) 1508 { 1509 CPUS390XState *env = &cpu->env; 1510 const uint8_t r1 = ipa1 >> 4; 1511 const uint8_t r3 = ipa1 & 0x0f; 1512 int ret; 1513 uint8_t order; 1514 1515 cpu_synchronize_state(CPU(cpu)); 1516 1517 /* get order code */ 1518 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; 1519 1520 ret = handle_sigp(env, order, r1, r3); 1521 setcc(cpu, ret); 1522 return 0; 1523 } 1524 1525 static int handle_instruction(S390CPU *cpu, struct kvm_run *run) 1526 { 1527 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); 1528 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; 1529 int r = -1; 1530 1531 DPRINTF("handle_instruction 0x%x 0x%x\n", 1532 run->s390_sieic.ipa, run->s390_sieic.ipb); 1533 switch (ipa0) { 1534 case IPA0_B2: 1535 r = handle_b2(cpu, run, ipa1); 1536 break; 1537 case IPA0_B9: 1538 r = handle_b9(cpu, run, ipa1); 1539 break; 1540 case IPA0_EB: 1541 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); 1542 break; 1543 case IPA0_E3: 1544 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); 1545 break; 1546 case IPA0_DIAG: 1547 r = handle_diag(cpu, run, run->s390_sieic.ipb); 1548 break; 1549 case IPA0_SIGP: 1550 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); 1551 break; 1552 } 1553 1554 if (r < 0) { 1555 r = 0; 1556 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1557 } 1558 1559 return r; 1560 } 1561 1562 static void unmanageable_intercept(S390CPU *cpu, const char *str, int pswoffset) 1563 { 1564 CPUState *cs = CPU(cpu); 1565 1566 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx", 1567 str, cs->cpu_index, ldq_phys(cs->as, cpu->env.psa + pswoffset), 1568 ldq_phys(cs->as, cpu->env.psa + pswoffset + 8)); 1569 s390_cpu_halt(cpu); 1570 qemu_system_guest_panicked(NULL); 1571 } 1572 1573 /* try to detect pgm check loops */ 1574 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) 1575 { 1576 CPUState *cs = CPU(cpu); 1577 PSW oldpsw, newpsw; 1578 1579 cpu_synchronize_state(cs); 1580 newpsw.mask = ldq_phys(cs->as, cpu->env.psa + 1581 offsetof(LowCore, program_new_psw)); 1582 newpsw.addr = ldq_phys(cs->as, cpu->env.psa + 1583 offsetof(LowCore, program_new_psw) + 8); 1584 oldpsw.mask = run->psw_mask; 1585 oldpsw.addr = run->psw_addr; 1586 /* 1587 * Avoid endless loops of operation exceptions, if the pgm new 1588 * PSW will cause a new operation exception. 1589 * The heuristic checks if the pgm new psw is within 6 bytes before 1590 * the faulting psw address (with same DAT, AS settings) and the 1591 * new psw is not a wait psw and the fault was not triggered by 1592 * problem state. In that case go into crashed state. 1593 */ 1594 1595 if (oldpsw.addr - newpsw.addr <= 6 && 1596 !(newpsw.mask & PSW_MASK_WAIT) && 1597 !(oldpsw.mask & PSW_MASK_PSTATE) && 1598 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && 1599 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { 1600 unmanageable_intercept(cpu, "operation exception loop", 1601 offsetof(LowCore, program_new_psw)); 1602 return EXCP_HALTED; 1603 } 1604 return 0; 1605 } 1606 1607 static int handle_intercept(S390CPU *cpu) 1608 { 1609 CPUState *cs = CPU(cpu); 1610 struct kvm_run *run = cs->kvm_run; 1611 int icpt_code = run->s390_sieic.icptcode; 1612 int r = 0; 1613 1614 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, 1615 (long)cs->kvm_run->psw_addr); 1616 switch (icpt_code) { 1617 case ICPT_INSTRUCTION: 1618 r = handle_instruction(cpu, run); 1619 break; 1620 case ICPT_PROGRAM: 1621 unmanageable_intercept(cpu, "program interrupt", 1622 offsetof(LowCore, program_new_psw)); 1623 r = EXCP_HALTED; 1624 break; 1625 case ICPT_EXT_INT: 1626 unmanageable_intercept(cpu, "external interrupt", 1627 offsetof(LowCore, external_new_psw)); 1628 r = EXCP_HALTED; 1629 break; 1630 case ICPT_WAITPSW: 1631 /* disabled wait, since enabled wait is handled in kernel */ 1632 cpu_synchronize_state(cs); 1633 s390_handle_wait(cpu); 1634 r = EXCP_HALTED; 1635 break; 1636 case ICPT_CPU_STOP: 1637 do_stop_interrupt(&cpu->env); 1638 r = EXCP_HALTED; 1639 break; 1640 case ICPT_OPEREXC: 1641 /* check for break points */ 1642 r = handle_sw_breakpoint(cpu, run); 1643 if (r == -ENOENT) { 1644 /* Then check for potential pgm check loops */ 1645 r = handle_oper_loop(cpu, run); 1646 if (r == 0) { 1647 kvm_s390_program_interrupt(cpu, PGM_OPERATION); 1648 } 1649 } 1650 break; 1651 case ICPT_SOFT_INTERCEPT: 1652 fprintf(stderr, "KVM unimplemented icpt SOFT\n"); 1653 exit(1); 1654 break; 1655 case ICPT_IO: 1656 fprintf(stderr, "KVM unimplemented icpt IO\n"); 1657 exit(1); 1658 break; 1659 default: 1660 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); 1661 exit(1); 1662 break; 1663 } 1664 1665 return r; 1666 } 1667 1668 static int handle_tsch(S390CPU *cpu) 1669 { 1670 CPUState *cs = CPU(cpu); 1671 struct kvm_run *run = cs->kvm_run; 1672 int ret; 1673 1674 cpu_synchronize_state(cs); 1675 1676 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, 1677 RA_IGNORED); 1678 if (ret < 0) { 1679 /* 1680 * Failure. 1681 * If an I/O interrupt had been dequeued, we have to reinject it. 1682 */ 1683 if (run->s390_tsch.dequeued) { 1684 kvm_s390_io_interrupt(run->s390_tsch.subchannel_id, 1685 run->s390_tsch.subchannel_nr, 1686 run->s390_tsch.io_int_parm, 1687 run->s390_tsch.io_int_word); 1688 } 1689 ret = 0; 1690 } 1691 return ret; 1692 } 1693 1694 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) 1695 { 1696 struct sysib_322 sysib; 1697 int del; 1698 1699 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { 1700 return; 1701 } 1702 /* Shift the stack of Extended Names to prepare for our own data */ 1703 memmove(&sysib.ext_names[1], &sysib.ext_names[0], 1704 sizeof(sysib.ext_names[0]) * (sysib.count - 1)); 1705 /* First virt level, that doesn't provide Ext Names delimits stack. It is 1706 * assumed it's not capable of managing Extended Names for lower levels. 1707 */ 1708 for (del = 1; del < sysib.count; del++) { 1709 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { 1710 break; 1711 } 1712 } 1713 if (del < sysib.count) { 1714 memset(sysib.ext_names[del], 0, 1715 sizeof(sysib.ext_names[0]) * (sysib.count - del)); 1716 } 1717 /* Insert short machine name in EBCDIC, padded with blanks */ 1718 if (qemu_name) { 1719 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); 1720 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), 1721 strlen(qemu_name))); 1722 } 1723 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ 1724 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0])); 1725 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's 1726 * considered by s390 as not capable of providing any Extended Name. 1727 * Therefore if no name was specified on qemu invocation, we go with the 1728 * same "KVMguest" default, which KVM has filled into short name field. 1729 */ 1730 if (qemu_name) { 1731 strncpy((char *)sysib.ext_names[0], qemu_name, 1732 sizeof(sysib.ext_names[0])); 1733 } else { 1734 strcpy((char *)sysib.ext_names[0], "KVMguest"); 1735 } 1736 /* Insert UUID */ 1737 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); 1738 1739 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); 1740 } 1741 1742 static int handle_stsi(S390CPU *cpu) 1743 { 1744 CPUState *cs = CPU(cpu); 1745 struct kvm_run *run = cs->kvm_run; 1746 1747 switch (run->s390_stsi.fc) { 1748 case 3: 1749 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { 1750 return 0; 1751 } 1752 /* Only sysib 3.2.2 needs post-handling for now. */ 1753 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); 1754 return 0; 1755 default: 1756 return 0; 1757 } 1758 } 1759 1760 static int kvm_arch_handle_debug_exit(S390CPU *cpu) 1761 { 1762 CPUState *cs = CPU(cpu); 1763 struct kvm_run *run = cs->kvm_run; 1764 1765 int ret = 0; 1766 struct kvm_debug_exit_arch *arch_info = &run->debug.arch; 1767 1768 switch (arch_info->type) { 1769 case KVM_HW_WP_WRITE: 1770 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1771 cs->watchpoint_hit = &hw_watchpoint; 1772 hw_watchpoint.vaddr = arch_info->addr; 1773 hw_watchpoint.flags = BP_MEM_WRITE; 1774 ret = EXCP_DEBUG; 1775 } 1776 break; 1777 case KVM_HW_BP: 1778 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { 1779 ret = EXCP_DEBUG; 1780 } 1781 break; 1782 case KVM_SINGLESTEP: 1783 if (cs->singlestep_enabled) { 1784 ret = EXCP_DEBUG; 1785 } 1786 break; 1787 default: 1788 ret = -ENOSYS; 1789 } 1790 1791 return ret; 1792 } 1793 1794 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 1795 { 1796 S390CPU *cpu = S390_CPU(cs); 1797 int ret = 0; 1798 1799 qemu_mutex_lock_iothread(); 1800 1801 switch (run->exit_reason) { 1802 case KVM_EXIT_S390_SIEIC: 1803 ret = handle_intercept(cpu); 1804 break; 1805 case KVM_EXIT_S390_RESET: 1806 s390_reipl_request(); 1807 break; 1808 case KVM_EXIT_S390_TSCH: 1809 ret = handle_tsch(cpu); 1810 break; 1811 case KVM_EXIT_S390_STSI: 1812 ret = handle_stsi(cpu); 1813 break; 1814 case KVM_EXIT_DEBUG: 1815 ret = kvm_arch_handle_debug_exit(cpu); 1816 break; 1817 default: 1818 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); 1819 break; 1820 } 1821 qemu_mutex_unlock_iothread(); 1822 1823 if (ret == 0) { 1824 ret = EXCP_INTERRUPT; 1825 } 1826 return ret; 1827 } 1828 1829 bool kvm_arch_stop_on_emulation_error(CPUState *cpu) 1830 { 1831 return true; 1832 } 1833 1834 void kvm_s390_io_interrupt(uint16_t subchannel_id, 1835 uint16_t subchannel_nr, uint32_t io_int_parm, 1836 uint32_t io_int_word) 1837 { 1838 struct kvm_s390_irq irq = { 1839 .u.io.subchannel_id = subchannel_id, 1840 .u.io.subchannel_nr = subchannel_nr, 1841 .u.io.io_int_parm = io_int_parm, 1842 .u.io.io_int_word = io_int_word, 1843 }; 1844 1845 if (io_int_word & IO_INT_WORD_AI) { 1846 irq.type = KVM_S390_INT_IO(1, 0, 0, 0); 1847 } else { 1848 irq.type = KVM_S390_INT_IO(0, (subchannel_id & 0xff00) >> 8, 1849 (subchannel_id & 0x0006), 1850 subchannel_nr); 1851 } 1852 kvm_s390_floating_interrupt(&irq); 1853 } 1854 1855 static uint64_t build_channel_report_mcic(void) 1856 { 1857 uint64_t mcic; 1858 1859 /* subclass: indicate channel report pending */ 1860 mcic = MCIC_SC_CP | 1861 /* subclass modifiers: none */ 1862 /* storage errors: none */ 1863 /* validity bits: no damage */ 1864 MCIC_VB_WP | MCIC_VB_MS | MCIC_VB_PM | MCIC_VB_IA | MCIC_VB_FP | 1865 MCIC_VB_GR | MCIC_VB_CR | MCIC_VB_ST | MCIC_VB_AR | MCIC_VB_PR | 1866 MCIC_VB_FC | MCIC_VB_CT | MCIC_VB_CC; 1867 if (s390_has_feat(S390_FEAT_VECTOR)) { 1868 mcic |= MCIC_VB_VR; 1869 } 1870 if (s390_has_feat(S390_FEAT_GUARDED_STORAGE)) { 1871 mcic |= MCIC_VB_GS; 1872 } 1873 return mcic; 1874 } 1875 1876 void kvm_s390_crw_mchk(void) 1877 { 1878 struct kvm_s390_irq irq = { 1879 .type = KVM_S390_MCHK, 1880 .u.mchk.cr14 = 1 << 28, 1881 .u.mchk.mcic = build_channel_report_mcic(), 1882 }; 1883 kvm_s390_floating_interrupt(&irq); 1884 } 1885 1886 void kvm_s390_enable_css_support(S390CPU *cpu) 1887 { 1888 int r; 1889 1890 /* Activate host kernel channel subsystem support. */ 1891 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); 1892 assert(r == 0); 1893 } 1894 1895 void kvm_arch_init_irq_routing(KVMState *s) 1896 { 1897 /* 1898 * Note that while irqchip capabilities generally imply that cpustates 1899 * are handled in-kernel, it is not true for s390 (yet); therefore, we 1900 * have to override the common code kvm_halt_in_kernel_allowed setting. 1901 */ 1902 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { 1903 kvm_gsi_routing_allowed = true; 1904 kvm_halt_in_kernel_allowed = false; 1905 } 1906 } 1907 1908 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, 1909 int vq, bool assign) 1910 { 1911 struct kvm_ioeventfd kick = { 1912 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | 1913 KVM_IOEVENTFD_FLAG_DATAMATCH, 1914 .fd = event_notifier_get_fd(notifier), 1915 .datamatch = vq, 1916 .addr = sch, 1917 .len = 8, 1918 }; 1919 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { 1920 return -ENOSYS; 1921 } 1922 if (!assign) { 1923 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; 1924 } 1925 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); 1926 } 1927 1928 int kvm_s390_get_memslot_count(void) 1929 { 1930 return kvm_check_extension(kvm_state, KVM_CAP_NR_MEMSLOTS); 1931 } 1932 1933 int kvm_s390_get_ri(void) 1934 { 1935 return cap_ri; 1936 } 1937 1938 int kvm_s390_get_gs(void) 1939 { 1940 return cap_gs; 1941 } 1942 1943 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) 1944 { 1945 struct kvm_mp_state mp_state = {}; 1946 int ret; 1947 1948 /* the kvm part might not have been initialized yet */ 1949 if (CPU(cpu)->kvm_state == NULL) { 1950 return 0; 1951 } 1952 1953 switch (cpu_state) { 1954 case CPU_STATE_STOPPED: 1955 mp_state.mp_state = KVM_MP_STATE_STOPPED; 1956 break; 1957 case CPU_STATE_CHECK_STOP: 1958 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; 1959 break; 1960 case CPU_STATE_OPERATING: 1961 mp_state.mp_state = KVM_MP_STATE_OPERATING; 1962 break; 1963 case CPU_STATE_LOAD: 1964 mp_state.mp_state = KVM_MP_STATE_LOAD; 1965 break; 1966 default: 1967 error_report("Requested CPU state is not a valid S390 CPU state: %u", 1968 cpu_state); 1969 exit(1); 1970 } 1971 1972 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 1973 if (ret) { 1974 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, 1975 strerror(-ret)); 1976 } 1977 1978 return ret; 1979 } 1980 1981 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) 1982 { 1983 struct kvm_s390_irq_state irq_state = { 1984 .buf = (uint64_t) cpu->irqstate, 1985 .len = VCPU_IRQ_BUF_SIZE, 1986 }; 1987 CPUState *cs = CPU(cpu); 1988 int32_t bytes; 1989 1990 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 1991 return; 1992 } 1993 1994 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); 1995 if (bytes < 0) { 1996 cpu->irqstate_saved_size = 0; 1997 error_report("Migration of interrupt state failed"); 1998 return; 1999 } 2000 2001 cpu->irqstate_saved_size = bytes; 2002 } 2003 2004 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) 2005 { 2006 CPUState *cs = CPU(cpu); 2007 struct kvm_s390_irq_state irq_state = { 2008 .buf = (uint64_t) cpu->irqstate, 2009 .len = cpu->irqstate_saved_size, 2010 }; 2011 int r; 2012 2013 if (cpu->irqstate_saved_size == 0) { 2014 return 0; 2015 } 2016 2017 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { 2018 return -ENOSYS; 2019 } 2020 2021 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); 2022 if (r) { 2023 error_report("Setting interrupt state failed %d", r); 2024 } 2025 return r; 2026 } 2027 2028 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 2029 uint64_t address, uint32_t data, PCIDevice *dev) 2030 { 2031 S390PCIBusDevice *pbdev; 2032 uint32_t vec = data & ZPCI_MSI_VEC_MASK; 2033 2034 if (!dev) { 2035 DPRINTF("add_msi_route no pci device\n"); 2036 return -ENODEV; 2037 } 2038 2039 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); 2040 if (!pbdev) { 2041 DPRINTF("add_msi_route no zpci device\n"); 2042 return -ENODEV; 2043 } 2044 2045 route->type = KVM_IRQ_ROUTING_S390_ADAPTER; 2046 route->flags = 0; 2047 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; 2048 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; 2049 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; 2050 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; 2051 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; 2052 return 0; 2053 } 2054 2055 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 2056 int vector, PCIDevice *dev) 2057 { 2058 return 0; 2059 } 2060 2061 int kvm_arch_release_virq_post(int virq) 2062 { 2063 return 0; 2064 } 2065 2066 int kvm_arch_msi_data_to_gsi(uint32_t data) 2067 { 2068 abort(); 2069 } 2070 2071 static int query_cpu_subfunc(S390FeatBitmap features) 2072 { 2073 struct kvm_s390_vm_cpu_subfunc prop; 2074 struct kvm_device_attr attr = { 2075 .group = KVM_S390_VM_CPU_MODEL, 2076 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, 2077 .addr = (uint64_t) &prop, 2078 }; 2079 int rc; 2080 2081 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2082 if (rc) { 2083 return rc; 2084 } 2085 2086 /* 2087 * We're going to add all subfunctions now, if the corresponding feature 2088 * is available that unlocks the query functions. 2089 */ 2090 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2091 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2092 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2093 } 2094 if (test_bit(S390_FEAT_MSA, features)) { 2095 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2096 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2097 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2098 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2099 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2100 } 2101 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2102 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2103 } 2104 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2105 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2106 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2107 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2108 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2109 } 2110 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2111 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2112 } 2113 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2114 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2115 } 2116 return 0; 2117 } 2118 2119 static int configure_cpu_subfunc(const S390FeatBitmap features) 2120 { 2121 struct kvm_s390_vm_cpu_subfunc prop = {}; 2122 struct kvm_device_attr attr = { 2123 .group = KVM_S390_VM_CPU_MODEL, 2124 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, 2125 .addr = (uint64_t) &prop, 2126 }; 2127 2128 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2129 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { 2130 /* hardware support might be missing, IBC will handle most of this */ 2131 return 0; 2132 } 2133 2134 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); 2135 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { 2136 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); 2137 } 2138 if (test_bit(S390_FEAT_MSA, features)) { 2139 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); 2140 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); 2141 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); 2142 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); 2143 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); 2144 } 2145 if (test_bit(S390_FEAT_MSA_EXT_3, features)) { 2146 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); 2147 } 2148 if (test_bit(S390_FEAT_MSA_EXT_4, features)) { 2149 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); 2150 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); 2151 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); 2152 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); 2153 } 2154 if (test_bit(S390_FEAT_MSA_EXT_5, features)) { 2155 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); 2156 } 2157 if (test_bit(S390_FEAT_MSA_EXT_8, features)) { 2158 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); 2159 } 2160 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2161 } 2162 2163 static int kvm_to_feat[][2] = { 2164 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, 2165 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, 2166 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, 2167 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, 2168 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, 2169 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, 2170 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, 2171 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, 2172 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, 2173 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, 2174 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, 2175 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, 2176 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, 2177 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, 2178 }; 2179 2180 static int query_cpu_feat(S390FeatBitmap features) 2181 { 2182 struct kvm_s390_vm_cpu_feat prop; 2183 struct kvm_device_attr attr = { 2184 .group = KVM_S390_VM_CPU_MODEL, 2185 .attr = KVM_S390_VM_CPU_MACHINE_FEAT, 2186 .addr = (uint64_t) &prop, 2187 }; 2188 int rc; 2189 int i; 2190 2191 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2192 if (rc) { 2193 return rc; 2194 } 2195 2196 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2197 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { 2198 set_bit(kvm_to_feat[i][1], features); 2199 } 2200 } 2201 return 0; 2202 } 2203 2204 static int configure_cpu_feat(const S390FeatBitmap features) 2205 { 2206 struct kvm_s390_vm_cpu_feat prop = {}; 2207 struct kvm_device_attr attr = { 2208 .group = KVM_S390_VM_CPU_MODEL, 2209 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, 2210 .addr = (uint64_t) &prop, 2211 }; 2212 int i; 2213 2214 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { 2215 if (test_bit(kvm_to_feat[i][1], features)) { 2216 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); 2217 } 2218 } 2219 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2220 } 2221 2222 bool kvm_s390_cpu_models_supported(void) 2223 { 2224 if (!cpu_model_allowed()) { 2225 /* compatibility machines interfere with the cpu model */ 2226 return false; 2227 } 2228 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2229 KVM_S390_VM_CPU_MACHINE) && 2230 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2231 KVM_S390_VM_CPU_PROCESSOR) && 2232 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2233 KVM_S390_VM_CPU_MACHINE_FEAT) && 2234 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2235 KVM_S390_VM_CPU_PROCESSOR_FEAT) && 2236 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, 2237 KVM_S390_VM_CPU_MACHINE_SUBFUNC); 2238 } 2239 2240 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) 2241 { 2242 struct kvm_s390_vm_cpu_machine prop = {}; 2243 struct kvm_device_attr attr = { 2244 .group = KVM_S390_VM_CPU_MODEL, 2245 .attr = KVM_S390_VM_CPU_MACHINE, 2246 .addr = (uint64_t) &prop, 2247 }; 2248 uint16_t unblocked_ibc = 0, cpu_type = 0; 2249 int rc; 2250 2251 memset(model, 0, sizeof(*model)); 2252 2253 if (!kvm_s390_cpu_models_supported()) { 2254 error_setg(errp, "KVM doesn't support CPU models"); 2255 return; 2256 } 2257 2258 /* query the basic cpu model properties */ 2259 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); 2260 if (rc) { 2261 error_setg(errp, "KVM: Error querying host CPU model: %d", rc); 2262 return; 2263 } 2264 2265 cpu_type = cpuid_type(prop.cpuid); 2266 if (has_ibc(prop.ibc)) { 2267 model->lowest_ibc = lowest_ibc(prop.ibc); 2268 unblocked_ibc = unblocked_ibc(prop.ibc); 2269 } 2270 model->cpu_id = cpuid_id(prop.cpuid); 2271 model->cpu_id_format = cpuid_format(prop.cpuid); 2272 model->cpu_ver = 0xff; 2273 2274 /* get supported cpu features indicated via STFL(E) */ 2275 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, 2276 (uint8_t *) prop.fac_mask); 2277 /* dat-enhancement facility 2 has no bit but was introduced with stfle */ 2278 if (test_bit(S390_FEAT_STFLE, model->features)) { 2279 set_bit(S390_FEAT_DAT_ENH_2, model->features); 2280 } 2281 /* get supported cpu features indicated e.g. via SCLP */ 2282 rc = query_cpu_feat(model->features); 2283 if (rc) { 2284 error_setg(errp, "KVM: Error querying CPU features: %d", rc); 2285 return; 2286 } 2287 /* get supported cpu subfunctions indicated via query / test bit */ 2288 rc = query_cpu_subfunc(model->features); 2289 if (rc) { 2290 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); 2291 return; 2292 } 2293 2294 /* with cpu model support, CMM is only indicated if really available */ 2295 if (kvm_s390_cmma_available()) { 2296 set_bit(S390_FEAT_CMM, model->features); 2297 } else { 2298 /* no cmm -> no cmm nt */ 2299 clear_bit(S390_FEAT_CMM_NT, model->features); 2300 } 2301 2302 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ 2303 if (pci_available) { 2304 set_bit(S390_FEAT_ZPCI, model->features); 2305 } 2306 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); 2307 2308 if (s390_known_cpu_type(cpu_type)) { 2309 /* we want the exact model, even if some features are missing */ 2310 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), 2311 ibc_ec_ga(unblocked_ibc), NULL); 2312 } else { 2313 /* model unknown, e.g. too new - search using features */ 2314 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), 2315 ibc_ec_ga(unblocked_ibc), 2316 model->features); 2317 } 2318 if (!model->def) { 2319 error_setg(errp, "KVM: host CPU model could not be identified"); 2320 return; 2321 } 2322 /* strip of features that are not part of the maximum model */ 2323 bitmap_and(model->features, model->features, model->def->full_feat, 2324 S390_FEAT_MAX); 2325 } 2326 2327 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) 2328 { 2329 struct kvm_s390_vm_cpu_processor prop = { 2330 .fac_list = { 0 }, 2331 }; 2332 struct kvm_device_attr attr = { 2333 .group = KVM_S390_VM_CPU_MODEL, 2334 .attr = KVM_S390_VM_CPU_PROCESSOR, 2335 .addr = (uint64_t) &prop, 2336 }; 2337 int rc; 2338 2339 if (!model) { 2340 /* compatibility handling if cpu models are disabled */ 2341 if (kvm_s390_cmma_available()) { 2342 kvm_s390_enable_cmma(); 2343 } 2344 return; 2345 } 2346 if (!kvm_s390_cpu_models_supported()) { 2347 error_setg(errp, "KVM doesn't support CPU models"); 2348 return; 2349 } 2350 prop.cpuid = s390_cpuid_from_cpu_model(model); 2351 prop.ibc = s390_ibc_from_cpu_model(model); 2352 /* configure cpu features indicated via STFL(e) */ 2353 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, 2354 (uint8_t *) prop.fac_list); 2355 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); 2356 if (rc) { 2357 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); 2358 return; 2359 } 2360 /* configure cpu features indicated e.g. via SCLP */ 2361 rc = configure_cpu_feat(model->features); 2362 if (rc) { 2363 error_setg(errp, "KVM: Error configuring CPU features: %d", rc); 2364 return; 2365 } 2366 /* configure cpu subfunctions indicated via query / test bit */ 2367 rc = configure_cpu_subfunc(model->features); 2368 if (rc) { 2369 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); 2370 return; 2371 } 2372 /* enable CMM via CMMA */ 2373 if (test_bit(S390_FEAT_CMM, model->features)) { 2374 kvm_s390_enable_cmma(); 2375 } 2376 } 2377 2378 void kvm_s390_restart_interrupt(S390CPU *cpu) 2379 { 2380 struct kvm_s390_irq irq = { 2381 .type = KVM_S390_RESTART, 2382 }; 2383 2384 kvm_s390_vcpu_interrupt(cpu, &irq); 2385 } 2386 2387 void kvm_s390_stop_interrupt(S390CPU *cpu) 2388 { 2389 struct kvm_s390_irq irq = { 2390 .type = KVM_S390_SIGP_STOP, 2391 }; 2392 2393 kvm_s390_vcpu_interrupt(cpu, &irq); 2394 } 2395