xref: /qemu/target/riscv/kvm/kvm-cpu.c (revision 6ff5da16000f908140723e164d33a0b51a6c4162)
1 /*
2  * RISC-V implementation of KVM hooks
3  *
4  * Copyright (c) 2020 Huawei Technologies Co., Ltd
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2 or later, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include <sys/ioctl.h>
21 #include <sys/prctl.h>
22 
23 #include <linux/kvm.h>
24 
25 #include "qemu/timer.h"
26 #include "qapi/error.h"
27 #include "qemu/error-report.h"
28 #include "qemu/main-loop.h"
29 #include "qapi/visitor.h"
30 #include "system/system.h"
31 #include "system/kvm.h"
32 #include "system/kvm_int.h"
33 #include "cpu.h"
34 #include "trace.h"
35 #include "accel/accel-cpu-target.h"
36 #include "hw/pci/pci.h"
37 #include "exec/memattrs.h"
38 #include "exec/address-spaces.h"
39 #include "hw/boards.h"
40 #include "hw/irq.h"
41 #include "hw/intc/riscv_imsic.h"
42 #include "qemu/log.h"
43 #include "hw/loader.h"
44 #include "kvm_riscv.h"
45 #include "sbi_ecall_interface.h"
46 #include "chardev/char-fe.h"
47 #include "migration/misc.h"
48 #include "system/runstate.h"
49 #include "hw/riscv/numa.h"
50 
51 #define PR_RISCV_V_SET_CONTROL            69
52 #define PR_RISCV_V_VSTATE_CTRL_ON          2
53 
54 void riscv_kvm_aplic_request(void *opaque, int irq, int level)
55 {
56     kvm_set_irq(kvm_state, irq, !!level);
57 }
58 
59 static bool cap_has_mp_state;
60 
61 static uint64_t kvm_riscv_reg_id_ulong(CPURISCVState *env, uint64_t type,
62                                  uint64_t idx)
63 {
64     uint64_t id = KVM_REG_RISCV | type | idx;
65 
66     switch (riscv_cpu_mxl(env)) {
67     case MXL_RV32:
68         id |= KVM_REG_SIZE_U32;
69         break;
70     case MXL_RV64:
71         id |= KVM_REG_SIZE_U64;
72         break;
73     default:
74         g_assert_not_reached();
75     }
76     return id;
77 }
78 
79 static uint64_t kvm_riscv_reg_id_u32(uint64_t type, uint64_t idx)
80 {
81     return KVM_REG_RISCV | KVM_REG_SIZE_U32 | type | idx;
82 }
83 
84 static uint64_t kvm_riscv_reg_id_u64(uint64_t type, uint64_t idx)
85 {
86     return KVM_REG_RISCV | KVM_REG_SIZE_U64 | type | idx;
87 }
88 
89 static uint64_t kvm_encode_reg_size_id(uint64_t id, size_t size_b)
90 {
91     uint64_t size_ctz = __builtin_ctz(size_b);
92 
93     return id | (size_ctz << KVM_REG_SIZE_SHIFT);
94 }
95 
96 static uint64_t kvm_riscv_vector_reg_id(RISCVCPU *cpu,
97                                         uint64_t idx)
98 {
99     uint64_t id;
100     size_t size_b;
101 
102     g_assert(idx < 32);
103 
104     id = KVM_REG_RISCV | KVM_REG_RISCV_VECTOR | KVM_REG_RISCV_VECTOR_REG(idx);
105     size_b = cpu->cfg.vlenb;
106 
107     return kvm_encode_reg_size_id(id, size_b);
108 }
109 
110 #define RISCV_CORE_REG(env, name) \
111     kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, \
112                            KVM_REG_RISCV_CORE_REG(name))
113 
114 #define RISCV_CSR_REG(env, name) \
115     kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CSR, \
116                            KVM_REG_RISCV_CSR_REG(name))
117 
118 #define RISCV_CONFIG_REG(env, name) \
119     kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG, \
120                            KVM_REG_RISCV_CONFIG_REG(name))
121 
122 #define RISCV_TIMER_REG(name)  kvm_riscv_reg_id_u64(KVM_REG_RISCV_TIMER, \
123                  KVM_REG_RISCV_TIMER_REG(name))
124 
125 #define RISCV_FP_F_REG(idx)  kvm_riscv_reg_id_u32(KVM_REG_RISCV_FP_F, idx)
126 
127 #define RISCV_FP_D_REG(idx)  kvm_riscv_reg_id_u64(KVM_REG_RISCV_FP_D, idx)
128 
129 #define RISCV_VECTOR_CSR_REG(env, name) \
130     kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_VECTOR, \
131                            KVM_REG_RISCV_VECTOR_CSR_REG(name))
132 
133 #define KVM_RISCV_GET_CSR(cs, env, csr, reg) \
134     do { \
135         int _ret = kvm_get_one_reg(cs, RISCV_CSR_REG(env, csr), &reg); \
136         if (_ret) { \
137             return _ret; \
138         } \
139     } while (0)
140 
141 #define KVM_RISCV_SET_CSR(cs, env, csr, reg) \
142     do { \
143         int _ret = kvm_set_one_reg(cs, RISCV_CSR_REG(env, csr), &reg); \
144         if (_ret) { \
145             return _ret; \
146         } \
147     } while (0)
148 
149 #define KVM_RISCV_GET_TIMER(cs, name, reg) \
150     do { \
151         int ret = kvm_get_one_reg(cs, RISCV_TIMER_REG(name), &reg); \
152         if (ret) { \
153             abort(); \
154         } \
155     } while (0)
156 
157 #define KVM_RISCV_SET_TIMER(cs, name, reg) \
158     do { \
159         int ret = kvm_set_one_reg(cs, RISCV_TIMER_REG(name), &reg); \
160         if (ret) { \
161             abort(); \
162         } \
163     } while (0)
164 
165 typedef struct KVMCPUConfig {
166     const char *name;
167     const char *description;
168     target_ulong offset;
169     uint64_t kvm_reg_id;
170     bool user_set;
171     bool supported;
172 } KVMCPUConfig;
173 
174 #define KVM_MISA_CFG(_bit, _reg_id) \
175     {.offset = _bit, .kvm_reg_id = _reg_id}
176 
177 /* KVM ISA extensions */
178 static KVMCPUConfig kvm_misa_ext_cfgs[] = {
179     KVM_MISA_CFG(RVA, KVM_RISCV_ISA_EXT_A),
180     KVM_MISA_CFG(RVC, KVM_RISCV_ISA_EXT_C),
181     KVM_MISA_CFG(RVD, KVM_RISCV_ISA_EXT_D),
182     KVM_MISA_CFG(RVF, KVM_RISCV_ISA_EXT_F),
183     KVM_MISA_CFG(RVH, KVM_RISCV_ISA_EXT_H),
184     KVM_MISA_CFG(RVI, KVM_RISCV_ISA_EXT_I),
185     KVM_MISA_CFG(RVM, KVM_RISCV_ISA_EXT_M),
186     KVM_MISA_CFG(RVV, KVM_RISCV_ISA_EXT_V),
187 };
188 
189 static void kvm_cpu_get_misa_ext_cfg(Object *obj, Visitor *v,
190                                      const char *name,
191                                      void *opaque, Error **errp)
192 {
193     KVMCPUConfig *misa_ext_cfg = opaque;
194     target_ulong misa_bit = misa_ext_cfg->offset;
195     RISCVCPU *cpu = RISCV_CPU(obj);
196     CPURISCVState *env = &cpu->env;
197     bool value = env->misa_ext_mask & misa_bit;
198 
199     visit_type_bool(v, name, &value, errp);
200 }
201 
202 static void kvm_cpu_set_misa_ext_cfg(Object *obj, Visitor *v,
203                                      const char *name,
204                                      void *opaque, Error **errp)
205 {
206     KVMCPUConfig *misa_ext_cfg = opaque;
207     target_ulong misa_bit = misa_ext_cfg->offset;
208     RISCVCPU *cpu = RISCV_CPU(obj);
209     CPURISCVState *env = &cpu->env;
210     bool value, host_bit;
211 
212     if (!visit_type_bool(v, name, &value, errp)) {
213         return;
214     }
215 
216     host_bit = env->misa_ext_mask & misa_bit;
217 
218     if (value == host_bit) {
219         return;
220     }
221 
222     if (!value) {
223         misa_ext_cfg->user_set = true;
224         return;
225     }
226 
227     /*
228      * Forbid users to enable extensions that aren't
229      * available in the hart.
230      */
231     error_setg(errp, "Enabling MISA bit '%s' is not allowed: it's not "
232                "enabled in the host", misa_ext_cfg->name);
233 }
234 
235 static void kvm_riscv_update_cpu_misa_ext(RISCVCPU *cpu, CPUState *cs)
236 {
237     CPURISCVState *env = &cpu->env;
238     uint64_t id, reg;
239     int i, ret;
240 
241     for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
242         KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
243         target_ulong misa_bit = misa_cfg->offset;
244 
245         if (!misa_cfg->user_set) {
246             continue;
247         }
248 
249         /* If we're here we're going to disable the MISA bit */
250         reg = 0;
251         id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
252                                     misa_cfg->kvm_reg_id);
253         ret = kvm_set_one_reg(cs, id, &reg);
254         if (ret != 0) {
255             /*
256              * We're not checking for -EINVAL because if the bit is about
257              * to be disabled, it means that it was already enabled by
258              * KVM. We determined that by fetching the 'isa' register
259              * during init() time. Any error at this point is worth
260              * aborting.
261              */
262             error_report("Unable to set KVM reg %s, error %d",
263                          misa_cfg->name, ret);
264             exit(EXIT_FAILURE);
265         }
266         env->misa_ext &= ~misa_bit;
267     }
268 }
269 
270 #define KVM_EXT_CFG(_name, _prop, _reg_id) \
271     {.name = _name, .offset = CPU_CFG_OFFSET(_prop), \
272      .kvm_reg_id = _reg_id}
273 
274 static KVMCPUConfig kvm_multi_ext_cfgs[] = {
275     KVM_EXT_CFG("zicbom", ext_zicbom, KVM_RISCV_ISA_EXT_ZICBOM),
276     KVM_EXT_CFG("zicboz", ext_zicboz, KVM_RISCV_ISA_EXT_ZICBOZ),
277     KVM_EXT_CFG("ziccrse", ext_ziccrse, KVM_RISCV_ISA_EXT_ZICCRSE),
278     KVM_EXT_CFG("zicntr", ext_zicntr, KVM_RISCV_ISA_EXT_ZICNTR),
279     KVM_EXT_CFG("zicond", ext_zicond, KVM_RISCV_ISA_EXT_ZICOND),
280     KVM_EXT_CFG("zicsr", ext_zicsr, KVM_RISCV_ISA_EXT_ZICSR),
281     KVM_EXT_CFG("zifencei", ext_zifencei, KVM_RISCV_ISA_EXT_ZIFENCEI),
282     KVM_EXT_CFG("zihintntl", ext_zihintntl, KVM_RISCV_ISA_EXT_ZIHINTNTL),
283     KVM_EXT_CFG("zihintpause", ext_zihintpause, KVM_RISCV_ISA_EXT_ZIHINTPAUSE),
284     KVM_EXT_CFG("zihpm", ext_zihpm, KVM_RISCV_ISA_EXT_ZIHPM),
285     KVM_EXT_CFG("zimop", ext_zimop, KVM_RISCV_ISA_EXT_ZIMOP),
286     KVM_EXT_CFG("zcmop", ext_zcmop, KVM_RISCV_ISA_EXT_ZCMOP),
287     KVM_EXT_CFG("zabha", ext_zabha, KVM_RISCV_ISA_EXT_ZABHA),
288     KVM_EXT_CFG("zacas", ext_zacas, KVM_RISCV_ISA_EXT_ZACAS),
289     KVM_EXT_CFG("zawrs", ext_zawrs, KVM_RISCV_ISA_EXT_ZAWRS),
290     KVM_EXT_CFG("zfa", ext_zfa, KVM_RISCV_ISA_EXT_ZFA),
291     KVM_EXT_CFG("zfh", ext_zfh, KVM_RISCV_ISA_EXT_ZFH),
292     KVM_EXT_CFG("zfhmin", ext_zfhmin, KVM_RISCV_ISA_EXT_ZFHMIN),
293     KVM_EXT_CFG("zba", ext_zba, KVM_RISCV_ISA_EXT_ZBA),
294     KVM_EXT_CFG("zbb", ext_zbb, KVM_RISCV_ISA_EXT_ZBB),
295     KVM_EXT_CFG("zbc", ext_zbc, KVM_RISCV_ISA_EXT_ZBC),
296     KVM_EXT_CFG("zbkb", ext_zbkb, KVM_RISCV_ISA_EXT_ZBKB),
297     KVM_EXT_CFG("zbkc", ext_zbkc, KVM_RISCV_ISA_EXT_ZBKC),
298     KVM_EXT_CFG("zbkx", ext_zbkx, KVM_RISCV_ISA_EXT_ZBKX),
299     KVM_EXT_CFG("zbs", ext_zbs, KVM_RISCV_ISA_EXT_ZBS),
300     KVM_EXT_CFG("zca", ext_zca, KVM_RISCV_ISA_EXT_ZCA),
301     KVM_EXT_CFG("zcb", ext_zcb, KVM_RISCV_ISA_EXT_ZCB),
302     KVM_EXT_CFG("zcd", ext_zcd, KVM_RISCV_ISA_EXT_ZCD),
303     KVM_EXT_CFG("zcf", ext_zcf, KVM_RISCV_ISA_EXT_ZCF),
304     KVM_EXT_CFG("zknd", ext_zknd, KVM_RISCV_ISA_EXT_ZKND),
305     KVM_EXT_CFG("zkne", ext_zkne, KVM_RISCV_ISA_EXT_ZKNE),
306     KVM_EXT_CFG("zknh", ext_zknh, KVM_RISCV_ISA_EXT_ZKNH),
307     KVM_EXT_CFG("zkr", ext_zkr, KVM_RISCV_ISA_EXT_ZKR),
308     KVM_EXT_CFG("zksed", ext_zksed, KVM_RISCV_ISA_EXT_ZKSED),
309     KVM_EXT_CFG("zksh", ext_zksh, KVM_RISCV_ISA_EXT_ZKSH),
310     KVM_EXT_CFG("zkt", ext_zkt, KVM_RISCV_ISA_EXT_ZKT),
311     KVM_EXT_CFG("ztso", ext_ztso, KVM_RISCV_ISA_EXT_ZTSO),
312     KVM_EXT_CFG("zvbb", ext_zvbb, KVM_RISCV_ISA_EXT_ZVBB),
313     KVM_EXT_CFG("zvbc", ext_zvbc, KVM_RISCV_ISA_EXT_ZVBC),
314     KVM_EXT_CFG("zvfh", ext_zvfh, KVM_RISCV_ISA_EXT_ZVFH),
315     KVM_EXT_CFG("zvfhmin", ext_zvfhmin, KVM_RISCV_ISA_EXT_ZVFHMIN),
316     KVM_EXT_CFG("zvkb", ext_zvkb, KVM_RISCV_ISA_EXT_ZVKB),
317     KVM_EXT_CFG("zvkg", ext_zvkg, KVM_RISCV_ISA_EXT_ZVKG),
318     KVM_EXT_CFG("zvkned", ext_zvkned, KVM_RISCV_ISA_EXT_ZVKNED),
319     KVM_EXT_CFG("zvknha", ext_zvknha, KVM_RISCV_ISA_EXT_ZVKNHA),
320     KVM_EXT_CFG("zvknhb", ext_zvknhb, KVM_RISCV_ISA_EXT_ZVKNHB),
321     KVM_EXT_CFG("zvksed", ext_zvksed, KVM_RISCV_ISA_EXT_ZVKSED),
322     KVM_EXT_CFG("zvksh", ext_zvksh, KVM_RISCV_ISA_EXT_ZVKSH),
323     KVM_EXT_CFG("zvkt", ext_zvkt, KVM_RISCV_ISA_EXT_ZVKT),
324     KVM_EXT_CFG("smnpm", ext_smnpm, KVM_RISCV_ISA_EXT_SMNPM),
325     KVM_EXT_CFG("smstateen", ext_smstateen, KVM_RISCV_ISA_EXT_SMSTATEEN),
326     KVM_EXT_CFG("ssaia", ext_ssaia, KVM_RISCV_ISA_EXT_SSAIA),
327     KVM_EXT_CFG("sscofpmf", ext_sscofpmf, KVM_RISCV_ISA_EXT_SSCOFPMF),
328     KVM_EXT_CFG("ssnpm", ext_ssnpm, KVM_RISCV_ISA_EXT_SSNPM),
329     KVM_EXT_CFG("sstc", ext_sstc, KVM_RISCV_ISA_EXT_SSTC),
330     KVM_EXT_CFG("svade", ext_svade, KVM_RISCV_ISA_EXT_SVADE),
331     KVM_EXT_CFG("svadu", ext_svadu, KVM_RISCV_ISA_EXT_SVADU),
332     KVM_EXT_CFG("svinval", ext_svinval, KVM_RISCV_ISA_EXT_SVINVAL),
333     KVM_EXT_CFG("svnapot", ext_svnapot, KVM_RISCV_ISA_EXT_SVNAPOT),
334     KVM_EXT_CFG("svpbmt", ext_svpbmt, KVM_RISCV_ISA_EXT_SVPBMT),
335     KVM_EXT_CFG("svvptc", ext_svvptc, KVM_RISCV_ISA_EXT_SVVPTC),
336 };
337 
338 static void *kvmconfig_get_cfg_addr(RISCVCPU *cpu, KVMCPUConfig *kvmcfg)
339 {
340     return (void *)&cpu->cfg + kvmcfg->offset;
341 }
342 
343 static void kvm_cpu_cfg_set(RISCVCPU *cpu, KVMCPUConfig *multi_ext,
344                             uint32_t val)
345 {
346     bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
347 
348     *ext_enabled = val;
349 }
350 
351 static uint32_t kvm_cpu_cfg_get(RISCVCPU *cpu,
352                                 KVMCPUConfig *multi_ext)
353 {
354     bool *ext_enabled = kvmconfig_get_cfg_addr(cpu, multi_ext);
355 
356     return *ext_enabled;
357 }
358 
359 static void kvm_cpu_get_multi_ext_cfg(Object *obj, Visitor *v,
360                                       const char *name,
361                                       void *opaque, Error **errp)
362 {
363     KVMCPUConfig *multi_ext_cfg = opaque;
364     RISCVCPU *cpu = RISCV_CPU(obj);
365     bool value = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
366 
367     visit_type_bool(v, name, &value, errp);
368 }
369 
370 static void kvm_cpu_set_multi_ext_cfg(Object *obj, Visitor *v,
371                                       const char *name,
372                                       void *opaque, Error **errp)
373 {
374     KVMCPUConfig *multi_ext_cfg = opaque;
375     RISCVCPU *cpu = RISCV_CPU(obj);
376     bool value, host_val;
377 
378     if (!visit_type_bool(v, name, &value, errp)) {
379         return;
380     }
381 
382     host_val = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
383 
384     /*
385      * Ignore if the user is setting the same value
386      * as the host.
387      */
388     if (value == host_val) {
389         return;
390     }
391 
392     if (!multi_ext_cfg->supported) {
393         /*
394          * Error out if the user is trying to enable an
395          * extension that KVM doesn't support. Ignore
396          * option otherwise.
397          */
398         if (value) {
399             error_setg(errp, "KVM does not support disabling extension %s",
400                        multi_ext_cfg->name);
401         }
402 
403         return;
404     }
405 
406     multi_ext_cfg->user_set = true;
407     kvm_cpu_cfg_set(cpu, multi_ext_cfg, value);
408 }
409 
410 static KVMCPUConfig kvm_cbom_blocksize = {
411     .name = "cbom_blocksize",
412     .offset = CPU_CFG_OFFSET(cbom_blocksize),
413     .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicbom_block_size)
414 };
415 
416 static KVMCPUConfig kvm_cboz_blocksize = {
417     .name = "cboz_blocksize",
418     .offset = CPU_CFG_OFFSET(cboz_blocksize),
419     .kvm_reg_id = KVM_REG_RISCV_CONFIG_REG(zicboz_block_size)
420 };
421 
422 static KVMCPUConfig kvm_v_vlenb = {
423     .name = "vlenb",
424     .offset = CPU_CFG_OFFSET(vlenb),
425     .kvm_reg_id =  KVM_REG_RISCV | KVM_REG_SIZE_U64 | KVM_REG_RISCV_VECTOR |
426                    KVM_REG_RISCV_VECTOR_CSR_REG(vlenb)
427 };
428 
429 static KVMCPUConfig kvm_sbi_dbcn = {
430     .name = "sbi_dbcn",
431     .kvm_reg_id = KVM_REG_RISCV | KVM_REG_SIZE_U64 |
432                   KVM_REG_RISCV_SBI_EXT | KVM_RISCV_SBI_EXT_DBCN
433 };
434 
435 static void kvm_riscv_update_cpu_cfg_isa_ext(RISCVCPU *cpu, CPUState *cs)
436 {
437     CPURISCVState *env = &cpu->env;
438     uint64_t id, reg;
439     int i, ret;
440 
441     for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
442         KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
443 
444         if (!multi_ext_cfg->user_set) {
445             continue;
446         }
447 
448         id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
449                                     multi_ext_cfg->kvm_reg_id);
450         reg = kvm_cpu_cfg_get(cpu, multi_ext_cfg);
451         ret = kvm_set_one_reg(cs, id, &reg);
452         if (ret != 0) {
453             if (!reg && ret == -EINVAL) {
454                 warn_report("KVM cannot disable extension %s",
455                             multi_ext_cfg->name);
456             } else {
457                 error_report("Unable to enable extension %s in KVM, error %d",
458                              multi_ext_cfg->name, ret);
459                 exit(EXIT_FAILURE);
460             }
461         }
462     }
463 }
464 
465 static void cpu_get_cfg_unavailable(Object *obj, Visitor *v,
466                                     const char *name,
467                                     void *opaque, Error **errp)
468 {
469     bool value = false;
470 
471     visit_type_bool(v, name, &value, errp);
472 }
473 
474 static void cpu_set_cfg_unavailable(Object *obj, Visitor *v,
475                                     const char *name,
476                                     void *opaque, Error **errp)
477 {
478     const char *propname = opaque;
479     bool value;
480 
481     if (!visit_type_bool(v, name, &value, errp)) {
482         return;
483     }
484 
485     if (value) {
486         error_setg(errp, "'%s' is not available with KVM",
487                    propname);
488     }
489 }
490 
491 static void riscv_cpu_add_kvm_unavail_prop(Object *obj, const char *prop_name)
492 {
493     /* Check if KVM created the property already */
494     if (object_property_find(obj, prop_name)) {
495         return;
496     }
497 
498     /*
499      * Set the default to disabled for every extension
500      * unknown to KVM and error out if the user attempts
501      * to enable any of them.
502      */
503     object_property_add(obj, prop_name, "bool",
504                         cpu_get_cfg_unavailable,
505                         cpu_set_cfg_unavailable,
506                         NULL, (void *)prop_name);
507 }
508 
509 static void riscv_cpu_add_kvm_unavail_prop_array(Object *obj,
510                                         const RISCVCPUMultiExtConfig *array)
511 {
512     const RISCVCPUMultiExtConfig *prop;
513 
514     g_assert(array);
515 
516     for (prop = array; prop && prop->name; prop++) {
517         riscv_cpu_add_kvm_unavail_prop(obj, prop->name);
518     }
519 }
520 
521 static void kvm_riscv_add_cpu_user_properties(Object *cpu_obj)
522 {
523     int i;
524 
525     riscv_add_satp_mode_properties(cpu_obj);
526 
527     for (i = 0; i < ARRAY_SIZE(kvm_misa_ext_cfgs); i++) {
528         KVMCPUConfig *misa_cfg = &kvm_misa_ext_cfgs[i];
529         int bit = misa_cfg->offset;
530 
531         misa_cfg->name = riscv_get_misa_ext_name(bit);
532         misa_cfg->description = riscv_get_misa_ext_description(bit);
533 
534         object_property_add(cpu_obj, misa_cfg->name, "bool",
535                             kvm_cpu_get_misa_ext_cfg,
536                             kvm_cpu_set_misa_ext_cfg,
537                             NULL, misa_cfg);
538         object_property_set_description(cpu_obj, misa_cfg->name,
539                                         misa_cfg->description);
540     }
541 
542     for (i = 0; misa_bits[i] != 0; i++) {
543         const char *ext_name = riscv_get_misa_ext_name(misa_bits[i]);
544         riscv_cpu_add_kvm_unavail_prop(cpu_obj, ext_name);
545     }
546 
547     for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
548         KVMCPUConfig *multi_cfg = &kvm_multi_ext_cfgs[i];
549 
550         object_property_add(cpu_obj, multi_cfg->name, "bool",
551                             kvm_cpu_get_multi_ext_cfg,
552                             kvm_cpu_set_multi_ext_cfg,
553                             NULL, multi_cfg);
554     }
555 
556     riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_extensions);
557     riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_vendor_exts);
558     riscv_cpu_add_kvm_unavail_prop_array(cpu_obj, riscv_cpu_experimental_exts);
559 
560    /* We don't have the needed KVM support for profiles */
561     for (i = 0; riscv_profiles[i] != NULL; i++) {
562         riscv_cpu_add_kvm_unavail_prop(cpu_obj, riscv_profiles[i]->name);
563     }
564 }
565 
566 static int kvm_riscv_get_regs_core(CPUState *cs)
567 {
568     int ret = 0;
569     int i;
570     target_ulong reg;
571     CPURISCVState *env = &RISCV_CPU(cs)->env;
572 
573     ret = kvm_get_one_reg(cs, RISCV_CORE_REG(env, regs.pc), &reg);
574     if (ret) {
575         return ret;
576     }
577     env->pc = reg;
578 
579     for (i = 1; i < 32; i++) {
580         uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
581         ret = kvm_get_one_reg(cs, id, &reg);
582         if (ret) {
583             return ret;
584         }
585         env->gpr[i] = reg;
586     }
587 
588     return ret;
589 }
590 
591 static int kvm_riscv_put_regs_core(CPUState *cs)
592 {
593     int ret = 0;
594     int i;
595     target_ulong reg;
596     CPURISCVState *env = &RISCV_CPU(cs)->env;
597 
598     reg = env->pc;
599     ret = kvm_set_one_reg(cs, RISCV_CORE_REG(env, regs.pc), &reg);
600     if (ret) {
601         return ret;
602     }
603 
604     for (i = 1; i < 32; i++) {
605         uint64_t id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CORE, i);
606         reg = env->gpr[i];
607         ret = kvm_set_one_reg(cs, id, &reg);
608         if (ret) {
609             return ret;
610         }
611     }
612 
613     return ret;
614 }
615 
616 static void kvm_riscv_reset_regs_csr(CPURISCVState *env)
617 {
618     env->mstatus = 0;
619     env->mie = 0;
620     env->stvec = 0;
621     env->sscratch = 0;
622     env->sepc = 0;
623     env->scause = 0;
624     env->stval = 0;
625     env->mip = 0;
626     env->satp = 0;
627     env->scounteren = 0;
628     env->senvcfg = 0;
629 }
630 
631 static int kvm_riscv_get_regs_csr(CPUState *cs)
632 {
633     CPURISCVState *env = &RISCV_CPU(cs)->env;
634 
635     KVM_RISCV_GET_CSR(cs, env, sstatus, env->mstatus);
636     KVM_RISCV_GET_CSR(cs, env, sie, env->mie);
637     KVM_RISCV_GET_CSR(cs, env, stvec, env->stvec);
638     KVM_RISCV_GET_CSR(cs, env, sscratch, env->sscratch);
639     KVM_RISCV_GET_CSR(cs, env, sepc, env->sepc);
640     KVM_RISCV_GET_CSR(cs, env, scause, env->scause);
641     KVM_RISCV_GET_CSR(cs, env, stval, env->stval);
642     KVM_RISCV_GET_CSR(cs, env, sip, env->mip);
643     KVM_RISCV_GET_CSR(cs, env, satp, env->satp);
644     KVM_RISCV_GET_CSR(cs, env, scounteren, env->scounteren);
645     KVM_RISCV_GET_CSR(cs, env, senvcfg, env->senvcfg);
646 
647     return 0;
648 }
649 
650 static int kvm_riscv_put_regs_csr(CPUState *cs)
651 {
652     CPURISCVState *env = &RISCV_CPU(cs)->env;
653 
654     KVM_RISCV_SET_CSR(cs, env, sstatus, env->mstatus);
655     KVM_RISCV_SET_CSR(cs, env, sie, env->mie);
656     KVM_RISCV_SET_CSR(cs, env, stvec, env->stvec);
657     KVM_RISCV_SET_CSR(cs, env, sscratch, env->sscratch);
658     KVM_RISCV_SET_CSR(cs, env, sepc, env->sepc);
659     KVM_RISCV_SET_CSR(cs, env, scause, env->scause);
660     KVM_RISCV_SET_CSR(cs, env, stval, env->stval);
661     KVM_RISCV_SET_CSR(cs, env, sip, env->mip);
662     KVM_RISCV_SET_CSR(cs, env, satp, env->satp);
663     KVM_RISCV_SET_CSR(cs, env, scounteren, env->scounteren);
664     KVM_RISCV_SET_CSR(cs, env, senvcfg, env->senvcfg);
665 
666     return 0;
667 }
668 
669 static int kvm_riscv_get_regs_fp(CPUState *cs)
670 {
671     int ret = 0;
672     int i;
673     CPURISCVState *env = &RISCV_CPU(cs)->env;
674 
675     if (riscv_has_ext(env, RVD)) {
676         uint64_t reg;
677         for (i = 0; i < 32; i++) {
678             ret = kvm_get_one_reg(cs, RISCV_FP_D_REG(i), &reg);
679             if (ret) {
680                 return ret;
681             }
682             env->fpr[i] = reg;
683         }
684         return ret;
685     }
686 
687     if (riscv_has_ext(env, RVF)) {
688         uint32_t reg;
689         for (i = 0; i < 32; i++) {
690             ret = kvm_get_one_reg(cs, RISCV_FP_F_REG(i), &reg);
691             if (ret) {
692                 return ret;
693             }
694             env->fpr[i] = reg;
695         }
696         return ret;
697     }
698 
699     return ret;
700 }
701 
702 static int kvm_riscv_put_regs_fp(CPUState *cs)
703 {
704     int ret = 0;
705     int i;
706     CPURISCVState *env = &RISCV_CPU(cs)->env;
707 
708     if (riscv_has_ext(env, RVD)) {
709         uint64_t reg;
710         for (i = 0; i < 32; i++) {
711             reg = env->fpr[i];
712             ret = kvm_set_one_reg(cs, RISCV_FP_D_REG(i), &reg);
713             if (ret) {
714                 return ret;
715             }
716         }
717         return ret;
718     }
719 
720     if (riscv_has_ext(env, RVF)) {
721         uint32_t reg;
722         for (i = 0; i < 32; i++) {
723             reg = env->fpr[i];
724             ret = kvm_set_one_reg(cs, RISCV_FP_F_REG(i), &reg);
725             if (ret) {
726                 return ret;
727             }
728         }
729         return ret;
730     }
731 
732     return ret;
733 }
734 
735 static void kvm_riscv_get_regs_timer(CPUState *cs)
736 {
737     CPURISCVState *env = &RISCV_CPU(cs)->env;
738 
739     if (env->kvm_timer_dirty) {
740         return;
741     }
742 
743     KVM_RISCV_GET_TIMER(cs, time, env->kvm_timer_time);
744     KVM_RISCV_GET_TIMER(cs, compare, env->kvm_timer_compare);
745     KVM_RISCV_GET_TIMER(cs, state, env->kvm_timer_state);
746     KVM_RISCV_GET_TIMER(cs, frequency, env->kvm_timer_frequency);
747 
748     env->kvm_timer_dirty = true;
749 }
750 
751 static void kvm_riscv_put_regs_timer(CPUState *cs)
752 {
753     uint64_t reg;
754     CPURISCVState *env = &RISCV_CPU(cs)->env;
755 
756     if (!env->kvm_timer_dirty) {
757         return;
758     }
759 
760     KVM_RISCV_SET_TIMER(cs, time, env->kvm_timer_time);
761     KVM_RISCV_SET_TIMER(cs, compare, env->kvm_timer_compare);
762 
763     /*
764      * To set register of RISCV_TIMER_REG(state) will occur a error from KVM
765      * on env->kvm_timer_state == 0, It's better to adapt in KVM, but it
766      * doesn't matter that adaping in QEMU now.
767      * TODO If KVM changes, adapt here.
768      */
769     if (env->kvm_timer_state) {
770         KVM_RISCV_SET_TIMER(cs, state, env->kvm_timer_state);
771     }
772 
773     /*
774      * For now, migration will not work between Hosts with different timer
775      * frequency. Therefore, we should check whether they are the same here
776      * during the migration.
777      */
778     if (migration_is_running()) {
779         KVM_RISCV_GET_TIMER(cs, frequency, reg);
780         if (reg != env->kvm_timer_frequency) {
781             error_report("Dst Hosts timer frequency != Src Hosts");
782         }
783     }
784 
785     env->kvm_timer_dirty = false;
786 }
787 
788 uint64_t kvm_riscv_get_timebase_frequency(RISCVCPU *cpu)
789 {
790     uint64_t reg;
791 
792     KVM_RISCV_GET_TIMER(CPU(cpu), frequency, reg);
793 
794     return reg;
795 }
796 
797 static int kvm_riscv_get_regs_vector(CPUState *cs)
798 {
799     RISCVCPU *cpu = RISCV_CPU(cs);
800     CPURISCVState *env = &cpu->env;
801     target_ulong reg;
802     uint64_t vreg_id;
803     int vreg_idx, ret = 0;
804 
805     if (!riscv_has_ext(env, RVV)) {
806         return 0;
807     }
808 
809     ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), &reg);
810     if (ret) {
811         return ret;
812     }
813     env->vstart = reg;
814 
815     ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), &reg);
816     if (ret) {
817         return ret;
818     }
819     env->vl = reg;
820 
821     ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), &reg);
822     if (ret) {
823         return ret;
824     }
825     env->vtype = reg;
826 
827     if (kvm_v_vlenb.supported) {
828         ret = kvm_get_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), &reg);
829         if (ret) {
830             return ret;
831         }
832         cpu->cfg.vlenb = reg;
833 
834         for (int i = 0; i < 32; i++) {
835             /*
836              * vreg[] is statically allocated using RV_VLEN_MAX.
837              * Use it instead of vlenb to calculate vreg_idx for
838              * simplicity.
839              */
840             vreg_idx = i * RV_VLEN_MAX / 64;
841             vreg_id = kvm_riscv_vector_reg_id(cpu, i);
842 
843             ret = kvm_get_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
844             if (ret) {
845                 return ret;
846             }
847         }
848     }
849 
850     return 0;
851 }
852 
853 static int kvm_riscv_put_regs_vector(CPUState *cs)
854 {
855     RISCVCPU *cpu = RISCV_CPU(cs);
856     CPURISCVState *env = &cpu->env;
857     target_ulong reg;
858     uint64_t vreg_id;
859     int vreg_idx, ret = 0;
860 
861     if (!riscv_has_ext(env, RVV)) {
862         return 0;
863     }
864 
865     reg = env->vstart;
866     ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vstart), &reg);
867     if (ret) {
868         return ret;
869     }
870 
871     reg = env->vl;
872     ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vl), &reg);
873     if (ret) {
874         return ret;
875     }
876 
877     reg = env->vtype;
878     ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vtype), &reg);
879     if (ret) {
880         return ret;
881     }
882 
883     if (kvm_v_vlenb.supported) {
884         reg = cpu->cfg.vlenb;
885         ret = kvm_set_one_reg(cs, RISCV_VECTOR_CSR_REG(env, vlenb), &reg);
886 
887         for (int i = 0; i < 32; i++) {
888             /*
889              * vreg[] is statically allocated using RV_VLEN_MAX.
890              * Use it instead of vlenb to calculate vreg_idx for
891              * simplicity.
892              */
893             vreg_idx = i * RV_VLEN_MAX / 64;
894             vreg_id = kvm_riscv_vector_reg_id(cpu, i);
895 
896             ret = kvm_set_one_reg(cs, vreg_id, &env->vreg[vreg_idx]);
897             if (ret) {
898                 return ret;
899             }
900         }
901     }
902 
903     return ret;
904 }
905 
906 typedef struct KVMScratchCPU {
907     int kvmfd;
908     int vmfd;
909     int cpufd;
910 } KVMScratchCPU;
911 
912 /*
913  * Heavily inspired by kvm_arm_create_scratch_host_vcpu()
914  * from target/arm/kvm.c.
915  */
916 static bool kvm_riscv_create_scratch_vcpu(KVMScratchCPU *scratch)
917 {
918     int kvmfd = -1, vmfd = -1, cpufd = -1;
919 
920     kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
921     if (kvmfd < 0) {
922         goto err;
923     }
924     do {
925         vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
926     } while (vmfd == -1 && errno == EINTR);
927     if (vmfd < 0) {
928         goto err;
929     }
930     cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
931     if (cpufd < 0) {
932         goto err;
933     }
934 
935     scratch->kvmfd =  kvmfd;
936     scratch->vmfd = vmfd;
937     scratch->cpufd = cpufd;
938 
939     return true;
940 
941  err:
942     if (cpufd >= 0) {
943         close(cpufd);
944     }
945     if (vmfd >= 0) {
946         close(vmfd);
947     }
948     if (kvmfd >= 0) {
949         close(kvmfd);
950     }
951 
952     return false;
953 }
954 
955 static void kvm_riscv_destroy_scratch_vcpu(KVMScratchCPU *scratch)
956 {
957     close(scratch->cpufd);
958     close(scratch->vmfd);
959     close(scratch->kvmfd);
960 }
961 
962 static void kvm_riscv_init_machine_ids(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
963 {
964     CPURISCVState *env = &cpu->env;
965     struct kvm_one_reg reg;
966     int ret;
967 
968     reg.id = RISCV_CONFIG_REG(env, mvendorid);
969     reg.addr = (uint64_t)&cpu->cfg.mvendorid;
970     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
971     if (ret != 0) {
972         error_report("Unable to retrieve mvendorid from host, error %d", ret);
973     }
974 
975     reg.id = RISCV_CONFIG_REG(env, marchid);
976     reg.addr = (uint64_t)&cpu->cfg.marchid;
977     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
978     if (ret != 0) {
979         error_report("Unable to retrieve marchid from host, error %d", ret);
980     }
981 
982     reg.id = RISCV_CONFIG_REG(env, mimpid);
983     reg.addr = (uint64_t)&cpu->cfg.mimpid;
984     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
985     if (ret != 0) {
986         error_report("Unable to retrieve mimpid from host, error %d", ret);
987     }
988 }
989 
990 static void kvm_riscv_init_misa_ext_mask(RISCVCPU *cpu,
991                                          KVMScratchCPU *kvmcpu)
992 {
993     CPURISCVState *env = &cpu->env;
994     struct kvm_one_reg reg;
995     int ret;
996 
997     reg.id = RISCV_CONFIG_REG(env, isa);
998     reg.addr = (uint64_t)&env->misa_ext_mask;
999     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
1000 
1001     if (ret) {
1002         error_report("Unable to fetch ISA register from KVM, "
1003                      "error %d", ret);
1004         kvm_riscv_destroy_scratch_vcpu(kvmcpu);
1005         exit(EXIT_FAILURE);
1006     }
1007 
1008     env->misa_ext = env->misa_ext_mask;
1009 }
1010 
1011 static void kvm_riscv_read_cbomz_blksize(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
1012                                          KVMCPUConfig *cbomz_cfg)
1013 {
1014     CPURISCVState *env = &cpu->env;
1015     struct kvm_one_reg reg;
1016     int ret;
1017 
1018     reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1019                                     cbomz_cfg->kvm_reg_id);
1020     reg.addr = (uint64_t)kvmconfig_get_cfg_addr(cpu, cbomz_cfg);
1021     ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
1022     if (ret != 0) {
1023         error_report("Unable to read KVM reg %s, error %d",
1024                      cbomz_cfg->name, ret);
1025         exit(EXIT_FAILURE);
1026     }
1027 }
1028 
1029 static void kvm_riscv_read_multiext_legacy(RISCVCPU *cpu,
1030                                            KVMScratchCPU *kvmcpu)
1031 {
1032     CPURISCVState *env = &cpu->env;
1033     uint64_t val;
1034     int i, ret;
1035 
1036     for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
1037         KVMCPUConfig *multi_ext_cfg = &kvm_multi_ext_cfgs[i];
1038         struct kvm_one_reg reg;
1039 
1040         reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_ISA_EXT,
1041                                         multi_ext_cfg->kvm_reg_id);
1042         reg.addr = (uint64_t)&val;
1043         ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
1044         if (ret != 0) {
1045             if (errno == EINVAL) {
1046                 /* Silently default to 'false' if KVM does not support it. */
1047                 multi_ext_cfg->supported = false;
1048                 val = false;
1049             } else {
1050                 error_report("Unable to read ISA_EXT KVM register %s: %s",
1051                              multi_ext_cfg->name, strerror(errno));
1052                 exit(EXIT_FAILURE);
1053             }
1054         } else {
1055             multi_ext_cfg->supported = true;
1056         }
1057 
1058         kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
1059     }
1060 
1061     if (cpu->cfg.ext_zicbom) {
1062         kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
1063     }
1064 
1065     if (cpu->cfg.ext_zicboz) {
1066         kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
1067     }
1068 }
1069 
1070 static int uint64_cmp(const void *a, const void *b)
1071 {
1072     uint64_t val1 = *(const uint64_t *)a;
1073     uint64_t val2 = *(const uint64_t *)b;
1074 
1075     if (val1 < val2) {
1076         return -1;
1077     }
1078 
1079     if (val1 > val2) {
1080         return 1;
1081     }
1082 
1083     return 0;
1084 }
1085 
1086 static void kvm_riscv_check_sbi_dbcn_support(RISCVCPU *cpu,
1087                                              KVMScratchCPU *kvmcpu,
1088                                              struct kvm_reg_list *reglist)
1089 {
1090     struct kvm_reg_list *reg_search;
1091 
1092     reg_search = bsearch(&kvm_sbi_dbcn.kvm_reg_id, reglist->reg, reglist->n,
1093                          sizeof(uint64_t), uint64_cmp);
1094 
1095     if (reg_search) {
1096         kvm_sbi_dbcn.supported = true;
1097     }
1098 }
1099 
1100 static void kvm_riscv_read_vlenb(RISCVCPU *cpu, KVMScratchCPU *kvmcpu,
1101                                  struct kvm_reg_list *reglist)
1102 {
1103     struct kvm_one_reg reg;
1104     struct kvm_reg_list *reg_search;
1105     uint64_t val;
1106     int ret;
1107 
1108     reg_search = bsearch(&kvm_v_vlenb.kvm_reg_id, reglist->reg, reglist->n,
1109                          sizeof(uint64_t), uint64_cmp);
1110 
1111     if (reg_search) {
1112         reg.id = kvm_v_vlenb.kvm_reg_id;
1113         reg.addr = (uint64_t)&val;
1114 
1115         ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
1116         if (ret != 0) {
1117             error_report("Unable to read vlenb register, error code: %d",
1118                          errno);
1119             exit(EXIT_FAILURE);
1120         }
1121 
1122         kvm_v_vlenb.supported = true;
1123         cpu->cfg.vlenb = val;
1124     }
1125 }
1126 
1127 static void kvm_riscv_init_multiext_cfg(RISCVCPU *cpu, KVMScratchCPU *kvmcpu)
1128 {
1129     KVMCPUConfig *multi_ext_cfg;
1130     struct kvm_one_reg reg;
1131     struct kvm_reg_list rl_struct;
1132     struct kvm_reg_list *reglist;
1133     uint64_t val, reg_id, *reg_search;
1134     int i, ret;
1135 
1136     rl_struct.n = 0;
1137     ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, &rl_struct);
1138 
1139     /*
1140      * If KVM_GET_REG_LIST isn't supported we'll get errno 22
1141      * (EINVAL). Use read_legacy() in this case.
1142      */
1143     if (errno == EINVAL) {
1144         return kvm_riscv_read_multiext_legacy(cpu, kvmcpu);
1145     } else if (errno != E2BIG) {
1146         /*
1147          * E2BIG is an expected error message for the API since we
1148          * don't know the number of registers. The right amount will
1149          * be written in rl_struct.n.
1150          *
1151          * Error out if we get any other errno.
1152          */
1153         error_report("Error when accessing get-reg-list: %s",
1154                      strerror(errno));
1155         exit(EXIT_FAILURE);
1156     }
1157 
1158     reglist = g_malloc(sizeof(struct kvm_reg_list) +
1159                        rl_struct.n * sizeof(uint64_t));
1160     reglist->n = rl_struct.n;
1161     ret = ioctl(kvmcpu->cpufd, KVM_GET_REG_LIST, reglist);
1162     if (ret) {
1163         error_report("Error when reading KVM_GET_REG_LIST: %s",
1164                      strerror(errno));
1165         exit(EXIT_FAILURE);
1166     }
1167 
1168     /* sort reglist to use bsearch() */
1169     qsort(&reglist->reg, reglist->n, sizeof(uint64_t), uint64_cmp);
1170 
1171     for (i = 0; i < ARRAY_SIZE(kvm_multi_ext_cfgs); i++) {
1172         multi_ext_cfg = &kvm_multi_ext_cfgs[i];
1173         reg_id = kvm_riscv_reg_id_ulong(&cpu->env, KVM_REG_RISCV_ISA_EXT,
1174                                         multi_ext_cfg->kvm_reg_id);
1175         reg_search = bsearch(&reg_id, reglist->reg, reglist->n,
1176                              sizeof(uint64_t), uint64_cmp);
1177         if (!reg_search) {
1178             continue;
1179         }
1180 
1181         reg.id = reg_id;
1182         reg.addr = (uint64_t)&val;
1183         ret = ioctl(kvmcpu->cpufd, KVM_GET_ONE_REG, &reg);
1184         if (ret != 0) {
1185             error_report("Unable to read ISA_EXT KVM register %s: %s",
1186                          multi_ext_cfg->name, strerror(errno));
1187             exit(EXIT_FAILURE);
1188         }
1189 
1190         multi_ext_cfg->supported = true;
1191         kvm_cpu_cfg_set(cpu, multi_ext_cfg, val);
1192     }
1193 
1194     if (cpu->cfg.ext_zicbom) {
1195         kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cbom_blocksize);
1196     }
1197 
1198     if (cpu->cfg.ext_zicboz) {
1199         kvm_riscv_read_cbomz_blksize(cpu, kvmcpu, &kvm_cboz_blocksize);
1200     }
1201 
1202     if (riscv_has_ext(&cpu->env, RVV)) {
1203         kvm_riscv_read_vlenb(cpu, kvmcpu, reglist);
1204     }
1205 
1206     kvm_riscv_check_sbi_dbcn_support(cpu, kvmcpu, reglist);
1207 }
1208 
1209 static void riscv_init_kvm_registers(Object *cpu_obj)
1210 {
1211     RISCVCPU *cpu = RISCV_CPU(cpu_obj);
1212     KVMScratchCPU kvmcpu;
1213 
1214     if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
1215         return;
1216     }
1217 
1218     kvm_riscv_init_machine_ids(cpu, &kvmcpu);
1219     kvm_riscv_init_misa_ext_mask(cpu, &kvmcpu);
1220     kvm_riscv_init_multiext_cfg(cpu, &kvmcpu);
1221 
1222     kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
1223 }
1224 
1225 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
1226     KVM_CAP_LAST_INFO
1227 };
1228 
1229 int kvm_arch_get_registers(CPUState *cs, Error **errp)
1230 {
1231     int ret = 0;
1232 
1233     ret = kvm_riscv_get_regs_core(cs);
1234     if (ret) {
1235         return ret;
1236     }
1237 
1238     ret = kvm_riscv_get_regs_csr(cs);
1239     if (ret) {
1240         return ret;
1241     }
1242 
1243     ret = kvm_riscv_get_regs_fp(cs);
1244     if (ret) {
1245         return ret;
1246     }
1247 
1248     ret = kvm_riscv_get_regs_vector(cs);
1249     if (ret) {
1250         return ret;
1251     }
1252 
1253     return ret;
1254 }
1255 
1256 int kvm_riscv_sync_mpstate_to_kvm(RISCVCPU *cpu, int state)
1257 {
1258     if (cap_has_mp_state) {
1259         struct kvm_mp_state mp_state = {
1260             .mp_state = state
1261         };
1262 
1263         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1264         if (ret) {
1265             fprintf(stderr, "%s: failed to sync MP_STATE %d/%s\n",
1266                     __func__, ret, strerror(-ret));
1267             return -1;
1268         }
1269     }
1270 
1271     return 0;
1272 }
1273 
1274 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
1275 {
1276     int ret = 0;
1277 
1278     ret = kvm_riscv_put_regs_core(cs);
1279     if (ret) {
1280         return ret;
1281     }
1282 
1283     ret = kvm_riscv_put_regs_csr(cs);
1284     if (ret) {
1285         return ret;
1286     }
1287 
1288     ret = kvm_riscv_put_regs_fp(cs);
1289     if (ret) {
1290         return ret;
1291     }
1292 
1293     ret = kvm_riscv_put_regs_vector(cs);
1294     if (ret) {
1295         return ret;
1296     }
1297 
1298     if (KVM_PUT_RESET_STATE == level) {
1299         RISCVCPU *cpu = RISCV_CPU(cs);
1300         if (cs->cpu_index == 0) {
1301             ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_RUNNABLE);
1302         } else {
1303             ret = kvm_riscv_sync_mpstate_to_kvm(cpu, KVM_MP_STATE_STOPPED);
1304         }
1305         if (ret) {
1306             return ret;
1307         }
1308     }
1309 
1310     return ret;
1311 }
1312 
1313 int kvm_arch_release_virq_post(int virq)
1314 {
1315     return 0;
1316 }
1317 
1318 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1319                              uint64_t address, uint32_t data, PCIDevice *dev)
1320 {
1321     return 0;
1322 }
1323 
1324 int kvm_arch_destroy_vcpu(CPUState *cs)
1325 {
1326     return 0;
1327 }
1328 
1329 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
1330 {
1331     return cpu->cpu_index;
1332 }
1333 
1334 static void kvm_riscv_vm_state_change(void *opaque, bool running,
1335                                       RunState state)
1336 {
1337     CPUState *cs = opaque;
1338 
1339     if (running) {
1340         kvm_riscv_put_regs_timer(cs);
1341     } else {
1342         kvm_riscv_get_regs_timer(cs);
1343     }
1344 }
1345 
1346 void kvm_arch_init_irq_routing(KVMState *s)
1347 {
1348 }
1349 
1350 static int kvm_vcpu_set_machine_ids(RISCVCPU *cpu, CPUState *cs)
1351 {
1352     CPURISCVState *env = &cpu->env;
1353     target_ulong reg;
1354     uint64_t id;
1355     int ret;
1356 
1357     id = RISCV_CONFIG_REG(env, mvendorid);
1358     /*
1359      * cfg.mvendorid is an uint32 but a target_ulong will
1360      * be written. Assign it to a target_ulong var to avoid
1361      * writing pieces of other cpu->cfg fields in the reg.
1362      */
1363     reg = cpu->cfg.mvendorid;
1364     ret = kvm_set_one_reg(cs, id, &reg);
1365     if (ret != 0) {
1366         return ret;
1367     }
1368 
1369     id = RISCV_CONFIG_REG(env, marchid);
1370     ret = kvm_set_one_reg(cs, id, &cpu->cfg.marchid);
1371     if (ret != 0) {
1372         return ret;
1373     }
1374 
1375     id = RISCV_CONFIG_REG(env, mimpid);
1376     ret = kvm_set_one_reg(cs, id, &cpu->cfg.mimpid);
1377 
1378     return ret;
1379 }
1380 
1381 static int kvm_vcpu_enable_sbi_dbcn(RISCVCPU *cpu, CPUState *cs)
1382 {
1383     target_ulong reg = 1;
1384 
1385     if (!kvm_sbi_dbcn.supported) {
1386         return 0;
1387     }
1388 
1389     return kvm_set_one_reg(cs, kvm_sbi_dbcn.kvm_reg_id, &reg);
1390 }
1391 
1392 int kvm_arch_init_vcpu(CPUState *cs)
1393 {
1394     int ret = 0;
1395     RISCVCPU *cpu = RISCV_CPU(cs);
1396 
1397     qemu_add_vm_change_state_handler(kvm_riscv_vm_state_change, cs);
1398 
1399     if (!object_dynamic_cast(OBJECT(cpu), TYPE_RISCV_CPU_HOST)) {
1400         ret = kvm_vcpu_set_machine_ids(cpu, cs);
1401         if (ret != 0) {
1402             return ret;
1403         }
1404     }
1405 
1406     kvm_riscv_update_cpu_misa_ext(cpu, cs);
1407     kvm_riscv_update_cpu_cfg_isa_ext(cpu, cs);
1408 
1409     ret = kvm_vcpu_enable_sbi_dbcn(cpu, cs);
1410 
1411     return ret;
1412 }
1413 
1414 int kvm_arch_msi_data_to_gsi(uint32_t data)
1415 {
1416     abort();
1417 }
1418 
1419 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1420                                 int vector, PCIDevice *dev)
1421 {
1422     return 0;
1423 }
1424 
1425 int kvm_arch_get_default_type(MachineState *ms)
1426 {
1427     return 0;
1428 }
1429 
1430 int kvm_arch_init(MachineState *ms, KVMState *s)
1431 {
1432     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
1433     return 0;
1434 }
1435 
1436 int kvm_arch_irqchip_create(KVMState *s)
1437 {
1438     /*
1439      * We can create the VAIA using the newer device control API.
1440      */
1441     return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1442 }
1443 
1444 int kvm_arch_process_async_events(CPUState *cs)
1445 {
1446     return 0;
1447 }
1448 
1449 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1450 {
1451 }
1452 
1453 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1454 {
1455     return MEMTXATTRS_UNSPECIFIED;
1456 }
1457 
1458 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1459 {
1460     return true;
1461 }
1462 
1463 static void kvm_riscv_handle_sbi_dbcn(CPUState *cs, struct kvm_run *run)
1464 {
1465     g_autofree uint8_t *buf = NULL;
1466     RISCVCPU *cpu = RISCV_CPU(cs);
1467     target_ulong num_bytes;
1468     uint64_t addr;
1469     unsigned char ch;
1470     int ret;
1471 
1472     switch (run->riscv_sbi.function_id) {
1473     case SBI_EXT_DBCN_CONSOLE_READ:
1474     case SBI_EXT_DBCN_CONSOLE_WRITE:
1475         num_bytes = run->riscv_sbi.args[0];
1476 
1477         if (num_bytes == 0) {
1478             run->riscv_sbi.ret[0] = SBI_SUCCESS;
1479             run->riscv_sbi.ret[1] = 0;
1480             break;
1481         }
1482 
1483         addr = run->riscv_sbi.args[1];
1484 
1485         /*
1486          * Handle the case where a 32 bit CPU is running in a
1487          * 64 bit addressing env.
1488          */
1489         if (riscv_cpu_mxl(&cpu->env) == MXL_RV32) {
1490             addr |= (uint64_t)run->riscv_sbi.args[2] << 32;
1491         }
1492 
1493         buf = g_malloc0(num_bytes);
1494 
1495         if (run->riscv_sbi.function_id == SBI_EXT_DBCN_CONSOLE_READ) {
1496             ret = qemu_chr_fe_read_all(serial_hd(0)->be, buf, num_bytes);
1497             if (ret < 0) {
1498                 error_report("SBI_EXT_DBCN_CONSOLE_READ: error when "
1499                              "reading chardev");
1500                 exit(1);
1501             }
1502 
1503             cpu_physical_memory_write(addr, buf, ret);
1504         } else {
1505             cpu_physical_memory_read(addr, buf, num_bytes);
1506 
1507             ret = qemu_chr_fe_write_all(serial_hd(0)->be, buf, num_bytes);
1508             if (ret < 0) {
1509                 error_report("SBI_EXT_DBCN_CONSOLE_WRITE: error when "
1510                              "writing chardev");
1511                 exit(1);
1512             }
1513         }
1514 
1515         run->riscv_sbi.ret[0] = SBI_SUCCESS;
1516         run->riscv_sbi.ret[1] = ret;
1517         break;
1518     case SBI_EXT_DBCN_CONSOLE_WRITE_BYTE:
1519         ch = run->riscv_sbi.args[0];
1520         ret = qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
1521 
1522         if (ret < 0) {
1523             error_report("SBI_EXT_DBCN_CONSOLE_WRITE_BYTE: error when "
1524                          "writing chardev");
1525             exit(1);
1526         }
1527 
1528         run->riscv_sbi.ret[0] = SBI_SUCCESS;
1529         run->riscv_sbi.ret[1] = 0;
1530         break;
1531     default:
1532         run->riscv_sbi.ret[0] = SBI_ERR_NOT_SUPPORTED;
1533     }
1534 }
1535 
1536 static int kvm_riscv_handle_sbi(CPUState *cs, struct kvm_run *run)
1537 {
1538     int ret = 0;
1539     unsigned char ch;
1540     switch (run->riscv_sbi.extension_id) {
1541     case SBI_EXT_0_1_CONSOLE_PUTCHAR:
1542         ch = run->riscv_sbi.args[0];
1543         qemu_chr_fe_write(serial_hd(0)->be, &ch, sizeof(ch));
1544         break;
1545     case SBI_EXT_0_1_CONSOLE_GETCHAR:
1546         ret = qemu_chr_fe_read_all(serial_hd(0)->be, &ch, sizeof(ch));
1547         if (ret == sizeof(ch)) {
1548             run->riscv_sbi.ret[0] = ch;
1549         } else {
1550             run->riscv_sbi.ret[0] = -1;
1551         }
1552         ret = 0;
1553         break;
1554     case SBI_EXT_DBCN:
1555         kvm_riscv_handle_sbi_dbcn(cs, run);
1556         break;
1557     default:
1558         qemu_log_mask(LOG_UNIMP,
1559                       "%s: un-handled SBI EXIT, specific reasons is %lu\n",
1560                       __func__, run->riscv_sbi.extension_id);
1561         ret = -1;
1562         break;
1563     }
1564     return ret;
1565 }
1566 
1567 static int kvm_riscv_handle_csr(CPUState *cs, struct kvm_run *run)
1568 {
1569     target_ulong csr_num = run->riscv_csr.csr_num;
1570     target_ulong new_value = run->riscv_csr.new_value;
1571     target_ulong write_mask = run->riscv_csr.write_mask;
1572     int ret = 0;
1573 
1574     switch (csr_num) {
1575     case CSR_SEED:
1576         run->riscv_csr.ret_value = riscv_new_csr_seed(new_value, write_mask);
1577         break;
1578     default:
1579         qemu_log_mask(LOG_UNIMP,
1580                       "%s: un-handled CSR EXIT for CSR %lx\n",
1581                       __func__, csr_num);
1582         ret = -1;
1583         break;
1584     }
1585 
1586     return ret;
1587 }
1588 
1589 static bool kvm_riscv_handle_debug(CPUState *cs)
1590 {
1591     RISCVCPU *cpu = RISCV_CPU(cs);
1592     CPURISCVState *env = &cpu->env;
1593 
1594     /* Ensure PC is synchronised */
1595     kvm_cpu_synchronize_state(cs);
1596 
1597     if (kvm_find_sw_breakpoint(cs, env->pc)) {
1598         return true;
1599     }
1600 
1601     return false;
1602 }
1603 
1604 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1605 {
1606     int ret = 0;
1607     switch (run->exit_reason) {
1608     case KVM_EXIT_RISCV_SBI:
1609         ret = kvm_riscv_handle_sbi(cs, run);
1610         break;
1611     case KVM_EXIT_RISCV_CSR:
1612         ret = kvm_riscv_handle_csr(cs, run);
1613         break;
1614     case KVM_EXIT_DEBUG:
1615         if (kvm_riscv_handle_debug(cs)) {
1616             ret = EXCP_DEBUG;
1617         }
1618         break;
1619     default:
1620         qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1621                       __func__, run->exit_reason);
1622         ret = -1;
1623         break;
1624     }
1625     return ret;
1626 }
1627 
1628 void kvm_riscv_reset_vcpu(RISCVCPU *cpu)
1629 {
1630     CPURISCVState *env = &cpu->env;
1631     int i;
1632 
1633     for (i = 0; i < 32; i++) {
1634         env->gpr[i] = 0;
1635     }
1636     env->pc = cpu->env.kernel_addr;
1637     env->gpr[10] = kvm_arch_vcpu_id(CPU(cpu)); /* a0 */
1638     env->gpr[11] = cpu->env.fdt_addr;          /* a1 */
1639 
1640     kvm_riscv_reset_regs_csr(env);
1641 }
1642 
1643 void kvm_riscv_set_irq(RISCVCPU *cpu, int irq, int level)
1644 {
1645     int ret;
1646     unsigned virq = level ? KVM_INTERRUPT_SET : KVM_INTERRUPT_UNSET;
1647 
1648     if (irq != IRQ_S_EXT) {
1649         perror("kvm riscv set irq != IRQ_S_EXT\n");
1650         abort();
1651     }
1652 
1653     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_INTERRUPT, &virq);
1654     if (ret < 0) {
1655         perror("Set irq failed");
1656         abort();
1657     }
1658 }
1659 
1660 static int aia_mode;
1661 
1662 static const char *kvm_aia_mode_str(uint64_t mode)
1663 {
1664     switch (mode) {
1665     case KVM_DEV_RISCV_AIA_MODE_EMUL:
1666         return "emul";
1667     case KVM_DEV_RISCV_AIA_MODE_HWACCEL:
1668         return "hwaccel";
1669     case KVM_DEV_RISCV_AIA_MODE_AUTO:
1670     default:
1671         return "auto";
1672     };
1673 }
1674 
1675 static char *riscv_get_kvm_aia(Object *obj, Error **errp)
1676 {
1677     return g_strdup(kvm_aia_mode_str(aia_mode));
1678 }
1679 
1680 static void riscv_set_kvm_aia(Object *obj, const char *val, Error **errp)
1681 {
1682     if (!strcmp(val, "emul")) {
1683         aia_mode = KVM_DEV_RISCV_AIA_MODE_EMUL;
1684     } else if (!strcmp(val, "hwaccel")) {
1685         aia_mode = KVM_DEV_RISCV_AIA_MODE_HWACCEL;
1686     } else if (!strcmp(val, "auto")) {
1687         aia_mode = KVM_DEV_RISCV_AIA_MODE_AUTO;
1688     } else {
1689         error_setg(errp, "Invalid KVM AIA mode");
1690         error_append_hint(errp, "Valid values are emul, hwaccel, and auto.\n");
1691     }
1692 }
1693 
1694 void kvm_arch_accel_class_init(ObjectClass *oc)
1695 {
1696     object_class_property_add_str(oc, "riscv-aia", riscv_get_kvm_aia,
1697                                   riscv_set_kvm_aia);
1698     object_class_property_set_description(oc, "riscv-aia",
1699         "Set KVM AIA mode. Valid values are 'emul', 'hwaccel' and 'auto'. "
1700         "Changing KVM AIA modes relies on host support. Defaults to 'auto' "
1701         "if the host supports it");
1702     object_property_set_default_str(object_class_property_find(oc, "riscv-aia"),
1703                                     "auto");
1704 }
1705 
1706 void kvm_riscv_aia_create(MachineState *machine, uint64_t group_shift,
1707                           uint64_t aia_irq_num, uint64_t aia_msi_num,
1708                           uint64_t aplic_base, uint64_t imsic_base,
1709                           uint64_t guest_num)
1710 {
1711     int ret, i;
1712     int aia_fd = -1;
1713     uint64_t default_aia_mode;
1714     uint64_t socket_count = riscv_socket_count(machine);
1715     uint64_t max_hart_per_socket = 0;
1716     uint64_t socket, base_hart, hart_count, socket_imsic_base, imsic_addr;
1717     uint64_t socket_bits, hart_bits, guest_bits;
1718     uint64_t max_group_id;
1719 
1720     aia_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_RISCV_AIA, false);
1721 
1722     if (aia_fd < 0) {
1723         error_report("Unable to create in-kernel irqchip");
1724         exit(1);
1725     }
1726 
1727     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1728                             KVM_DEV_RISCV_AIA_CONFIG_MODE,
1729                             &default_aia_mode, false, NULL);
1730     if (ret < 0) {
1731         error_report("KVM AIA: failed to get current KVM AIA mode");
1732         exit(1);
1733     }
1734 
1735     if (default_aia_mode != aia_mode) {
1736         ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1737                                 KVM_DEV_RISCV_AIA_CONFIG_MODE,
1738                                 &aia_mode, true, NULL);
1739         if (ret < 0) {
1740             warn_report("KVM AIA: failed to set KVM AIA mode '%s', using "
1741                         "default host mode '%s'",
1742                         kvm_aia_mode_str(aia_mode),
1743                         kvm_aia_mode_str(default_aia_mode));
1744 
1745             /* failed to change AIA mode, use default */
1746             aia_mode = default_aia_mode;
1747         }
1748     }
1749 
1750     /*
1751      * Skip APLIC creation in KVM if we're running split mode.
1752      * This is done by leaving KVM_DEV_RISCV_AIA_CONFIG_SRCS
1753      * unset. We can also skip KVM_DEV_RISCV_AIA_ADDR_APLIC
1754      * since KVM won't be using it.
1755      */
1756     if (!kvm_kernel_irqchip_split()) {
1757         ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1758                                 KVM_DEV_RISCV_AIA_CONFIG_SRCS,
1759                                 &aia_irq_num, true, NULL);
1760         if (ret < 0) {
1761             error_report("KVM AIA: failed to set number of input irq lines");
1762             exit(1);
1763         }
1764 
1765         ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
1766                                 KVM_DEV_RISCV_AIA_ADDR_APLIC,
1767                                 &aplic_base, true, NULL);
1768         if (ret < 0) {
1769             error_report("KVM AIA: failed to set the base address of APLIC");
1770             exit(1);
1771         }
1772      }
1773 
1774     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1775                             KVM_DEV_RISCV_AIA_CONFIG_IDS,
1776                             &aia_msi_num, true, NULL);
1777     if (ret < 0) {
1778         error_report("KVM AIA: failed to set number of msi");
1779         exit(1);
1780     }
1781 
1782 
1783     if (socket_count > 1) {
1784         max_group_id = socket_count - 1;
1785         socket_bits = find_last_bit(&max_group_id, BITS_PER_LONG) + 1;
1786         ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1787                                 KVM_DEV_RISCV_AIA_CONFIG_GROUP_BITS,
1788                                 &socket_bits, true, NULL);
1789         if (ret < 0) {
1790             error_report("KVM AIA: failed to set group_bits");
1791             exit(1);
1792         }
1793 
1794         ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1795                                 KVM_DEV_RISCV_AIA_CONFIG_GROUP_SHIFT,
1796                                 &group_shift, true, NULL);
1797         if (ret < 0) {
1798             error_report("KVM AIA: failed to set group_shift");
1799             exit(1);
1800         }
1801     }
1802 
1803     guest_bits = guest_num == 0 ? 0 :
1804                  find_last_bit(&guest_num, BITS_PER_LONG) + 1;
1805     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1806                             KVM_DEV_RISCV_AIA_CONFIG_GUEST_BITS,
1807                             &guest_bits, true, NULL);
1808     if (ret < 0) {
1809         error_report("KVM AIA: failed to set guest_bits");
1810         exit(1);
1811     }
1812 
1813     for (socket = 0; socket < socket_count; socket++) {
1814         socket_imsic_base = imsic_base + socket * (1U << group_shift);
1815         hart_count = riscv_socket_hart_count(machine, socket);
1816         base_hart = riscv_socket_first_hartid(machine, socket);
1817 
1818         if (max_hart_per_socket < hart_count) {
1819             max_hart_per_socket = hart_count;
1820         }
1821 
1822         for (i = 0; i < hart_count; i++) {
1823             imsic_addr = socket_imsic_base + i * IMSIC_HART_SIZE(guest_bits);
1824             ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_ADDR,
1825                                     KVM_DEV_RISCV_AIA_ADDR_IMSIC(i + base_hart),
1826                                     &imsic_addr, true, NULL);
1827             if (ret < 0) {
1828                 error_report("KVM AIA: failed to set the IMSIC address for hart %d", i);
1829                 exit(1);
1830             }
1831         }
1832     }
1833 
1834 
1835     if (max_hart_per_socket > 1) {
1836         max_hart_per_socket--;
1837         hart_bits = find_last_bit(&max_hart_per_socket, BITS_PER_LONG) + 1;
1838     } else {
1839         hart_bits = 0;
1840     }
1841 
1842     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CONFIG,
1843                             KVM_DEV_RISCV_AIA_CONFIG_HART_BITS,
1844                             &hart_bits, true, NULL);
1845     if (ret < 0) {
1846         error_report("KVM AIA: failed to set hart_bits");
1847         exit(1);
1848     }
1849 
1850     if (kvm_has_gsi_routing()) {
1851         for (uint64_t idx = 0; idx < aia_irq_num + 1; ++idx) {
1852             /* KVM AIA only has one APLIC instance */
1853             kvm_irqchip_add_irq_route(kvm_state, idx, 0, idx);
1854         }
1855         kvm_gsi_routing_allowed = true;
1856         kvm_irqchip_commit_routes(kvm_state);
1857     }
1858 
1859     ret = kvm_device_access(aia_fd, KVM_DEV_RISCV_AIA_GRP_CTRL,
1860                             KVM_DEV_RISCV_AIA_CTRL_INIT,
1861                             NULL, true, NULL);
1862     if (ret < 0) {
1863         error_report("KVM AIA: initialized fail");
1864         exit(1);
1865     }
1866 
1867     kvm_msi_via_irqfd_allowed = true;
1868 }
1869 
1870 static void kvm_cpu_instance_init(CPUState *cs)
1871 {
1872     Object *obj = OBJECT(RISCV_CPU(cs));
1873 
1874     riscv_init_kvm_registers(obj);
1875 
1876     kvm_riscv_add_cpu_user_properties(obj);
1877 }
1878 
1879 /*
1880  * We'll get here via the following path:
1881  *
1882  * riscv_cpu_realize()
1883  *   -> cpu_exec_realizefn()
1884  *      -> kvm_cpu_realize() (via accel_cpu_common_realize())
1885  */
1886 static bool kvm_cpu_realize(CPUState *cs, Error **errp)
1887 {
1888     RISCVCPU *cpu = RISCV_CPU(cs);
1889     int ret;
1890 
1891     if (riscv_has_ext(&cpu->env, RVV)) {
1892         ret = prctl(PR_RISCV_V_SET_CONTROL, PR_RISCV_V_VSTATE_CTRL_ON);
1893         if (ret) {
1894             error_setg(errp, "Error in prctl PR_RISCV_V_SET_CONTROL, code: %s",
1895                        strerrorname_np(errno));
1896             return false;
1897         }
1898     }
1899 
1900    return true;
1901 }
1902 
1903 void riscv_kvm_cpu_finalize_features(RISCVCPU *cpu, Error **errp)
1904 {
1905     CPURISCVState *env = &cpu->env;
1906     KVMScratchCPU kvmcpu;
1907     struct kvm_one_reg reg;
1908     uint64_t val;
1909     int ret;
1910 
1911     /* short-circuit without spinning the scratch CPU */
1912     if (!cpu->cfg.ext_zicbom && !cpu->cfg.ext_zicboz &&
1913         !riscv_has_ext(env, RVV)) {
1914         return;
1915     }
1916 
1917     if (!kvm_riscv_create_scratch_vcpu(&kvmcpu)) {
1918         error_setg(errp, "Unable to create scratch KVM cpu");
1919         return;
1920     }
1921 
1922     if (cpu->cfg.ext_zicbom &&
1923         riscv_cpu_option_set(kvm_cbom_blocksize.name)) {
1924 
1925         reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1926                                         kvm_cbom_blocksize.kvm_reg_id);
1927         reg.addr = (uint64_t)&val;
1928         ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, &reg);
1929         if (ret != 0) {
1930             error_setg(errp, "Unable to read cbom_blocksize, error %d", errno);
1931             return;
1932         }
1933 
1934         if (cpu->cfg.cbom_blocksize != val) {
1935             error_setg(errp, "Unable to set cbom_blocksize to a different "
1936                        "value than the host (%lu)", val);
1937             return;
1938         }
1939     }
1940 
1941     if (cpu->cfg.ext_zicboz &&
1942         riscv_cpu_option_set(kvm_cboz_blocksize.name)) {
1943 
1944         reg.id = kvm_riscv_reg_id_ulong(env, KVM_REG_RISCV_CONFIG,
1945                                         kvm_cboz_blocksize.kvm_reg_id);
1946         reg.addr = (uint64_t)&val;
1947         ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, &reg);
1948         if (ret != 0) {
1949             error_setg(errp, "Unable to read cboz_blocksize, error %d", errno);
1950             return;
1951         }
1952 
1953         if (cpu->cfg.cboz_blocksize != val) {
1954             error_setg(errp, "Unable to set cboz_blocksize to a different "
1955                        "value than the host (%lu)", val);
1956             return;
1957         }
1958     }
1959 
1960     /* Users are setting vlen, not vlenb */
1961     if (riscv_has_ext(env, RVV) && riscv_cpu_option_set("vlen")) {
1962         if (!kvm_v_vlenb.supported) {
1963             error_setg(errp, "Unable to set 'vlenb': register not supported");
1964             return;
1965         }
1966 
1967         reg.id = kvm_v_vlenb.kvm_reg_id;
1968         reg.addr = (uint64_t)&val;
1969         ret = ioctl(kvmcpu.cpufd, KVM_GET_ONE_REG, &reg);
1970         if (ret != 0) {
1971             error_setg(errp, "Unable to read vlenb register, error %d", errno);
1972             return;
1973         }
1974 
1975         if (cpu->cfg.vlenb != val) {
1976             error_setg(errp, "Unable to set 'vlen' to a different "
1977                        "value than the host (%lu)", val * 8);
1978             return;
1979         }
1980     }
1981 
1982     kvm_riscv_destroy_scratch_vcpu(&kvmcpu);
1983 }
1984 
1985 static void kvm_cpu_accel_class_init(ObjectClass *oc, void *data)
1986 {
1987     AccelCPUClass *acc = ACCEL_CPU_CLASS(oc);
1988 
1989     acc->cpu_instance_init = kvm_cpu_instance_init;
1990     acc->cpu_target_realize = kvm_cpu_realize;
1991 }
1992 
1993 static const TypeInfo kvm_cpu_accel_type_info = {
1994     .name = ACCEL_CPU_NAME("kvm"),
1995 
1996     .parent = TYPE_ACCEL_CPU,
1997     .class_init = kvm_cpu_accel_class_init,
1998     .abstract = true,
1999 };
2000 static void kvm_cpu_accel_register_types(void)
2001 {
2002     type_register_static(&kvm_cpu_accel_type_info);
2003 }
2004 type_init(kvm_cpu_accel_register_types);
2005 
2006 static void riscv_host_cpu_class_init(ObjectClass *c, void *data)
2007 {
2008     RISCVCPUClass *mcc = RISCV_CPU_CLASS(c);
2009 
2010 #if defined(TARGET_RISCV32)
2011     mcc->misa_mxl_max = MXL_RV32;
2012 #elif defined(TARGET_RISCV64)
2013     mcc->misa_mxl_max = MXL_RV64;
2014 #endif
2015 }
2016 
2017 static const TypeInfo riscv_kvm_cpu_type_infos[] = {
2018     {
2019         .name = TYPE_RISCV_CPU_HOST,
2020         .parent = TYPE_RISCV_CPU,
2021         .class_init = riscv_host_cpu_class_init,
2022     }
2023 };
2024 
2025 DEFINE_TYPES(riscv_kvm_cpu_type_infos)
2026 
2027 static const uint32_t ebreak_insn = 0x00100073;
2028 static const uint16_t c_ebreak_insn = 0x9002;
2029 
2030 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2031 {
2032     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 0)) {
2033         return -EINVAL;
2034     }
2035 
2036     if ((bp->saved_insn & 0x3) == 0x3) {
2037         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0)
2038             || cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak_insn, 4, 1)) {
2039             return -EINVAL;
2040         }
2041     } else {
2042         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak_insn, 2, 1)) {
2043             return -EINVAL;
2044         }
2045     }
2046 
2047     return 0;
2048 }
2049 
2050 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2051 {
2052     uint32_t ebreak;
2053     uint16_t c_ebreak;
2054 
2055     if ((bp->saved_insn & 0x3) == 0x3) {
2056         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&ebreak, 4, 0) ||
2057             ebreak != ebreak_insn ||
2058             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2059             return -EINVAL;
2060         }
2061     } else {
2062         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&c_ebreak, 2, 0) ||
2063             c_ebreak != c_ebreak_insn ||
2064             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 2, 1)) {
2065             return -EINVAL;
2066         }
2067     }
2068 
2069     return 0;
2070 }
2071 
2072 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
2073 {
2074     /* TODO; To be implemented later. */
2075     return -EINVAL;
2076 }
2077 
2078 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
2079 {
2080     /* TODO; To be implemented later. */
2081     return -EINVAL;
2082 }
2083 
2084 void kvm_arch_remove_all_hw_breakpoints(void)
2085 {
2086     /* TODO; To be implemented later. */
2087 }
2088 
2089 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
2090 {
2091     if (kvm_sw_breakpoints_active(cs)) {
2092         dbg->control |= KVM_GUESTDBG_ENABLE;
2093     }
2094 }
2095