1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/cputlb.h" 28 #include "exec/tb-flush.h" 29 #include "exec/icount.h" 30 #include "accel/tcg/getpc.h" 31 #include "qemu/guest-random.h" 32 #include "qapi/error.h" 33 #include "tcg/insn-start-words.h" 34 #include "internals.h" 35 #include <stdbool.h> 36 37 /* CSR function table public API */ 38 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 41 } 42 43 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 44 { 45 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 46 } 47 48 /* Predicates */ 49 #if !defined(CONFIG_USER_ONLY) 50 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 51 { 52 bool virt = env->virt_enabled; 53 54 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 55 return RISCV_EXCP_NONE; 56 } 57 58 if (!(env->mstateen[index] & bit)) { 59 return RISCV_EXCP_ILLEGAL_INST; 60 } 61 62 if (virt) { 63 if (!(env->hstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 67 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 68 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 69 } 70 } 71 72 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 73 if (!(env->sstateen[index] & bit)) { 74 return RISCV_EXCP_ILLEGAL_INST; 75 } 76 } 77 78 return RISCV_EXCP_NONE; 79 } 80 #endif 81 82 static RISCVException fs(CPURISCVState *env, int csrno) 83 { 84 #if !defined(CONFIG_USER_ONLY) 85 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 86 !riscv_cpu_cfg(env)->ext_zfinx) { 87 return RISCV_EXCP_ILLEGAL_INST; 88 } 89 90 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 91 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 92 } 93 #endif 94 return RISCV_EXCP_NONE; 95 } 96 97 static RISCVException vs(CPURISCVState *env, int csrno) 98 { 99 if (riscv_cpu_cfg(env)->ext_zve32x) { 100 #if !defined(CONFIG_USER_ONLY) 101 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 102 return RISCV_EXCP_ILLEGAL_INST; 103 } 104 #endif 105 return RISCV_EXCP_NONE; 106 } 107 return RISCV_EXCP_ILLEGAL_INST; 108 } 109 110 static RISCVException ctr(CPURISCVState *env, int csrno) 111 { 112 #if !defined(CONFIG_USER_ONLY) 113 RISCVCPU *cpu = env_archcpu(env); 114 int ctr_index; 115 target_ulong ctr_mask; 116 int base_csrno = CSR_CYCLE; 117 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 118 119 if (rv32 && csrno >= CSR_CYCLEH) { 120 /* Offset for RV32 hpmcounternh counters */ 121 base_csrno += 0x80; 122 } 123 ctr_index = csrno - base_csrno; 124 ctr_mask = BIT(ctr_index); 125 126 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 127 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 128 if (!riscv_cpu_cfg(env)->ext_zicntr) { 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 132 goto skip_ext_pmu_check; 133 } 134 135 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 136 /* No counter is enabled in PMU or the counter is out of range */ 137 return RISCV_EXCP_ILLEGAL_INST; 138 } 139 140 skip_ext_pmu_check: 141 142 if (env->debugger) { 143 return RISCV_EXCP_NONE; 144 } 145 146 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 147 return RISCV_EXCP_ILLEGAL_INST; 148 } 149 150 if (env->virt_enabled) { 151 if (!get_field(env->hcounteren, ctr_mask) || 152 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 153 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 154 } 155 } 156 157 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 158 !get_field(env->scounteren, ctr_mask)) { 159 return RISCV_EXCP_ILLEGAL_INST; 160 } 161 162 #endif 163 return RISCV_EXCP_NONE; 164 } 165 166 static RISCVException ctr32(CPURISCVState *env, int csrno) 167 { 168 if (riscv_cpu_mxl(env) != MXL_RV32) { 169 return RISCV_EXCP_ILLEGAL_INST; 170 } 171 172 return ctr(env, csrno); 173 } 174 175 static RISCVException zcmt(CPURISCVState *env, int csrno) 176 { 177 if (!riscv_cpu_cfg(env)->ext_zcmt) { 178 return RISCV_EXCP_ILLEGAL_INST; 179 } 180 181 #if !defined(CONFIG_USER_ONLY) 182 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 183 if (ret != RISCV_EXCP_NONE) { 184 return ret; 185 } 186 #endif 187 188 return RISCV_EXCP_NONE; 189 } 190 191 static RISCVException cfi_ss(CPURISCVState *env, int csrno) 192 { 193 if (!env_archcpu(env)->cfg.ext_zicfiss) { 194 return RISCV_EXCP_ILLEGAL_INST; 195 } 196 197 /* If ext implemented, M-mode always have access to SSP CSR */ 198 if (env->priv == PRV_M) { 199 return RISCV_EXCP_NONE; 200 } 201 202 /* if bcfi not active for current env, access to csr is illegal */ 203 if (!cpu_get_bcfien(env)) { 204 #if !defined(CONFIG_USER_ONLY) 205 if (env->debugger) { 206 return RISCV_EXCP_NONE; 207 } 208 #endif 209 return RISCV_EXCP_ILLEGAL_INST; 210 } 211 212 return RISCV_EXCP_NONE; 213 } 214 215 #if !defined(CONFIG_USER_ONLY) 216 static RISCVException mctr(CPURISCVState *env, int csrno) 217 { 218 RISCVCPU *cpu = env_archcpu(env); 219 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 220 int ctr_index; 221 int base_csrno = CSR_MHPMCOUNTER3; 222 223 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 224 /* Offset for RV32 mhpmcounternh counters */ 225 csrno -= 0x80; 226 } 227 228 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 229 230 ctr_index = csrno - base_csrno; 231 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 232 /* The PMU is not enabled or counter is out of range */ 233 return RISCV_EXCP_ILLEGAL_INST; 234 } 235 236 return RISCV_EXCP_NONE; 237 } 238 239 static RISCVException mctr32(CPURISCVState *env, int csrno) 240 { 241 if (riscv_cpu_mxl(env) != MXL_RV32) { 242 return RISCV_EXCP_ILLEGAL_INST; 243 } 244 245 return mctr(env, csrno); 246 } 247 248 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 249 { 250 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 return RISCV_EXCP_NONE; 255 } 256 257 static RISCVException sscofpmf_32(CPURISCVState *env, int csrno) 258 { 259 if (riscv_cpu_mxl(env) != MXL_RV32) { 260 return RISCV_EXCP_ILLEGAL_INST; 261 } 262 263 return sscofpmf(env, csrno); 264 } 265 266 static RISCVException smcntrpmf(CPURISCVState *env, int csrno) 267 { 268 if (!riscv_cpu_cfg(env)->ext_smcntrpmf) { 269 return RISCV_EXCP_ILLEGAL_INST; 270 } 271 272 return RISCV_EXCP_NONE; 273 } 274 275 static RISCVException smcntrpmf_32(CPURISCVState *env, int csrno) 276 { 277 if (riscv_cpu_mxl(env) != MXL_RV32) { 278 return RISCV_EXCP_ILLEGAL_INST; 279 } 280 281 return smcntrpmf(env, csrno); 282 } 283 284 static RISCVException any(CPURISCVState *env, int csrno) 285 { 286 return RISCV_EXCP_NONE; 287 } 288 289 static RISCVException any32(CPURISCVState *env, int csrno) 290 { 291 if (riscv_cpu_mxl(env) != MXL_RV32) { 292 return RISCV_EXCP_ILLEGAL_INST; 293 } 294 295 return any(env, csrno); 296 297 } 298 299 static RISCVException aia_any(CPURISCVState *env, int csrno) 300 { 301 if (!riscv_cpu_cfg(env)->ext_smaia) { 302 return RISCV_EXCP_ILLEGAL_INST; 303 } 304 305 return any(env, csrno); 306 } 307 308 static RISCVException aia_any32(CPURISCVState *env, int csrno) 309 { 310 if (!riscv_cpu_cfg(env)->ext_smaia) { 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 return any32(env, csrno); 315 } 316 317 static RISCVException csrind_any(CPURISCVState *env, int csrno) 318 { 319 if (!riscv_cpu_cfg(env)->ext_smcsrind) { 320 return RISCV_EXCP_ILLEGAL_INST; 321 } 322 323 return RISCV_EXCP_NONE; 324 } 325 326 static RISCVException csrind_or_aia_any(CPURISCVState *env, int csrno) 327 { 328 if (!riscv_cpu_cfg(env)->ext_smaia && !riscv_cpu_cfg(env)->ext_smcsrind) { 329 return RISCV_EXCP_ILLEGAL_INST; 330 } 331 332 return any(env, csrno); 333 } 334 335 static RISCVException smode(CPURISCVState *env, int csrno) 336 { 337 if (riscv_has_ext(env, RVS)) { 338 return RISCV_EXCP_NONE; 339 } 340 341 return RISCV_EXCP_ILLEGAL_INST; 342 } 343 344 static RISCVException smode32(CPURISCVState *env, int csrno) 345 { 346 if (riscv_cpu_mxl(env) != MXL_RV32) { 347 return RISCV_EXCP_ILLEGAL_INST; 348 } 349 350 return smode(env, csrno); 351 } 352 353 static RISCVException aia_smode(CPURISCVState *env, int csrno) 354 { 355 int ret; 356 357 if (!riscv_cpu_cfg(env)->ext_ssaia) { 358 return RISCV_EXCP_ILLEGAL_INST; 359 } 360 361 if (csrno == CSR_STOPEI) { 362 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_IMSIC); 363 } else { 364 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 365 } 366 367 if (ret != RISCV_EXCP_NONE) { 368 return ret; 369 } 370 371 return smode(env, csrno); 372 } 373 374 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 375 { 376 int ret; 377 378 if (!riscv_cpu_cfg(env)->ext_ssaia) { 379 return RISCV_EXCP_ILLEGAL_INST; 380 } 381 382 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 383 if (ret != RISCV_EXCP_NONE) { 384 return ret; 385 } 386 387 return smode32(env, csrno); 388 } 389 390 static RISCVException scountinhibit_pred(CPURISCVState *env, int csrno) 391 { 392 RISCVCPU *cpu = env_archcpu(env); 393 394 if (!cpu->cfg.ext_ssccfg || !cpu->cfg.ext_smcdeleg) { 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 if (env->virt_enabled) { 399 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 400 } 401 402 return smode(env, csrno); 403 } 404 405 static bool csrind_extensions_present(CPURISCVState *env) 406 { 407 return riscv_cpu_cfg(env)->ext_smcsrind || riscv_cpu_cfg(env)->ext_sscsrind; 408 } 409 410 static bool aia_extensions_present(CPURISCVState *env) 411 { 412 return riscv_cpu_cfg(env)->ext_smaia || riscv_cpu_cfg(env)->ext_ssaia; 413 } 414 415 static bool csrind_or_aia_extensions_present(CPURISCVState *env) 416 { 417 return csrind_extensions_present(env) || aia_extensions_present(env); 418 } 419 420 static RISCVException csrind_smode(CPURISCVState *env, int csrno) 421 { 422 if (!csrind_extensions_present(env)) { 423 return RISCV_EXCP_ILLEGAL_INST; 424 } 425 426 return smode(env, csrno); 427 } 428 429 static RISCVException csrind_or_aia_smode(CPURISCVState *env, int csrno) 430 { 431 if (!csrind_or_aia_extensions_present(env)) { 432 return RISCV_EXCP_ILLEGAL_INST; 433 } 434 435 return smode(env, csrno); 436 } 437 438 static RISCVException hmode(CPURISCVState *env, int csrno) 439 { 440 if (riscv_has_ext(env, RVH)) { 441 return RISCV_EXCP_NONE; 442 } 443 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 447 static RISCVException hmode32(CPURISCVState *env, int csrno) 448 { 449 if (riscv_cpu_mxl(env) != MXL_RV32) { 450 return RISCV_EXCP_ILLEGAL_INST; 451 } 452 453 return hmode(env, csrno); 454 455 } 456 457 static RISCVException csrind_hmode(CPURISCVState *env, int csrno) 458 { 459 if (!csrind_extensions_present(env)) { 460 return RISCV_EXCP_ILLEGAL_INST; 461 } 462 463 return hmode(env, csrno); 464 } 465 466 static RISCVException csrind_or_aia_hmode(CPURISCVState *env, int csrno) 467 { 468 if (!csrind_or_aia_extensions_present(env)) { 469 return RISCV_EXCP_ILLEGAL_INST; 470 } 471 472 return hmode(env, csrno); 473 } 474 475 static RISCVException umode(CPURISCVState *env, int csrno) 476 { 477 if (riscv_has_ext(env, RVU)) { 478 return RISCV_EXCP_NONE; 479 } 480 481 return RISCV_EXCP_ILLEGAL_INST; 482 } 483 484 static RISCVException umode32(CPURISCVState *env, int csrno) 485 { 486 if (riscv_cpu_mxl(env) != MXL_RV32) { 487 return RISCV_EXCP_ILLEGAL_INST; 488 } 489 490 return umode(env, csrno); 491 } 492 493 static RISCVException mstateen(CPURISCVState *env, int csrno) 494 { 495 if (!riscv_cpu_cfg(env)->ext_smstateen) { 496 return RISCV_EXCP_ILLEGAL_INST; 497 } 498 499 return any(env, csrno); 500 } 501 502 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 503 { 504 if (!riscv_cpu_cfg(env)->ext_smstateen) { 505 return RISCV_EXCP_ILLEGAL_INST; 506 } 507 508 RISCVException ret = hmode(env, csrno); 509 if (ret != RISCV_EXCP_NONE) { 510 return ret; 511 } 512 513 if (env->debugger) { 514 return RISCV_EXCP_NONE; 515 } 516 517 if (env->priv < PRV_M) { 518 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 519 return RISCV_EXCP_ILLEGAL_INST; 520 } 521 } 522 523 return RISCV_EXCP_NONE; 524 } 525 526 static RISCVException hstateen(CPURISCVState *env, int csrno) 527 { 528 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 529 } 530 531 static RISCVException hstateenh(CPURISCVState *env, int csrno) 532 { 533 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 534 } 535 536 static RISCVException sstateen(CPURISCVState *env, int csrno) 537 { 538 bool virt = env->virt_enabled; 539 int index = csrno - CSR_SSTATEEN0; 540 541 if (!riscv_cpu_cfg(env)->ext_smstateen) { 542 return RISCV_EXCP_ILLEGAL_INST; 543 } 544 545 RISCVException ret = smode(env, csrno); 546 if (ret != RISCV_EXCP_NONE) { 547 return ret; 548 } 549 550 if (env->debugger) { 551 return RISCV_EXCP_NONE; 552 } 553 554 if (env->priv < PRV_M) { 555 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 556 return RISCV_EXCP_ILLEGAL_INST; 557 } 558 559 if (virt) { 560 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 561 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 562 } 563 } 564 } 565 566 return RISCV_EXCP_NONE; 567 } 568 569 static RISCVException sstc(CPURISCVState *env, int csrno) 570 { 571 bool hmode_check = false; 572 573 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 574 return RISCV_EXCP_ILLEGAL_INST; 575 } 576 577 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 578 hmode_check = true; 579 } 580 581 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 582 if (ret != RISCV_EXCP_NONE) { 583 return ret; 584 } 585 586 if (env->debugger) { 587 return RISCV_EXCP_NONE; 588 } 589 590 if (env->priv == PRV_M) { 591 return RISCV_EXCP_NONE; 592 } 593 594 /* 595 * No need of separate function for rv32 as menvcfg stores both menvcfg 596 * menvcfgh for RV32. 597 */ 598 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 599 get_field(env->menvcfg, MENVCFG_STCE))) { 600 return RISCV_EXCP_ILLEGAL_INST; 601 } 602 603 if (env->virt_enabled) { 604 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 605 get_field(env->henvcfg, HENVCFG_STCE))) { 606 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 607 } 608 } 609 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException sstc_32(CPURISCVState *env, int csrno) 614 { 615 if (riscv_cpu_mxl(env) != MXL_RV32) { 616 return RISCV_EXCP_ILLEGAL_INST; 617 } 618 619 return sstc(env, csrno); 620 } 621 622 static RISCVException satp(CPURISCVState *env, int csrno) 623 { 624 if (env->priv == PRV_S && !env->virt_enabled && 625 get_field(env->mstatus, MSTATUS_TVM)) { 626 return RISCV_EXCP_ILLEGAL_INST; 627 } 628 if (env->priv == PRV_S && env->virt_enabled && 629 get_field(env->hstatus, HSTATUS_VTVM)) { 630 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 631 } 632 633 return smode(env, csrno); 634 } 635 636 static RISCVException hgatp(CPURISCVState *env, int csrno) 637 { 638 if (env->priv == PRV_S && !env->virt_enabled && 639 get_field(env->mstatus, MSTATUS_TVM)) { 640 return RISCV_EXCP_ILLEGAL_INST; 641 } 642 643 return hmode(env, csrno); 644 } 645 646 /* 647 * M-mode: 648 * Without ext_smctr raise illegal inst excep. 649 * Otherwise everything is accessible to m-mode. 650 * 651 * S-mode: 652 * Without ext_ssctr or mstateen.ctr raise illegal inst excep. 653 * Otherwise everything other than mctrctl is accessible. 654 * 655 * VS-mode: 656 * Without ext_ssctr or mstateen.ctr raise illegal inst excep. 657 * Without hstateen.ctr raise virtual illegal inst excep. 658 * Otherwise allow sctrctl (vsctrctl), sctrstatus, 0x200-0x2ff entry range. 659 * Always raise illegal instruction exception for sctrdepth. 660 */ 661 static RISCVException ctr_mmode(CPURISCVState *env, int csrno) 662 { 663 /* Check if smctr-ext is present */ 664 if (riscv_cpu_cfg(env)->ext_smctr) { 665 return RISCV_EXCP_NONE; 666 } 667 668 return RISCV_EXCP_ILLEGAL_INST; 669 } 670 671 static RISCVException ctr_smode(CPURISCVState *env, int csrno) 672 { 673 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 674 675 if (!cfg->ext_smctr && !cfg->ext_ssctr) { 676 return RISCV_EXCP_ILLEGAL_INST; 677 } 678 679 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_CTR); 680 if (ret == RISCV_EXCP_NONE && csrno == CSR_SCTRDEPTH && 681 env->virt_enabled) { 682 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 683 } 684 685 return ret; 686 } 687 688 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 689 { 690 int ret; 691 692 if (!riscv_cpu_cfg(env)->ext_ssaia) { 693 return RISCV_EXCP_ILLEGAL_INST; 694 } 695 696 if (csrno == CSR_VSTOPEI) { 697 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_IMSIC); 698 } else { 699 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 700 } 701 702 if (ret != RISCV_EXCP_NONE) { 703 return ret; 704 } 705 706 return hmode(env, csrno); 707 } 708 709 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 710 { 711 int ret; 712 713 if (!riscv_cpu_cfg(env)->ext_ssaia) { 714 return RISCV_EXCP_ILLEGAL_INST; 715 } 716 717 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 718 if (ret != RISCV_EXCP_NONE) { 719 return ret; 720 } 721 722 if (!riscv_cpu_cfg(env)->ext_ssaia) { 723 return RISCV_EXCP_ILLEGAL_INST; 724 } 725 726 return hmode32(env, csrno); 727 } 728 729 static RISCVException dbltrp_hmode(CPURISCVState *env, int csrno) 730 { 731 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 732 return RISCV_EXCP_NONE; 733 } 734 735 return hmode(env, csrno); 736 } 737 738 static RISCVException pmp(CPURISCVState *env, int csrno) 739 { 740 if (riscv_cpu_cfg(env)->pmp) { 741 if (csrno <= CSR_PMPCFG3) { 742 uint32_t reg_index = csrno - CSR_PMPCFG0; 743 744 /* TODO: RV128 restriction check */ 745 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 746 return RISCV_EXCP_ILLEGAL_INST; 747 } 748 } 749 750 return RISCV_EXCP_NONE; 751 } 752 753 return RISCV_EXCP_ILLEGAL_INST; 754 } 755 756 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 757 { 758 if (riscv_cpu_cfg(env)->ext_smepmp) { 759 return RISCV_EXCP_NONE; 760 } 761 if (riscv_cpu_cfg(env)->ext_zkr) { 762 return RISCV_EXCP_NONE; 763 } 764 if (riscv_cpu_cfg(env)->ext_smmpm) { 765 return RISCV_EXCP_NONE; 766 } 767 768 return RISCV_EXCP_ILLEGAL_INST; 769 } 770 771 static RISCVException debug(CPURISCVState *env, int csrno) 772 { 773 if (riscv_cpu_cfg(env)->debug) { 774 return RISCV_EXCP_NONE; 775 } 776 777 return RISCV_EXCP_ILLEGAL_INST; 778 } 779 780 static RISCVException rnmi(CPURISCVState *env, int csrno) 781 { 782 RISCVCPU *cpu = env_archcpu(env); 783 784 if (cpu->cfg.ext_smrnmi) { 785 return RISCV_EXCP_NONE; 786 } 787 788 return RISCV_EXCP_ILLEGAL_INST; 789 } 790 #endif 791 792 static RISCVException seed(CPURISCVState *env, int csrno) 793 { 794 if (!riscv_cpu_cfg(env)->ext_zkr) { 795 return RISCV_EXCP_ILLEGAL_INST; 796 } 797 798 #if !defined(CONFIG_USER_ONLY) 799 if (env->debugger) { 800 return RISCV_EXCP_NONE; 801 } 802 803 /* 804 * With a CSR read-write instruction: 805 * 1) The seed CSR is always available in machine mode as normal. 806 * 2) Attempted access to seed from virtual modes VS and VU always raises 807 * an exception(virtual instruction exception only if mseccfg.sseed=1). 808 * 3) Without the corresponding access control bit set to 1, any attempted 809 * access to seed from U, S or HS modes will raise an illegal instruction 810 * exception. 811 */ 812 if (env->priv == PRV_M) { 813 return RISCV_EXCP_NONE; 814 } else if (env->virt_enabled) { 815 if (env->mseccfg & MSECCFG_SSEED) { 816 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 817 } else { 818 return RISCV_EXCP_ILLEGAL_INST; 819 } 820 } else { 821 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 822 return RISCV_EXCP_NONE; 823 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 824 return RISCV_EXCP_NONE; 825 } else { 826 return RISCV_EXCP_ILLEGAL_INST; 827 } 828 } 829 #else 830 return RISCV_EXCP_NONE; 831 #endif 832 } 833 834 /* zicfiss CSR_SSP read and write */ 835 static RISCVException read_ssp(CPURISCVState *env, int csrno, 836 target_ulong *val) 837 { 838 *val = env->ssp; 839 return RISCV_EXCP_NONE; 840 } 841 842 static RISCVException write_ssp(CPURISCVState *env, int csrno, 843 target_ulong val, uintptr_t ra) 844 { 845 env->ssp = val; 846 return RISCV_EXCP_NONE; 847 } 848 849 /* User Floating-Point CSRs */ 850 static RISCVException read_fflags(CPURISCVState *env, int csrno, 851 target_ulong *val) 852 { 853 *val = riscv_cpu_get_fflags(env); 854 return RISCV_EXCP_NONE; 855 } 856 857 static RISCVException write_fflags(CPURISCVState *env, int csrno, 858 target_ulong val, uintptr_t ra) 859 { 860 #if !defined(CONFIG_USER_ONLY) 861 if (riscv_has_ext(env, RVF)) { 862 env->mstatus |= MSTATUS_FS; 863 } 864 #endif 865 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 866 return RISCV_EXCP_NONE; 867 } 868 869 static RISCVException read_frm(CPURISCVState *env, int csrno, 870 target_ulong *val) 871 { 872 *val = env->frm; 873 return RISCV_EXCP_NONE; 874 } 875 876 static RISCVException write_frm(CPURISCVState *env, int csrno, 877 target_ulong val, uintptr_t ra) 878 { 879 #if !defined(CONFIG_USER_ONLY) 880 if (riscv_has_ext(env, RVF)) { 881 env->mstatus |= MSTATUS_FS; 882 } 883 #endif 884 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 885 return RISCV_EXCP_NONE; 886 } 887 888 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 889 target_ulong *val) 890 { 891 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 892 | (env->frm << FSR_RD_SHIFT); 893 return RISCV_EXCP_NONE; 894 } 895 896 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 897 target_ulong val, uintptr_t ra) 898 { 899 #if !defined(CONFIG_USER_ONLY) 900 if (riscv_has_ext(env, RVF)) { 901 env->mstatus |= MSTATUS_FS; 902 } 903 #endif 904 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 905 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 906 return RISCV_EXCP_NONE; 907 } 908 909 static RISCVException read_vtype(CPURISCVState *env, int csrno, 910 target_ulong *val) 911 { 912 uint64_t vill; 913 switch (env->xl) { 914 case MXL_RV32: 915 vill = (uint32_t)env->vill << 31; 916 break; 917 case MXL_RV64: 918 vill = (uint64_t)env->vill << 63; 919 break; 920 default: 921 g_assert_not_reached(); 922 } 923 *val = (target_ulong)vill | env->vtype; 924 return RISCV_EXCP_NONE; 925 } 926 927 static RISCVException read_vl(CPURISCVState *env, int csrno, 928 target_ulong *val) 929 { 930 *val = env->vl; 931 return RISCV_EXCP_NONE; 932 } 933 934 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 935 target_ulong *val) 936 { 937 *val = riscv_cpu_cfg(env)->vlenb; 938 return RISCV_EXCP_NONE; 939 } 940 941 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 942 target_ulong *val) 943 { 944 *val = env->vxrm; 945 return RISCV_EXCP_NONE; 946 } 947 948 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 949 target_ulong val, uintptr_t ra) 950 { 951 #if !defined(CONFIG_USER_ONLY) 952 env->mstatus |= MSTATUS_VS; 953 #endif 954 env->vxrm = val; 955 return RISCV_EXCP_NONE; 956 } 957 958 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 959 target_ulong *val) 960 { 961 *val = env->vxsat & BIT(0); 962 return RISCV_EXCP_NONE; 963 } 964 965 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 966 target_ulong val, uintptr_t ra) 967 { 968 #if !defined(CONFIG_USER_ONLY) 969 env->mstatus |= MSTATUS_VS; 970 #endif 971 env->vxsat = val & BIT(0); 972 return RISCV_EXCP_NONE; 973 } 974 975 static RISCVException read_vstart(CPURISCVState *env, int csrno, 976 target_ulong *val) 977 { 978 *val = env->vstart; 979 return RISCV_EXCP_NONE; 980 } 981 982 static RISCVException write_vstart(CPURISCVState *env, int csrno, 983 target_ulong val, uintptr_t ra) 984 { 985 #if !defined(CONFIG_USER_ONLY) 986 env->mstatus |= MSTATUS_VS; 987 #endif 988 /* 989 * The vstart CSR is defined to have only enough writable bits 990 * to hold the largest element index, i.e. lg2(VLEN) bits. 991 */ 992 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 993 return RISCV_EXCP_NONE; 994 } 995 996 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 997 target_ulong *val) 998 { 999 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 1000 return RISCV_EXCP_NONE; 1001 } 1002 1003 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 1004 target_ulong val, uintptr_t ra) 1005 { 1006 #if !defined(CONFIG_USER_ONLY) 1007 env->mstatus |= MSTATUS_VS; 1008 #endif 1009 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 1010 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 1011 return RISCV_EXCP_NONE; 1012 } 1013 1014 #if defined(CONFIG_USER_ONLY) 1015 /* User Timers and Counters */ 1016 static target_ulong get_ticks(bool shift) 1017 { 1018 int64_t val = cpu_get_host_ticks(); 1019 target_ulong result = shift ? val >> 32 : val; 1020 1021 return result; 1022 } 1023 1024 static RISCVException read_time(CPURISCVState *env, int csrno, 1025 target_ulong *val) 1026 { 1027 *val = cpu_get_host_ticks(); 1028 return RISCV_EXCP_NONE; 1029 } 1030 1031 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1032 target_ulong *val) 1033 { 1034 *val = cpu_get_host_ticks() >> 32; 1035 return RISCV_EXCP_NONE; 1036 } 1037 1038 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1039 target_ulong *val) 1040 { 1041 *val = get_ticks(false); 1042 return RISCV_EXCP_NONE; 1043 } 1044 1045 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1046 target_ulong *val) 1047 { 1048 *val = get_ticks(true); 1049 return RISCV_EXCP_NONE; 1050 } 1051 1052 #else /* CONFIG_USER_ONLY */ 1053 1054 static RISCVException read_mcyclecfg(CPURISCVState *env, int csrno, 1055 target_ulong *val) 1056 { 1057 *val = env->mcyclecfg; 1058 return RISCV_EXCP_NONE; 1059 } 1060 1061 static RISCVException write_mcyclecfg(CPURISCVState *env, int csrno, 1062 target_ulong val, uintptr_t ra) 1063 { 1064 uint64_t inh_avail_mask; 1065 1066 if (riscv_cpu_mxl(env) == MXL_RV32) { 1067 env->mcyclecfg = val; 1068 } else { 1069 /* Set xINH fields if priv mode supported */ 1070 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MCYCLECFG_BIT_MINH; 1071 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFG_BIT_UINH : 0; 1072 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFG_BIT_SINH : 0; 1073 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1074 riscv_has_ext(env, RVU)) ? MCYCLECFG_BIT_VUINH : 0; 1075 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1076 riscv_has_ext(env, RVS)) ? MCYCLECFG_BIT_VSINH : 0; 1077 env->mcyclecfg = val & inh_avail_mask; 1078 } 1079 1080 return RISCV_EXCP_NONE; 1081 } 1082 1083 static RISCVException read_mcyclecfgh(CPURISCVState *env, int csrno, 1084 target_ulong *val) 1085 { 1086 *val = env->mcyclecfgh; 1087 return RISCV_EXCP_NONE; 1088 } 1089 1090 static RISCVException write_mcyclecfgh(CPURISCVState *env, int csrno, 1091 target_ulong val, uintptr_t ra) 1092 { 1093 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1094 MCYCLECFGH_BIT_MINH); 1095 1096 /* Set xINH fields if priv mode supported */ 1097 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFGH_BIT_UINH : 0; 1098 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFGH_BIT_SINH : 0; 1099 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1100 riscv_has_ext(env, RVU)) ? MCYCLECFGH_BIT_VUINH : 0; 1101 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1102 riscv_has_ext(env, RVS)) ? MCYCLECFGH_BIT_VSINH : 0; 1103 1104 env->mcyclecfgh = val & inh_avail_mask; 1105 return RISCV_EXCP_NONE; 1106 } 1107 1108 static RISCVException read_minstretcfg(CPURISCVState *env, int csrno, 1109 target_ulong *val) 1110 { 1111 *val = env->minstretcfg; 1112 return RISCV_EXCP_NONE; 1113 } 1114 1115 static RISCVException write_minstretcfg(CPURISCVState *env, int csrno, 1116 target_ulong val, uintptr_t ra) 1117 { 1118 uint64_t inh_avail_mask; 1119 1120 if (riscv_cpu_mxl(env) == MXL_RV32) { 1121 env->minstretcfg = val; 1122 } else { 1123 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MINSTRETCFG_BIT_MINH; 1124 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFG_BIT_UINH : 0; 1125 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFG_BIT_SINH : 0; 1126 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1127 riscv_has_ext(env, RVU)) ? MINSTRETCFG_BIT_VUINH : 0; 1128 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1129 riscv_has_ext(env, RVS)) ? MINSTRETCFG_BIT_VSINH : 0; 1130 env->minstretcfg = val & inh_avail_mask; 1131 } 1132 return RISCV_EXCP_NONE; 1133 } 1134 1135 static RISCVException read_minstretcfgh(CPURISCVState *env, int csrno, 1136 target_ulong *val) 1137 { 1138 *val = env->minstretcfgh; 1139 return RISCV_EXCP_NONE; 1140 } 1141 1142 static RISCVException write_minstretcfgh(CPURISCVState *env, int csrno, 1143 target_ulong val, uintptr_t ra) 1144 { 1145 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1146 MINSTRETCFGH_BIT_MINH); 1147 1148 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFGH_BIT_UINH : 0; 1149 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFGH_BIT_SINH : 0; 1150 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1151 riscv_has_ext(env, RVU)) ? MINSTRETCFGH_BIT_VUINH : 0; 1152 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1153 riscv_has_ext(env, RVS)) ? MINSTRETCFGH_BIT_VSINH : 0; 1154 1155 env->minstretcfgh = val & inh_avail_mask; 1156 return RISCV_EXCP_NONE; 1157 } 1158 1159 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 1160 target_ulong *val) 1161 { 1162 int evt_index = csrno - CSR_MCOUNTINHIBIT; 1163 1164 *val = env->mhpmevent_val[evt_index]; 1165 1166 return RISCV_EXCP_NONE; 1167 } 1168 1169 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 1170 target_ulong val, uintptr_t ra) 1171 { 1172 int evt_index = csrno - CSR_MCOUNTINHIBIT; 1173 uint64_t mhpmevt_val = val; 1174 uint64_t inh_avail_mask; 1175 1176 if (riscv_cpu_mxl(env) == MXL_RV32) { 1177 env->mhpmevent_val[evt_index] = val; 1178 mhpmevt_val = mhpmevt_val | 1179 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 1180 } else { 1181 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MHPMEVENT_BIT_MINH; 1182 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENT_BIT_UINH : 0; 1183 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENT_BIT_SINH : 0; 1184 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1185 riscv_has_ext(env, RVU)) ? MHPMEVENT_BIT_VUINH : 0; 1186 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1187 riscv_has_ext(env, RVS)) ? MHPMEVENT_BIT_VSINH : 0; 1188 mhpmevt_val = val & inh_avail_mask; 1189 env->mhpmevent_val[evt_index] = mhpmevt_val; 1190 } 1191 1192 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1193 1194 return RISCV_EXCP_NONE; 1195 } 1196 1197 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 1198 target_ulong *val) 1199 { 1200 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 1201 1202 *val = env->mhpmeventh_val[evt_index]; 1203 1204 return RISCV_EXCP_NONE; 1205 } 1206 1207 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 1208 target_ulong val, uintptr_t ra) 1209 { 1210 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 1211 uint64_t mhpmevth_val; 1212 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 1213 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1214 MHPMEVENTH_BIT_MINH); 1215 1216 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENTH_BIT_UINH : 0; 1217 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENTH_BIT_SINH : 0; 1218 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1219 riscv_has_ext(env, RVU)) ? MHPMEVENTH_BIT_VUINH : 0; 1220 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1221 riscv_has_ext(env, RVS)) ? MHPMEVENTH_BIT_VSINH : 0; 1222 1223 mhpmevth_val = val & inh_avail_mask; 1224 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1225 env->mhpmeventh_val[evt_index] = mhpmevth_val; 1226 1227 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1228 1229 return RISCV_EXCP_NONE; 1230 } 1231 1232 static target_ulong riscv_pmu_ctr_get_fixed_counters_val(CPURISCVState *env, 1233 int counter_idx, 1234 bool upper_half) 1235 { 1236 int inst = riscv_pmu_ctr_monitor_instructions(env, counter_idx); 1237 uint64_t *counter_arr_virt = env->pmu_fixed_ctrs[inst].counter_virt; 1238 uint64_t *counter_arr = env->pmu_fixed_ctrs[inst].counter; 1239 target_ulong result = 0; 1240 uint64_t curr_val = 0; 1241 uint64_t cfg_val = 0; 1242 1243 if (counter_idx == 0) { 1244 cfg_val = upper_half ? ((uint64_t)env->mcyclecfgh << 32) : 1245 env->mcyclecfg; 1246 } else if (counter_idx == 2) { 1247 cfg_val = upper_half ? ((uint64_t)env->minstretcfgh << 32) : 1248 env->minstretcfg; 1249 } else { 1250 cfg_val = upper_half ? 1251 ((uint64_t)env->mhpmeventh_val[counter_idx] << 32) : 1252 env->mhpmevent_val[counter_idx]; 1253 cfg_val &= MHPMEVENT_FILTER_MASK; 1254 } 1255 1256 if (!cfg_val) { 1257 if (icount_enabled()) { 1258 curr_val = inst ? icount_get_raw() : icount_get(); 1259 } else { 1260 curr_val = cpu_get_host_ticks(); 1261 } 1262 1263 goto done; 1264 } 1265 1266 /* Update counter before reading. */ 1267 riscv_pmu_update_fixed_ctrs(env, env->priv, env->virt_enabled); 1268 1269 if (!(cfg_val & MCYCLECFG_BIT_MINH)) { 1270 curr_val += counter_arr[PRV_M]; 1271 } 1272 1273 if (!(cfg_val & MCYCLECFG_BIT_SINH)) { 1274 curr_val += counter_arr[PRV_S]; 1275 } 1276 1277 if (!(cfg_val & MCYCLECFG_BIT_UINH)) { 1278 curr_val += counter_arr[PRV_U]; 1279 } 1280 1281 if (!(cfg_val & MCYCLECFG_BIT_VSINH)) { 1282 curr_val += counter_arr_virt[PRV_S]; 1283 } 1284 1285 if (!(cfg_val & MCYCLECFG_BIT_VUINH)) { 1286 curr_val += counter_arr_virt[PRV_U]; 1287 } 1288 1289 done: 1290 if (riscv_cpu_mxl(env) == MXL_RV32) { 1291 result = upper_half ? curr_val >> 32 : curr_val; 1292 } else { 1293 result = curr_val; 1294 } 1295 1296 return result; 1297 } 1298 1299 static RISCVException riscv_pmu_write_ctr(CPURISCVState *env, target_ulong val, 1300 uint32_t ctr_idx) 1301 { 1302 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1303 uint64_t mhpmctr_val = val; 1304 1305 counter->mhpmcounter_val = val; 1306 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1307 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1308 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1309 counter->mhpmcounter_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1310 ctr_idx, false); 1311 if (ctr_idx > 2) { 1312 if (riscv_cpu_mxl(env) == MXL_RV32) { 1313 mhpmctr_val = mhpmctr_val | 1314 ((uint64_t)counter->mhpmcounterh_val << 32); 1315 } 1316 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1317 } 1318 } else { 1319 /* Other counters can keep incrementing from the given value */ 1320 counter->mhpmcounter_prev = val; 1321 } 1322 1323 return RISCV_EXCP_NONE; 1324 } 1325 1326 static RISCVException riscv_pmu_write_ctrh(CPURISCVState *env, target_ulong val, 1327 uint32_t ctr_idx) 1328 { 1329 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1330 uint64_t mhpmctr_val = counter->mhpmcounter_val; 1331 uint64_t mhpmctrh_val = val; 1332 1333 counter->mhpmcounterh_val = val; 1334 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 1335 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1336 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1337 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1338 counter->mhpmcounterh_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1339 ctr_idx, true); 1340 if (ctr_idx > 2) { 1341 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1342 } 1343 } else { 1344 counter->mhpmcounterh_prev = val; 1345 } 1346 1347 return RISCV_EXCP_NONE; 1348 } 1349 1350 static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, 1351 target_ulong val, uintptr_t ra) 1352 { 1353 int ctr_idx = csrno - CSR_MCYCLE; 1354 1355 return riscv_pmu_write_ctr(env, val, ctr_idx); 1356 } 1357 1358 static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, 1359 target_ulong val, uintptr_t ra) 1360 { 1361 int ctr_idx = csrno - CSR_MCYCLEH; 1362 1363 return riscv_pmu_write_ctrh(env, val, ctr_idx); 1364 } 1365 1366 RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 1367 bool upper_half, uint32_t ctr_idx) 1368 { 1369 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1370 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 1371 counter->mhpmcounter_prev; 1372 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 1373 counter->mhpmcounter_val; 1374 1375 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 1376 /* 1377 * Counter should not increment if inhibit bit is set. Just return the 1378 * current counter value. 1379 */ 1380 *val = ctr_val; 1381 return RISCV_EXCP_NONE; 1382 } 1383 1384 /* 1385 * The kernel computes the perf delta by subtracting the current value from 1386 * the value it initialized previously (ctr_val). 1387 */ 1388 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1389 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 1390 *val = riscv_pmu_ctr_get_fixed_counters_val(env, ctr_idx, upper_half) - 1391 ctr_prev + ctr_val; 1392 } else { 1393 *val = ctr_val; 1394 } 1395 1396 return RISCV_EXCP_NONE; 1397 } 1398 1399 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1400 target_ulong *val) 1401 { 1402 uint16_t ctr_index; 1403 1404 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 1405 ctr_index = csrno - CSR_MCYCLE; 1406 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 1407 ctr_index = csrno - CSR_CYCLE; 1408 } else { 1409 return RISCV_EXCP_ILLEGAL_INST; 1410 } 1411 1412 return riscv_pmu_read_ctr(env, val, false, ctr_index); 1413 } 1414 1415 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1416 target_ulong *val) 1417 { 1418 uint16_t ctr_index; 1419 1420 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 1421 ctr_index = csrno - CSR_MCYCLEH; 1422 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 1423 ctr_index = csrno - CSR_CYCLEH; 1424 } else { 1425 return RISCV_EXCP_ILLEGAL_INST; 1426 } 1427 1428 return riscv_pmu_read_ctr(env, val, true, ctr_index); 1429 } 1430 1431 static int rmw_cd_mhpmcounter(CPURISCVState *env, int ctr_idx, 1432 target_ulong *val, target_ulong new_val, 1433 target_ulong wr_mask) 1434 { 1435 if (wr_mask != 0 && wr_mask != -1) { 1436 return -EINVAL; 1437 } 1438 1439 if (!wr_mask && val) { 1440 riscv_pmu_read_ctr(env, val, false, ctr_idx); 1441 } else if (wr_mask) { 1442 riscv_pmu_write_ctr(env, new_val, ctr_idx); 1443 } else { 1444 return -EINVAL; 1445 } 1446 1447 return 0; 1448 } 1449 1450 static int rmw_cd_mhpmcounterh(CPURISCVState *env, int ctr_idx, 1451 target_ulong *val, target_ulong new_val, 1452 target_ulong wr_mask) 1453 { 1454 if (wr_mask != 0 && wr_mask != -1) { 1455 return -EINVAL; 1456 } 1457 1458 if (!wr_mask && val) { 1459 riscv_pmu_read_ctr(env, val, true, ctr_idx); 1460 } else if (wr_mask) { 1461 riscv_pmu_write_ctrh(env, new_val, ctr_idx); 1462 } else { 1463 return -EINVAL; 1464 } 1465 1466 return 0; 1467 } 1468 1469 static int rmw_cd_mhpmevent(CPURISCVState *env, int evt_index, 1470 target_ulong *val, target_ulong new_val, 1471 target_ulong wr_mask) 1472 { 1473 uint64_t mhpmevt_val = new_val; 1474 1475 if (wr_mask != 0 && wr_mask != -1) { 1476 return -EINVAL; 1477 } 1478 1479 if (!wr_mask && val) { 1480 *val = env->mhpmevent_val[evt_index]; 1481 if (riscv_cpu_cfg(env)->ext_sscofpmf) { 1482 *val &= ~MHPMEVENT_BIT_MINH; 1483 } 1484 } else if (wr_mask) { 1485 wr_mask &= ~MHPMEVENT_BIT_MINH; 1486 mhpmevt_val = (new_val & wr_mask) | 1487 (env->mhpmevent_val[evt_index] & ~wr_mask); 1488 if (riscv_cpu_mxl(env) == MXL_RV32) { 1489 mhpmevt_val = mhpmevt_val | 1490 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 1491 } 1492 env->mhpmevent_val[evt_index] = mhpmevt_val; 1493 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1494 } else { 1495 return -EINVAL; 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int rmw_cd_mhpmeventh(CPURISCVState *env, int evt_index, 1502 target_ulong *val, target_ulong new_val, 1503 target_ulong wr_mask) 1504 { 1505 uint64_t mhpmevth_val; 1506 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 1507 1508 if (wr_mask != 0 && wr_mask != -1) { 1509 return -EINVAL; 1510 } 1511 1512 if (!wr_mask && val) { 1513 *val = env->mhpmeventh_val[evt_index]; 1514 if (riscv_cpu_cfg(env)->ext_sscofpmf) { 1515 *val &= ~MHPMEVENTH_BIT_MINH; 1516 } 1517 } else if (wr_mask) { 1518 wr_mask &= ~MHPMEVENTH_BIT_MINH; 1519 env->mhpmeventh_val[evt_index] = 1520 (new_val & wr_mask) | (env->mhpmeventh_val[evt_index] & ~wr_mask); 1521 mhpmevth_val = env->mhpmeventh_val[evt_index]; 1522 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1523 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1524 } else { 1525 return -EINVAL; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int rmw_cd_ctr_cfg(CPURISCVState *env, int cfg_index, target_ulong *val, 1532 target_ulong new_val, target_ulong wr_mask) 1533 { 1534 switch (cfg_index) { 1535 case 0: /* CYCLECFG */ 1536 if (wr_mask) { 1537 wr_mask &= ~MCYCLECFG_BIT_MINH; 1538 env->mcyclecfg = (new_val & wr_mask) | (env->mcyclecfg & ~wr_mask); 1539 } else { 1540 *val = env->mcyclecfg &= ~MHPMEVENTH_BIT_MINH; 1541 } 1542 break; 1543 case 2: /* INSTRETCFG */ 1544 if (wr_mask) { 1545 wr_mask &= ~MINSTRETCFG_BIT_MINH; 1546 env->minstretcfg = (new_val & wr_mask) | 1547 (env->minstretcfg & ~wr_mask); 1548 } else { 1549 *val = env->minstretcfg &= ~MHPMEVENTH_BIT_MINH; 1550 } 1551 break; 1552 default: 1553 return -EINVAL; 1554 } 1555 return 0; 1556 } 1557 1558 static int rmw_cd_ctr_cfgh(CPURISCVState *env, int cfg_index, target_ulong *val, 1559 target_ulong new_val, target_ulong wr_mask) 1560 { 1561 1562 if (riscv_cpu_mxl(env) != MXL_RV32) { 1563 return RISCV_EXCP_ILLEGAL_INST; 1564 } 1565 1566 switch (cfg_index) { 1567 case 0: /* CYCLECFGH */ 1568 if (wr_mask) { 1569 wr_mask &= ~MCYCLECFGH_BIT_MINH; 1570 env->mcyclecfgh = (new_val & wr_mask) | 1571 (env->mcyclecfgh & ~wr_mask); 1572 } else { 1573 *val = env->mcyclecfgh; 1574 } 1575 break; 1576 case 2: /* INSTRETCFGH */ 1577 if (wr_mask) { 1578 wr_mask &= ~MINSTRETCFGH_BIT_MINH; 1579 env->minstretcfgh = (new_val & wr_mask) | 1580 (env->minstretcfgh & ~wr_mask); 1581 } else { 1582 *val = env->minstretcfgh; 1583 } 1584 break; 1585 default: 1586 return -EINVAL; 1587 } 1588 return 0; 1589 } 1590 1591 1592 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 1593 target_ulong *val) 1594 { 1595 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 1596 int i; 1597 *val = 0; 1598 target_ulong *mhpm_evt_val; 1599 uint64_t of_bit_mask; 1600 1601 /* Virtualize scountovf for counter delegation */ 1602 if (riscv_cpu_cfg(env)->ext_sscofpmf && 1603 riscv_cpu_cfg(env)->ext_ssccfg && 1604 get_field(env->menvcfg, MENVCFG_CDE) && 1605 env->virt_enabled) { 1606 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1607 } 1608 1609 if (riscv_cpu_mxl(env) == MXL_RV32) { 1610 mhpm_evt_val = env->mhpmeventh_val; 1611 of_bit_mask = MHPMEVENTH_BIT_OF; 1612 } else { 1613 mhpm_evt_val = env->mhpmevent_val; 1614 of_bit_mask = MHPMEVENT_BIT_OF; 1615 } 1616 1617 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1618 if ((get_field(env->mcounteren, BIT(i))) && 1619 (mhpm_evt_val[i] & of_bit_mask)) { 1620 *val |= BIT(i); 1621 } 1622 } 1623 1624 return RISCV_EXCP_NONE; 1625 } 1626 1627 static RISCVException read_time(CPURISCVState *env, int csrno, 1628 target_ulong *val) 1629 { 1630 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1631 1632 if (!env->rdtime_fn) { 1633 return RISCV_EXCP_ILLEGAL_INST; 1634 } 1635 1636 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1637 return RISCV_EXCP_NONE; 1638 } 1639 1640 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1641 target_ulong *val) 1642 { 1643 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1644 1645 if (!env->rdtime_fn) { 1646 return RISCV_EXCP_ILLEGAL_INST; 1647 } 1648 1649 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1650 return RISCV_EXCP_NONE; 1651 } 1652 1653 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1654 target_ulong *val) 1655 { 1656 *val = env->vstimecmp; 1657 1658 return RISCV_EXCP_NONE; 1659 } 1660 1661 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1662 target_ulong *val) 1663 { 1664 *val = env->vstimecmp >> 32; 1665 1666 return RISCV_EXCP_NONE; 1667 } 1668 1669 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1670 target_ulong val, uintptr_t ra) 1671 { 1672 if (riscv_cpu_mxl(env) == MXL_RV32) { 1673 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1674 } else { 1675 env->vstimecmp = val; 1676 } 1677 1678 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1679 env->htimedelta, MIP_VSTIP); 1680 1681 return RISCV_EXCP_NONE; 1682 } 1683 1684 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1685 target_ulong val, uintptr_t ra) 1686 { 1687 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1688 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1689 env->htimedelta, MIP_VSTIP); 1690 1691 return RISCV_EXCP_NONE; 1692 } 1693 1694 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1695 target_ulong *val) 1696 { 1697 if (env->virt_enabled) { 1698 *val = env->vstimecmp; 1699 } else { 1700 *val = env->stimecmp; 1701 } 1702 1703 return RISCV_EXCP_NONE; 1704 } 1705 1706 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1707 target_ulong *val) 1708 { 1709 if (env->virt_enabled) { 1710 *val = env->vstimecmp >> 32; 1711 } else { 1712 *val = env->stimecmp >> 32; 1713 } 1714 1715 return RISCV_EXCP_NONE; 1716 } 1717 1718 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1719 target_ulong val, uintptr_t ra) 1720 { 1721 if (env->virt_enabled) { 1722 if (env->hvictl & HVICTL_VTI) { 1723 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1724 } 1725 return write_vstimecmp(env, csrno, val, ra); 1726 } 1727 1728 if (riscv_cpu_mxl(env) == MXL_RV32) { 1729 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1730 } else { 1731 env->stimecmp = val; 1732 } 1733 1734 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1735 1736 return RISCV_EXCP_NONE; 1737 } 1738 1739 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1740 target_ulong val, uintptr_t ra) 1741 { 1742 if (env->virt_enabled) { 1743 if (env->hvictl & HVICTL_VTI) { 1744 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1745 } 1746 return write_vstimecmph(env, csrno, val, ra); 1747 } 1748 1749 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1750 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1751 1752 return RISCV_EXCP_NONE; 1753 } 1754 1755 #define VSTOPI_NUM_SRCS 5 1756 1757 /* 1758 * All core local interrupts except the fixed ones 0:12. This macro is for 1759 * virtual interrupts logic so please don't change this to avoid messing up 1760 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1761 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1762 * VS level`. 1763 */ 1764 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1765 1766 static const uint64_t delegable_ints = 1767 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1768 static const uint64_t vs_delegable_ints = 1769 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1770 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1771 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1772 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1773 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1774 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1775 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1776 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1777 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1778 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1779 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1780 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1781 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1782 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1783 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1784 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1785 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1786 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1787 (1ULL << (RISCV_EXCP_SW_CHECK)) | \ 1788 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1789 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1790 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1791 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1792 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1793 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1794 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1795 (1ULL << (RISCV_EXCP_M_ECALL)) | 1796 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1797 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1798 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1799 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1800 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1801 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1802 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1803 1804 /* 1805 * Spec allows for bits 13:63 to be either read-only or writable. 1806 * So far we have interrupt LCOFIP in that region which is writable. 1807 * 1808 * Also, spec allows to inject virtual interrupts in this region even 1809 * without any hardware interrupts for that interrupt number. 1810 * 1811 * For now interrupt in 13:63 region are all kept writable. 13 being 1812 * LCOFIP and 14:63 being virtual only. Change this in future if we 1813 * introduce more interrupts that are not writable. 1814 */ 1815 1816 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1817 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1818 LOCAL_INTERRUPTS; 1819 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1820 LOCAL_INTERRUPTS; 1821 1822 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1823 static const uint64_t hip_writable_mask = MIP_VSSIP; 1824 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1825 MIP_VSEIP | LOCAL_INTERRUPTS; 1826 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1827 1828 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1829 1830 const bool valid_vm_1_10_32[16] = { 1831 [VM_1_10_MBARE] = true, 1832 [VM_1_10_SV32] = true 1833 }; 1834 1835 const bool valid_vm_1_10_64[16] = { 1836 [VM_1_10_MBARE] = true, 1837 [VM_1_10_SV39] = true, 1838 [VM_1_10_SV48] = true, 1839 [VM_1_10_SV57] = true 1840 }; 1841 1842 /* Machine Information Registers */ 1843 static RISCVException read_zero(CPURISCVState *env, int csrno, 1844 target_ulong *val) 1845 { 1846 *val = 0; 1847 return RISCV_EXCP_NONE; 1848 } 1849 1850 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1851 target_ulong val, uintptr_t ra) 1852 { 1853 return RISCV_EXCP_NONE; 1854 } 1855 1856 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1857 target_ulong *val) 1858 { 1859 *val = riscv_cpu_cfg(env)->mvendorid; 1860 return RISCV_EXCP_NONE; 1861 } 1862 1863 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1864 target_ulong *val) 1865 { 1866 *val = riscv_cpu_cfg(env)->marchid; 1867 return RISCV_EXCP_NONE; 1868 } 1869 1870 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1871 target_ulong *val) 1872 { 1873 *val = riscv_cpu_cfg(env)->mimpid; 1874 return RISCV_EXCP_NONE; 1875 } 1876 1877 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1878 target_ulong *val) 1879 { 1880 *val = env->mhartid; 1881 return RISCV_EXCP_NONE; 1882 } 1883 1884 /* Machine Trap Setup */ 1885 1886 /* We do not store SD explicitly, only compute it on demand. */ 1887 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1888 { 1889 if ((status & MSTATUS_FS) == MSTATUS_FS || 1890 (status & MSTATUS_VS) == MSTATUS_VS || 1891 (status & MSTATUS_XS) == MSTATUS_XS) { 1892 switch (xl) { 1893 case MXL_RV32: 1894 return status | MSTATUS32_SD; 1895 case MXL_RV64: 1896 return status | MSTATUS64_SD; 1897 case MXL_RV128: 1898 return MSTATUSH128_SD; 1899 default: 1900 g_assert_not_reached(); 1901 } 1902 } 1903 return status; 1904 } 1905 1906 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1907 target_ulong *val) 1908 { 1909 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1910 return RISCV_EXCP_NONE; 1911 } 1912 1913 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1914 { 1915 uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; 1916 return get_field(mode_supported, (1 << vm)); 1917 } 1918 1919 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1920 target_ulong val) 1921 { 1922 target_ulong mask; 1923 bool vm; 1924 if (riscv_cpu_mxl(env) == MXL_RV32) { 1925 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1926 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1927 } else { 1928 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1929 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1930 } 1931 1932 if (vm && mask) { 1933 /* 1934 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1935 * pass these through QEMU's TLB emulation as it improves 1936 * performance. Flushing the TLB on SATP writes with paging 1937 * enabled avoids leaking those invalid cached mappings. 1938 */ 1939 tlb_flush(env_cpu(env)); 1940 return val; 1941 } 1942 return old_xatp; 1943 } 1944 1945 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1946 target_ulong val) 1947 { 1948 bool valid = false; 1949 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1950 1951 switch (new_mpp) { 1952 case PRV_M: 1953 valid = true; 1954 break; 1955 case PRV_S: 1956 valid = riscv_has_ext(env, RVS); 1957 break; 1958 case PRV_U: 1959 valid = riscv_has_ext(env, RVU); 1960 break; 1961 } 1962 1963 /* Remain field unchanged if new_mpp value is invalid */ 1964 if (!valid) { 1965 val = set_field(val, MSTATUS_MPP, old_mpp); 1966 } 1967 1968 return val; 1969 } 1970 1971 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1972 target_ulong val, uintptr_t ra) 1973 { 1974 uint64_t mstatus = env->mstatus; 1975 uint64_t mask = 0; 1976 RISCVMXL xl = riscv_cpu_mxl(env); 1977 1978 /* 1979 * MPP field have been made WARL since priv version 1.11. However, 1980 * legalization for it will not break any software running on 1.10. 1981 */ 1982 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1983 1984 /* flush tlb on mstatus fields that affect VM */ 1985 if ((val ^ mstatus) & MSTATUS_MXR) { 1986 tlb_flush(env_cpu(env)); 1987 } 1988 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1989 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1990 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1991 MSTATUS_TW; 1992 1993 if (riscv_has_ext(env, RVF)) { 1994 mask |= MSTATUS_FS; 1995 } 1996 if (riscv_has_ext(env, RVV)) { 1997 mask |= MSTATUS_VS; 1998 } 1999 2000 if (riscv_env_smode_dbltrp_enabled(env, env->virt_enabled)) { 2001 mask |= MSTATUS_SDT; 2002 if ((val & MSTATUS_SDT) != 0) { 2003 val &= ~MSTATUS_SIE; 2004 } 2005 } 2006 2007 if (riscv_cpu_cfg(env)->ext_smdbltrp) { 2008 mask |= MSTATUS_MDT; 2009 if ((val & MSTATUS_MDT) != 0) { 2010 val &= ~MSTATUS_MIE; 2011 } 2012 } 2013 2014 if (xl != MXL_RV32 || env->debugger) { 2015 if (riscv_has_ext(env, RVH)) { 2016 mask |= MSTATUS_MPV | MSTATUS_GVA; 2017 } 2018 if ((val & MSTATUS64_UXL) != 0) { 2019 mask |= MSTATUS64_UXL; 2020 } 2021 } 2022 2023 /* If cfi lp extension is available, then apply cfi lp mask */ 2024 if (env_archcpu(env)->cfg.ext_zicfilp) { 2025 mask |= (MSTATUS_MPELP | MSTATUS_SPELP); 2026 } 2027 2028 mstatus = (mstatus & ~mask) | (val & mask); 2029 2030 env->mstatus = mstatus; 2031 2032 /* 2033 * Except in debug mode, UXL/SXL can only be modified by higher 2034 * privilege mode. So xl will not be changed in normal mode. 2035 */ 2036 if (env->debugger) { 2037 env->xl = cpu_recompute_xl(env); 2038 } 2039 2040 return RISCV_EXCP_NONE; 2041 } 2042 2043 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 2044 target_ulong *val) 2045 { 2046 *val = env->mstatus >> 32; 2047 return RISCV_EXCP_NONE; 2048 } 2049 2050 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 2051 target_ulong val, uintptr_t ra) 2052 { 2053 uint64_t valh = (uint64_t)val << 32; 2054 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 2055 2056 if (riscv_cpu_cfg(env)->ext_smdbltrp) { 2057 mask |= MSTATUS_MDT; 2058 if ((valh & MSTATUS_MDT) != 0) { 2059 mask |= MSTATUS_MIE; 2060 } 2061 } 2062 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 2063 2064 return RISCV_EXCP_NONE; 2065 } 2066 2067 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 2068 Int128 *val) 2069 { 2070 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 2071 env->mstatus)); 2072 return RISCV_EXCP_NONE; 2073 } 2074 2075 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 2076 Int128 *val) 2077 { 2078 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 2079 return RISCV_EXCP_NONE; 2080 } 2081 2082 static RISCVException read_misa(CPURISCVState *env, int csrno, 2083 target_ulong *val) 2084 { 2085 target_ulong misa; 2086 2087 switch (env->misa_mxl) { 2088 case MXL_RV32: 2089 misa = (target_ulong)MXL_RV32 << 30; 2090 break; 2091 #ifdef TARGET_RISCV64 2092 case MXL_RV64: 2093 misa = (target_ulong)MXL_RV64 << 62; 2094 break; 2095 #endif 2096 default: 2097 g_assert_not_reached(); 2098 } 2099 2100 *val = misa | env->misa_ext; 2101 return RISCV_EXCP_NONE; 2102 } 2103 2104 static target_ulong get_next_pc(CPURISCVState *env, uintptr_t ra) 2105 { 2106 uint64_t data[INSN_START_WORDS]; 2107 2108 /* Outside of a running cpu, env contains the next pc. */ 2109 if (ra == 0 || !cpu_unwind_state_data(env_cpu(env), ra, data)) { 2110 return env->pc; 2111 } 2112 2113 /* Within unwind data, [0] is pc and [1] is the opcode. */ 2114 return data[0] + insn_len(data[1]); 2115 } 2116 2117 static RISCVException write_misa(CPURISCVState *env, int csrno, 2118 target_ulong val, uintptr_t ra) 2119 { 2120 RISCVCPU *cpu = env_archcpu(env); 2121 uint32_t orig_misa_ext = env->misa_ext; 2122 Error *local_err = NULL; 2123 2124 if (!riscv_cpu_cfg(env)->misa_w) { 2125 /* drop write to misa */ 2126 return RISCV_EXCP_NONE; 2127 } 2128 2129 /* Mask extensions that are not supported by this hart */ 2130 val &= env->misa_ext_mask; 2131 2132 /* Suppress 'C' if next instruction is not aligned. */ 2133 if ((val & RVC) && (get_next_pc(env, ra) & 3) != 0) { 2134 val &= ~RVC; 2135 } 2136 2137 /* Disable RVG if any of its dependencies are disabled */ 2138 if (!(val & RVI && val & RVM && val & RVA && 2139 val & RVF && val & RVD)) { 2140 val &= ~RVG; 2141 } 2142 2143 /* If nothing changed, do nothing. */ 2144 if (val == env->misa_ext) { 2145 return RISCV_EXCP_NONE; 2146 } 2147 2148 env->misa_ext = val; 2149 riscv_cpu_validate_set_extensions(cpu, &local_err); 2150 if (local_err != NULL) { 2151 /* Rollback on validation error */ 2152 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 2153 "0x%x, keeping existing MISA ext 0x%x\n", 2154 env->misa_ext, orig_misa_ext); 2155 2156 env->misa_ext = orig_misa_ext; 2157 2158 return RISCV_EXCP_NONE; 2159 } 2160 2161 if (!(env->misa_ext & RVF)) { 2162 env->mstatus &= ~MSTATUS_FS; 2163 } 2164 2165 /* flush translation cache */ 2166 tb_flush(env_cpu(env)); 2167 env->xl = riscv_cpu_mxl(env); 2168 return RISCV_EXCP_NONE; 2169 } 2170 2171 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 2172 target_ulong *val) 2173 { 2174 *val = env->medeleg; 2175 return RISCV_EXCP_NONE; 2176 } 2177 2178 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 2179 target_ulong val, uintptr_t ra) 2180 { 2181 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 2182 return RISCV_EXCP_NONE; 2183 } 2184 2185 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 2186 uint64_t *ret_val, 2187 uint64_t new_val, uint64_t wr_mask) 2188 { 2189 uint64_t mask = wr_mask & delegable_ints; 2190 2191 if (ret_val) { 2192 *ret_val = env->mideleg; 2193 } 2194 2195 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 2196 2197 if (riscv_has_ext(env, RVH)) { 2198 env->mideleg |= HS_MODE_INTERRUPTS; 2199 } 2200 2201 return RISCV_EXCP_NONE; 2202 } 2203 2204 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 2205 target_ulong *ret_val, 2206 target_ulong new_val, target_ulong wr_mask) 2207 { 2208 uint64_t rval; 2209 RISCVException ret; 2210 2211 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 2212 if (ret_val) { 2213 *ret_val = rval; 2214 } 2215 2216 return ret; 2217 } 2218 2219 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 2220 target_ulong *ret_val, 2221 target_ulong new_val, 2222 target_ulong wr_mask) 2223 { 2224 uint64_t rval; 2225 RISCVException ret; 2226 2227 ret = rmw_mideleg64(env, csrno, &rval, 2228 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2229 if (ret_val) { 2230 *ret_val = rval >> 32; 2231 } 2232 2233 return ret; 2234 } 2235 2236 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 2237 uint64_t *ret_val, 2238 uint64_t new_val, uint64_t wr_mask) 2239 { 2240 uint64_t mask = wr_mask & all_ints; 2241 2242 if (ret_val) { 2243 *ret_val = env->mie; 2244 } 2245 2246 env->mie = (env->mie & ~mask) | (new_val & mask); 2247 2248 if (!riscv_has_ext(env, RVH)) { 2249 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 2250 } 2251 2252 return RISCV_EXCP_NONE; 2253 } 2254 2255 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 2256 target_ulong *ret_val, 2257 target_ulong new_val, target_ulong wr_mask) 2258 { 2259 uint64_t rval; 2260 RISCVException ret; 2261 2262 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 2263 if (ret_val) { 2264 *ret_val = rval; 2265 } 2266 2267 return ret; 2268 } 2269 2270 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 2271 target_ulong *ret_val, 2272 target_ulong new_val, target_ulong wr_mask) 2273 { 2274 uint64_t rval; 2275 RISCVException ret; 2276 2277 ret = rmw_mie64(env, csrno, &rval, 2278 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2279 if (ret_val) { 2280 *ret_val = rval >> 32; 2281 } 2282 2283 return ret; 2284 } 2285 2286 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 2287 uint64_t *ret_val, 2288 uint64_t new_val, uint64_t wr_mask) 2289 { 2290 uint64_t mask = wr_mask & mvien_writable_mask; 2291 2292 if (ret_val) { 2293 *ret_val = env->mvien; 2294 } 2295 2296 env->mvien = (env->mvien & ~mask) | (new_val & mask); 2297 2298 return RISCV_EXCP_NONE; 2299 } 2300 2301 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 2302 target_ulong *ret_val, 2303 target_ulong new_val, target_ulong wr_mask) 2304 { 2305 uint64_t rval; 2306 RISCVException ret; 2307 2308 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 2309 if (ret_val) { 2310 *ret_val = rval; 2311 } 2312 2313 return ret; 2314 } 2315 2316 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 2317 target_ulong *ret_val, 2318 target_ulong new_val, target_ulong wr_mask) 2319 { 2320 uint64_t rval; 2321 RISCVException ret; 2322 2323 ret = rmw_mvien64(env, csrno, &rval, 2324 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2325 if (ret_val) { 2326 *ret_val = rval >> 32; 2327 } 2328 2329 return ret; 2330 } 2331 2332 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 2333 target_ulong *val) 2334 { 2335 int irq; 2336 uint8_t iprio; 2337 2338 irq = riscv_cpu_mirq_pending(env); 2339 if (irq <= 0 || irq > 63) { 2340 *val = 0; 2341 } else { 2342 iprio = env->miprio[irq]; 2343 if (!iprio) { 2344 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 2345 iprio = IPRIO_MMAXIPRIO; 2346 } 2347 } 2348 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2349 *val |= iprio; 2350 } 2351 2352 return RISCV_EXCP_NONE; 2353 } 2354 2355 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 2356 { 2357 if (!env->virt_enabled) { 2358 return csrno; 2359 } 2360 2361 switch (csrno) { 2362 case CSR_SISELECT: 2363 return CSR_VSISELECT; 2364 case CSR_SIREG: 2365 return CSR_VSIREG; 2366 case CSR_STOPEI: 2367 return CSR_VSTOPEI; 2368 default: 2369 return csrno; 2370 }; 2371 } 2372 2373 static int csrind_xlate_vs_csrno(CPURISCVState *env, int csrno) 2374 { 2375 if (!env->virt_enabled) { 2376 return csrno; 2377 } 2378 2379 switch (csrno) { 2380 case CSR_SISELECT: 2381 return CSR_VSISELECT; 2382 case CSR_SIREG: 2383 case CSR_SIREG2: 2384 case CSR_SIREG3: 2385 case CSR_SIREG4: 2386 case CSR_SIREG5: 2387 case CSR_SIREG6: 2388 return CSR_VSIREG + (csrno - CSR_SIREG); 2389 default: 2390 return csrno; 2391 }; 2392 } 2393 2394 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 2395 target_ulong *val, target_ulong new_val, 2396 target_ulong wr_mask) 2397 { 2398 target_ulong *iselect; 2399 int ret; 2400 2401 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2402 if (ret != RISCV_EXCP_NONE) { 2403 return ret; 2404 } 2405 2406 /* Translate CSR number for VS-mode */ 2407 csrno = csrind_xlate_vs_csrno(env, csrno); 2408 2409 /* Find the iselect CSR based on CSR number */ 2410 switch (csrno) { 2411 case CSR_MISELECT: 2412 iselect = &env->miselect; 2413 break; 2414 case CSR_SISELECT: 2415 iselect = &env->siselect; 2416 break; 2417 case CSR_VSISELECT: 2418 iselect = &env->vsiselect; 2419 break; 2420 default: 2421 return RISCV_EXCP_ILLEGAL_INST; 2422 }; 2423 2424 if (val) { 2425 *val = *iselect; 2426 } 2427 2428 if (riscv_cpu_cfg(env)->ext_smcsrind || riscv_cpu_cfg(env)->ext_sscsrind) { 2429 wr_mask &= ISELECT_MASK_SXCSRIND; 2430 } else { 2431 wr_mask &= ISELECT_MASK_AIA; 2432 } 2433 2434 if (wr_mask) { 2435 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 2436 } 2437 2438 return RISCV_EXCP_NONE; 2439 } 2440 2441 static bool xiselect_aia_range(target_ulong isel) 2442 { 2443 return (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) || 2444 (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST); 2445 } 2446 2447 static bool xiselect_cd_range(target_ulong isel) 2448 { 2449 return (ISELECT_CD_FIRST <= isel && isel <= ISELECT_CD_LAST); 2450 } 2451 2452 static bool xiselect_ctr_range(int csrno, target_ulong isel) 2453 { 2454 /* MIREG-MIREG6 for the range 0x200-0x2ff are not used by CTR. */ 2455 return CTR_ENTRIES_FIRST <= isel && isel <= CTR_ENTRIES_LAST && 2456 csrno < CSR_MIREG; 2457 } 2458 2459 static int rmw_iprio(target_ulong xlen, 2460 target_ulong iselect, uint8_t *iprio, 2461 target_ulong *val, target_ulong new_val, 2462 target_ulong wr_mask, int ext_irq_no) 2463 { 2464 int i, firq, nirqs; 2465 target_ulong old_val; 2466 2467 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 2468 return -EINVAL; 2469 } 2470 if (xlen != 32 && iselect & 0x1) { 2471 return -EINVAL; 2472 } 2473 2474 nirqs = 4 * (xlen / 32); 2475 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 2476 2477 old_val = 0; 2478 for (i = 0; i < nirqs; i++) { 2479 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 2480 } 2481 2482 if (val) { 2483 *val = old_val; 2484 } 2485 2486 if (wr_mask) { 2487 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 2488 for (i = 0; i < nirqs; i++) { 2489 /* 2490 * M-level and S-level external IRQ priority always read-only 2491 * zero. This means default priority order is always preferred 2492 * for M-level and S-level external IRQs. 2493 */ 2494 if ((firq + i) == ext_irq_no) { 2495 continue; 2496 } 2497 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 2498 } 2499 } 2500 2501 return 0; 2502 } 2503 2504 static int rmw_ctrsource(CPURISCVState *env, int isel, target_ulong *val, 2505 target_ulong new_val, target_ulong wr_mask) 2506 { 2507 /* 2508 * CTR arrays are treated as circular buffers and TOS always points to next 2509 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2510 * 0 is always the latest one, traversal is a bit different here. See the 2511 * below example. 2512 * 2513 * Depth = 16. 2514 * 2515 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2516 * TOS H 2517 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2518 */ 2519 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2520 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2521 uint64_t idx; 2522 2523 /* Entry greater than depth-1 is read-only zero */ 2524 if (entry >= depth) { 2525 if (val) { 2526 *val = 0; 2527 } 2528 return 0; 2529 } 2530 2531 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2532 idx = (idx - entry - 1) & (depth - 1); 2533 2534 if (val) { 2535 *val = env->ctr_src[idx]; 2536 } 2537 2538 env->ctr_src[idx] = (env->ctr_src[idx] & ~wr_mask) | (new_val & wr_mask); 2539 2540 return 0; 2541 } 2542 2543 static int rmw_ctrtarget(CPURISCVState *env, int isel, target_ulong *val, 2544 target_ulong new_val, target_ulong wr_mask) 2545 { 2546 /* 2547 * CTR arrays are treated as circular buffers and TOS always points to next 2548 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2549 * 0 is always the latest one, traversal is a bit different here. See the 2550 * below example. 2551 * 2552 * Depth = 16. 2553 * 2554 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2555 * head H 2556 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2557 */ 2558 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2559 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2560 uint64_t idx; 2561 2562 /* Entry greater than depth-1 is read-only zero */ 2563 if (entry >= depth) { 2564 if (val) { 2565 *val = 0; 2566 } 2567 return 0; 2568 } 2569 2570 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2571 idx = (idx - entry - 1) & (depth - 1); 2572 2573 if (val) { 2574 *val = env->ctr_dst[idx]; 2575 } 2576 2577 env->ctr_dst[idx] = (env->ctr_dst[idx] & ~wr_mask) | (new_val & wr_mask); 2578 2579 return 0; 2580 } 2581 2582 static int rmw_ctrdata(CPURISCVState *env, int isel, target_ulong *val, 2583 target_ulong new_val, target_ulong wr_mask) 2584 { 2585 /* 2586 * CTR arrays are treated as circular buffers and TOS always points to next 2587 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2588 * 0 is always the latest one, traversal is a bit different here. See the 2589 * below example. 2590 * 2591 * Depth = 16. 2592 * 2593 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2594 * head H 2595 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2596 */ 2597 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2598 const uint64_t mask = wr_mask & CTRDATA_MASK; 2599 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2600 uint64_t idx; 2601 2602 /* Entry greater than depth-1 is read-only zero */ 2603 if (entry >= depth) { 2604 if (val) { 2605 *val = 0; 2606 } 2607 return 0; 2608 } 2609 2610 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2611 idx = (idx - entry - 1) & (depth - 1); 2612 2613 if (val) { 2614 *val = env->ctr_data[idx]; 2615 } 2616 2617 env->ctr_data[idx] = (env->ctr_data[idx] & ~mask) | (new_val & mask); 2618 2619 return 0; 2620 } 2621 2622 static RISCVException rmw_xireg_aia(CPURISCVState *env, int csrno, 2623 target_ulong isel, target_ulong *val, 2624 target_ulong new_val, target_ulong wr_mask) 2625 { 2626 bool virt = false, isel_reserved = false; 2627 int ret = -EINVAL; 2628 uint8_t *iprio; 2629 target_ulong priv, vgein; 2630 2631 /* VS-mode CSR number passed in has already been translated */ 2632 switch (csrno) { 2633 case CSR_MIREG: 2634 if (!riscv_cpu_cfg(env)->ext_smaia) { 2635 goto done; 2636 } 2637 iprio = env->miprio; 2638 priv = PRV_M; 2639 break; 2640 case CSR_SIREG: 2641 if (!riscv_cpu_cfg(env)->ext_ssaia || 2642 (env->priv == PRV_S && env->mvien & MIP_SEIP && 2643 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 2644 env->siselect <= ISELECT_IMSIC_EIE63)) { 2645 goto done; 2646 } 2647 iprio = env->siprio; 2648 priv = PRV_S; 2649 break; 2650 case CSR_VSIREG: 2651 if (!riscv_cpu_cfg(env)->ext_ssaia) { 2652 goto done; 2653 } 2654 iprio = env->hviprio; 2655 priv = PRV_S; 2656 virt = true; 2657 break; 2658 default: 2659 goto done; 2660 }; 2661 2662 /* Find the selected guest interrupt file */ 2663 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2664 2665 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 2666 /* Local interrupt priority registers not available for VS-mode */ 2667 if (!virt) { 2668 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 2669 isel, iprio, val, new_val, wr_mask, 2670 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 2671 } 2672 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 2673 /* IMSIC registers only available when machine implements it. */ 2674 if (env->aia_ireg_rmw_fn[priv]) { 2675 /* Selected guest interrupt file should not be zero */ 2676 if (virt && (!vgein || env->geilen < vgein)) { 2677 goto done; 2678 } 2679 /* Call machine specific IMSIC register emulation */ 2680 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2681 AIA_MAKE_IREG(isel, priv, virt, vgein, 2682 riscv_cpu_mxl_bits(env)), 2683 val, new_val, wr_mask); 2684 } 2685 } else { 2686 isel_reserved = true; 2687 } 2688 2689 done: 2690 /* 2691 * If AIA is not enabled, illegal instruction exception is always 2692 * returned regardless of whether we are in VS-mode or not 2693 */ 2694 if (ret) { 2695 return (env->virt_enabled && virt && !isel_reserved) ? 2696 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2697 } 2698 2699 return RISCV_EXCP_NONE; 2700 } 2701 2702 static int rmw_xireg_cd(CPURISCVState *env, int csrno, 2703 target_ulong isel, target_ulong *val, 2704 target_ulong new_val, target_ulong wr_mask) 2705 { 2706 int ret = -EINVAL; 2707 int ctr_index = isel - ISELECT_CD_FIRST; 2708 int isel_hpm_start = ISELECT_CD_FIRST + 3; 2709 2710 if (!riscv_cpu_cfg(env)->ext_smcdeleg || !riscv_cpu_cfg(env)->ext_ssccfg) { 2711 ret = RISCV_EXCP_ILLEGAL_INST; 2712 goto done; 2713 } 2714 2715 /* Invalid siselect value for reserved */ 2716 if (ctr_index == 1) { 2717 goto done; 2718 } 2719 2720 /* sireg4 and sireg5 provides access RV32 only CSRs */ 2721 if (((csrno == CSR_SIREG5) || (csrno == CSR_SIREG4)) && 2722 (riscv_cpu_mxl(env) != MXL_RV32)) { 2723 ret = RISCV_EXCP_ILLEGAL_INST; 2724 goto done; 2725 } 2726 2727 /* Check Sscofpmf dependancy */ 2728 if (!riscv_cpu_cfg(env)->ext_sscofpmf && csrno == CSR_SIREG5 && 2729 (isel_hpm_start <= isel && isel <= ISELECT_CD_LAST)) { 2730 goto done; 2731 } 2732 2733 /* Check smcntrpmf dependancy */ 2734 if (!riscv_cpu_cfg(env)->ext_smcntrpmf && 2735 (csrno == CSR_SIREG2 || csrno == CSR_SIREG5) && 2736 (ISELECT_CD_FIRST <= isel && isel < isel_hpm_start)) { 2737 goto done; 2738 } 2739 2740 if (!get_field(env->mcounteren, BIT(ctr_index)) || 2741 !get_field(env->menvcfg, MENVCFG_CDE)) { 2742 goto done; 2743 } 2744 2745 switch (csrno) { 2746 case CSR_SIREG: 2747 ret = rmw_cd_mhpmcounter(env, ctr_index, val, new_val, wr_mask); 2748 break; 2749 case CSR_SIREG4: 2750 ret = rmw_cd_mhpmcounterh(env, ctr_index, val, new_val, wr_mask); 2751 break; 2752 case CSR_SIREG2: 2753 if (ctr_index <= 2) { 2754 ret = rmw_cd_ctr_cfg(env, ctr_index, val, new_val, wr_mask); 2755 } else { 2756 ret = rmw_cd_mhpmevent(env, ctr_index, val, new_val, wr_mask); 2757 } 2758 break; 2759 case CSR_SIREG5: 2760 if (ctr_index <= 2) { 2761 ret = rmw_cd_ctr_cfgh(env, ctr_index, val, new_val, wr_mask); 2762 } else { 2763 ret = rmw_cd_mhpmeventh(env, ctr_index, val, new_val, wr_mask); 2764 } 2765 break; 2766 default: 2767 goto done; 2768 } 2769 2770 done: 2771 return ret; 2772 } 2773 2774 static int rmw_xireg_ctr(CPURISCVState *env, int csrno, 2775 target_ulong isel, target_ulong *val, 2776 target_ulong new_val, target_ulong wr_mask) 2777 { 2778 if (!riscv_cpu_cfg(env)->ext_smctr && !riscv_cpu_cfg(env)->ext_ssctr) { 2779 return -EINVAL; 2780 } 2781 2782 if (csrno == CSR_SIREG || csrno == CSR_VSIREG) { 2783 return rmw_ctrsource(env, isel, val, new_val, wr_mask); 2784 } else if (csrno == CSR_SIREG2 || csrno == CSR_VSIREG2) { 2785 return rmw_ctrtarget(env, isel, val, new_val, wr_mask); 2786 } else if (csrno == CSR_SIREG3 || csrno == CSR_VSIREG3) { 2787 return rmw_ctrdata(env, isel, val, new_val, wr_mask); 2788 } else if (val) { 2789 *val = 0; 2790 } 2791 2792 return 0; 2793 } 2794 2795 /* 2796 * rmw_xireg_csrind: Perform indirect access to xireg and xireg2-xireg6 2797 * 2798 * Perform indirect access to xireg and xireg2-xireg6. 2799 * This is a generic interface for all xireg CSRs. Apart from AIA, all other 2800 * extension using csrind should be implemented here. 2801 */ 2802 static int rmw_xireg_csrind(CPURISCVState *env, int csrno, 2803 target_ulong isel, target_ulong *val, 2804 target_ulong new_val, target_ulong wr_mask) 2805 { 2806 bool virt = csrno == CSR_VSIREG ? true : false; 2807 int ret = -EINVAL; 2808 2809 if (xiselect_cd_range(isel)) { 2810 ret = rmw_xireg_cd(env, csrno, isel, val, new_val, wr_mask); 2811 } else if (xiselect_ctr_range(csrno, isel)) { 2812 ret = rmw_xireg_ctr(env, csrno, isel, val, new_val, wr_mask); 2813 } else { 2814 /* 2815 * As per the specification, access to unimplented region is undefined 2816 * but recommendation is to raise illegal instruction exception. 2817 */ 2818 return RISCV_EXCP_ILLEGAL_INST; 2819 } 2820 2821 if (ret) { 2822 return (env->virt_enabled && virt) ? 2823 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2824 } 2825 2826 return RISCV_EXCP_NONE; 2827 } 2828 2829 static int rmw_xiregi(CPURISCVState *env, int csrno, target_ulong *val, 2830 target_ulong new_val, target_ulong wr_mask) 2831 { 2832 int ret = -EINVAL; 2833 target_ulong isel; 2834 2835 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2836 if (ret != RISCV_EXCP_NONE) { 2837 return ret; 2838 } 2839 2840 /* Translate CSR number for VS-mode */ 2841 csrno = csrind_xlate_vs_csrno(env, csrno); 2842 2843 if (CSR_MIREG <= csrno && csrno <= CSR_MIREG6 && 2844 csrno != CSR_MIREG4 - 1) { 2845 isel = env->miselect; 2846 } else if (CSR_SIREG <= csrno && csrno <= CSR_SIREG6 && 2847 csrno != CSR_SIREG4 - 1) { 2848 isel = env->siselect; 2849 } else if (CSR_VSIREG <= csrno && csrno <= CSR_VSIREG6 && 2850 csrno != CSR_VSIREG4 - 1) { 2851 isel = env->vsiselect; 2852 } else { 2853 return RISCV_EXCP_ILLEGAL_INST; 2854 } 2855 2856 return rmw_xireg_csrind(env, csrno, isel, val, new_val, wr_mask); 2857 } 2858 2859 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 2860 target_ulong *val, target_ulong new_val, 2861 target_ulong wr_mask) 2862 { 2863 int ret = -EINVAL; 2864 target_ulong isel; 2865 2866 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2867 if (ret != RISCV_EXCP_NONE) { 2868 return ret; 2869 } 2870 2871 /* Translate CSR number for VS-mode */ 2872 csrno = csrind_xlate_vs_csrno(env, csrno); 2873 2874 /* Decode register details from CSR number */ 2875 switch (csrno) { 2876 case CSR_MIREG: 2877 isel = env->miselect; 2878 break; 2879 case CSR_SIREG: 2880 isel = env->siselect; 2881 break; 2882 case CSR_VSIREG: 2883 isel = env->vsiselect; 2884 break; 2885 default: 2886 goto done; 2887 }; 2888 2889 /* 2890 * Use the xiselect range to determine actual op on xireg. 2891 * 2892 * Since we only checked the existence of AIA or Indirect Access in the 2893 * predicate, we should check the existence of the exact extension when 2894 * we get to a specific range and return illegal instruction exception even 2895 * in VS-mode. 2896 */ 2897 if (xiselect_aia_range(isel)) { 2898 return rmw_xireg_aia(env, csrno, isel, val, new_val, wr_mask); 2899 } else if (riscv_cpu_cfg(env)->ext_smcsrind || 2900 riscv_cpu_cfg(env)->ext_sscsrind) { 2901 return rmw_xireg_csrind(env, csrno, isel, val, new_val, wr_mask); 2902 } 2903 2904 done: 2905 return RISCV_EXCP_ILLEGAL_INST; 2906 } 2907 2908 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 2909 target_ulong *val, target_ulong new_val, 2910 target_ulong wr_mask) 2911 { 2912 bool virt; 2913 int ret = -EINVAL; 2914 target_ulong priv, vgein; 2915 2916 /* Translate CSR number for VS-mode */ 2917 csrno = aia_xlate_vs_csrno(env, csrno); 2918 2919 /* Decode register details from CSR number */ 2920 virt = false; 2921 switch (csrno) { 2922 case CSR_MTOPEI: 2923 priv = PRV_M; 2924 break; 2925 case CSR_STOPEI: 2926 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 2927 goto done; 2928 } 2929 priv = PRV_S; 2930 break; 2931 case CSR_VSTOPEI: 2932 priv = PRV_S; 2933 virt = true; 2934 break; 2935 default: 2936 goto done; 2937 }; 2938 2939 /* IMSIC CSRs only available when machine implements IMSIC. */ 2940 if (!env->aia_ireg_rmw_fn[priv]) { 2941 goto done; 2942 } 2943 2944 /* Find the selected guest interrupt file */ 2945 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2946 2947 /* Selected guest interrupt file should be valid */ 2948 if (virt && (!vgein || env->geilen < vgein)) { 2949 goto done; 2950 } 2951 2952 /* Call machine specific IMSIC register emulation for TOPEI */ 2953 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2954 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 2955 riscv_cpu_mxl_bits(env)), 2956 val, new_val, wr_mask); 2957 2958 done: 2959 if (ret) { 2960 return (env->virt_enabled && virt) ? 2961 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2962 } 2963 return RISCV_EXCP_NONE; 2964 } 2965 2966 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 2967 target_ulong *val) 2968 { 2969 *val = env->mtvec; 2970 return RISCV_EXCP_NONE; 2971 } 2972 2973 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 2974 target_ulong val, uintptr_t ra) 2975 { 2976 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2977 if ((val & 3) < 2) { 2978 env->mtvec = val; 2979 } else { 2980 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 2981 } 2982 return RISCV_EXCP_NONE; 2983 } 2984 2985 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 2986 target_ulong *val) 2987 { 2988 *val = env->mcountinhibit; 2989 return RISCV_EXCP_NONE; 2990 } 2991 2992 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 2993 target_ulong val, uintptr_t ra) 2994 { 2995 int cidx; 2996 PMUCTRState *counter; 2997 RISCVCPU *cpu = env_archcpu(env); 2998 uint32_t present_ctrs = cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR; 2999 target_ulong updated_ctrs = (env->mcountinhibit ^ val) & present_ctrs; 3000 uint64_t mhpmctr_val, prev_count, curr_count; 3001 3002 /* WARL register - disable unavailable counters; TM bit is always 0 */ 3003 env->mcountinhibit = val & present_ctrs; 3004 3005 /* Check if any other counter is also monitoring cycles/instructions */ 3006 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 3007 if (!(updated_ctrs & BIT(cidx)) || 3008 (!riscv_pmu_ctr_monitor_cycles(env, cidx) && 3009 !riscv_pmu_ctr_monitor_instructions(env, cidx))) { 3010 continue; 3011 } 3012 3013 counter = &env->pmu_ctrs[cidx]; 3014 3015 if (!get_field(env->mcountinhibit, BIT(cidx))) { 3016 counter->mhpmcounter_prev = 3017 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 3018 if (riscv_cpu_mxl(env) == MXL_RV32) { 3019 counter->mhpmcounterh_prev = 3020 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 3021 } 3022 3023 if (cidx > 2) { 3024 mhpmctr_val = counter->mhpmcounter_val; 3025 if (riscv_cpu_mxl(env) == MXL_RV32) { 3026 mhpmctr_val = mhpmctr_val | 3027 ((uint64_t)counter->mhpmcounterh_val << 32); 3028 } 3029 riscv_pmu_setup_timer(env, mhpmctr_val, cidx); 3030 } 3031 } else { 3032 curr_count = riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 3033 3034 mhpmctr_val = counter->mhpmcounter_val; 3035 prev_count = counter->mhpmcounter_prev; 3036 if (riscv_cpu_mxl(env) == MXL_RV32) { 3037 uint64_t tmp = 3038 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 3039 3040 curr_count = curr_count | (tmp << 32); 3041 mhpmctr_val = mhpmctr_val | 3042 ((uint64_t)counter->mhpmcounterh_val << 32); 3043 prev_count = prev_count | 3044 ((uint64_t)counter->mhpmcounterh_prev << 32); 3045 } 3046 3047 /* Adjust the counter for later reads. */ 3048 mhpmctr_val = curr_count - prev_count + mhpmctr_val; 3049 counter->mhpmcounter_val = mhpmctr_val; 3050 if (riscv_cpu_mxl(env) == MXL_RV32) { 3051 counter->mhpmcounterh_val = mhpmctr_val >> 32; 3052 } 3053 } 3054 } 3055 3056 return RISCV_EXCP_NONE; 3057 } 3058 3059 static RISCVException read_scountinhibit(CPURISCVState *env, int csrno, 3060 target_ulong *val) 3061 { 3062 /* S-mode can only access the bits delegated by M-mode */ 3063 *val = env->mcountinhibit & env->mcounteren; 3064 return RISCV_EXCP_NONE; 3065 } 3066 3067 static RISCVException write_scountinhibit(CPURISCVState *env, int csrno, 3068 target_ulong val, uintptr_t ra) 3069 { 3070 return write_mcountinhibit(env, csrno, val & env->mcounteren, ra); 3071 } 3072 3073 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 3074 target_ulong *val) 3075 { 3076 *val = env->mcounteren; 3077 return RISCV_EXCP_NONE; 3078 } 3079 3080 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 3081 target_ulong val, uintptr_t ra) 3082 { 3083 RISCVCPU *cpu = env_archcpu(env); 3084 3085 /* WARL register - disable unavailable counters */ 3086 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3087 COUNTEREN_IR); 3088 return RISCV_EXCP_NONE; 3089 } 3090 3091 /* Machine Trap Handling */ 3092 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 3093 Int128 *val) 3094 { 3095 *val = int128_make128(env->mscratch, env->mscratchh); 3096 return RISCV_EXCP_NONE; 3097 } 3098 3099 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 3100 Int128 val) 3101 { 3102 env->mscratch = int128_getlo(val); 3103 env->mscratchh = int128_gethi(val); 3104 return RISCV_EXCP_NONE; 3105 } 3106 3107 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 3108 target_ulong *val) 3109 { 3110 *val = env->mscratch; 3111 return RISCV_EXCP_NONE; 3112 } 3113 3114 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 3115 target_ulong val, uintptr_t ra) 3116 { 3117 env->mscratch = val; 3118 return RISCV_EXCP_NONE; 3119 } 3120 3121 static RISCVException read_mepc(CPURISCVState *env, int csrno, 3122 target_ulong *val) 3123 { 3124 *val = env->mepc; 3125 return RISCV_EXCP_NONE; 3126 } 3127 3128 static RISCVException write_mepc(CPURISCVState *env, int csrno, 3129 target_ulong val, uintptr_t ra) 3130 { 3131 env->mepc = val; 3132 return RISCV_EXCP_NONE; 3133 } 3134 3135 static RISCVException read_mcause(CPURISCVState *env, int csrno, 3136 target_ulong *val) 3137 { 3138 *val = env->mcause; 3139 return RISCV_EXCP_NONE; 3140 } 3141 3142 static RISCVException write_mcause(CPURISCVState *env, int csrno, 3143 target_ulong val, uintptr_t ra) 3144 { 3145 env->mcause = val; 3146 return RISCV_EXCP_NONE; 3147 } 3148 3149 static RISCVException read_mtval(CPURISCVState *env, int csrno, 3150 target_ulong *val) 3151 { 3152 *val = env->mtval; 3153 return RISCV_EXCP_NONE; 3154 } 3155 3156 static RISCVException write_mtval(CPURISCVState *env, int csrno, 3157 target_ulong val, uintptr_t ra) 3158 { 3159 env->mtval = val; 3160 return RISCV_EXCP_NONE; 3161 } 3162 3163 /* Execution environment configuration setup */ 3164 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 3165 target_ulong *val) 3166 { 3167 *val = env->menvcfg; 3168 return RISCV_EXCP_NONE; 3169 } 3170 3171 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 3172 target_ulong val, uintptr_t ra); 3173 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 3174 target_ulong val, uintptr_t ra) 3175 { 3176 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 3177 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | 3178 MENVCFG_CBZE | MENVCFG_CDE; 3179 3180 if (riscv_cpu_mxl(env) == MXL_RV64) { 3181 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 3182 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 3183 (cfg->ext_smcdeleg ? MENVCFG_CDE : 0) | 3184 (cfg->ext_svadu ? MENVCFG_ADUE : 0) | 3185 (cfg->ext_ssdbltrp ? MENVCFG_DTE : 0); 3186 3187 if (env_archcpu(env)->cfg.ext_zicfilp) { 3188 mask |= MENVCFG_LPE; 3189 } 3190 3191 if (env_archcpu(env)->cfg.ext_zicfiss) { 3192 mask |= MENVCFG_SSE; 3193 } 3194 3195 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3196 if (env_archcpu(env)->cfg.ext_smnpm && 3197 get_field(val, MENVCFG_PMM) != PMM_FIELD_RESERVED) { 3198 mask |= MENVCFG_PMM; 3199 } 3200 3201 if ((val & MENVCFG_DTE) == 0) { 3202 env->mstatus &= ~MSTATUS_SDT; 3203 } 3204 } 3205 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 3206 return write_henvcfg(env, CSR_HENVCFG, env->henvcfg, ra); 3207 } 3208 3209 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 3210 target_ulong *val) 3211 { 3212 *val = env->menvcfg >> 32; 3213 return RISCV_EXCP_NONE; 3214 } 3215 3216 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 3217 target_ulong val, uintptr_t ra); 3218 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 3219 target_ulong val, uintptr_t ra) 3220 { 3221 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 3222 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 3223 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 3224 (cfg->ext_svadu ? MENVCFG_ADUE : 0) | 3225 (cfg->ext_smcdeleg ? MENVCFG_CDE : 0) | 3226 (cfg->ext_ssdbltrp ? MENVCFG_DTE : 0); 3227 uint64_t valh = (uint64_t)val << 32; 3228 3229 if ((valh & MENVCFG_DTE) == 0) { 3230 env->mstatus &= ~MSTATUS_SDT; 3231 } 3232 3233 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 3234 return write_henvcfgh(env, CSR_HENVCFGH, env->henvcfg >> 32, ra); 3235 } 3236 3237 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 3238 target_ulong *val) 3239 { 3240 RISCVException ret; 3241 3242 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3243 if (ret != RISCV_EXCP_NONE) { 3244 return ret; 3245 } 3246 3247 *val = env->senvcfg; 3248 return RISCV_EXCP_NONE; 3249 } 3250 3251 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 3252 target_ulong val, uintptr_t ra) 3253 { 3254 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 3255 RISCVException ret; 3256 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3257 if (env_archcpu(env)->cfg.ext_ssnpm && 3258 riscv_cpu_mxl(env) == MXL_RV64 && 3259 get_field(val, SENVCFG_PMM) != PMM_FIELD_RESERVED) { 3260 mask |= SENVCFG_PMM; 3261 } 3262 3263 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3264 if (ret != RISCV_EXCP_NONE) { 3265 return ret; 3266 } 3267 3268 if (env_archcpu(env)->cfg.ext_zicfilp) { 3269 mask |= SENVCFG_LPE; 3270 } 3271 3272 /* Higher mode SSE must be ON for next-less mode SSE to be ON */ 3273 if (env_archcpu(env)->cfg.ext_zicfiss && 3274 get_field(env->menvcfg, MENVCFG_SSE) && 3275 (env->virt_enabled ? get_field(env->henvcfg, HENVCFG_SSE) : true)) { 3276 mask |= SENVCFG_SSE; 3277 } 3278 3279 if (env_archcpu(env)->cfg.ext_svukte) { 3280 mask |= SENVCFG_UKTE; 3281 } 3282 3283 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 3284 return RISCV_EXCP_NONE; 3285 } 3286 3287 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 3288 target_ulong *val) 3289 { 3290 RISCVException ret; 3291 3292 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3293 if (ret != RISCV_EXCP_NONE) { 3294 return ret; 3295 } 3296 3297 /* 3298 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 3299 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 3300 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 3301 * henvcfg.dte is read_only 0 when menvcfg.dte = 0 3302 */ 3303 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3304 HENVCFG_DTE) | env->menvcfg); 3305 return RISCV_EXCP_NONE; 3306 } 3307 3308 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 3309 target_ulong val, uintptr_t ra) 3310 { 3311 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 3312 RISCVException ret; 3313 3314 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3315 if (ret != RISCV_EXCP_NONE) { 3316 return ret; 3317 } 3318 3319 if (riscv_cpu_mxl(env) == MXL_RV64) { 3320 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3321 HENVCFG_DTE); 3322 3323 if (env_archcpu(env)->cfg.ext_zicfilp) { 3324 mask |= HENVCFG_LPE; 3325 } 3326 3327 /* H can light up SSE for VS only if HS had it from menvcfg */ 3328 if (env_archcpu(env)->cfg.ext_zicfiss && 3329 get_field(env->menvcfg, MENVCFG_SSE)) { 3330 mask |= HENVCFG_SSE; 3331 } 3332 3333 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3334 if (env_archcpu(env)->cfg.ext_ssnpm && 3335 get_field(val, HENVCFG_PMM) != PMM_FIELD_RESERVED) { 3336 mask |= HENVCFG_PMM; 3337 } 3338 } 3339 3340 env->henvcfg = val & mask; 3341 if ((env->henvcfg & HENVCFG_DTE) == 0) { 3342 env->vsstatus &= ~MSTATUS_SDT; 3343 } 3344 3345 return RISCV_EXCP_NONE; 3346 } 3347 3348 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 3349 target_ulong *val) 3350 { 3351 RISCVException ret; 3352 3353 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3354 if (ret != RISCV_EXCP_NONE) { 3355 return ret; 3356 } 3357 3358 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3359 HENVCFG_DTE) | env->menvcfg)) >> 32; 3360 return RISCV_EXCP_NONE; 3361 } 3362 3363 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 3364 target_ulong val, uintptr_t ra) 3365 { 3366 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 3367 HENVCFG_ADUE | HENVCFG_DTE); 3368 uint64_t valh = (uint64_t)val << 32; 3369 RISCVException ret; 3370 3371 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3372 if (ret != RISCV_EXCP_NONE) { 3373 return ret; 3374 } 3375 env->henvcfg = (env->henvcfg & 0xFFFFFFFF) | (valh & mask); 3376 if ((env->henvcfg & HENVCFG_DTE) == 0) { 3377 env->vsstatus &= ~MSTATUS_SDT; 3378 } 3379 return RISCV_EXCP_NONE; 3380 } 3381 3382 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 3383 target_ulong *val) 3384 { 3385 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 3386 3387 return RISCV_EXCP_NONE; 3388 } 3389 3390 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 3391 uint64_t wr_mask, target_ulong new_val) 3392 { 3393 uint64_t *reg; 3394 3395 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 3396 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3397 3398 return RISCV_EXCP_NONE; 3399 } 3400 3401 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 3402 target_ulong new_val, uintptr_t ra) 3403 { 3404 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3405 if (!riscv_has_ext(env, RVF)) { 3406 wr_mask |= SMSTATEEN0_FCSR; 3407 } 3408 3409 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 3410 wr_mask |= SMSTATEEN0_P1P13; 3411 } 3412 3413 if (riscv_cpu_cfg(env)->ext_smaia || riscv_cpu_cfg(env)->ext_smcsrind) { 3414 wr_mask |= SMSTATEEN0_SVSLCT; 3415 } 3416 3417 /* 3418 * As per the AIA specification, SMSTATEEN0_IMSIC is valid only if IMSIC is 3419 * implemented. However, that information is with MachineState and we can't 3420 * figure that out in csr.c. Just enable if Smaia is available. 3421 */ 3422 if (riscv_cpu_cfg(env)->ext_smaia) { 3423 wr_mask |= (SMSTATEEN0_AIA | SMSTATEEN0_IMSIC); 3424 } 3425 3426 if (riscv_cpu_cfg(env)->ext_ssctr) { 3427 wr_mask |= SMSTATEEN0_CTR; 3428 } 3429 3430 return write_mstateen(env, csrno, wr_mask, new_val); 3431 } 3432 3433 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 3434 target_ulong new_val, uintptr_t ra) 3435 { 3436 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3437 } 3438 3439 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 3440 target_ulong *val) 3441 { 3442 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 3443 3444 return RISCV_EXCP_NONE; 3445 } 3446 3447 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 3448 uint64_t wr_mask, target_ulong new_val) 3449 { 3450 uint64_t *reg, val; 3451 3452 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 3453 val = (uint64_t)new_val << 32; 3454 val |= *reg & 0xFFFFFFFF; 3455 *reg = (*reg & ~wr_mask) | (val & wr_mask); 3456 3457 return RISCV_EXCP_NONE; 3458 } 3459 3460 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 3461 target_ulong new_val, uintptr_t ra) 3462 { 3463 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3464 3465 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 3466 wr_mask |= SMSTATEEN0_P1P13; 3467 } 3468 3469 if (riscv_cpu_cfg(env)->ext_ssctr) { 3470 wr_mask |= SMSTATEEN0_CTR; 3471 } 3472 3473 return write_mstateenh(env, csrno, wr_mask, new_val); 3474 } 3475 3476 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 3477 target_ulong new_val, uintptr_t ra) 3478 { 3479 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 3480 } 3481 3482 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 3483 target_ulong *val) 3484 { 3485 int index = csrno - CSR_HSTATEEN0; 3486 3487 *val = env->hstateen[index] & env->mstateen[index]; 3488 3489 return RISCV_EXCP_NONE; 3490 } 3491 3492 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 3493 uint64_t mask, target_ulong new_val) 3494 { 3495 int index = csrno - CSR_HSTATEEN0; 3496 uint64_t *reg, wr_mask; 3497 3498 reg = &env->hstateen[index]; 3499 wr_mask = env->mstateen[index] & mask; 3500 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3501 3502 return RISCV_EXCP_NONE; 3503 } 3504 3505 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 3506 target_ulong new_val, uintptr_t ra) 3507 { 3508 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3509 3510 if (!riscv_has_ext(env, RVF)) { 3511 wr_mask |= SMSTATEEN0_FCSR; 3512 } 3513 3514 if (riscv_cpu_cfg(env)->ext_ssaia || riscv_cpu_cfg(env)->ext_sscsrind) { 3515 wr_mask |= SMSTATEEN0_SVSLCT; 3516 } 3517 3518 /* 3519 * As per the AIA specification, SMSTATEEN0_IMSIC is valid only if IMSIC is 3520 * implemented. However, that information is with MachineState and we can't 3521 * figure that out in csr.c. Just enable if Ssaia is available. 3522 */ 3523 if (riscv_cpu_cfg(env)->ext_ssaia) { 3524 wr_mask |= (SMSTATEEN0_AIA | SMSTATEEN0_IMSIC); 3525 } 3526 3527 if (riscv_cpu_cfg(env)->ext_ssctr) { 3528 wr_mask |= SMSTATEEN0_CTR; 3529 } 3530 3531 return write_hstateen(env, csrno, wr_mask, new_val); 3532 } 3533 3534 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 3535 target_ulong new_val, uintptr_t ra) 3536 { 3537 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3538 } 3539 3540 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 3541 target_ulong *val) 3542 { 3543 int index = csrno - CSR_HSTATEEN0H; 3544 3545 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 3546 3547 return RISCV_EXCP_NONE; 3548 } 3549 3550 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 3551 uint64_t mask, target_ulong new_val) 3552 { 3553 int index = csrno - CSR_HSTATEEN0H; 3554 uint64_t *reg, wr_mask, val; 3555 3556 reg = &env->hstateen[index]; 3557 val = (uint64_t)new_val << 32; 3558 val |= *reg & 0xFFFFFFFF; 3559 wr_mask = env->mstateen[index] & mask; 3560 *reg = (*reg & ~wr_mask) | (val & wr_mask); 3561 3562 return RISCV_EXCP_NONE; 3563 } 3564 3565 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 3566 target_ulong new_val, uintptr_t ra) 3567 { 3568 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3569 3570 if (riscv_cpu_cfg(env)->ext_ssctr) { 3571 wr_mask |= SMSTATEEN0_CTR; 3572 } 3573 3574 return write_hstateenh(env, csrno, wr_mask, new_val); 3575 } 3576 3577 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 3578 target_ulong new_val, uintptr_t ra) 3579 { 3580 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 3581 } 3582 3583 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 3584 target_ulong *val) 3585 { 3586 bool virt = env->virt_enabled; 3587 int index = csrno - CSR_SSTATEEN0; 3588 3589 *val = env->sstateen[index] & env->mstateen[index]; 3590 if (virt) { 3591 *val &= env->hstateen[index]; 3592 } 3593 3594 return RISCV_EXCP_NONE; 3595 } 3596 3597 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 3598 uint64_t mask, target_ulong new_val) 3599 { 3600 bool virt = env->virt_enabled; 3601 int index = csrno - CSR_SSTATEEN0; 3602 uint64_t wr_mask; 3603 uint64_t *reg; 3604 3605 wr_mask = env->mstateen[index] & mask; 3606 if (virt) { 3607 wr_mask &= env->hstateen[index]; 3608 } 3609 3610 reg = &env->sstateen[index]; 3611 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3612 3613 return RISCV_EXCP_NONE; 3614 } 3615 3616 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 3617 target_ulong new_val, uintptr_t ra) 3618 { 3619 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3620 3621 if (!riscv_has_ext(env, RVF)) { 3622 wr_mask |= SMSTATEEN0_FCSR; 3623 } 3624 3625 return write_sstateen(env, csrno, wr_mask, new_val); 3626 } 3627 3628 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 3629 target_ulong new_val, uintptr_t ra) 3630 { 3631 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3632 } 3633 3634 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 3635 uint64_t *ret_val, 3636 uint64_t new_val, uint64_t wr_mask) 3637 { 3638 uint64_t old_mip, mask = wr_mask & delegable_ints; 3639 uint32_t gin; 3640 3641 if (mask & MIP_SEIP) { 3642 env->software_seip = new_val & MIP_SEIP; 3643 new_val |= env->external_seip * MIP_SEIP; 3644 } 3645 3646 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 3647 get_field(env->menvcfg, MENVCFG_STCE)) { 3648 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 3649 mask = mask & ~(MIP_STIP | MIP_VSTIP); 3650 } 3651 3652 if (mask) { 3653 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 3654 } else { 3655 old_mip = env->mip; 3656 } 3657 3658 if (csrno != CSR_HVIP) { 3659 gin = get_field(env->hstatus, HSTATUS_VGEIN); 3660 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 3661 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 3662 } 3663 3664 if (ret_val) { 3665 *ret_val = old_mip; 3666 } 3667 3668 return RISCV_EXCP_NONE; 3669 } 3670 3671 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 3672 target_ulong *ret_val, 3673 target_ulong new_val, target_ulong wr_mask) 3674 { 3675 uint64_t rval; 3676 RISCVException ret; 3677 3678 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 3679 if (ret_val) { 3680 *ret_val = rval; 3681 } 3682 3683 return ret; 3684 } 3685 3686 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 3687 target_ulong *ret_val, 3688 target_ulong new_val, target_ulong wr_mask) 3689 { 3690 uint64_t rval; 3691 RISCVException ret; 3692 3693 ret = rmw_mip64(env, csrno, &rval, 3694 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3695 if (ret_val) { 3696 *ret_val = rval >> 32; 3697 } 3698 3699 return ret; 3700 } 3701 3702 /* 3703 * The function is written for two use-cases: 3704 * 1- To access mvip csr as is for m-mode access. 3705 * 2- To access sip as a combination of mip and mvip for s-mode. 3706 * 3707 * Both report bits 1, 5, 9 and 13:63 but with the exception of 3708 * STIP being read-only zero in case of mvip when sstc extension 3709 * is present. 3710 * Also, sip needs to be read-only zero when both mideleg[i] and 3711 * mvien[i] are zero but mvip needs to be an alias of mip. 3712 */ 3713 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 3714 uint64_t *ret_val, 3715 uint64_t new_val, uint64_t wr_mask) 3716 { 3717 RISCVCPU *cpu = env_archcpu(env); 3718 target_ulong ret_mip = 0; 3719 RISCVException ret; 3720 uint64_t old_mvip; 3721 3722 /* 3723 * mideleg[i] mvien[i] 3724 * 0 0 No delegation. mvip[i] is alias of mip[i]. 3725 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 3726 * 1 X mip[i] is source of interrupt and mvip[i] aliases 3727 * mip[i]. 3728 * 3729 * So alias condition would be for bits: 3730 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 3731 * (!sstc & MIP_STIP) 3732 * 3733 * Non-alias condition will be for bits: 3734 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 3735 * 3736 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 3737 * that come from hvip. 3738 */ 3739 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3740 (env->mideleg | ~env->mvien)) | MIP_STIP; 3741 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3742 (~env->mideleg & env->mvien); 3743 uint64_t wr_mask_mvip; 3744 uint64_t wr_mask_mip; 3745 3746 /* 3747 * mideleg[i] mvien[i] 3748 * 0 0 sip[i] read-only zero. 3749 * 0 1 sip[i] alias of mvip[i]. 3750 * 1 X sip[i] alias of mip[i]. 3751 * 3752 * Both alias and non-alias mask remain same for sip except for bits 3753 * which are zero in both mideleg and mvien. 3754 */ 3755 if (csrno == CSR_SIP) { 3756 /* Remove bits that are zero in both mideleg and mvien. */ 3757 alias_mask &= (env->mideleg | env->mvien); 3758 nalias_mask &= (env->mideleg | env->mvien); 3759 } 3760 3761 /* 3762 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 3763 * that our in mip returned value. 3764 */ 3765 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 3766 get_field(env->menvcfg, MENVCFG_STCE)) { 3767 alias_mask &= ~MIP_STIP; 3768 } 3769 3770 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 3771 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 3772 3773 /* 3774 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 3775 * this to rmw_mip. 3776 */ 3777 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 3778 if (ret != RISCV_EXCP_NONE) { 3779 return ret; 3780 } 3781 3782 old_mvip = env->mvip; 3783 3784 /* 3785 * Write to mvip. Update only non-alias bits. Alias bits were updated 3786 * in mip in rmw_mip above. 3787 */ 3788 if (wr_mask_mvip) { 3789 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 3790 3791 /* 3792 * Given mvip is separate source from mip, we need to trigger interrupt 3793 * from here separately. Normally this happen from riscv_cpu_update_mip. 3794 */ 3795 riscv_cpu_interrupt(env); 3796 } 3797 3798 if (ret_val) { 3799 ret_mip &= alias_mask; 3800 old_mvip &= nalias_mask; 3801 3802 *ret_val = old_mvip | ret_mip; 3803 } 3804 3805 return RISCV_EXCP_NONE; 3806 } 3807 3808 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 3809 target_ulong *ret_val, 3810 target_ulong new_val, target_ulong wr_mask) 3811 { 3812 uint64_t rval; 3813 RISCVException ret; 3814 3815 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 3816 if (ret_val) { 3817 *ret_val = rval; 3818 } 3819 3820 return ret; 3821 } 3822 3823 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 3824 target_ulong *ret_val, 3825 target_ulong new_val, target_ulong wr_mask) 3826 { 3827 uint64_t rval; 3828 RISCVException ret; 3829 3830 ret = rmw_mvip64(env, csrno, &rval, 3831 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3832 if (ret_val) { 3833 *ret_val = rval >> 32; 3834 } 3835 3836 return ret; 3837 } 3838 3839 /* Supervisor Trap Setup */ 3840 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 3841 Int128 *val) 3842 { 3843 uint64_t mask = sstatus_v1_10_mask; 3844 uint64_t sstatus = env->mstatus & mask; 3845 if (env->xl != MXL_RV32 || env->debugger) { 3846 mask |= SSTATUS64_UXL; 3847 } 3848 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3849 mask |= SSTATUS_SDT; 3850 } 3851 3852 if (env_archcpu(env)->cfg.ext_zicfilp) { 3853 mask |= SSTATUS_SPELP; 3854 } 3855 3856 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 3857 return RISCV_EXCP_NONE; 3858 } 3859 3860 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 3861 target_ulong *val) 3862 { 3863 target_ulong mask = (sstatus_v1_10_mask); 3864 if (env->xl != MXL_RV32 || env->debugger) { 3865 mask |= SSTATUS64_UXL; 3866 } 3867 3868 if (env_archcpu(env)->cfg.ext_zicfilp) { 3869 mask |= SSTATUS_SPELP; 3870 } 3871 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3872 mask |= SSTATUS_SDT; 3873 } 3874 /* TODO: Use SXL not MXL. */ 3875 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 3876 return RISCV_EXCP_NONE; 3877 } 3878 3879 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 3880 target_ulong val, uintptr_t ra) 3881 { 3882 target_ulong mask = (sstatus_v1_10_mask); 3883 3884 if (env->xl != MXL_RV32 || env->debugger) { 3885 if ((val & SSTATUS64_UXL) != 0) { 3886 mask |= SSTATUS64_UXL; 3887 } 3888 } 3889 3890 if (env_archcpu(env)->cfg.ext_zicfilp) { 3891 mask |= SSTATUS_SPELP; 3892 } 3893 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3894 mask |= SSTATUS_SDT; 3895 } 3896 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 3897 return write_mstatus(env, CSR_MSTATUS, newval, ra); 3898 } 3899 3900 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 3901 uint64_t *ret_val, 3902 uint64_t new_val, uint64_t wr_mask) 3903 { 3904 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 3905 env->hideleg; 3906 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 3907 uint64_t rval, rval_vs, vsbits; 3908 uint64_t wr_mask_vsie; 3909 uint64_t wr_mask_mie; 3910 RISCVException ret; 3911 3912 /* Bring VS-level bits to correct position */ 3913 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 3914 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 3915 new_val |= vsbits << 1; 3916 3917 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 3918 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 3919 wr_mask |= vsbits << 1; 3920 3921 wr_mask_mie = wr_mask & alias_mask; 3922 wr_mask_vsie = wr_mask & nalias_mask; 3923 3924 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 3925 3926 rval_vs = env->vsie & nalias_mask; 3927 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 3928 3929 if (ret_val) { 3930 rval &= alias_mask; 3931 vsbits = rval & VS_MODE_INTERRUPTS; 3932 rval &= ~VS_MODE_INTERRUPTS; 3933 *ret_val = rval | (vsbits >> 1) | rval_vs; 3934 } 3935 3936 return ret; 3937 } 3938 3939 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 3940 target_ulong *ret_val, 3941 target_ulong new_val, target_ulong wr_mask) 3942 { 3943 uint64_t rval; 3944 RISCVException ret; 3945 3946 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 3947 if (ret_val) { 3948 *ret_val = rval; 3949 } 3950 3951 return ret; 3952 } 3953 3954 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 3955 target_ulong *ret_val, 3956 target_ulong new_val, target_ulong wr_mask) 3957 { 3958 uint64_t rval; 3959 RISCVException ret; 3960 3961 ret = rmw_vsie64(env, csrno, &rval, 3962 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3963 if (ret_val) { 3964 *ret_val = rval >> 32; 3965 } 3966 3967 return ret; 3968 } 3969 3970 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 3971 uint64_t *ret_val, 3972 uint64_t new_val, uint64_t wr_mask) 3973 { 3974 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3975 (~env->mideleg & env->mvien); 3976 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 3977 uint64_t sie_mask = wr_mask & nalias_mask; 3978 RISCVException ret; 3979 3980 /* 3981 * mideleg[i] mvien[i] 3982 * 0 0 sie[i] read-only zero. 3983 * 0 1 sie[i] is a separate writable bit. 3984 * 1 X sie[i] alias of mie[i]. 3985 * 3986 * Both alias and non-alias mask remain same for sip except for bits 3987 * which are zero in both mideleg and mvien. 3988 */ 3989 if (env->virt_enabled) { 3990 if (env->hvictl & HVICTL_VTI) { 3991 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3992 } 3993 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 3994 if (ret_val) { 3995 *ret_val &= alias_mask; 3996 } 3997 } else { 3998 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 3999 if (ret_val) { 4000 *ret_val &= alias_mask; 4001 *ret_val |= env->sie & nalias_mask; 4002 } 4003 4004 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 4005 } 4006 4007 return ret; 4008 } 4009 4010 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 4011 target_ulong *ret_val, 4012 target_ulong new_val, target_ulong wr_mask) 4013 { 4014 uint64_t rval; 4015 RISCVException ret; 4016 4017 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 4018 if (ret == RISCV_EXCP_NONE && ret_val) { 4019 *ret_val = rval; 4020 } 4021 4022 return ret; 4023 } 4024 4025 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 4026 target_ulong *ret_val, 4027 target_ulong new_val, target_ulong wr_mask) 4028 { 4029 uint64_t rval; 4030 RISCVException ret; 4031 4032 ret = rmw_sie64(env, csrno, &rval, 4033 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4034 if (ret_val) { 4035 *ret_val = rval >> 32; 4036 } 4037 4038 return ret; 4039 } 4040 4041 static RISCVException read_stvec(CPURISCVState *env, int csrno, 4042 target_ulong *val) 4043 { 4044 *val = env->stvec; 4045 return RISCV_EXCP_NONE; 4046 } 4047 4048 static RISCVException write_stvec(CPURISCVState *env, int csrno, 4049 target_ulong val, uintptr_t ra) 4050 { 4051 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 4052 if ((val & 3) < 2) { 4053 env->stvec = val; 4054 } else { 4055 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 4056 } 4057 return RISCV_EXCP_NONE; 4058 } 4059 4060 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 4061 target_ulong *val) 4062 { 4063 *val = env->scounteren; 4064 return RISCV_EXCP_NONE; 4065 } 4066 4067 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 4068 target_ulong val, uintptr_t ra) 4069 { 4070 RISCVCPU *cpu = env_archcpu(env); 4071 4072 /* WARL register - disable unavailable counters */ 4073 env->scounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 4074 COUNTEREN_IR); 4075 return RISCV_EXCP_NONE; 4076 } 4077 4078 /* Supervisor Trap Handling */ 4079 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 4080 Int128 *val) 4081 { 4082 *val = int128_make128(env->sscratch, env->sscratchh); 4083 return RISCV_EXCP_NONE; 4084 } 4085 4086 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 4087 Int128 val) 4088 { 4089 env->sscratch = int128_getlo(val); 4090 env->sscratchh = int128_gethi(val); 4091 return RISCV_EXCP_NONE; 4092 } 4093 4094 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 4095 target_ulong *val) 4096 { 4097 *val = env->sscratch; 4098 return RISCV_EXCP_NONE; 4099 } 4100 4101 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 4102 target_ulong val, uintptr_t ra) 4103 { 4104 env->sscratch = val; 4105 return RISCV_EXCP_NONE; 4106 } 4107 4108 static RISCVException read_sepc(CPURISCVState *env, int csrno, 4109 target_ulong *val) 4110 { 4111 *val = env->sepc; 4112 return RISCV_EXCP_NONE; 4113 } 4114 4115 static RISCVException write_sepc(CPURISCVState *env, int csrno, 4116 target_ulong val, uintptr_t ra) 4117 { 4118 env->sepc = val; 4119 return RISCV_EXCP_NONE; 4120 } 4121 4122 static RISCVException read_scause(CPURISCVState *env, int csrno, 4123 target_ulong *val) 4124 { 4125 *val = env->scause; 4126 return RISCV_EXCP_NONE; 4127 } 4128 4129 static RISCVException write_scause(CPURISCVState *env, int csrno, 4130 target_ulong val, uintptr_t ra) 4131 { 4132 env->scause = val; 4133 return RISCV_EXCP_NONE; 4134 } 4135 4136 static RISCVException read_stval(CPURISCVState *env, int csrno, 4137 target_ulong *val) 4138 { 4139 *val = env->stval; 4140 return RISCV_EXCP_NONE; 4141 } 4142 4143 static RISCVException write_stval(CPURISCVState *env, int csrno, 4144 target_ulong val, uintptr_t ra) 4145 { 4146 env->stval = val; 4147 return RISCV_EXCP_NONE; 4148 } 4149 4150 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 4151 uint64_t *ret_val, 4152 uint64_t new_val, uint64_t wr_mask); 4153 4154 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 4155 uint64_t *ret_val, 4156 uint64_t new_val, uint64_t wr_mask) 4157 { 4158 RISCVException ret; 4159 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 4160 uint64_t vsbits; 4161 4162 /* Add virtualized bits into vsip mask. */ 4163 mask |= env->hvien & ~env->hideleg; 4164 4165 /* Bring VS-level bits to correct position */ 4166 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 4167 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 4168 new_val |= vsbits << 1; 4169 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 4170 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 4171 wr_mask |= vsbits << 1; 4172 4173 ret = rmw_hvip64(env, csrno, &rval, new_val, 4174 wr_mask & mask & vsip_writable_mask); 4175 if (ret_val) { 4176 rval &= mask; 4177 vsbits = rval & VS_MODE_INTERRUPTS; 4178 rval &= ~VS_MODE_INTERRUPTS; 4179 *ret_val = rval | (vsbits >> 1); 4180 } 4181 4182 return ret; 4183 } 4184 4185 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 4186 target_ulong *ret_val, 4187 target_ulong new_val, target_ulong wr_mask) 4188 { 4189 uint64_t rval; 4190 RISCVException ret; 4191 4192 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 4193 if (ret_val) { 4194 *ret_val = rval; 4195 } 4196 4197 return ret; 4198 } 4199 4200 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 4201 target_ulong *ret_val, 4202 target_ulong new_val, target_ulong wr_mask) 4203 { 4204 uint64_t rval; 4205 RISCVException ret; 4206 4207 ret = rmw_vsip64(env, csrno, &rval, 4208 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4209 if (ret_val) { 4210 *ret_val = rval >> 32; 4211 } 4212 4213 return ret; 4214 } 4215 4216 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 4217 uint64_t *ret_val, 4218 uint64_t new_val, uint64_t wr_mask) 4219 { 4220 RISCVException ret; 4221 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 4222 4223 if (env->virt_enabled) { 4224 if (env->hvictl & HVICTL_VTI) { 4225 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4226 } 4227 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 4228 } else { 4229 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 4230 } 4231 4232 if (ret_val) { 4233 *ret_val &= (env->mideleg | env->mvien) & 4234 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 4235 } 4236 4237 return ret; 4238 } 4239 4240 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 4241 target_ulong *ret_val, 4242 target_ulong new_val, target_ulong wr_mask) 4243 { 4244 uint64_t rval; 4245 RISCVException ret; 4246 4247 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 4248 if (ret_val) { 4249 *ret_val = rval; 4250 } 4251 4252 return ret; 4253 } 4254 4255 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 4256 target_ulong *ret_val, 4257 target_ulong new_val, target_ulong wr_mask) 4258 { 4259 uint64_t rval; 4260 RISCVException ret; 4261 4262 ret = rmw_sip64(env, csrno, &rval, 4263 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4264 if (ret_val) { 4265 *ret_val = rval >> 32; 4266 } 4267 4268 return ret; 4269 } 4270 4271 /* Supervisor Protection and Translation */ 4272 static RISCVException read_satp(CPURISCVState *env, int csrno, 4273 target_ulong *val) 4274 { 4275 if (!riscv_cpu_cfg(env)->mmu) { 4276 *val = 0; 4277 return RISCV_EXCP_NONE; 4278 } 4279 *val = env->satp; 4280 return RISCV_EXCP_NONE; 4281 } 4282 4283 static RISCVException write_satp(CPURISCVState *env, int csrno, 4284 target_ulong val, uintptr_t ra) 4285 { 4286 if (!riscv_cpu_cfg(env)->mmu) { 4287 return RISCV_EXCP_NONE; 4288 } 4289 4290 env->satp = legalize_xatp(env, env->satp, val); 4291 return RISCV_EXCP_NONE; 4292 } 4293 4294 static RISCVException rmw_sctrdepth(CPURISCVState *env, int csrno, 4295 target_ulong *ret_val, 4296 target_ulong new_val, target_ulong wr_mask) 4297 { 4298 uint64_t mask = wr_mask & SCTRDEPTH_MASK; 4299 4300 if (ret_val) { 4301 *ret_val = env->sctrdepth; 4302 } 4303 4304 env->sctrdepth = (env->sctrdepth & ~mask) | (new_val & mask); 4305 4306 /* Correct depth. */ 4307 if (mask) { 4308 uint64_t depth = get_field(env->sctrdepth, SCTRDEPTH_MASK); 4309 4310 if (depth > SCTRDEPTH_MAX) { 4311 depth = SCTRDEPTH_MAX; 4312 env->sctrdepth = set_field(env->sctrdepth, SCTRDEPTH_MASK, depth); 4313 } 4314 4315 /* Update sctrstatus.WRPTR with a legal value */ 4316 depth = 16ULL << depth; 4317 env->sctrstatus = 4318 env->sctrstatus & (~SCTRSTATUS_WRPTR_MASK | (depth - 1)); 4319 } 4320 4321 return RISCV_EXCP_NONE; 4322 } 4323 4324 static RISCVException rmw_sctrstatus(CPURISCVState *env, int csrno, 4325 target_ulong *ret_val, 4326 target_ulong new_val, target_ulong wr_mask) 4327 { 4328 uint32_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 4329 uint32_t mask = wr_mask & SCTRSTATUS_MASK; 4330 4331 if (ret_val) { 4332 *ret_val = env->sctrstatus; 4333 } 4334 4335 env->sctrstatus = (env->sctrstatus & ~mask) | (new_val & mask); 4336 4337 /* Update sctrstatus.WRPTR with a legal value */ 4338 env->sctrstatus = env->sctrstatus & (~SCTRSTATUS_WRPTR_MASK | (depth - 1)); 4339 4340 return RISCV_EXCP_NONE; 4341 } 4342 4343 static RISCVException rmw_xctrctl(CPURISCVState *env, int csrno, 4344 target_ulong *ret_val, 4345 target_ulong new_val, target_ulong wr_mask) 4346 { 4347 uint64_t csr_mask, mask = wr_mask; 4348 uint64_t *ctl_ptr = &env->mctrctl; 4349 4350 if (csrno == CSR_MCTRCTL) { 4351 csr_mask = MCTRCTL_MASK; 4352 } else if (csrno == CSR_SCTRCTL && !env->virt_enabled) { 4353 csr_mask = SCTRCTL_MASK; 4354 } else { 4355 /* 4356 * This is for csrno == CSR_SCTRCTL and env->virt_enabled == true 4357 * or csrno == CSR_VSCTRCTL. 4358 */ 4359 csr_mask = VSCTRCTL_MASK; 4360 ctl_ptr = &env->vsctrctl; 4361 } 4362 4363 mask &= csr_mask; 4364 4365 if (ret_val) { 4366 *ret_val = *ctl_ptr & csr_mask; 4367 } 4368 4369 *ctl_ptr = (*ctl_ptr & ~mask) | (new_val & mask); 4370 4371 return RISCV_EXCP_NONE; 4372 } 4373 4374 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 4375 target_ulong *val) 4376 { 4377 int irq, ret; 4378 target_ulong topei; 4379 uint64_t vseip, vsgein; 4380 uint32_t iid, iprio, hviid, hviprio, gein; 4381 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 4382 4383 gein = get_field(env->hstatus, HSTATUS_VGEIN); 4384 hviid = get_field(env->hvictl, HVICTL_IID); 4385 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 4386 4387 if (gein) { 4388 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 4389 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 4390 if (gein <= env->geilen && vseip) { 4391 siid[scount] = IRQ_S_EXT; 4392 siprio[scount] = IPRIO_MMAXIPRIO + 1; 4393 if (env->aia_ireg_rmw_fn[PRV_S]) { 4394 /* 4395 * Call machine specific IMSIC register emulation for 4396 * reading TOPEI. 4397 */ 4398 ret = env->aia_ireg_rmw_fn[PRV_S]( 4399 env->aia_ireg_rmw_fn_arg[PRV_S], 4400 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 4401 riscv_cpu_mxl_bits(env)), 4402 &topei, 0, 0); 4403 if (!ret && topei) { 4404 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 4405 } 4406 } 4407 scount++; 4408 } 4409 } else { 4410 if (hviid == IRQ_S_EXT && hviprio) { 4411 siid[scount] = IRQ_S_EXT; 4412 siprio[scount] = hviprio; 4413 scount++; 4414 } 4415 } 4416 4417 if (env->hvictl & HVICTL_VTI) { 4418 if (hviid != IRQ_S_EXT) { 4419 siid[scount] = hviid; 4420 siprio[scount] = hviprio; 4421 scount++; 4422 } 4423 } else { 4424 irq = riscv_cpu_vsirq_pending(env); 4425 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 4426 siid[scount] = irq; 4427 siprio[scount] = env->hviprio[irq]; 4428 scount++; 4429 } 4430 } 4431 4432 iid = 0; 4433 iprio = UINT_MAX; 4434 for (s = 0; s < scount; s++) { 4435 if (siprio[s] < iprio) { 4436 iid = siid[s]; 4437 iprio = siprio[s]; 4438 } 4439 } 4440 4441 if (iid) { 4442 if (env->hvictl & HVICTL_IPRIOM) { 4443 if (iprio > IPRIO_MMAXIPRIO) { 4444 iprio = IPRIO_MMAXIPRIO; 4445 } 4446 if (!iprio) { 4447 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 4448 iprio = IPRIO_MMAXIPRIO; 4449 } 4450 } 4451 } else { 4452 iprio = 1; 4453 } 4454 } else { 4455 iprio = 0; 4456 } 4457 4458 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 4459 *val |= iprio; 4460 4461 return RISCV_EXCP_NONE; 4462 } 4463 4464 static RISCVException read_stopi(CPURISCVState *env, int csrno, 4465 target_ulong *val) 4466 { 4467 int irq; 4468 uint8_t iprio; 4469 4470 if (env->virt_enabled) { 4471 return read_vstopi(env, CSR_VSTOPI, val); 4472 } 4473 4474 irq = riscv_cpu_sirq_pending(env); 4475 if (irq <= 0 || irq > 63) { 4476 *val = 0; 4477 } else { 4478 iprio = env->siprio[irq]; 4479 if (!iprio) { 4480 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 4481 iprio = IPRIO_MMAXIPRIO; 4482 } 4483 } 4484 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 4485 *val |= iprio; 4486 } 4487 4488 return RISCV_EXCP_NONE; 4489 } 4490 4491 /* Hypervisor Extensions */ 4492 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 4493 target_ulong *val) 4494 { 4495 *val = env->hstatus; 4496 if (riscv_cpu_mxl(env) != MXL_RV32) { 4497 /* We only support 64-bit VSXL */ 4498 *val = set_field(*val, HSTATUS_VSXL, 2); 4499 } 4500 /* We only support little endian */ 4501 *val = set_field(*val, HSTATUS_VSBE, 0); 4502 return RISCV_EXCP_NONE; 4503 } 4504 4505 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 4506 target_ulong val, uintptr_t ra) 4507 { 4508 uint64_t mask = (target_ulong)-1; 4509 if (!env_archcpu(env)->cfg.ext_svukte) { 4510 mask &= ~HSTATUS_HUKTE; 4511 } 4512 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 4513 if (!env_archcpu(env)->cfg.ext_ssnpm || 4514 riscv_cpu_mxl(env) != MXL_RV64 || 4515 get_field(val, HSTATUS_HUPMM) == PMM_FIELD_RESERVED) { 4516 mask &= ~HSTATUS_HUPMM; 4517 } 4518 env->hstatus = (env->hstatus & ~mask) | (val & mask); 4519 4520 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 4521 qemu_log_mask(LOG_UNIMP, 4522 "QEMU does not support mixed HSXLEN options."); 4523 } 4524 if (get_field(val, HSTATUS_VSBE) != 0) { 4525 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 4526 } 4527 return RISCV_EXCP_NONE; 4528 } 4529 4530 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 4531 target_ulong *val) 4532 { 4533 *val = env->hedeleg; 4534 return RISCV_EXCP_NONE; 4535 } 4536 4537 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 4538 target_ulong val, uintptr_t ra) 4539 { 4540 env->hedeleg = val & vs_delegable_excps; 4541 return RISCV_EXCP_NONE; 4542 } 4543 4544 static RISCVException read_hedelegh(CPURISCVState *env, int csrno, 4545 target_ulong *val) 4546 { 4547 RISCVException ret; 4548 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 4549 if (ret != RISCV_EXCP_NONE) { 4550 return ret; 4551 } 4552 4553 /* Reserved, now read zero */ 4554 *val = 0; 4555 return RISCV_EXCP_NONE; 4556 } 4557 4558 static RISCVException write_hedelegh(CPURISCVState *env, int csrno, 4559 target_ulong val, uintptr_t ra) 4560 { 4561 RISCVException ret; 4562 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 4563 if (ret != RISCV_EXCP_NONE) { 4564 return ret; 4565 } 4566 4567 /* Reserved, now write ignore */ 4568 return RISCV_EXCP_NONE; 4569 } 4570 4571 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 4572 uint64_t *ret_val, 4573 uint64_t new_val, uint64_t wr_mask) 4574 { 4575 uint64_t mask = wr_mask & hvien_writable_mask; 4576 4577 if (ret_val) { 4578 *ret_val = env->hvien; 4579 } 4580 4581 env->hvien = (env->hvien & ~mask) | (new_val & mask); 4582 4583 return RISCV_EXCP_NONE; 4584 } 4585 4586 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 4587 target_ulong *ret_val, 4588 target_ulong new_val, target_ulong wr_mask) 4589 { 4590 uint64_t rval; 4591 RISCVException ret; 4592 4593 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 4594 if (ret_val) { 4595 *ret_val = rval; 4596 } 4597 4598 return ret; 4599 } 4600 4601 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 4602 target_ulong *ret_val, 4603 target_ulong new_val, target_ulong wr_mask) 4604 { 4605 uint64_t rval; 4606 RISCVException ret; 4607 4608 ret = rmw_hvien64(env, csrno, &rval, 4609 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4610 if (ret_val) { 4611 *ret_val = rval >> 32; 4612 } 4613 4614 return ret; 4615 } 4616 4617 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 4618 uint64_t *ret_val, 4619 uint64_t new_val, uint64_t wr_mask) 4620 { 4621 uint64_t mask = wr_mask & vs_delegable_ints; 4622 4623 if (ret_val) { 4624 *ret_val = env->hideleg & vs_delegable_ints; 4625 } 4626 4627 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 4628 return RISCV_EXCP_NONE; 4629 } 4630 4631 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 4632 target_ulong *ret_val, 4633 target_ulong new_val, target_ulong wr_mask) 4634 { 4635 uint64_t rval; 4636 RISCVException ret; 4637 4638 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 4639 if (ret_val) { 4640 *ret_val = rval; 4641 } 4642 4643 return ret; 4644 } 4645 4646 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 4647 target_ulong *ret_val, 4648 target_ulong new_val, target_ulong wr_mask) 4649 { 4650 uint64_t rval; 4651 RISCVException ret; 4652 4653 ret = rmw_hideleg64(env, csrno, &rval, 4654 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4655 if (ret_val) { 4656 *ret_val = rval >> 32; 4657 } 4658 4659 return ret; 4660 } 4661 4662 /* 4663 * The function is written for two use-cases: 4664 * 1- To access hvip csr as is for HS-mode access. 4665 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 4666 * 4667 * Both report bits 2, 6, 10 and 13:63. 4668 * vsip needs to be read-only zero when both hideleg[i] and 4669 * hvien[i] are zero. 4670 */ 4671 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 4672 uint64_t *ret_val, 4673 uint64_t new_val, uint64_t wr_mask) 4674 { 4675 RISCVException ret; 4676 uint64_t old_hvip; 4677 uint64_t ret_mip; 4678 4679 /* 4680 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 4681 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 4682 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 4683 * bits are actually being maintained in mip so we read them from there. 4684 * This way we have a single source of truth and allows for easier 4685 * implementation. 4686 * 4687 * For bits 13:63 we have: 4688 * 4689 * hideleg[i] hvien[i] 4690 * 0 0 No delegation. vsip[i] readonly zero. 4691 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 4692 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 4693 * 4694 * alias_mask denotes the bits that come from sip (mip here given we 4695 * maintain all bits there). nalias_mask denotes bits that come from 4696 * hvip. 4697 */ 4698 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 4699 uint64_t nalias_mask = (~env->hideleg & env->hvien); 4700 uint64_t wr_mask_hvip; 4701 uint64_t wr_mask_mip; 4702 4703 /* 4704 * Both alias and non-alias mask remain same for vsip except: 4705 * 1- For VS* bits if they are zero in hideleg. 4706 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 4707 */ 4708 if (csrno == CSR_VSIP) { 4709 /* zero-out VS* bits that are not delegated to VS mode. */ 4710 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 4711 4712 /* 4713 * zero-out 13:63 bits that are zero in both hideleg and hvien. 4714 * nalias_mask mask can not contain any VS* bits so only second 4715 * condition applies on it. 4716 */ 4717 nalias_mask &= (env->hideleg | env->hvien); 4718 alias_mask &= (env->hideleg | env->hvien); 4719 } 4720 4721 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 4722 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 4723 4724 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 4725 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 4726 if (ret != RISCV_EXCP_NONE) { 4727 return ret; 4728 } 4729 4730 old_hvip = env->hvip; 4731 4732 if (wr_mask_hvip) { 4733 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 4734 4735 /* 4736 * Given hvip is separate source from mip, we need to trigger interrupt 4737 * from here separately. Normally this happen from riscv_cpu_update_mip. 4738 */ 4739 riscv_cpu_interrupt(env); 4740 } 4741 4742 if (ret_val) { 4743 /* Only take VS* bits from mip. */ 4744 ret_mip &= alias_mask; 4745 4746 /* Take in non-delegated 13:63 bits from hvip. */ 4747 old_hvip &= nalias_mask; 4748 4749 *ret_val = ret_mip | old_hvip; 4750 } 4751 4752 return ret; 4753 } 4754 4755 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 4756 target_ulong *ret_val, 4757 target_ulong new_val, target_ulong wr_mask) 4758 { 4759 uint64_t rval; 4760 RISCVException ret; 4761 4762 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 4763 if (ret_val) { 4764 *ret_val = rval; 4765 } 4766 4767 return ret; 4768 } 4769 4770 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 4771 target_ulong *ret_val, 4772 target_ulong new_val, target_ulong wr_mask) 4773 { 4774 uint64_t rval; 4775 RISCVException ret; 4776 4777 ret = rmw_hvip64(env, csrno, &rval, 4778 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4779 if (ret_val) { 4780 *ret_val = rval >> 32; 4781 } 4782 4783 return ret; 4784 } 4785 4786 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 4787 target_ulong *ret_value, 4788 target_ulong new_value, target_ulong write_mask) 4789 { 4790 int ret = rmw_mip(env, csrno, ret_value, new_value, 4791 write_mask & hip_writable_mask); 4792 4793 if (ret_value) { 4794 *ret_value &= HS_MODE_INTERRUPTS; 4795 } 4796 return ret; 4797 } 4798 4799 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 4800 target_ulong *ret_val, 4801 target_ulong new_val, target_ulong wr_mask) 4802 { 4803 uint64_t rval; 4804 RISCVException ret; 4805 4806 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 4807 if (ret_val) { 4808 *ret_val = rval & HS_MODE_INTERRUPTS; 4809 } 4810 4811 return ret; 4812 } 4813 4814 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 4815 target_ulong *val) 4816 { 4817 *val = env->hcounteren; 4818 return RISCV_EXCP_NONE; 4819 } 4820 4821 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 4822 target_ulong val, uintptr_t ra) 4823 { 4824 RISCVCPU *cpu = env_archcpu(env); 4825 4826 /* WARL register - disable unavailable counters */ 4827 env->hcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 4828 COUNTEREN_IR); 4829 return RISCV_EXCP_NONE; 4830 } 4831 4832 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 4833 target_ulong *val) 4834 { 4835 if (val) { 4836 *val = env->hgeie; 4837 } 4838 return RISCV_EXCP_NONE; 4839 } 4840 4841 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 4842 target_ulong val, uintptr_t ra) 4843 { 4844 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 4845 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 4846 env->hgeie = val; 4847 /* Update mip.SGEIP bit */ 4848 riscv_cpu_update_mip(env, MIP_SGEIP, 4849 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 4850 return RISCV_EXCP_NONE; 4851 } 4852 4853 static RISCVException read_htval(CPURISCVState *env, int csrno, 4854 target_ulong *val) 4855 { 4856 *val = env->htval; 4857 return RISCV_EXCP_NONE; 4858 } 4859 4860 static RISCVException write_htval(CPURISCVState *env, int csrno, 4861 target_ulong val, uintptr_t ra) 4862 { 4863 env->htval = val; 4864 return RISCV_EXCP_NONE; 4865 } 4866 4867 static RISCVException read_htinst(CPURISCVState *env, int csrno, 4868 target_ulong *val) 4869 { 4870 *val = env->htinst; 4871 return RISCV_EXCP_NONE; 4872 } 4873 4874 static RISCVException write_htinst(CPURISCVState *env, int csrno, 4875 target_ulong val, uintptr_t ra) 4876 { 4877 return RISCV_EXCP_NONE; 4878 } 4879 4880 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 4881 target_ulong *val) 4882 { 4883 if (val) { 4884 *val = env->hgeip; 4885 } 4886 return RISCV_EXCP_NONE; 4887 } 4888 4889 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 4890 target_ulong *val) 4891 { 4892 *val = env->hgatp; 4893 return RISCV_EXCP_NONE; 4894 } 4895 4896 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 4897 target_ulong val, uintptr_t ra) 4898 { 4899 env->hgatp = legalize_xatp(env, env->hgatp, val); 4900 return RISCV_EXCP_NONE; 4901 } 4902 4903 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 4904 target_ulong *val) 4905 { 4906 if (!env->rdtime_fn) { 4907 return RISCV_EXCP_ILLEGAL_INST; 4908 } 4909 4910 *val = env->htimedelta; 4911 return RISCV_EXCP_NONE; 4912 } 4913 4914 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 4915 target_ulong val, uintptr_t ra) 4916 { 4917 if (!env->rdtime_fn) { 4918 return RISCV_EXCP_ILLEGAL_INST; 4919 } 4920 4921 if (riscv_cpu_mxl(env) == MXL_RV32) { 4922 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 4923 } else { 4924 env->htimedelta = val; 4925 } 4926 4927 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 4928 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 4929 env->htimedelta, MIP_VSTIP); 4930 } 4931 4932 return RISCV_EXCP_NONE; 4933 } 4934 4935 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 4936 target_ulong *val) 4937 { 4938 if (!env->rdtime_fn) { 4939 return RISCV_EXCP_ILLEGAL_INST; 4940 } 4941 4942 *val = env->htimedelta >> 32; 4943 return RISCV_EXCP_NONE; 4944 } 4945 4946 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 4947 target_ulong val, uintptr_t ra) 4948 { 4949 if (!env->rdtime_fn) { 4950 return RISCV_EXCP_ILLEGAL_INST; 4951 } 4952 4953 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 4954 4955 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 4956 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 4957 env->htimedelta, MIP_VSTIP); 4958 } 4959 4960 return RISCV_EXCP_NONE; 4961 } 4962 4963 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 4964 target_ulong *val) 4965 { 4966 *val = env->hvictl; 4967 return RISCV_EXCP_NONE; 4968 } 4969 4970 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 4971 target_ulong val, uintptr_t ra) 4972 { 4973 env->hvictl = val & HVICTL_VALID_MASK; 4974 return RISCV_EXCP_NONE; 4975 } 4976 4977 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 4978 uint8_t *iprio, target_ulong *val) 4979 { 4980 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 4981 4982 /* First index has to be a multiple of number of irqs per register */ 4983 if (first_index % num_irqs) { 4984 return (env->virt_enabled) ? 4985 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 4986 } 4987 4988 /* Fill-up return value */ 4989 *val = 0; 4990 for (i = 0; i < num_irqs; i++) { 4991 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 4992 continue; 4993 } 4994 if (rdzero) { 4995 continue; 4996 } 4997 *val |= ((target_ulong)iprio[irq]) << (i * 8); 4998 } 4999 5000 return RISCV_EXCP_NONE; 5001 } 5002 5003 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 5004 uint8_t *iprio, target_ulong val) 5005 { 5006 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 5007 5008 /* First index has to be a multiple of number of irqs per register */ 5009 if (first_index % num_irqs) { 5010 return (env->virt_enabled) ? 5011 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 5012 } 5013 5014 /* Fill-up priority array */ 5015 for (i = 0; i < num_irqs; i++) { 5016 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 5017 continue; 5018 } 5019 if (rdzero) { 5020 iprio[irq] = 0; 5021 } else { 5022 iprio[irq] = (val >> (i * 8)) & 0xff; 5023 } 5024 } 5025 5026 return RISCV_EXCP_NONE; 5027 } 5028 5029 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 5030 target_ulong *val) 5031 { 5032 return read_hvipriox(env, 0, env->hviprio, val); 5033 } 5034 5035 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 5036 target_ulong val, uintptr_t ra) 5037 { 5038 return write_hvipriox(env, 0, env->hviprio, val); 5039 } 5040 5041 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 5042 target_ulong *val) 5043 { 5044 return read_hvipriox(env, 4, env->hviprio, val); 5045 } 5046 5047 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 5048 target_ulong val, uintptr_t ra) 5049 { 5050 return write_hvipriox(env, 4, env->hviprio, val); 5051 } 5052 5053 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 5054 target_ulong *val) 5055 { 5056 return read_hvipriox(env, 8, env->hviprio, val); 5057 } 5058 5059 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 5060 target_ulong val, uintptr_t ra) 5061 { 5062 return write_hvipriox(env, 8, env->hviprio, val); 5063 } 5064 5065 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 5066 target_ulong *val) 5067 { 5068 return read_hvipriox(env, 12, env->hviprio, val); 5069 } 5070 5071 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 5072 target_ulong val, uintptr_t ra) 5073 { 5074 return write_hvipriox(env, 12, env->hviprio, val); 5075 } 5076 5077 /* Virtual CSR Registers */ 5078 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 5079 target_ulong *val) 5080 { 5081 *val = env->vsstatus; 5082 return RISCV_EXCP_NONE; 5083 } 5084 5085 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 5086 target_ulong val, uintptr_t ra) 5087 { 5088 uint64_t mask = (target_ulong)-1; 5089 if ((val & VSSTATUS64_UXL) == 0) { 5090 mask &= ~VSSTATUS64_UXL; 5091 } 5092 if ((env->henvcfg & HENVCFG_DTE)) { 5093 if ((val & SSTATUS_SDT) != 0) { 5094 val &= ~SSTATUS_SIE; 5095 } 5096 } else { 5097 val &= ~SSTATUS_SDT; 5098 } 5099 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 5100 return RISCV_EXCP_NONE; 5101 } 5102 5103 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 5104 target_ulong *val) 5105 { 5106 *val = env->vstvec; 5107 return RISCV_EXCP_NONE; 5108 } 5109 5110 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 5111 target_ulong val, uintptr_t ra) 5112 { 5113 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 5114 if ((val & 3) < 2) { 5115 env->vstvec = val; 5116 } else { 5117 qemu_log_mask(LOG_UNIMP, "CSR_VSTVEC: reserved mode not supported\n"); 5118 } 5119 return RISCV_EXCP_NONE; 5120 } 5121 5122 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 5123 target_ulong *val) 5124 { 5125 *val = env->vsscratch; 5126 return RISCV_EXCP_NONE; 5127 } 5128 5129 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 5130 target_ulong val, uintptr_t ra) 5131 { 5132 env->vsscratch = val; 5133 return RISCV_EXCP_NONE; 5134 } 5135 5136 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 5137 target_ulong *val) 5138 { 5139 *val = env->vsepc; 5140 return RISCV_EXCP_NONE; 5141 } 5142 5143 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 5144 target_ulong val, uintptr_t ra) 5145 { 5146 env->vsepc = val; 5147 return RISCV_EXCP_NONE; 5148 } 5149 5150 static RISCVException read_vscause(CPURISCVState *env, int csrno, 5151 target_ulong *val) 5152 { 5153 *val = env->vscause; 5154 return RISCV_EXCP_NONE; 5155 } 5156 5157 static RISCVException write_vscause(CPURISCVState *env, int csrno, 5158 target_ulong val, uintptr_t ra) 5159 { 5160 env->vscause = val; 5161 return RISCV_EXCP_NONE; 5162 } 5163 5164 static RISCVException read_vstval(CPURISCVState *env, int csrno, 5165 target_ulong *val) 5166 { 5167 *val = env->vstval; 5168 return RISCV_EXCP_NONE; 5169 } 5170 5171 static RISCVException write_vstval(CPURISCVState *env, int csrno, 5172 target_ulong val, uintptr_t ra) 5173 { 5174 env->vstval = val; 5175 return RISCV_EXCP_NONE; 5176 } 5177 5178 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 5179 target_ulong *val) 5180 { 5181 *val = env->vsatp; 5182 return RISCV_EXCP_NONE; 5183 } 5184 5185 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 5186 target_ulong val, uintptr_t ra) 5187 { 5188 env->vsatp = legalize_xatp(env, env->vsatp, val); 5189 return RISCV_EXCP_NONE; 5190 } 5191 5192 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 5193 target_ulong *val) 5194 { 5195 *val = env->mtval2; 5196 return RISCV_EXCP_NONE; 5197 } 5198 5199 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 5200 target_ulong val, uintptr_t ra) 5201 { 5202 env->mtval2 = val; 5203 return RISCV_EXCP_NONE; 5204 } 5205 5206 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 5207 target_ulong *val) 5208 { 5209 *val = env->mtinst; 5210 return RISCV_EXCP_NONE; 5211 } 5212 5213 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 5214 target_ulong val, uintptr_t ra) 5215 { 5216 env->mtinst = val; 5217 return RISCV_EXCP_NONE; 5218 } 5219 5220 /* Physical Memory Protection */ 5221 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 5222 target_ulong *val) 5223 { 5224 *val = mseccfg_csr_read(env); 5225 return RISCV_EXCP_NONE; 5226 } 5227 5228 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 5229 target_ulong val, uintptr_t ra) 5230 { 5231 mseccfg_csr_write(env, val); 5232 return RISCV_EXCP_NONE; 5233 } 5234 5235 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 5236 target_ulong *val) 5237 { 5238 uint32_t reg_index = csrno - CSR_PMPCFG0; 5239 5240 *val = pmpcfg_csr_read(env, reg_index); 5241 return RISCV_EXCP_NONE; 5242 } 5243 5244 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 5245 target_ulong val, uintptr_t ra) 5246 { 5247 uint32_t reg_index = csrno - CSR_PMPCFG0; 5248 5249 pmpcfg_csr_write(env, reg_index, val); 5250 return RISCV_EXCP_NONE; 5251 } 5252 5253 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 5254 target_ulong *val) 5255 { 5256 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 5257 return RISCV_EXCP_NONE; 5258 } 5259 5260 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 5261 target_ulong val, uintptr_t ra) 5262 { 5263 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 5264 return RISCV_EXCP_NONE; 5265 } 5266 5267 static RISCVException read_tselect(CPURISCVState *env, int csrno, 5268 target_ulong *val) 5269 { 5270 *val = tselect_csr_read(env); 5271 return RISCV_EXCP_NONE; 5272 } 5273 5274 static RISCVException write_tselect(CPURISCVState *env, int csrno, 5275 target_ulong val, uintptr_t ra) 5276 { 5277 tselect_csr_write(env, val); 5278 return RISCV_EXCP_NONE; 5279 } 5280 5281 static RISCVException read_tdata(CPURISCVState *env, int csrno, 5282 target_ulong *val) 5283 { 5284 /* return 0 in tdata1 to end the trigger enumeration */ 5285 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 5286 *val = 0; 5287 return RISCV_EXCP_NONE; 5288 } 5289 5290 if (!tdata_available(env, csrno - CSR_TDATA1)) { 5291 return RISCV_EXCP_ILLEGAL_INST; 5292 } 5293 5294 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 5295 return RISCV_EXCP_NONE; 5296 } 5297 5298 static RISCVException write_tdata(CPURISCVState *env, int csrno, 5299 target_ulong val, uintptr_t ra) 5300 { 5301 if (!tdata_available(env, csrno - CSR_TDATA1)) { 5302 return RISCV_EXCP_ILLEGAL_INST; 5303 } 5304 5305 tdata_csr_write(env, csrno - CSR_TDATA1, val); 5306 return RISCV_EXCP_NONE; 5307 } 5308 5309 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 5310 target_ulong *val) 5311 { 5312 *val = tinfo_csr_read(env); 5313 return RISCV_EXCP_NONE; 5314 } 5315 5316 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 5317 target_ulong *val) 5318 { 5319 *val = env->mcontext; 5320 return RISCV_EXCP_NONE; 5321 } 5322 5323 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 5324 target_ulong val, uintptr_t ra) 5325 { 5326 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 5327 int32_t mask; 5328 5329 if (riscv_has_ext(env, RVH)) { 5330 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 5331 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 5332 } else { 5333 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 5334 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 5335 } 5336 5337 env->mcontext = val & mask; 5338 return RISCV_EXCP_NONE; 5339 } 5340 5341 static RISCVException read_mnscratch(CPURISCVState *env, int csrno, 5342 target_ulong *val) 5343 { 5344 *val = env->mnscratch; 5345 return RISCV_EXCP_NONE; 5346 } 5347 5348 static RISCVException write_mnscratch(CPURISCVState *env, int csrno, 5349 target_ulong val, uintptr_t ra) 5350 { 5351 env->mnscratch = val; 5352 return RISCV_EXCP_NONE; 5353 } 5354 5355 static RISCVException read_mnepc(CPURISCVState *env, int csrno, 5356 target_ulong *val) 5357 { 5358 *val = env->mnepc; 5359 return RISCV_EXCP_NONE; 5360 } 5361 5362 static RISCVException write_mnepc(CPURISCVState *env, int csrno, 5363 target_ulong val, uintptr_t ra) 5364 { 5365 env->mnepc = val; 5366 return RISCV_EXCP_NONE; 5367 } 5368 5369 static RISCVException read_mncause(CPURISCVState *env, int csrno, 5370 target_ulong *val) 5371 { 5372 *val = env->mncause; 5373 return RISCV_EXCP_NONE; 5374 } 5375 5376 static RISCVException write_mncause(CPURISCVState *env, int csrno, 5377 target_ulong val, uintptr_t ra) 5378 { 5379 env->mncause = val; 5380 return RISCV_EXCP_NONE; 5381 } 5382 5383 static RISCVException read_mnstatus(CPURISCVState *env, int csrno, 5384 target_ulong *val) 5385 { 5386 *val = env->mnstatus; 5387 return RISCV_EXCP_NONE; 5388 } 5389 5390 static RISCVException write_mnstatus(CPURISCVState *env, int csrno, 5391 target_ulong val, uintptr_t ra) 5392 { 5393 target_ulong mask = (MNSTATUS_NMIE | MNSTATUS_MNPP); 5394 5395 if (riscv_has_ext(env, RVH)) { 5396 /* Flush tlb on mnstatus fields that affect VM. */ 5397 if ((val ^ env->mnstatus) & MNSTATUS_MNPV) { 5398 tlb_flush(env_cpu(env)); 5399 } 5400 5401 mask |= MNSTATUS_MNPV; 5402 } 5403 5404 /* mnstatus.mnie can only be cleared by hardware. */ 5405 env->mnstatus = (env->mnstatus & MNSTATUS_NMIE) | (val & mask); 5406 return RISCV_EXCP_NONE; 5407 } 5408 5409 #endif 5410 5411 /* Crypto Extension */ 5412 target_ulong riscv_new_csr_seed(target_ulong new_value, 5413 target_ulong write_mask) 5414 { 5415 uint16_t random_v; 5416 Error *random_e = NULL; 5417 int random_r; 5418 target_ulong rval; 5419 5420 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 5421 if (unlikely(random_r < 0)) { 5422 /* 5423 * Failed, for unknown reasons in the crypto subsystem. 5424 * The best we can do is log the reason and return a 5425 * failure indication to the guest. There is no reason 5426 * we know to expect the failure to be transitory, so 5427 * indicate DEAD to avoid having the guest spin on WAIT. 5428 */ 5429 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5430 __func__, error_get_pretty(random_e)); 5431 error_free(random_e); 5432 rval = SEED_OPST_DEAD; 5433 } else { 5434 rval = random_v | SEED_OPST_ES16; 5435 } 5436 5437 return rval; 5438 } 5439 5440 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 5441 target_ulong *ret_value, 5442 target_ulong new_value, 5443 target_ulong write_mask) 5444 { 5445 target_ulong rval; 5446 5447 rval = riscv_new_csr_seed(new_value, write_mask); 5448 5449 if (ret_value) { 5450 *ret_value = rval; 5451 } 5452 5453 return RISCV_EXCP_NONE; 5454 } 5455 5456 /* 5457 * riscv_csrrw - read and/or update control and status register 5458 * 5459 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 5460 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 5461 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 5462 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 5463 */ 5464 5465 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 5466 int csrno, 5467 bool write) 5468 { 5469 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 5470 bool read_only = get_field(csrno, 0xC00) == 3; 5471 int csr_min_priv = csr_ops[csrno].min_priv_ver; 5472 5473 /* ensure the CSR extension is enabled */ 5474 if (!riscv_cpu_cfg(env)->ext_zicsr) { 5475 return RISCV_EXCP_ILLEGAL_INST; 5476 } 5477 5478 /* ensure CSR is implemented by checking predicate */ 5479 if (!csr_ops[csrno].predicate) { 5480 return RISCV_EXCP_ILLEGAL_INST; 5481 } 5482 5483 /* privileged spec version check */ 5484 if (env->priv_ver < csr_min_priv) { 5485 return RISCV_EXCP_ILLEGAL_INST; 5486 } 5487 5488 /* read / write check */ 5489 if (write && read_only) { 5490 return RISCV_EXCP_ILLEGAL_INST; 5491 } 5492 5493 /* 5494 * The predicate() not only does existence check but also does some 5495 * access control check which triggers for example virtual instruction 5496 * exception in some cases. When writing read-only CSRs in those cases 5497 * illegal instruction exception should be triggered instead of virtual 5498 * instruction exception. Hence this comes after the read / write check. 5499 */ 5500 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 5501 if (ret != RISCV_EXCP_NONE) { 5502 return ret; 5503 } 5504 5505 #if !defined(CONFIG_USER_ONLY) 5506 int csr_priv, effective_priv = env->priv; 5507 5508 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 5509 !env->virt_enabled) { 5510 /* 5511 * We are in HS mode. Add 1 to the effective privilege level to 5512 * allow us to access the Hypervisor CSRs. 5513 */ 5514 effective_priv++; 5515 } 5516 5517 csr_priv = get_field(csrno, 0x300); 5518 if (!env->debugger && (effective_priv < csr_priv)) { 5519 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 5520 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 5521 } 5522 return RISCV_EXCP_ILLEGAL_INST; 5523 } 5524 #endif 5525 return RISCV_EXCP_NONE; 5526 } 5527 5528 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 5529 target_ulong *ret_value, 5530 target_ulong new_value, 5531 target_ulong write_mask, 5532 uintptr_t ra) 5533 { 5534 RISCVException ret; 5535 target_ulong old_value = 0; 5536 5537 /* execute combined read/write operation if it exists */ 5538 if (csr_ops[csrno].op) { 5539 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 5540 } 5541 5542 /* 5543 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 5544 * and we can't throw side effects caused by CSR reads. 5545 */ 5546 if (ret_value) { 5547 /* if no accessor exists then return failure */ 5548 if (!csr_ops[csrno].read) { 5549 return RISCV_EXCP_ILLEGAL_INST; 5550 } 5551 /* read old value */ 5552 ret = csr_ops[csrno].read(env, csrno, &old_value); 5553 if (ret != RISCV_EXCP_NONE) { 5554 return ret; 5555 } 5556 } 5557 5558 /* write value if writable and write mask set, otherwise drop writes */ 5559 if (write_mask) { 5560 new_value = (old_value & ~write_mask) | (new_value & write_mask); 5561 if (csr_ops[csrno].write) { 5562 ret = csr_ops[csrno].write(env, csrno, new_value, ra); 5563 if (ret != RISCV_EXCP_NONE) { 5564 return ret; 5565 } 5566 } 5567 } 5568 5569 /* return old value */ 5570 if (ret_value) { 5571 *ret_value = old_value; 5572 } 5573 5574 return RISCV_EXCP_NONE; 5575 } 5576 5577 RISCVException riscv_csrr(CPURISCVState *env, int csrno, 5578 target_ulong *ret_value) 5579 { 5580 RISCVException ret = riscv_csrrw_check(env, csrno, false); 5581 if (ret != RISCV_EXCP_NONE) { 5582 return ret; 5583 } 5584 5585 return riscv_csrrw_do64(env, csrno, ret_value, 0, 0, 0); 5586 } 5587 5588 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 5589 target_ulong *ret_value, target_ulong new_value, 5590 target_ulong write_mask, uintptr_t ra) 5591 { 5592 RISCVException ret = riscv_csrrw_check(env, csrno, true); 5593 if (ret != RISCV_EXCP_NONE) { 5594 return ret; 5595 } 5596 5597 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask, ra); 5598 } 5599 5600 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 5601 Int128 *ret_value, 5602 Int128 new_value, 5603 Int128 write_mask, uintptr_t ra) 5604 { 5605 RISCVException ret; 5606 Int128 old_value; 5607 5608 /* read old value */ 5609 ret = csr_ops[csrno].read128(env, csrno, &old_value); 5610 if (ret != RISCV_EXCP_NONE) { 5611 return ret; 5612 } 5613 5614 /* write value if writable and write mask set, otherwise drop writes */ 5615 if (int128_nz(write_mask)) { 5616 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 5617 int128_and(new_value, write_mask)); 5618 if (csr_ops[csrno].write128) { 5619 ret = csr_ops[csrno].write128(env, csrno, new_value); 5620 if (ret != RISCV_EXCP_NONE) { 5621 return ret; 5622 } 5623 } else if (csr_ops[csrno].write) { 5624 /* avoids having to write wrappers for all registers */ 5625 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value), ra); 5626 if (ret != RISCV_EXCP_NONE) { 5627 return ret; 5628 } 5629 } 5630 } 5631 5632 /* return old value */ 5633 if (ret_value) { 5634 *ret_value = old_value; 5635 } 5636 5637 return RISCV_EXCP_NONE; 5638 } 5639 5640 RISCVException riscv_csrr_i128(CPURISCVState *env, int csrno, 5641 Int128 *ret_value) 5642 { 5643 RISCVException ret; 5644 5645 ret = riscv_csrrw_check(env, csrno, false); 5646 if (ret != RISCV_EXCP_NONE) { 5647 return ret; 5648 } 5649 5650 if (csr_ops[csrno].read128) { 5651 return riscv_csrrw_do128(env, csrno, ret_value, 5652 int128_zero(), int128_zero(), 0); 5653 } 5654 5655 /* 5656 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 5657 * at all defined. 5658 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 5659 * significant), for those, this fallback is correctly handling the 5660 * accesses 5661 */ 5662 target_ulong old_value; 5663 ret = riscv_csrrw_do64(env, csrno, &old_value, 0, 0, 0); 5664 if (ret == RISCV_EXCP_NONE && ret_value) { 5665 *ret_value = int128_make64(old_value); 5666 } 5667 return ret; 5668 } 5669 5670 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 5671 Int128 *ret_value, Int128 new_value, 5672 Int128 write_mask, uintptr_t ra) 5673 { 5674 RISCVException ret; 5675 5676 ret = riscv_csrrw_check(env, csrno, true); 5677 if (ret != RISCV_EXCP_NONE) { 5678 return ret; 5679 } 5680 5681 if (csr_ops[csrno].read128) { 5682 return riscv_csrrw_do128(env, csrno, ret_value, 5683 new_value, write_mask, ra); 5684 } 5685 5686 /* 5687 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 5688 * at all defined. 5689 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 5690 * significant), for those, this fallback is correctly handling the 5691 * accesses 5692 */ 5693 target_ulong old_value; 5694 ret = riscv_csrrw_do64(env, csrno, &old_value, 5695 int128_getlo(new_value), 5696 int128_getlo(write_mask), ra); 5697 if (ret == RISCV_EXCP_NONE && ret_value) { 5698 *ret_value = int128_make64(old_value); 5699 } 5700 return ret; 5701 } 5702 5703 /* 5704 * Debugger support. If not in user mode, set env->debugger before the 5705 * riscv_csrrw call and clear it after the call. 5706 */ 5707 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 5708 target_ulong *ret_value, 5709 target_ulong new_value, 5710 target_ulong write_mask) 5711 { 5712 RISCVException ret; 5713 #if !defined(CONFIG_USER_ONLY) 5714 env->debugger = true; 5715 #endif 5716 if (!write_mask) { 5717 ret = riscv_csrr(env, csrno, ret_value); 5718 } else { 5719 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask, 0); 5720 } 5721 #if !defined(CONFIG_USER_ONLY) 5722 env->debugger = false; 5723 #endif 5724 return ret; 5725 } 5726 5727 static RISCVException read_jvt(CPURISCVState *env, int csrno, 5728 target_ulong *val) 5729 { 5730 *val = env->jvt; 5731 return RISCV_EXCP_NONE; 5732 } 5733 5734 static RISCVException write_jvt(CPURISCVState *env, int csrno, 5735 target_ulong val, uintptr_t ra) 5736 { 5737 env->jvt = val; 5738 return RISCV_EXCP_NONE; 5739 } 5740 5741 /* 5742 * Control and Status Register function table 5743 * riscv_csr_operations::predicate() must be provided for an implemented CSR 5744 */ 5745 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 5746 /* User Floating-Point CSRs */ 5747 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 5748 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 5749 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 5750 /* Vector CSRs */ 5751 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 5752 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 5753 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 5754 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 5755 [CSR_VL] = { "vl", vs, read_vl }, 5756 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 5757 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 5758 /* User Timers and Counters */ 5759 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 5760 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 5761 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 5762 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 5763 5764 /* 5765 * In privileged mode, the monitor will have to emulate TIME CSRs only if 5766 * rdtime callback is not provided by machine/platform emulation. 5767 */ 5768 [CSR_TIME] = { "time", ctr, read_time }, 5769 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 5770 5771 /* Crypto Extension */ 5772 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 5773 5774 /* Zcmt Extension */ 5775 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 5776 5777 /* zicfiss Extension, shadow stack register */ 5778 [CSR_SSP] = { "ssp", cfi_ss, read_ssp, write_ssp }, 5779 5780 #if !defined(CONFIG_USER_ONLY) 5781 /* Machine Timers and Counters */ 5782 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 5783 write_mhpmcounter }, 5784 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 5785 write_mhpmcounter }, 5786 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 5787 write_mhpmcounterh }, 5788 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 5789 write_mhpmcounterh }, 5790 5791 /* Machine Information Registers */ 5792 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 5793 [CSR_MARCHID] = { "marchid", any, read_marchid }, 5794 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 5795 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 5796 5797 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 5798 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5799 /* Machine Trap Setup */ 5800 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 5801 NULL, read_mstatus_i128 }, 5802 [CSR_MISA] = { "misa", any, read_misa, write_misa, 5803 NULL, read_misa_i128 }, 5804 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 5805 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 5806 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 5807 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 5808 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 5809 write_mcounteren }, 5810 5811 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 5812 write_mstatush }, 5813 [CSR_MEDELEGH] = { "medelegh", any32, read_zero, write_ignore, 5814 .min_priv_ver = PRIV_VERSION_1_13_0 }, 5815 [CSR_HEDELEGH] = { "hedelegh", hmode32, read_hedelegh, write_hedelegh, 5816 .min_priv_ver = PRIV_VERSION_1_13_0 }, 5817 5818 /* Machine Trap Handling */ 5819 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 5820 NULL, read_mscratch_i128, write_mscratch_i128 }, 5821 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 5822 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 5823 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 5824 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 5825 5826 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 5827 [CSR_MISELECT] = { "miselect", csrind_or_aia_any, NULL, NULL, 5828 rmw_xiselect }, 5829 [CSR_MIREG] = { "mireg", csrind_or_aia_any, NULL, NULL, 5830 rmw_xireg }, 5831 5832 /* Machine Indirect Register Alias */ 5833 [CSR_MIREG2] = { "mireg2", csrind_any, NULL, NULL, rmw_xiregi, 5834 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5835 [CSR_MIREG3] = { "mireg3", csrind_any, NULL, NULL, rmw_xiregi, 5836 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5837 [CSR_MIREG4] = { "mireg4", csrind_any, NULL, NULL, rmw_xiregi, 5838 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5839 [CSR_MIREG5] = { "mireg5", csrind_any, NULL, NULL, rmw_xiregi, 5840 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5841 [CSR_MIREG6] = { "mireg6", csrind_any, NULL, NULL, rmw_xiregi, 5842 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5843 5844 /* Machine-Level Interrupts (AIA) */ 5845 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 5846 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 5847 5848 /* Virtual Interrupts for Supervisor Level (AIA) */ 5849 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 5850 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 5851 5852 /* Machine-Level High-Half CSRs (AIA) */ 5853 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 5854 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 5855 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 5856 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 5857 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 5858 5859 /* Execution environment configuration */ 5860 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 5861 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5862 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 5863 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5864 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 5865 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5866 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 5867 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5868 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 5869 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5870 5871 /* Smstateen extension CSRs */ 5872 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 5873 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5874 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 5875 write_mstateen0h, 5876 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5877 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 5878 write_mstateen_1_3, 5879 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5880 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 5881 write_mstateenh_1_3, 5882 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5883 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 5884 write_mstateen_1_3, 5885 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5886 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 5887 write_mstateenh_1_3, 5888 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5889 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 5890 write_mstateen_1_3, 5891 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5892 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 5893 write_mstateenh_1_3, 5894 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5895 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 5896 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5897 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 5898 write_hstateen0h, 5899 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5900 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 5901 write_hstateen_1_3, 5902 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5903 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 5904 write_hstateenh_1_3, 5905 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5906 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 5907 write_hstateen_1_3, 5908 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5909 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 5910 write_hstateenh_1_3, 5911 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5912 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 5913 write_hstateen_1_3, 5914 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5915 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 5916 write_hstateenh_1_3, 5917 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5918 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 5919 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5920 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 5921 write_sstateen_1_3, 5922 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5923 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 5924 write_sstateen_1_3, 5925 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5926 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 5927 write_sstateen_1_3, 5928 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5929 5930 /* RNMI */ 5931 [CSR_MNSCRATCH] = { "mnscratch", rnmi, read_mnscratch, write_mnscratch, 5932 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5933 [CSR_MNEPC] = { "mnepc", rnmi, read_mnepc, write_mnepc, 5934 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5935 [CSR_MNCAUSE] = { "mncause", rnmi, read_mncause, write_mncause, 5936 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5937 [CSR_MNSTATUS] = { "mnstatus", rnmi, read_mnstatus, write_mnstatus, 5938 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5939 5940 /* Supervisor Counter Delegation */ 5941 [CSR_SCOUNTINHIBIT] = {"scountinhibit", scountinhibit_pred, 5942 read_scountinhibit, write_scountinhibit, 5943 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5944 5945 /* Supervisor Trap Setup */ 5946 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 5947 NULL, read_sstatus_i128 }, 5948 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 5949 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 5950 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 5951 write_scounteren }, 5952 5953 /* Supervisor Trap Handling */ 5954 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 5955 NULL, read_sscratch_i128, write_sscratch_i128 }, 5956 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 5957 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 5958 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 5959 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 5960 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 5961 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5962 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 5963 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5964 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 5965 write_vstimecmp, 5966 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5967 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 5968 write_vstimecmph, 5969 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5970 5971 /* Supervisor Protection and Translation */ 5972 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 5973 5974 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 5975 [CSR_SISELECT] = { "siselect", csrind_or_aia_smode, NULL, NULL, 5976 rmw_xiselect }, 5977 [CSR_SIREG] = { "sireg", csrind_or_aia_smode, NULL, NULL, 5978 rmw_xireg }, 5979 5980 /* Supervisor Indirect Register Alias */ 5981 [CSR_SIREG2] = { "sireg2", csrind_smode, NULL, NULL, rmw_xiregi, 5982 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5983 [CSR_SIREG3] = { "sireg3", csrind_smode, NULL, NULL, rmw_xiregi, 5984 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5985 [CSR_SIREG4] = { "sireg4", csrind_smode, NULL, NULL, rmw_xiregi, 5986 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5987 [CSR_SIREG5] = { "sireg5", csrind_smode, NULL, NULL, rmw_xiregi, 5988 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5989 [CSR_SIREG6] = { "sireg6", csrind_smode, NULL, NULL, rmw_xiregi, 5990 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5991 5992 /* Supervisor-Level Interrupts (AIA) */ 5993 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 5994 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 5995 5996 /* Supervisor-Level High-Half CSRs (AIA) */ 5997 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 5998 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 5999 6000 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 6001 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6002 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 6003 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6004 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 6005 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6006 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 6007 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6008 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 6009 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6010 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 6011 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6012 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 6013 write_hcounteren, 6014 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6015 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 6016 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6017 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 6018 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6019 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 6020 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6021 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 6022 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6023 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 6024 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6025 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 6026 write_htimedelta, 6027 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6028 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 6029 write_htimedeltah, 6030 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6031 6032 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 6033 write_vsstatus, 6034 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6035 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 6036 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6037 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 6038 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6039 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 6040 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6041 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 6042 write_vsscratch, 6043 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6044 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 6045 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6046 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 6047 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6048 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 6049 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6050 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 6051 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6052 6053 [CSR_MTVAL2] = { "mtval2", dbltrp_hmode, read_mtval2, write_mtval2, 6054 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6055 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 6056 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6057 6058 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 6059 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 6060 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 6061 write_hvictl }, 6062 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 6063 write_hviprio1 }, 6064 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 6065 write_hviprio2 }, 6066 /* 6067 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 6068 */ 6069 [CSR_VSISELECT] = { "vsiselect", csrind_or_aia_hmode, NULL, NULL, 6070 rmw_xiselect }, 6071 [CSR_VSIREG] = { "vsireg", csrind_or_aia_hmode, NULL, NULL, 6072 rmw_xireg }, 6073 6074 /* Virtual Supervisor Indirect Alias */ 6075 [CSR_VSIREG2] = { "vsireg2", csrind_hmode, NULL, NULL, rmw_xiregi, 6076 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6077 [CSR_VSIREG3] = { "vsireg3", csrind_hmode, NULL, NULL, rmw_xiregi, 6078 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6079 [CSR_VSIREG4] = { "vsireg4", csrind_hmode, NULL, NULL, rmw_xiregi, 6080 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6081 [CSR_VSIREG5] = { "vsireg5", csrind_hmode, NULL, NULL, rmw_xiregi, 6082 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6083 [CSR_VSIREG6] = { "vsireg6", csrind_hmode, NULL, NULL, rmw_xiregi, 6084 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6085 6086 /* VS-Level Interrupts (H-extension with AIA) */ 6087 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 6088 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 6089 6090 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 6091 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 6092 rmw_hidelegh }, 6093 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 6094 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 6095 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 6096 write_hviprio1h }, 6097 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 6098 write_hviprio2h }, 6099 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 6100 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 6101 6102 /* Physical Memory Protection */ 6103 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 6104 .min_priv_ver = PRIV_VERSION_1_11_0 }, 6105 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 6106 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 6107 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 6108 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 6109 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 6110 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 6111 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 6112 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 6113 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 6114 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 6115 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 6116 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 6117 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 6118 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 6119 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 6120 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 6121 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 6122 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 6123 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 6124 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 6125 6126 /* Debug CSRs */ 6127 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 6128 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 6129 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 6130 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 6131 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 6132 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 6133 6134 [CSR_MCTRCTL] = { "mctrctl", ctr_mmode, NULL, NULL, rmw_xctrctl }, 6135 [CSR_SCTRCTL] = { "sctrctl", ctr_smode, NULL, NULL, rmw_xctrctl }, 6136 [CSR_VSCTRCTL] = { "vsctrctl", ctr_smode, NULL, NULL, rmw_xctrctl }, 6137 [CSR_SCTRDEPTH] = { "sctrdepth", ctr_smode, NULL, NULL, rmw_sctrdepth }, 6138 [CSR_SCTRSTATUS] = { "sctrstatus", ctr_smode, NULL, NULL, rmw_sctrstatus }, 6139 6140 /* Performance Counters */ 6141 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 6142 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 6143 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 6144 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 6145 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 6146 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 6147 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 6148 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 6149 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 6150 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 6151 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 6152 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 6153 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 6154 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 6155 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 6156 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 6157 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 6158 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 6159 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 6160 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 6161 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 6162 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 6163 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 6164 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 6165 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 6166 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 6167 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 6168 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 6169 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 6170 6171 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 6172 write_mhpmcounter }, 6173 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 6174 write_mhpmcounter }, 6175 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 6176 write_mhpmcounter }, 6177 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 6178 write_mhpmcounter }, 6179 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 6180 write_mhpmcounter }, 6181 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 6182 write_mhpmcounter }, 6183 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 6184 write_mhpmcounter }, 6185 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 6186 write_mhpmcounter }, 6187 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 6188 write_mhpmcounter }, 6189 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 6190 write_mhpmcounter }, 6191 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 6192 write_mhpmcounter }, 6193 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 6194 write_mhpmcounter }, 6195 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 6196 write_mhpmcounter }, 6197 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 6198 write_mhpmcounter }, 6199 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 6200 write_mhpmcounter }, 6201 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 6202 write_mhpmcounter }, 6203 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 6204 write_mhpmcounter }, 6205 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 6206 write_mhpmcounter }, 6207 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 6208 write_mhpmcounter }, 6209 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 6210 write_mhpmcounter }, 6211 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 6212 write_mhpmcounter }, 6213 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 6214 write_mhpmcounter }, 6215 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 6216 write_mhpmcounter }, 6217 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 6218 write_mhpmcounter }, 6219 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 6220 write_mhpmcounter }, 6221 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 6222 write_mhpmcounter }, 6223 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 6224 write_mhpmcounter }, 6225 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 6226 write_mhpmcounter }, 6227 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 6228 write_mhpmcounter }, 6229 6230 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 6231 write_mcountinhibit, 6232 .min_priv_ver = PRIV_VERSION_1_11_0 }, 6233 6234 [CSR_MCYCLECFG] = { "mcyclecfg", smcntrpmf, read_mcyclecfg, 6235 write_mcyclecfg, 6236 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6237 [CSR_MINSTRETCFG] = { "minstretcfg", smcntrpmf, read_minstretcfg, 6238 write_minstretcfg, 6239 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6240 6241 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 6242 write_mhpmevent }, 6243 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 6244 write_mhpmevent }, 6245 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 6246 write_mhpmevent }, 6247 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 6248 write_mhpmevent }, 6249 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 6250 write_mhpmevent }, 6251 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 6252 write_mhpmevent }, 6253 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 6254 write_mhpmevent }, 6255 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 6256 write_mhpmevent }, 6257 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 6258 write_mhpmevent }, 6259 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 6260 write_mhpmevent }, 6261 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 6262 write_mhpmevent }, 6263 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 6264 write_mhpmevent }, 6265 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 6266 write_mhpmevent }, 6267 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 6268 write_mhpmevent }, 6269 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 6270 write_mhpmevent }, 6271 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 6272 write_mhpmevent }, 6273 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 6274 write_mhpmevent }, 6275 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 6276 write_mhpmevent }, 6277 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 6278 write_mhpmevent }, 6279 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 6280 write_mhpmevent }, 6281 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 6282 write_mhpmevent }, 6283 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 6284 write_mhpmevent }, 6285 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 6286 write_mhpmevent }, 6287 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 6288 write_mhpmevent }, 6289 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 6290 write_mhpmevent }, 6291 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 6292 write_mhpmevent }, 6293 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 6294 write_mhpmevent }, 6295 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 6296 write_mhpmevent }, 6297 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 6298 write_mhpmevent }, 6299 6300 [CSR_MCYCLECFGH] = { "mcyclecfgh", smcntrpmf_32, read_mcyclecfgh, 6301 write_mcyclecfgh, 6302 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6303 [CSR_MINSTRETCFGH] = { "minstretcfgh", smcntrpmf_32, read_minstretcfgh, 6304 write_minstretcfgh, 6305 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6306 6307 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf_32, read_mhpmeventh, 6308 write_mhpmeventh, 6309 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6310 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf_32, read_mhpmeventh, 6311 write_mhpmeventh, 6312 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6313 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf_32, read_mhpmeventh, 6314 write_mhpmeventh, 6315 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6316 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf_32, read_mhpmeventh, 6317 write_mhpmeventh, 6318 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6319 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf_32, read_mhpmeventh, 6320 write_mhpmeventh, 6321 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6322 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf_32, read_mhpmeventh, 6323 write_mhpmeventh, 6324 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6325 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf_32, read_mhpmeventh, 6326 write_mhpmeventh, 6327 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6328 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf_32, read_mhpmeventh, 6329 write_mhpmeventh, 6330 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6331 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf_32, read_mhpmeventh, 6332 write_mhpmeventh, 6333 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6334 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf_32, read_mhpmeventh, 6335 write_mhpmeventh, 6336 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6337 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf_32, read_mhpmeventh, 6338 write_mhpmeventh, 6339 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6340 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf_32, read_mhpmeventh, 6341 write_mhpmeventh, 6342 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6343 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf_32, read_mhpmeventh, 6344 write_mhpmeventh, 6345 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6346 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf_32, read_mhpmeventh, 6347 write_mhpmeventh, 6348 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6349 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf_32, read_mhpmeventh, 6350 write_mhpmeventh, 6351 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6352 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf_32, read_mhpmeventh, 6353 write_mhpmeventh, 6354 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6355 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf_32, read_mhpmeventh, 6356 write_mhpmeventh, 6357 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6358 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf_32, read_mhpmeventh, 6359 write_mhpmeventh, 6360 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6361 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf_32, read_mhpmeventh, 6362 write_mhpmeventh, 6363 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6364 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf_32, read_mhpmeventh, 6365 write_mhpmeventh, 6366 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6367 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf_32, read_mhpmeventh, 6368 write_mhpmeventh, 6369 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6370 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf_32, read_mhpmeventh, 6371 write_mhpmeventh, 6372 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6373 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf_32, read_mhpmeventh, 6374 write_mhpmeventh, 6375 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6376 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf_32, read_mhpmeventh, 6377 write_mhpmeventh, 6378 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6379 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf_32, read_mhpmeventh, 6380 write_mhpmeventh, 6381 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6382 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf_32, read_mhpmeventh, 6383 write_mhpmeventh, 6384 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6385 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf_32, read_mhpmeventh, 6386 write_mhpmeventh, 6387 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6388 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf_32, read_mhpmeventh, 6389 write_mhpmeventh, 6390 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6391 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf_32, read_mhpmeventh, 6392 write_mhpmeventh, 6393 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6394 6395 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 6396 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 6397 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 6398 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 6399 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 6400 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 6401 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 6402 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 6403 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 6404 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 6405 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 6406 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 6407 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 6408 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 6409 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 6410 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 6411 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 6412 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 6413 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 6414 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 6415 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 6416 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 6417 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 6418 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 6419 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 6420 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 6421 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 6422 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 6423 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 6424 6425 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 6426 write_mhpmcounterh }, 6427 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 6428 write_mhpmcounterh }, 6429 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 6430 write_mhpmcounterh }, 6431 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 6432 write_mhpmcounterh }, 6433 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 6434 write_mhpmcounterh }, 6435 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 6436 write_mhpmcounterh }, 6437 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 6438 write_mhpmcounterh }, 6439 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 6440 write_mhpmcounterh }, 6441 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 6442 write_mhpmcounterh }, 6443 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 6444 write_mhpmcounterh }, 6445 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 6446 write_mhpmcounterh }, 6447 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 6448 write_mhpmcounterh }, 6449 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 6450 write_mhpmcounterh }, 6451 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 6452 write_mhpmcounterh }, 6453 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 6454 write_mhpmcounterh }, 6455 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 6456 write_mhpmcounterh }, 6457 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 6458 write_mhpmcounterh }, 6459 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 6460 write_mhpmcounterh }, 6461 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 6462 write_mhpmcounterh }, 6463 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 6464 write_mhpmcounterh }, 6465 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 6466 write_mhpmcounterh }, 6467 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 6468 write_mhpmcounterh }, 6469 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 6470 write_mhpmcounterh }, 6471 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 6472 write_mhpmcounterh }, 6473 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 6474 write_mhpmcounterh }, 6475 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 6476 write_mhpmcounterh }, 6477 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 6478 write_mhpmcounterh }, 6479 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 6480 write_mhpmcounterh }, 6481 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 6482 write_mhpmcounterh }, 6483 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 6484 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6485 6486 #endif /* !CONFIG_USER_ONLY */ 6487 }; 6488