1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/cputlb.h" 28 #include "exec/tb-flush.h" 29 #include "exec/icount.h" 30 #include "accel/tcg/getpc.h" 31 #include "qemu/guest-random.h" 32 #include "qapi/error.h" 33 #include "tcg/insn-start-words.h" 34 #include "internals.h" 35 #include <stdbool.h> 36 37 /* CSR function table public API */ 38 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 39 { 40 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 41 } 42 43 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 44 { 45 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 46 } 47 48 /* Predicates */ 49 #if !defined(CONFIG_USER_ONLY) 50 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 51 { 52 bool virt = env->virt_enabled; 53 54 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 55 return RISCV_EXCP_NONE; 56 } 57 58 if (!(env->mstateen[index] & bit)) { 59 return RISCV_EXCP_ILLEGAL_INST; 60 } 61 62 if (virt) { 63 if (!(env->hstateen[index] & bit)) { 64 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 65 } 66 67 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 68 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 69 } 70 } 71 72 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 73 if (!(env->sstateen[index] & bit)) { 74 return RISCV_EXCP_ILLEGAL_INST; 75 } 76 } 77 78 return RISCV_EXCP_NONE; 79 } 80 #endif 81 82 static RISCVException fs(CPURISCVState *env, int csrno) 83 { 84 #if !defined(CONFIG_USER_ONLY) 85 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 86 !riscv_cpu_cfg(env)->ext_zfinx) { 87 return RISCV_EXCP_ILLEGAL_INST; 88 } 89 90 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 91 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 92 } 93 #endif 94 return RISCV_EXCP_NONE; 95 } 96 97 static RISCVException vs(CPURISCVState *env, int csrno) 98 { 99 if (riscv_cpu_cfg(env)->ext_zve32x) { 100 #if !defined(CONFIG_USER_ONLY) 101 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 102 return RISCV_EXCP_ILLEGAL_INST; 103 } 104 #endif 105 return RISCV_EXCP_NONE; 106 } 107 return RISCV_EXCP_ILLEGAL_INST; 108 } 109 110 static RISCVException ctr(CPURISCVState *env, int csrno) 111 { 112 #if !defined(CONFIG_USER_ONLY) 113 RISCVCPU *cpu = env_archcpu(env); 114 int ctr_index; 115 target_ulong ctr_mask; 116 int base_csrno = CSR_CYCLE; 117 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 118 119 if (rv32 && csrno >= CSR_CYCLEH) { 120 /* Offset for RV32 hpmcounternh counters */ 121 base_csrno += 0x80; 122 } 123 ctr_index = csrno - base_csrno; 124 ctr_mask = BIT(ctr_index); 125 126 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 127 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 128 if (!riscv_cpu_cfg(env)->ext_zicntr) { 129 return RISCV_EXCP_ILLEGAL_INST; 130 } 131 132 goto skip_ext_pmu_check; 133 } 134 135 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 136 /* No counter is enabled in PMU or the counter is out of range */ 137 return RISCV_EXCP_ILLEGAL_INST; 138 } 139 140 skip_ext_pmu_check: 141 142 if (env->debugger) { 143 return RISCV_EXCP_NONE; 144 } 145 146 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 147 return RISCV_EXCP_ILLEGAL_INST; 148 } 149 150 if (env->virt_enabled) { 151 if (!get_field(env->hcounteren, ctr_mask) || 152 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 153 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 154 } 155 } 156 157 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 158 !get_field(env->scounteren, ctr_mask)) { 159 return RISCV_EXCP_ILLEGAL_INST; 160 } 161 162 #endif 163 return RISCV_EXCP_NONE; 164 } 165 166 static RISCVException ctr32(CPURISCVState *env, int csrno) 167 { 168 if (riscv_cpu_mxl(env) != MXL_RV32) { 169 return RISCV_EXCP_ILLEGAL_INST; 170 } 171 172 return ctr(env, csrno); 173 } 174 175 static RISCVException zcmt(CPURISCVState *env, int csrno) 176 { 177 if (!riscv_cpu_cfg(env)->ext_zcmt) { 178 return RISCV_EXCP_ILLEGAL_INST; 179 } 180 181 #if !defined(CONFIG_USER_ONLY) 182 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 183 if (ret != RISCV_EXCP_NONE) { 184 return ret; 185 } 186 #endif 187 188 return RISCV_EXCP_NONE; 189 } 190 191 static RISCVException cfi_ss(CPURISCVState *env, int csrno) 192 { 193 if (!env_archcpu(env)->cfg.ext_zicfiss) { 194 return RISCV_EXCP_ILLEGAL_INST; 195 } 196 197 /* If ext implemented, M-mode always have access to SSP CSR */ 198 if (env->priv == PRV_M) { 199 return RISCV_EXCP_NONE; 200 } 201 202 /* if bcfi not active for current env, access to csr is illegal */ 203 if (!cpu_get_bcfien(env)) { 204 #if !defined(CONFIG_USER_ONLY) 205 if (env->debugger) { 206 return RISCV_EXCP_NONE; 207 } 208 #endif 209 return RISCV_EXCP_ILLEGAL_INST; 210 } 211 212 return RISCV_EXCP_NONE; 213 } 214 215 #if !defined(CONFIG_USER_ONLY) 216 static RISCVException mctr(CPURISCVState *env, int csrno) 217 { 218 RISCVCPU *cpu = env_archcpu(env); 219 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 220 int ctr_index; 221 int base_csrno = CSR_MHPMCOUNTER3; 222 223 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 224 /* Offset for RV32 mhpmcounternh counters */ 225 csrno -= 0x80; 226 } 227 228 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 229 230 ctr_index = csrno - base_csrno; 231 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 232 /* The PMU is not enabled or counter is out of range */ 233 return RISCV_EXCP_ILLEGAL_INST; 234 } 235 236 return RISCV_EXCP_NONE; 237 } 238 239 static RISCVException mctr32(CPURISCVState *env, int csrno) 240 { 241 if (riscv_cpu_mxl(env) != MXL_RV32) { 242 return RISCV_EXCP_ILLEGAL_INST; 243 } 244 245 return mctr(env, csrno); 246 } 247 248 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 249 { 250 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 251 return RISCV_EXCP_ILLEGAL_INST; 252 } 253 254 return RISCV_EXCP_NONE; 255 } 256 257 static RISCVException sscofpmf_32(CPURISCVState *env, int csrno) 258 { 259 if (riscv_cpu_mxl(env) != MXL_RV32) { 260 return RISCV_EXCP_ILLEGAL_INST; 261 } 262 263 return sscofpmf(env, csrno); 264 } 265 266 static RISCVException smcntrpmf(CPURISCVState *env, int csrno) 267 { 268 if (!riscv_cpu_cfg(env)->ext_smcntrpmf) { 269 return RISCV_EXCP_ILLEGAL_INST; 270 } 271 272 return RISCV_EXCP_NONE; 273 } 274 275 static RISCVException smcntrpmf_32(CPURISCVState *env, int csrno) 276 { 277 if (riscv_cpu_mxl(env) != MXL_RV32) { 278 return RISCV_EXCP_ILLEGAL_INST; 279 } 280 281 return smcntrpmf(env, csrno); 282 } 283 284 static RISCVException any(CPURISCVState *env, int csrno) 285 { 286 return RISCV_EXCP_NONE; 287 } 288 289 static RISCVException any32(CPURISCVState *env, int csrno) 290 { 291 if (riscv_cpu_mxl(env) != MXL_RV32) { 292 return RISCV_EXCP_ILLEGAL_INST; 293 } 294 295 return any(env, csrno); 296 297 } 298 299 static RISCVException aia_any(CPURISCVState *env, int csrno) 300 { 301 if (!riscv_cpu_cfg(env)->ext_smaia) { 302 return RISCV_EXCP_ILLEGAL_INST; 303 } 304 305 return any(env, csrno); 306 } 307 308 static RISCVException aia_any32(CPURISCVState *env, int csrno) 309 { 310 if (!riscv_cpu_cfg(env)->ext_smaia) { 311 return RISCV_EXCP_ILLEGAL_INST; 312 } 313 314 return any32(env, csrno); 315 } 316 317 static RISCVException csrind_any(CPURISCVState *env, int csrno) 318 { 319 if (!riscv_cpu_cfg(env)->ext_smcsrind) { 320 return RISCV_EXCP_ILLEGAL_INST; 321 } 322 323 return RISCV_EXCP_NONE; 324 } 325 326 static RISCVException csrind_or_aia_any(CPURISCVState *env, int csrno) 327 { 328 if (!riscv_cpu_cfg(env)->ext_smaia && !riscv_cpu_cfg(env)->ext_smcsrind) { 329 return RISCV_EXCP_ILLEGAL_INST; 330 } 331 332 return any(env, csrno); 333 } 334 335 static RISCVException smode(CPURISCVState *env, int csrno) 336 { 337 if (riscv_has_ext(env, RVS)) { 338 return RISCV_EXCP_NONE; 339 } 340 341 return RISCV_EXCP_ILLEGAL_INST; 342 } 343 344 static RISCVException smode32(CPURISCVState *env, int csrno) 345 { 346 if (riscv_cpu_mxl(env) != MXL_RV32) { 347 return RISCV_EXCP_ILLEGAL_INST; 348 } 349 350 return smode(env, csrno); 351 } 352 353 static RISCVException aia_smode(CPURISCVState *env, int csrno) 354 { 355 int ret; 356 357 if (!riscv_cpu_cfg(env)->ext_ssaia) { 358 return RISCV_EXCP_ILLEGAL_INST; 359 } 360 361 if (csrno == CSR_STOPEI) { 362 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_IMSIC); 363 } else { 364 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 365 } 366 367 if (ret != RISCV_EXCP_NONE) { 368 return ret; 369 } 370 371 return smode(env, csrno); 372 } 373 374 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 375 { 376 int ret; 377 378 if (!riscv_cpu_cfg(env)->ext_ssaia) { 379 return RISCV_EXCP_ILLEGAL_INST; 380 } 381 382 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 383 if (ret != RISCV_EXCP_NONE) { 384 return ret; 385 } 386 387 return smode32(env, csrno); 388 } 389 390 static RISCVException scountinhibit_pred(CPURISCVState *env, int csrno) 391 { 392 RISCVCPU *cpu = env_archcpu(env); 393 394 if (!cpu->cfg.ext_ssccfg || !cpu->cfg.ext_smcdeleg) { 395 return RISCV_EXCP_ILLEGAL_INST; 396 } 397 398 if (env->virt_enabled) { 399 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 400 } 401 402 return smode(env, csrno); 403 } 404 405 static bool csrind_extensions_present(CPURISCVState *env) 406 { 407 return riscv_cpu_cfg(env)->ext_smcsrind || riscv_cpu_cfg(env)->ext_sscsrind; 408 } 409 410 static bool aia_extensions_present(CPURISCVState *env) 411 { 412 return riscv_cpu_cfg(env)->ext_smaia || riscv_cpu_cfg(env)->ext_ssaia; 413 } 414 415 static bool csrind_or_aia_extensions_present(CPURISCVState *env) 416 { 417 return csrind_extensions_present(env) || aia_extensions_present(env); 418 } 419 420 static RISCVException csrind_smode(CPURISCVState *env, int csrno) 421 { 422 if (!csrind_extensions_present(env)) { 423 return RISCV_EXCP_ILLEGAL_INST; 424 } 425 426 return smode(env, csrno); 427 } 428 429 static RISCVException csrind_or_aia_smode(CPURISCVState *env, int csrno) 430 { 431 if (!csrind_or_aia_extensions_present(env)) { 432 return RISCV_EXCP_ILLEGAL_INST; 433 } 434 435 return smode(env, csrno); 436 } 437 438 static RISCVException hmode(CPURISCVState *env, int csrno) 439 { 440 if (riscv_has_ext(env, RVH)) { 441 return RISCV_EXCP_NONE; 442 } 443 444 return RISCV_EXCP_ILLEGAL_INST; 445 } 446 447 static RISCVException hmode32(CPURISCVState *env, int csrno) 448 { 449 if (riscv_cpu_mxl(env) != MXL_RV32) { 450 return RISCV_EXCP_ILLEGAL_INST; 451 } 452 453 return hmode(env, csrno); 454 455 } 456 457 static RISCVException csrind_hmode(CPURISCVState *env, int csrno) 458 { 459 if (!csrind_extensions_present(env)) { 460 return RISCV_EXCP_ILLEGAL_INST; 461 } 462 463 return hmode(env, csrno); 464 } 465 466 static RISCVException csrind_or_aia_hmode(CPURISCVState *env, int csrno) 467 { 468 if (!csrind_or_aia_extensions_present(env)) { 469 return RISCV_EXCP_ILLEGAL_INST; 470 } 471 472 return hmode(env, csrno); 473 } 474 475 static RISCVException umode(CPURISCVState *env, int csrno) 476 { 477 if (riscv_has_ext(env, RVU)) { 478 return RISCV_EXCP_NONE; 479 } 480 481 return RISCV_EXCP_ILLEGAL_INST; 482 } 483 484 static RISCVException umode32(CPURISCVState *env, int csrno) 485 { 486 if (riscv_cpu_mxl(env) != MXL_RV32) { 487 return RISCV_EXCP_ILLEGAL_INST; 488 } 489 490 return umode(env, csrno); 491 } 492 493 static RISCVException mstateen(CPURISCVState *env, int csrno) 494 { 495 if (!riscv_cpu_cfg(env)->ext_smstateen) { 496 return RISCV_EXCP_ILLEGAL_INST; 497 } 498 499 return any(env, csrno); 500 } 501 502 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 503 { 504 if (!riscv_cpu_cfg(env)->ext_smstateen) { 505 return RISCV_EXCP_ILLEGAL_INST; 506 } 507 508 RISCVException ret = hmode(env, csrno); 509 if (ret != RISCV_EXCP_NONE) { 510 return ret; 511 } 512 513 if (env->debugger) { 514 return RISCV_EXCP_NONE; 515 } 516 517 if (env->priv < PRV_M) { 518 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 519 return RISCV_EXCP_ILLEGAL_INST; 520 } 521 } 522 523 return RISCV_EXCP_NONE; 524 } 525 526 static RISCVException hstateen(CPURISCVState *env, int csrno) 527 { 528 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 529 } 530 531 static RISCVException hstateenh(CPURISCVState *env, int csrno) 532 { 533 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 534 } 535 536 static RISCVException sstateen(CPURISCVState *env, int csrno) 537 { 538 bool virt = env->virt_enabled; 539 int index = csrno - CSR_SSTATEEN0; 540 541 if (!riscv_cpu_cfg(env)->ext_smstateen) { 542 return RISCV_EXCP_ILLEGAL_INST; 543 } 544 545 RISCVException ret = smode(env, csrno); 546 if (ret != RISCV_EXCP_NONE) { 547 return ret; 548 } 549 550 if (env->debugger) { 551 return RISCV_EXCP_NONE; 552 } 553 554 if (env->priv < PRV_M) { 555 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 556 return RISCV_EXCP_ILLEGAL_INST; 557 } 558 559 if (virt) { 560 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 561 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 562 } 563 } 564 } 565 566 return RISCV_EXCP_NONE; 567 } 568 569 static RISCVException sstc(CPURISCVState *env, int csrno) 570 { 571 bool hmode_check = false; 572 573 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 574 return RISCV_EXCP_ILLEGAL_INST; 575 } 576 577 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 578 hmode_check = true; 579 } 580 581 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 582 if (ret != RISCV_EXCP_NONE) { 583 return ret; 584 } 585 586 if (env->debugger) { 587 return RISCV_EXCP_NONE; 588 } 589 590 if (env->priv == PRV_M) { 591 return RISCV_EXCP_NONE; 592 } 593 594 /* 595 * No need of separate function for rv32 as menvcfg stores both menvcfg 596 * menvcfgh for RV32. 597 */ 598 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 599 get_field(env->menvcfg, MENVCFG_STCE))) { 600 return RISCV_EXCP_ILLEGAL_INST; 601 } 602 603 if (env->virt_enabled) { 604 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 605 get_field(env->henvcfg, HENVCFG_STCE))) { 606 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 607 } 608 } 609 610 return RISCV_EXCP_NONE; 611 } 612 613 static RISCVException sstc_32(CPURISCVState *env, int csrno) 614 { 615 if (riscv_cpu_mxl(env) != MXL_RV32) { 616 return RISCV_EXCP_ILLEGAL_INST; 617 } 618 619 return sstc(env, csrno); 620 } 621 622 static RISCVException satp(CPURISCVState *env, int csrno) 623 { 624 if (env->priv == PRV_S && !env->virt_enabled && 625 get_field(env->mstatus, MSTATUS_TVM)) { 626 return RISCV_EXCP_ILLEGAL_INST; 627 } 628 if (env->priv == PRV_S && env->virt_enabled && 629 get_field(env->hstatus, HSTATUS_VTVM)) { 630 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 631 } 632 633 return smode(env, csrno); 634 } 635 636 static RISCVException hgatp(CPURISCVState *env, int csrno) 637 { 638 if (env->priv == PRV_S && !env->virt_enabled && 639 get_field(env->mstatus, MSTATUS_TVM)) { 640 return RISCV_EXCP_ILLEGAL_INST; 641 } 642 643 return hmode(env, csrno); 644 } 645 646 /* 647 * M-mode: 648 * Without ext_smctr raise illegal inst excep. 649 * Otherwise everything is accessible to m-mode. 650 * 651 * S-mode: 652 * Without ext_ssctr or mstateen.ctr raise illegal inst excep. 653 * Otherwise everything other than mctrctl is accessible. 654 * 655 * VS-mode: 656 * Without ext_ssctr or mstateen.ctr raise illegal inst excep. 657 * Without hstateen.ctr raise virtual illegal inst excep. 658 * Otherwise allow sctrctl (vsctrctl), sctrstatus, 0x200-0x2ff entry range. 659 * Always raise illegal instruction exception for sctrdepth. 660 */ 661 static RISCVException ctr_mmode(CPURISCVState *env, int csrno) 662 { 663 /* Check if smctr-ext is present */ 664 if (riscv_cpu_cfg(env)->ext_smctr) { 665 return RISCV_EXCP_NONE; 666 } 667 668 return RISCV_EXCP_ILLEGAL_INST; 669 } 670 671 static RISCVException ctr_smode(CPURISCVState *env, int csrno) 672 { 673 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 674 675 if (!cfg->ext_smctr && !cfg->ext_ssctr) { 676 return RISCV_EXCP_ILLEGAL_INST; 677 } 678 679 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_CTR); 680 if (ret == RISCV_EXCP_NONE && csrno == CSR_SCTRDEPTH && 681 env->virt_enabled) { 682 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 683 } 684 685 return ret; 686 } 687 688 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 689 { 690 int ret; 691 692 if (!riscv_cpu_cfg(env)->ext_ssaia) { 693 return RISCV_EXCP_ILLEGAL_INST; 694 } 695 696 if (csrno == CSR_VSTOPEI) { 697 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_IMSIC); 698 } else { 699 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 700 } 701 702 if (ret != RISCV_EXCP_NONE) { 703 return ret; 704 } 705 706 return hmode(env, csrno); 707 } 708 709 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 710 { 711 int ret; 712 713 if (!riscv_cpu_cfg(env)->ext_ssaia) { 714 return RISCV_EXCP_ILLEGAL_INST; 715 } 716 717 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 718 if (ret != RISCV_EXCP_NONE) { 719 return ret; 720 } 721 722 if (!riscv_cpu_cfg(env)->ext_ssaia) { 723 return RISCV_EXCP_ILLEGAL_INST; 724 } 725 726 return hmode32(env, csrno); 727 } 728 729 static RISCVException dbltrp_hmode(CPURISCVState *env, int csrno) 730 { 731 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 732 return RISCV_EXCP_NONE; 733 } 734 735 return hmode(env, csrno); 736 } 737 738 static RISCVException pmp(CPURISCVState *env, int csrno) 739 { 740 if (riscv_cpu_cfg(env)->pmp) { 741 if (csrno <= CSR_PMPCFG3) { 742 uint32_t reg_index = csrno - CSR_PMPCFG0; 743 744 /* TODO: RV128 restriction check */ 745 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 746 return RISCV_EXCP_ILLEGAL_INST; 747 } 748 } 749 750 return RISCV_EXCP_NONE; 751 } 752 753 return RISCV_EXCP_ILLEGAL_INST; 754 } 755 756 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 757 { 758 if (riscv_cpu_cfg(env)->ext_smepmp) { 759 return RISCV_EXCP_NONE; 760 } 761 if (riscv_cpu_cfg(env)->ext_zkr) { 762 return RISCV_EXCP_NONE; 763 } 764 if (riscv_cpu_cfg(env)->ext_smmpm) { 765 return RISCV_EXCP_NONE; 766 } 767 768 return RISCV_EXCP_ILLEGAL_INST; 769 } 770 771 static RISCVException debug(CPURISCVState *env, int csrno) 772 { 773 if (riscv_cpu_cfg(env)->debug) { 774 return RISCV_EXCP_NONE; 775 } 776 777 return RISCV_EXCP_ILLEGAL_INST; 778 } 779 780 static RISCVException rnmi(CPURISCVState *env, int csrno) 781 { 782 RISCVCPU *cpu = env_archcpu(env); 783 784 if (cpu->cfg.ext_smrnmi) { 785 return RISCV_EXCP_NONE; 786 } 787 788 return RISCV_EXCP_ILLEGAL_INST; 789 } 790 #endif 791 792 static RISCVException seed(CPURISCVState *env, int csrno) 793 { 794 if (!riscv_cpu_cfg(env)->ext_zkr) { 795 return RISCV_EXCP_ILLEGAL_INST; 796 } 797 798 #if !defined(CONFIG_USER_ONLY) 799 if (env->debugger) { 800 return RISCV_EXCP_NONE; 801 } 802 803 /* 804 * With a CSR read-write instruction: 805 * 1) The seed CSR is always available in machine mode as normal. 806 * 2) Attempted access to seed from virtual modes VS and VU always raises 807 * an exception(virtual instruction exception only if mseccfg.sseed=1). 808 * 3) Without the corresponding access control bit set to 1, any attempted 809 * access to seed from U, S or HS modes will raise an illegal instruction 810 * exception. 811 */ 812 if (env->priv == PRV_M) { 813 return RISCV_EXCP_NONE; 814 } else if (env->virt_enabled) { 815 if (env->mseccfg & MSECCFG_SSEED) { 816 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 817 } else { 818 return RISCV_EXCP_ILLEGAL_INST; 819 } 820 } else { 821 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 822 return RISCV_EXCP_NONE; 823 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 824 return RISCV_EXCP_NONE; 825 } else { 826 return RISCV_EXCP_ILLEGAL_INST; 827 } 828 } 829 #else 830 return RISCV_EXCP_NONE; 831 #endif 832 } 833 834 /* zicfiss CSR_SSP read and write */ 835 static RISCVException read_ssp(CPURISCVState *env, int csrno, 836 target_ulong *val) 837 { 838 *val = env->ssp; 839 return RISCV_EXCP_NONE; 840 } 841 842 static RISCVException write_ssp(CPURISCVState *env, int csrno, 843 target_ulong val, uintptr_t ra) 844 { 845 env->ssp = val; 846 return RISCV_EXCP_NONE; 847 } 848 849 /* User Floating-Point CSRs */ 850 static RISCVException read_fflags(CPURISCVState *env, int csrno, 851 target_ulong *val) 852 { 853 *val = riscv_cpu_get_fflags(env); 854 return RISCV_EXCP_NONE; 855 } 856 857 static RISCVException write_fflags(CPURISCVState *env, int csrno, 858 target_ulong val, uintptr_t ra) 859 { 860 #if !defined(CONFIG_USER_ONLY) 861 if (riscv_has_ext(env, RVF)) { 862 env->mstatus |= MSTATUS_FS; 863 } 864 #endif 865 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 866 return RISCV_EXCP_NONE; 867 } 868 869 static RISCVException read_frm(CPURISCVState *env, int csrno, 870 target_ulong *val) 871 { 872 *val = env->frm; 873 return RISCV_EXCP_NONE; 874 } 875 876 static RISCVException write_frm(CPURISCVState *env, int csrno, 877 target_ulong val, uintptr_t ra) 878 { 879 #if !defined(CONFIG_USER_ONLY) 880 if (riscv_has_ext(env, RVF)) { 881 env->mstatus |= MSTATUS_FS; 882 } 883 #endif 884 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 885 return RISCV_EXCP_NONE; 886 } 887 888 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 889 target_ulong *val) 890 { 891 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 892 | (env->frm << FSR_RD_SHIFT); 893 return RISCV_EXCP_NONE; 894 } 895 896 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 897 target_ulong val, uintptr_t ra) 898 { 899 #if !defined(CONFIG_USER_ONLY) 900 if (riscv_has_ext(env, RVF)) { 901 env->mstatus |= MSTATUS_FS; 902 } 903 #endif 904 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 905 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 906 return RISCV_EXCP_NONE; 907 } 908 909 static RISCVException read_vtype(CPURISCVState *env, int csrno, 910 target_ulong *val) 911 { 912 uint64_t vill; 913 switch (env->xl) { 914 case MXL_RV32: 915 vill = (uint32_t)env->vill << 31; 916 break; 917 case MXL_RV64: 918 vill = (uint64_t)env->vill << 63; 919 break; 920 default: 921 g_assert_not_reached(); 922 } 923 *val = (target_ulong)vill | env->vtype; 924 return RISCV_EXCP_NONE; 925 } 926 927 static RISCVException read_vl(CPURISCVState *env, int csrno, 928 target_ulong *val) 929 { 930 *val = env->vl; 931 return RISCV_EXCP_NONE; 932 } 933 934 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 935 target_ulong *val) 936 { 937 *val = riscv_cpu_cfg(env)->vlenb; 938 return RISCV_EXCP_NONE; 939 } 940 941 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 942 target_ulong *val) 943 { 944 *val = env->vxrm; 945 return RISCV_EXCP_NONE; 946 } 947 948 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 949 target_ulong val, uintptr_t ra) 950 { 951 #if !defined(CONFIG_USER_ONLY) 952 env->mstatus |= MSTATUS_VS; 953 #endif 954 env->vxrm = val; 955 return RISCV_EXCP_NONE; 956 } 957 958 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 959 target_ulong *val) 960 { 961 *val = env->vxsat & BIT(0); 962 return RISCV_EXCP_NONE; 963 } 964 965 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 966 target_ulong val, uintptr_t ra) 967 { 968 #if !defined(CONFIG_USER_ONLY) 969 env->mstatus |= MSTATUS_VS; 970 #endif 971 env->vxsat = val & BIT(0); 972 return RISCV_EXCP_NONE; 973 } 974 975 static RISCVException read_vstart(CPURISCVState *env, int csrno, 976 target_ulong *val) 977 { 978 *val = env->vstart; 979 return RISCV_EXCP_NONE; 980 } 981 982 static RISCVException write_vstart(CPURISCVState *env, int csrno, 983 target_ulong val, uintptr_t ra) 984 { 985 #if !defined(CONFIG_USER_ONLY) 986 env->mstatus |= MSTATUS_VS; 987 #endif 988 /* 989 * The vstart CSR is defined to have only enough writable bits 990 * to hold the largest element index, i.e. lg2(VLEN) bits. 991 */ 992 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 993 return RISCV_EXCP_NONE; 994 } 995 996 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 997 target_ulong *val) 998 { 999 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 1000 return RISCV_EXCP_NONE; 1001 } 1002 1003 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 1004 target_ulong val, uintptr_t ra) 1005 { 1006 #if !defined(CONFIG_USER_ONLY) 1007 env->mstatus |= MSTATUS_VS; 1008 #endif 1009 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 1010 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 1011 return RISCV_EXCP_NONE; 1012 } 1013 1014 #if defined(CONFIG_USER_ONLY) 1015 /* User Timers and Counters */ 1016 static target_ulong get_ticks(bool shift) 1017 { 1018 int64_t val = cpu_get_host_ticks(); 1019 target_ulong result = shift ? val >> 32 : val; 1020 1021 return result; 1022 } 1023 1024 static RISCVException read_time(CPURISCVState *env, int csrno, 1025 target_ulong *val) 1026 { 1027 *val = cpu_get_host_ticks(); 1028 return RISCV_EXCP_NONE; 1029 } 1030 1031 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1032 target_ulong *val) 1033 { 1034 *val = cpu_get_host_ticks() >> 32; 1035 return RISCV_EXCP_NONE; 1036 } 1037 1038 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1039 target_ulong *val) 1040 { 1041 *val = get_ticks(false); 1042 return RISCV_EXCP_NONE; 1043 } 1044 1045 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1046 target_ulong *val) 1047 { 1048 *val = get_ticks(true); 1049 return RISCV_EXCP_NONE; 1050 } 1051 1052 #else /* CONFIG_USER_ONLY */ 1053 1054 static RISCVException read_mcyclecfg(CPURISCVState *env, int csrno, 1055 target_ulong *val) 1056 { 1057 *val = env->mcyclecfg; 1058 return RISCV_EXCP_NONE; 1059 } 1060 1061 static RISCVException write_mcyclecfg(CPURISCVState *env, int csrno, 1062 target_ulong val, uintptr_t ra) 1063 { 1064 uint64_t inh_avail_mask; 1065 1066 if (riscv_cpu_mxl(env) == MXL_RV32) { 1067 env->mcyclecfg = val; 1068 } else { 1069 /* Set xINH fields if priv mode supported */ 1070 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MCYCLECFG_BIT_MINH; 1071 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFG_BIT_UINH : 0; 1072 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFG_BIT_SINH : 0; 1073 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1074 riscv_has_ext(env, RVU)) ? MCYCLECFG_BIT_VUINH : 0; 1075 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1076 riscv_has_ext(env, RVS)) ? MCYCLECFG_BIT_VSINH : 0; 1077 env->mcyclecfg = val & inh_avail_mask; 1078 } 1079 1080 return RISCV_EXCP_NONE; 1081 } 1082 1083 static RISCVException read_mcyclecfgh(CPURISCVState *env, int csrno, 1084 target_ulong *val) 1085 { 1086 *val = env->mcyclecfgh; 1087 return RISCV_EXCP_NONE; 1088 } 1089 1090 static RISCVException write_mcyclecfgh(CPURISCVState *env, int csrno, 1091 target_ulong val, uintptr_t ra) 1092 { 1093 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1094 MCYCLECFGH_BIT_MINH); 1095 1096 /* Set xINH fields if priv mode supported */ 1097 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFGH_BIT_UINH : 0; 1098 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFGH_BIT_SINH : 0; 1099 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1100 riscv_has_ext(env, RVU)) ? MCYCLECFGH_BIT_VUINH : 0; 1101 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1102 riscv_has_ext(env, RVS)) ? MCYCLECFGH_BIT_VSINH : 0; 1103 1104 env->mcyclecfgh = val & inh_avail_mask; 1105 return RISCV_EXCP_NONE; 1106 } 1107 1108 static RISCVException read_minstretcfg(CPURISCVState *env, int csrno, 1109 target_ulong *val) 1110 { 1111 *val = env->minstretcfg; 1112 return RISCV_EXCP_NONE; 1113 } 1114 1115 static RISCVException write_minstretcfg(CPURISCVState *env, int csrno, 1116 target_ulong val, uintptr_t ra) 1117 { 1118 uint64_t inh_avail_mask; 1119 1120 if (riscv_cpu_mxl(env) == MXL_RV32) { 1121 env->minstretcfg = val; 1122 } else { 1123 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MINSTRETCFG_BIT_MINH; 1124 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFG_BIT_UINH : 0; 1125 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFG_BIT_SINH : 0; 1126 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1127 riscv_has_ext(env, RVU)) ? MINSTRETCFG_BIT_VUINH : 0; 1128 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1129 riscv_has_ext(env, RVS)) ? MINSTRETCFG_BIT_VSINH : 0; 1130 env->minstretcfg = val & inh_avail_mask; 1131 } 1132 return RISCV_EXCP_NONE; 1133 } 1134 1135 static RISCVException read_minstretcfgh(CPURISCVState *env, int csrno, 1136 target_ulong *val) 1137 { 1138 *val = env->minstretcfgh; 1139 return RISCV_EXCP_NONE; 1140 } 1141 1142 static RISCVException write_minstretcfgh(CPURISCVState *env, int csrno, 1143 target_ulong val, uintptr_t ra) 1144 { 1145 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1146 MINSTRETCFGH_BIT_MINH); 1147 1148 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFGH_BIT_UINH : 0; 1149 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFGH_BIT_SINH : 0; 1150 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1151 riscv_has_ext(env, RVU)) ? MINSTRETCFGH_BIT_VUINH : 0; 1152 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1153 riscv_has_ext(env, RVS)) ? MINSTRETCFGH_BIT_VSINH : 0; 1154 1155 env->minstretcfgh = val & inh_avail_mask; 1156 return RISCV_EXCP_NONE; 1157 } 1158 1159 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 1160 target_ulong *val) 1161 { 1162 int evt_index = csrno - CSR_MCOUNTINHIBIT; 1163 1164 *val = env->mhpmevent_val[evt_index]; 1165 1166 return RISCV_EXCP_NONE; 1167 } 1168 1169 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 1170 target_ulong val, uintptr_t ra) 1171 { 1172 int evt_index = csrno - CSR_MCOUNTINHIBIT; 1173 uint64_t mhpmevt_val = val; 1174 uint64_t inh_avail_mask; 1175 1176 if (riscv_cpu_mxl(env) == MXL_RV32) { 1177 env->mhpmevent_val[evt_index] = val; 1178 mhpmevt_val = mhpmevt_val | 1179 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 1180 } else { 1181 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MHPMEVENT_BIT_MINH; 1182 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENT_BIT_UINH : 0; 1183 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENT_BIT_SINH : 0; 1184 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1185 riscv_has_ext(env, RVU)) ? MHPMEVENT_BIT_VUINH : 0; 1186 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1187 riscv_has_ext(env, RVS)) ? MHPMEVENT_BIT_VSINH : 0; 1188 mhpmevt_val = val & inh_avail_mask; 1189 env->mhpmevent_val[evt_index] = mhpmevt_val; 1190 } 1191 1192 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1193 1194 return RISCV_EXCP_NONE; 1195 } 1196 1197 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 1198 target_ulong *val) 1199 { 1200 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 1201 1202 *val = env->mhpmeventh_val[evt_index]; 1203 1204 return RISCV_EXCP_NONE; 1205 } 1206 1207 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 1208 target_ulong val, uintptr_t ra) 1209 { 1210 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 1211 uint64_t mhpmevth_val; 1212 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 1213 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1214 MHPMEVENTH_BIT_MINH); 1215 1216 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENTH_BIT_UINH : 0; 1217 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENTH_BIT_SINH : 0; 1218 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1219 riscv_has_ext(env, RVU)) ? MHPMEVENTH_BIT_VUINH : 0; 1220 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1221 riscv_has_ext(env, RVS)) ? MHPMEVENTH_BIT_VSINH : 0; 1222 1223 mhpmevth_val = val & inh_avail_mask; 1224 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1225 env->mhpmeventh_val[evt_index] = mhpmevth_val; 1226 1227 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1228 1229 return RISCV_EXCP_NONE; 1230 } 1231 1232 static target_ulong riscv_pmu_ctr_get_fixed_counters_val(CPURISCVState *env, 1233 int counter_idx, 1234 bool upper_half) 1235 { 1236 int inst = riscv_pmu_ctr_monitor_instructions(env, counter_idx); 1237 uint64_t *counter_arr_virt = env->pmu_fixed_ctrs[inst].counter_virt; 1238 uint64_t *counter_arr = env->pmu_fixed_ctrs[inst].counter; 1239 target_ulong result = 0; 1240 uint64_t curr_val = 0; 1241 uint64_t cfg_val = 0; 1242 1243 if (counter_idx == 0) { 1244 cfg_val = upper_half ? ((uint64_t)env->mcyclecfgh << 32) : 1245 env->mcyclecfg; 1246 } else if (counter_idx == 2) { 1247 cfg_val = upper_half ? ((uint64_t)env->minstretcfgh << 32) : 1248 env->minstretcfg; 1249 } else { 1250 cfg_val = upper_half ? 1251 ((uint64_t)env->mhpmeventh_val[counter_idx] << 32) : 1252 env->mhpmevent_val[counter_idx]; 1253 cfg_val &= MHPMEVENT_FILTER_MASK; 1254 } 1255 1256 if (!cfg_val) { 1257 if (icount_enabled()) { 1258 curr_val = inst ? icount_get_raw() : icount_get(); 1259 } else { 1260 curr_val = cpu_get_host_ticks(); 1261 } 1262 1263 goto done; 1264 } 1265 1266 /* Update counter before reading. */ 1267 riscv_pmu_update_fixed_ctrs(env, env->priv, env->virt_enabled); 1268 1269 if (!(cfg_val & MCYCLECFG_BIT_MINH)) { 1270 curr_val += counter_arr[PRV_M]; 1271 } 1272 1273 if (!(cfg_val & MCYCLECFG_BIT_SINH)) { 1274 curr_val += counter_arr[PRV_S]; 1275 } 1276 1277 if (!(cfg_val & MCYCLECFG_BIT_UINH)) { 1278 curr_val += counter_arr[PRV_U]; 1279 } 1280 1281 if (!(cfg_val & MCYCLECFG_BIT_VSINH)) { 1282 curr_val += counter_arr_virt[PRV_S]; 1283 } 1284 1285 if (!(cfg_val & MCYCLECFG_BIT_VUINH)) { 1286 curr_val += counter_arr_virt[PRV_U]; 1287 } 1288 1289 done: 1290 if (riscv_cpu_mxl(env) == MXL_RV32) { 1291 result = upper_half ? curr_val >> 32 : curr_val; 1292 } else { 1293 result = curr_val; 1294 } 1295 1296 return result; 1297 } 1298 1299 static RISCVException riscv_pmu_write_ctr(CPURISCVState *env, target_ulong val, 1300 uint32_t ctr_idx) 1301 { 1302 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1303 uint64_t mhpmctr_val = val; 1304 1305 counter->mhpmcounter_val = val; 1306 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1307 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1308 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1309 counter->mhpmcounter_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1310 ctr_idx, false); 1311 if (ctr_idx > 2) { 1312 if (riscv_cpu_mxl(env) == MXL_RV32) { 1313 mhpmctr_val = mhpmctr_val | 1314 ((uint64_t)counter->mhpmcounterh_val << 32); 1315 } 1316 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1317 } 1318 } else { 1319 /* Other counters can keep incrementing from the given value */ 1320 counter->mhpmcounter_prev = val; 1321 } 1322 1323 return RISCV_EXCP_NONE; 1324 } 1325 1326 static RISCVException riscv_pmu_write_ctrh(CPURISCVState *env, target_ulong val, 1327 uint32_t ctr_idx) 1328 { 1329 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1330 uint64_t mhpmctr_val = counter->mhpmcounter_val; 1331 uint64_t mhpmctrh_val = val; 1332 1333 counter->mhpmcounterh_val = val; 1334 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 1335 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1336 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1337 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1338 counter->mhpmcounterh_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1339 ctr_idx, true); 1340 if (ctr_idx > 2) { 1341 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1342 } 1343 } else { 1344 counter->mhpmcounterh_prev = val; 1345 } 1346 1347 return RISCV_EXCP_NONE; 1348 } 1349 1350 static RISCVException write_mhpmcounter(CPURISCVState *env, int csrno, 1351 target_ulong val, uintptr_t ra) 1352 { 1353 int ctr_idx = csrno - CSR_MCYCLE; 1354 1355 return riscv_pmu_write_ctr(env, val, ctr_idx); 1356 } 1357 1358 static RISCVException write_mhpmcounterh(CPURISCVState *env, int csrno, 1359 target_ulong val, uintptr_t ra) 1360 { 1361 int ctr_idx = csrno - CSR_MCYCLEH; 1362 1363 return riscv_pmu_write_ctrh(env, val, ctr_idx); 1364 } 1365 1366 RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 1367 bool upper_half, uint32_t ctr_idx) 1368 { 1369 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1370 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 1371 counter->mhpmcounter_prev; 1372 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 1373 counter->mhpmcounter_val; 1374 1375 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 1376 /* 1377 * Counter should not increment if inhibit bit is set. Just return the 1378 * current counter value. 1379 */ 1380 *val = ctr_val; 1381 return RISCV_EXCP_NONE; 1382 } 1383 1384 /* 1385 * The kernel computes the perf delta by subtracting the current value from 1386 * the value it initialized previously (ctr_val). 1387 */ 1388 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1389 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 1390 *val = riscv_pmu_ctr_get_fixed_counters_val(env, ctr_idx, upper_half) - 1391 ctr_prev + ctr_val; 1392 } else { 1393 *val = ctr_val; 1394 } 1395 1396 return RISCV_EXCP_NONE; 1397 } 1398 1399 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1400 target_ulong *val) 1401 { 1402 uint16_t ctr_index; 1403 1404 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 1405 ctr_index = csrno - CSR_MCYCLE; 1406 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 1407 ctr_index = csrno - CSR_CYCLE; 1408 } else { 1409 return RISCV_EXCP_ILLEGAL_INST; 1410 } 1411 1412 return riscv_pmu_read_ctr(env, val, false, ctr_index); 1413 } 1414 1415 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1416 target_ulong *val) 1417 { 1418 uint16_t ctr_index; 1419 1420 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 1421 ctr_index = csrno - CSR_MCYCLEH; 1422 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 1423 ctr_index = csrno - CSR_CYCLEH; 1424 } else { 1425 return RISCV_EXCP_ILLEGAL_INST; 1426 } 1427 1428 return riscv_pmu_read_ctr(env, val, true, ctr_index); 1429 } 1430 1431 static int rmw_cd_mhpmcounter(CPURISCVState *env, int ctr_idx, 1432 target_ulong *val, target_ulong new_val, 1433 target_ulong wr_mask) 1434 { 1435 if (wr_mask != 0 && wr_mask != -1) { 1436 return -EINVAL; 1437 } 1438 1439 if (!wr_mask && val) { 1440 riscv_pmu_read_ctr(env, val, false, ctr_idx); 1441 } else if (wr_mask) { 1442 riscv_pmu_write_ctr(env, new_val, ctr_idx); 1443 } else { 1444 return -EINVAL; 1445 } 1446 1447 return 0; 1448 } 1449 1450 static int rmw_cd_mhpmcounterh(CPURISCVState *env, int ctr_idx, 1451 target_ulong *val, target_ulong new_val, 1452 target_ulong wr_mask) 1453 { 1454 if (wr_mask != 0 && wr_mask != -1) { 1455 return -EINVAL; 1456 } 1457 1458 if (!wr_mask && val) { 1459 riscv_pmu_read_ctr(env, val, true, ctr_idx); 1460 } else if (wr_mask) { 1461 riscv_pmu_write_ctrh(env, new_val, ctr_idx); 1462 } else { 1463 return -EINVAL; 1464 } 1465 1466 return 0; 1467 } 1468 1469 static int rmw_cd_mhpmevent(CPURISCVState *env, int evt_index, 1470 target_ulong *val, target_ulong new_val, 1471 target_ulong wr_mask) 1472 { 1473 uint64_t mhpmevt_val = new_val; 1474 1475 if (wr_mask != 0 && wr_mask != -1) { 1476 return -EINVAL; 1477 } 1478 1479 if (!wr_mask && val) { 1480 *val = env->mhpmevent_val[evt_index]; 1481 if (riscv_cpu_cfg(env)->ext_sscofpmf) { 1482 *val &= ~MHPMEVENT_BIT_MINH; 1483 } 1484 } else if (wr_mask) { 1485 wr_mask &= ~MHPMEVENT_BIT_MINH; 1486 mhpmevt_val = (new_val & wr_mask) | 1487 (env->mhpmevent_val[evt_index] & ~wr_mask); 1488 if (riscv_cpu_mxl(env) == MXL_RV32) { 1489 mhpmevt_val = mhpmevt_val | 1490 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 1491 } 1492 env->mhpmevent_val[evt_index] = mhpmevt_val; 1493 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1494 } else { 1495 return -EINVAL; 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int rmw_cd_mhpmeventh(CPURISCVState *env, int evt_index, 1502 target_ulong *val, target_ulong new_val, 1503 target_ulong wr_mask) 1504 { 1505 uint64_t mhpmevth_val; 1506 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 1507 1508 if (wr_mask != 0 && wr_mask != -1) { 1509 return -EINVAL; 1510 } 1511 1512 if (!wr_mask && val) { 1513 *val = env->mhpmeventh_val[evt_index]; 1514 if (riscv_cpu_cfg(env)->ext_sscofpmf) { 1515 *val &= ~MHPMEVENTH_BIT_MINH; 1516 } 1517 } else if (wr_mask) { 1518 wr_mask &= ~MHPMEVENTH_BIT_MINH; 1519 env->mhpmeventh_val[evt_index] = 1520 (new_val & wr_mask) | (env->mhpmeventh_val[evt_index] & ~wr_mask); 1521 mhpmevth_val = env->mhpmeventh_val[evt_index]; 1522 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1523 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1524 } else { 1525 return -EINVAL; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int rmw_cd_ctr_cfg(CPURISCVState *env, int cfg_index, target_ulong *val, 1532 target_ulong new_val, target_ulong wr_mask) 1533 { 1534 switch (cfg_index) { 1535 case 0: /* CYCLECFG */ 1536 if (wr_mask) { 1537 wr_mask &= ~MCYCLECFG_BIT_MINH; 1538 env->mcyclecfg = (new_val & wr_mask) | (env->mcyclecfg & ~wr_mask); 1539 } else { 1540 *val = env->mcyclecfg &= ~MHPMEVENTH_BIT_MINH; 1541 } 1542 break; 1543 case 2: /* INSTRETCFG */ 1544 if (wr_mask) { 1545 wr_mask &= ~MINSTRETCFG_BIT_MINH; 1546 env->minstretcfg = (new_val & wr_mask) | 1547 (env->minstretcfg & ~wr_mask); 1548 } else { 1549 *val = env->minstretcfg &= ~MHPMEVENTH_BIT_MINH; 1550 } 1551 break; 1552 default: 1553 return -EINVAL; 1554 } 1555 return 0; 1556 } 1557 1558 static int rmw_cd_ctr_cfgh(CPURISCVState *env, int cfg_index, target_ulong *val, 1559 target_ulong new_val, target_ulong wr_mask) 1560 { 1561 1562 if (riscv_cpu_mxl(env) != MXL_RV32) { 1563 return RISCV_EXCP_ILLEGAL_INST; 1564 } 1565 1566 switch (cfg_index) { 1567 case 0: /* CYCLECFGH */ 1568 if (wr_mask) { 1569 wr_mask &= ~MCYCLECFGH_BIT_MINH; 1570 env->mcyclecfgh = (new_val & wr_mask) | 1571 (env->mcyclecfgh & ~wr_mask); 1572 } else { 1573 *val = env->mcyclecfgh; 1574 } 1575 break; 1576 case 2: /* INSTRETCFGH */ 1577 if (wr_mask) { 1578 wr_mask &= ~MINSTRETCFGH_BIT_MINH; 1579 env->minstretcfgh = (new_val & wr_mask) | 1580 (env->minstretcfgh & ~wr_mask); 1581 } else { 1582 *val = env->minstretcfgh; 1583 } 1584 break; 1585 default: 1586 return -EINVAL; 1587 } 1588 return 0; 1589 } 1590 1591 1592 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 1593 target_ulong *val) 1594 { 1595 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 1596 int i; 1597 *val = 0; 1598 target_ulong *mhpm_evt_val; 1599 uint64_t of_bit_mask; 1600 1601 /* Virtualize scountovf for counter delegation */ 1602 if (riscv_cpu_cfg(env)->ext_sscofpmf && 1603 riscv_cpu_cfg(env)->ext_ssccfg && 1604 get_field(env->menvcfg, MENVCFG_CDE) && 1605 env->virt_enabled) { 1606 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1607 } 1608 1609 if (riscv_cpu_mxl(env) == MXL_RV32) { 1610 mhpm_evt_val = env->mhpmeventh_val; 1611 of_bit_mask = MHPMEVENTH_BIT_OF; 1612 } else { 1613 mhpm_evt_val = env->mhpmevent_val; 1614 of_bit_mask = MHPMEVENT_BIT_OF; 1615 } 1616 1617 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1618 if ((get_field(env->mcounteren, BIT(i))) && 1619 (mhpm_evt_val[i] & of_bit_mask)) { 1620 *val |= BIT(i); 1621 } 1622 } 1623 1624 return RISCV_EXCP_NONE; 1625 } 1626 1627 static RISCVException read_time(CPURISCVState *env, int csrno, 1628 target_ulong *val) 1629 { 1630 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1631 1632 if (!env->rdtime_fn) { 1633 return RISCV_EXCP_ILLEGAL_INST; 1634 } 1635 1636 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1637 return RISCV_EXCP_NONE; 1638 } 1639 1640 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1641 target_ulong *val) 1642 { 1643 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1644 1645 if (!env->rdtime_fn) { 1646 return RISCV_EXCP_ILLEGAL_INST; 1647 } 1648 1649 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1650 return RISCV_EXCP_NONE; 1651 } 1652 1653 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1654 target_ulong *val) 1655 { 1656 *val = env->vstimecmp; 1657 1658 return RISCV_EXCP_NONE; 1659 } 1660 1661 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1662 target_ulong *val) 1663 { 1664 *val = env->vstimecmp >> 32; 1665 1666 return RISCV_EXCP_NONE; 1667 } 1668 1669 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1670 target_ulong val, uintptr_t ra) 1671 { 1672 if (riscv_cpu_mxl(env) == MXL_RV32) { 1673 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1674 } else { 1675 env->vstimecmp = val; 1676 } 1677 1678 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1679 env->htimedelta, MIP_VSTIP); 1680 1681 return RISCV_EXCP_NONE; 1682 } 1683 1684 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1685 target_ulong val, uintptr_t ra) 1686 { 1687 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1688 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1689 env->htimedelta, MIP_VSTIP); 1690 1691 return RISCV_EXCP_NONE; 1692 } 1693 1694 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1695 target_ulong *val) 1696 { 1697 if (env->virt_enabled) { 1698 *val = env->vstimecmp; 1699 } else { 1700 *val = env->stimecmp; 1701 } 1702 1703 return RISCV_EXCP_NONE; 1704 } 1705 1706 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1707 target_ulong *val) 1708 { 1709 if (env->virt_enabled) { 1710 *val = env->vstimecmp >> 32; 1711 } else { 1712 *val = env->stimecmp >> 32; 1713 } 1714 1715 return RISCV_EXCP_NONE; 1716 } 1717 1718 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1719 target_ulong val, uintptr_t ra) 1720 { 1721 if (env->virt_enabled) { 1722 if (env->hvictl & HVICTL_VTI) { 1723 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1724 } 1725 return write_vstimecmp(env, csrno, val, ra); 1726 } 1727 1728 if (riscv_cpu_mxl(env) == MXL_RV32) { 1729 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1730 } else { 1731 env->stimecmp = val; 1732 } 1733 1734 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1735 1736 return RISCV_EXCP_NONE; 1737 } 1738 1739 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1740 target_ulong val, uintptr_t ra) 1741 { 1742 if (env->virt_enabled) { 1743 if (env->hvictl & HVICTL_VTI) { 1744 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1745 } 1746 return write_vstimecmph(env, csrno, val, ra); 1747 } 1748 1749 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1750 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1751 1752 return RISCV_EXCP_NONE; 1753 } 1754 1755 #define VSTOPI_NUM_SRCS 5 1756 1757 /* 1758 * All core local interrupts except the fixed ones 0:12. This macro is for 1759 * virtual interrupts logic so please don't change this to avoid messing up 1760 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1761 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1762 * VS level`. 1763 */ 1764 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1765 1766 static const uint64_t delegable_ints = 1767 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1768 static const uint64_t vs_delegable_ints = 1769 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1770 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1771 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1772 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1773 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1774 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1775 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1776 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1777 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1778 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1779 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1780 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1781 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1782 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1783 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1784 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1785 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1786 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1787 (1ULL << (RISCV_EXCP_SW_CHECK)) | \ 1788 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1789 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1790 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1791 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1792 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1793 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1794 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1795 (1ULL << (RISCV_EXCP_M_ECALL)) | 1796 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1797 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1798 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1799 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1800 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1801 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1802 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1803 1804 /* 1805 * Spec allows for bits 13:63 to be either read-only or writable. 1806 * So far we have interrupt LCOFIP in that region which is writable. 1807 * 1808 * Also, spec allows to inject virtual interrupts in this region even 1809 * without any hardware interrupts for that interrupt number. 1810 * 1811 * For now interrupt in 13:63 region are all kept writable. 13 being 1812 * LCOFIP and 14:63 being virtual only. Change this in future if we 1813 * introduce more interrupts that are not writable. 1814 */ 1815 1816 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1817 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1818 LOCAL_INTERRUPTS; 1819 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1820 LOCAL_INTERRUPTS; 1821 1822 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1823 static const uint64_t hip_writable_mask = MIP_VSSIP; 1824 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1825 MIP_VSEIP | LOCAL_INTERRUPTS; 1826 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1827 1828 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1829 1830 const bool valid_vm_1_10_32[16] = { 1831 [VM_1_10_MBARE] = true, 1832 [VM_1_10_SV32] = true 1833 }; 1834 1835 const bool valid_vm_1_10_64[16] = { 1836 [VM_1_10_MBARE] = true, 1837 [VM_1_10_SV39] = true, 1838 [VM_1_10_SV48] = true, 1839 [VM_1_10_SV57] = true 1840 }; 1841 1842 /* Machine Information Registers */ 1843 static RISCVException read_zero(CPURISCVState *env, int csrno, 1844 target_ulong *val) 1845 { 1846 *val = 0; 1847 return RISCV_EXCP_NONE; 1848 } 1849 1850 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1851 target_ulong val, uintptr_t ra) 1852 { 1853 return RISCV_EXCP_NONE; 1854 } 1855 1856 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1857 target_ulong *val) 1858 { 1859 *val = riscv_cpu_cfg(env)->mvendorid; 1860 return RISCV_EXCP_NONE; 1861 } 1862 1863 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1864 target_ulong *val) 1865 { 1866 *val = riscv_cpu_cfg(env)->marchid; 1867 return RISCV_EXCP_NONE; 1868 } 1869 1870 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1871 target_ulong *val) 1872 { 1873 *val = riscv_cpu_cfg(env)->mimpid; 1874 return RISCV_EXCP_NONE; 1875 } 1876 1877 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1878 target_ulong *val) 1879 { 1880 *val = env->mhartid; 1881 return RISCV_EXCP_NONE; 1882 } 1883 1884 /* Machine Trap Setup */ 1885 1886 /* We do not store SD explicitly, only compute it on demand. */ 1887 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1888 { 1889 if ((status & MSTATUS_FS) == MSTATUS_FS || 1890 (status & MSTATUS_VS) == MSTATUS_VS || 1891 (status & MSTATUS_XS) == MSTATUS_XS) { 1892 switch (xl) { 1893 case MXL_RV32: 1894 return status | MSTATUS32_SD; 1895 case MXL_RV64: 1896 return status | MSTATUS64_SD; 1897 case MXL_RV128: 1898 return MSTATUSH128_SD; 1899 default: 1900 g_assert_not_reached(); 1901 } 1902 } 1903 return status; 1904 } 1905 1906 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1907 target_ulong *val) 1908 { 1909 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1910 return RISCV_EXCP_NONE; 1911 } 1912 1913 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1914 { 1915 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32; 1916 RISCVCPU *cpu = env_archcpu(env); 1917 int satp_mode_supported_max = cpu->cfg.max_satp_mode; 1918 const bool *valid_vm = rv32 ? valid_vm_1_10_32 : valid_vm_1_10_64; 1919 1920 assert(satp_mode_supported_max >= 0); 1921 return vm <= satp_mode_supported_max && valid_vm[vm]; 1922 } 1923 1924 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1925 target_ulong val) 1926 { 1927 target_ulong mask; 1928 bool vm; 1929 if (riscv_cpu_mxl(env) == MXL_RV32) { 1930 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1931 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1932 } else { 1933 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1934 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1935 } 1936 1937 if (vm && mask) { 1938 /* 1939 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1940 * pass these through QEMU's TLB emulation as it improves 1941 * performance. Flushing the TLB on SATP writes with paging 1942 * enabled avoids leaking those invalid cached mappings. 1943 */ 1944 tlb_flush(env_cpu(env)); 1945 return val; 1946 } 1947 return old_xatp; 1948 } 1949 1950 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1951 target_ulong val) 1952 { 1953 bool valid = false; 1954 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1955 1956 switch (new_mpp) { 1957 case PRV_M: 1958 valid = true; 1959 break; 1960 case PRV_S: 1961 valid = riscv_has_ext(env, RVS); 1962 break; 1963 case PRV_U: 1964 valid = riscv_has_ext(env, RVU); 1965 break; 1966 } 1967 1968 /* Remain field unchanged if new_mpp value is invalid */ 1969 if (!valid) { 1970 val = set_field(val, MSTATUS_MPP, old_mpp); 1971 } 1972 1973 return val; 1974 } 1975 1976 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1977 target_ulong val, uintptr_t ra) 1978 { 1979 uint64_t mstatus = env->mstatus; 1980 uint64_t mask = 0; 1981 RISCVMXL xl = riscv_cpu_mxl(env); 1982 1983 /* 1984 * MPP field have been made WARL since priv version 1.11. However, 1985 * legalization for it will not break any software running on 1.10. 1986 */ 1987 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1988 1989 /* flush tlb on mstatus fields that affect VM */ 1990 if ((val ^ mstatus) & MSTATUS_MXR) { 1991 tlb_flush(env_cpu(env)); 1992 } 1993 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1994 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1995 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1996 MSTATUS_TW; 1997 1998 if (riscv_has_ext(env, RVF)) { 1999 mask |= MSTATUS_FS; 2000 } 2001 if (riscv_has_ext(env, RVV)) { 2002 mask |= MSTATUS_VS; 2003 } 2004 2005 if (riscv_env_smode_dbltrp_enabled(env, env->virt_enabled)) { 2006 mask |= MSTATUS_SDT; 2007 if ((val & MSTATUS_SDT) != 0) { 2008 val &= ~MSTATUS_SIE; 2009 } 2010 } 2011 2012 if (riscv_cpu_cfg(env)->ext_smdbltrp) { 2013 mask |= MSTATUS_MDT; 2014 if ((val & MSTATUS_MDT) != 0) { 2015 val &= ~MSTATUS_MIE; 2016 } 2017 } 2018 2019 if (xl != MXL_RV32 || env->debugger) { 2020 if (riscv_has_ext(env, RVH)) { 2021 mask |= MSTATUS_MPV | MSTATUS_GVA; 2022 } 2023 if ((val & MSTATUS64_UXL) != 0) { 2024 mask |= MSTATUS64_UXL; 2025 } 2026 } 2027 2028 /* If cfi lp extension is available, then apply cfi lp mask */ 2029 if (env_archcpu(env)->cfg.ext_zicfilp) { 2030 mask |= (MSTATUS_MPELP | MSTATUS_SPELP); 2031 } 2032 2033 mstatus = (mstatus & ~mask) | (val & mask); 2034 2035 env->mstatus = mstatus; 2036 2037 /* 2038 * Except in debug mode, UXL/SXL can only be modified by higher 2039 * privilege mode. So xl will not be changed in normal mode. 2040 */ 2041 if (env->debugger) { 2042 env->xl = cpu_recompute_xl(env); 2043 } 2044 2045 return RISCV_EXCP_NONE; 2046 } 2047 2048 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 2049 target_ulong *val) 2050 { 2051 *val = env->mstatus >> 32; 2052 return RISCV_EXCP_NONE; 2053 } 2054 2055 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 2056 target_ulong val, uintptr_t ra) 2057 { 2058 uint64_t valh = (uint64_t)val << 32; 2059 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 2060 2061 if (riscv_cpu_cfg(env)->ext_smdbltrp) { 2062 mask |= MSTATUS_MDT; 2063 if ((valh & MSTATUS_MDT) != 0) { 2064 mask |= MSTATUS_MIE; 2065 } 2066 } 2067 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 2068 2069 return RISCV_EXCP_NONE; 2070 } 2071 2072 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 2073 Int128 *val) 2074 { 2075 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 2076 env->mstatus)); 2077 return RISCV_EXCP_NONE; 2078 } 2079 2080 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 2081 Int128 *val) 2082 { 2083 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 2084 return RISCV_EXCP_NONE; 2085 } 2086 2087 static RISCVException read_misa(CPURISCVState *env, int csrno, 2088 target_ulong *val) 2089 { 2090 target_ulong misa; 2091 2092 switch (env->misa_mxl) { 2093 case MXL_RV32: 2094 misa = (target_ulong)MXL_RV32 << 30; 2095 break; 2096 #ifdef TARGET_RISCV64 2097 case MXL_RV64: 2098 misa = (target_ulong)MXL_RV64 << 62; 2099 break; 2100 #endif 2101 default: 2102 g_assert_not_reached(); 2103 } 2104 2105 *val = misa | env->misa_ext; 2106 return RISCV_EXCP_NONE; 2107 } 2108 2109 static target_ulong get_next_pc(CPURISCVState *env, uintptr_t ra) 2110 { 2111 uint64_t data[INSN_START_WORDS]; 2112 2113 /* Outside of a running cpu, env contains the next pc. */ 2114 if (ra == 0 || !cpu_unwind_state_data(env_cpu(env), ra, data)) { 2115 return env->pc; 2116 } 2117 2118 /* Within unwind data, [0] is pc and [1] is the opcode. */ 2119 return data[0] + insn_len(data[1]); 2120 } 2121 2122 static RISCVException write_misa(CPURISCVState *env, int csrno, 2123 target_ulong val, uintptr_t ra) 2124 { 2125 RISCVCPU *cpu = env_archcpu(env); 2126 uint32_t orig_misa_ext = env->misa_ext; 2127 Error *local_err = NULL; 2128 2129 if (!riscv_cpu_cfg(env)->misa_w) { 2130 /* drop write to misa */ 2131 return RISCV_EXCP_NONE; 2132 } 2133 2134 /* Mask extensions that are not supported by this hart */ 2135 val &= env->misa_ext_mask; 2136 2137 /* Suppress 'C' if next instruction is not aligned. */ 2138 if ((val & RVC) && (get_next_pc(env, ra) & 3) != 0) { 2139 val &= ~RVC; 2140 } 2141 2142 /* Disable RVG if any of its dependencies are disabled */ 2143 if (!(val & RVI && val & RVM && val & RVA && 2144 val & RVF && val & RVD)) { 2145 val &= ~RVG; 2146 } 2147 2148 /* If nothing changed, do nothing. */ 2149 if (val == env->misa_ext) { 2150 return RISCV_EXCP_NONE; 2151 } 2152 2153 env->misa_ext = val; 2154 riscv_cpu_validate_set_extensions(cpu, &local_err); 2155 if (local_err != NULL) { 2156 /* Rollback on validation error */ 2157 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 2158 "0x%x, keeping existing MISA ext 0x%x\n", 2159 env->misa_ext, orig_misa_ext); 2160 2161 env->misa_ext = orig_misa_ext; 2162 2163 return RISCV_EXCP_NONE; 2164 } 2165 2166 if (!(env->misa_ext & RVF)) { 2167 env->mstatus &= ~MSTATUS_FS; 2168 } 2169 2170 /* flush translation cache */ 2171 tb_flush(env_cpu(env)); 2172 env->xl = riscv_cpu_mxl(env); 2173 return RISCV_EXCP_NONE; 2174 } 2175 2176 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 2177 target_ulong *val) 2178 { 2179 *val = env->medeleg; 2180 return RISCV_EXCP_NONE; 2181 } 2182 2183 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 2184 target_ulong val, uintptr_t ra) 2185 { 2186 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 2187 return RISCV_EXCP_NONE; 2188 } 2189 2190 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 2191 uint64_t *ret_val, 2192 uint64_t new_val, uint64_t wr_mask) 2193 { 2194 uint64_t mask = wr_mask & delegable_ints; 2195 2196 if (ret_val) { 2197 *ret_val = env->mideleg; 2198 } 2199 2200 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 2201 2202 if (riscv_has_ext(env, RVH)) { 2203 env->mideleg |= HS_MODE_INTERRUPTS; 2204 } 2205 2206 return RISCV_EXCP_NONE; 2207 } 2208 2209 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 2210 target_ulong *ret_val, 2211 target_ulong new_val, target_ulong wr_mask) 2212 { 2213 uint64_t rval; 2214 RISCVException ret; 2215 2216 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 2217 if (ret_val) { 2218 *ret_val = rval; 2219 } 2220 2221 return ret; 2222 } 2223 2224 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 2225 target_ulong *ret_val, 2226 target_ulong new_val, 2227 target_ulong wr_mask) 2228 { 2229 uint64_t rval; 2230 RISCVException ret; 2231 2232 ret = rmw_mideleg64(env, csrno, &rval, 2233 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2234 if (ret_val) { 2235 *ret_val = rval >> 32; 2236 } 2237 2238 return ret; 2239 } 2240 2241 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 2242 uint64_t *ret_val, 2243 uint64_t new_val, uint64_t wr_mask) 2244 { 2245 uint64_t mask = wr_mask & all_ints; 2246 2247 if (ret_val) { 2248 *ret_val = env->mie; 2249 } 2250 2251 env->mie = (env->mie & ~mask) | (new_val & mask); 2252 2253 if (!riscv_has_ext(env, RVH)) { 2254 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 2255 } 2256 2257 return RISCV_EXCP_NONE; 2258 } 2259 2260 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 2261 target_ulong *ret_val, 2262 target_ulong new_val, target_ulong wr_mask) 2263 { 2264 uint64_t rval; 2265 RISCVException ret; 2266 2267 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 2268 if (ret_val) { 2269 *ret_val = rval; 2270 } 2271 2272 return ret; 2273 } 2274 2275 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 2276 target_ulong *ret_val, 2277 target_ulong new_val, target_ulong wr_mask) 2278 { 2279 uint64_t rval; 2280 RISCVException ret; 2281 2282 ret = rmw_mie64(env, csrno, &rval, 2283 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2284 if (ret_val) { 2285 *ret_val = rval >> 32; 2286 } 2287 2288 return ret; 2289 } 2290 2291 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 2292 uint64_t *ret_val, 2293 uint64_t new_val, uint64_t wr_mask) 2294 { 2295 uint64_t mask = wr_mask & mvien_writable_mask; 2296 2297 if (ret_val) { 2298 *ret_val = env->mvien; 2299 } 2300 2301 env->mvien = (env->mvien & ~mask) | (new_val & mask); 2302 2303 return RISCV_EXCP_NONE; 2304 } 2305 2306 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 2307 target_ulong *ret_val, 2308 target_ulong new_val, target_ulong wr_mask) 2309 { 2310 uint64_t rval; 2311 RISCVException ret; 2312 2313 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 2314 if (ret_val) { 2315 *ret_val = rval; 2316 } 2317 2318 return ret; 2319 } 2320 2321 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 2322 target_ulong *ret_val, 2323 target_ulong new_val, target_ulong wr_mask) 2324 { 2325 uint64_t rval; 2326 RISCVException ret; 2327 2328 ret = rmw_mvien64(env, csrno, &rval, 2329 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2330 if (ret_val) { 2331 *ret_val = rval >> 32; 2332 } 2333 2334 return ret; 2335 } 2336 2337 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 2338 target_ulong *val) 2339 { 2340 int irq; 2341 uint8_t iprio; 2342 2343 irq = riscv_cpu_mirq_pending(env); 2344 if (irq <= 0 || irq > 63) { 2345 *val = 0; 2346 } else { 2347 iprio = env->miprio[irq]; 2348 if (!iprio) { 2349 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 2350 iprio = IPRIO_MMAXIPRIO; 2351 } 2352 } 2353 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2354 *val |= iprio; 2355 } 2356 2357 return RISCV_EXCP_NONE; 2358 } 2359 2360 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 2361 { 2362 if (!env->virt_enabled) { 2363 return csrno; 2364 } 2365 2366 switch (csrno) { 2367 case CSR_SISELECT: 2368 return CSR_VSISELECT; 2369 case CSR_SIREG: 2370 return CSR_VSIREG; 2371 case CSR_STOPEI: 2372 return CSR_VSTOPEI; 2373 default: 2374 return csrno; 2375 }; 2376 } 2377 2378 static int csrind_xlate_vs_csrno(CPURISCVState *env, int csrno) 2379 { 2380 if (!env->virt_enabled) { 2381 return csrno; 2382 } 2383 2384 switch (csrno) { 2385 case CSR_SISELECT: 2386 return CSR_VSISELECT; 2387 case CSR_SIREG: 2388 case CSR_SIREG2: 2389 case CSR_SIREG3: 2390 case CSR_SIREG4: 2391 case CSR_SIREG5: 2392 case CSR_SIREG6: 2393 return CSR_VSIREG + (csrno - CSR_SIREG); 2394 default: 2395 return csrno; 2396 }; 2397 } 2398 2399 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 2400 target_ulong *val, target_ulong new_val, 2401 target_ulong wr_mask) 2402 { 2403 target_ulong *iselect; 2404 int ret; 2405 2406 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2407 if (ret != RISCV_EXCP_NONE) { 2408 return ret; 2409 } 2410 2411 /* Translate CSR number for VS-mode */ 2412 csrno = csrind_xlate_vs_csrno(env, csrno); 2413 2414 /* Find the iselect CSR based on CSR number */ 2415 switch (csrno) { 2416 case CSR_MISELECT: 2417 iselect = &env->miselect; 2418 break; 2419 case CSR_SISELECT: 2420 iselect = &env->siselect; 2421 break; 2422 case CSR_VSISELECT: 2423 iselect = &env->vsiselect; 2424 break; 2425 default: 2426 return RISCV_EXCP_ILLEGAL_INST; 2427 }; 2428 2429 if (val) { 2430 *val = *iselect; 2431 } 2432 2433 if (riscv_cpu_cfg(env)->ext_smcsrind || riscv_cpu_cfg(env)->ext_sscsrind) { 2434 wr_mask &= ISELECT_MASK_SXCSRIND; 2435 } else { 2436 wr_mask &= ISELECT_MASK_AIA; 2437 } 2438 2439 if (wr_mask) { 2440 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 2441 } 2442 2443 return RISCV_EXCP_NONE; 2444 } 2445 2446 static bool xiselect_aia_range(target_ulong isel) 2447 { 2448 return (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) || 2449 (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST); 2450 } 2451 2452 static bool xiselect_cd_range(target_ulong isel) 2453 { 2454 return (ISELECT_CD_FIRST <= isel && isel <= ISELECT_CD_LAST); 2455 } 2456 2457 static bool xiselect_ctr_range(int csrno, target_ulong isel) 2458 { 2459 /* MIREG-MIREG6 for the range 0x200-0x2ff are not used by CTR. */ 2460 return CTR_ENTRIES_FIRST <= isel && isel <= CTR_ENTRIES_LAST && 2461 csrno < CSR_MIREG; 2462 } 2463 2464 static int rmw_iprio(target_ulong xlen, 2465 target_ulong iselect, uint8_t *iprio, 2466 target_ulong *val, target_ulong new_val, 2467 target_ulong wr_mask, int ext_irq_no) 2468 { 2469 int i, firq, nirqs; 2470 target_ulong old_val; 2471 2472 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 2473 return -EINVAL; 2474 } 2475 if (xlen != 32 && iselect & 0x1) { 2476 return -EINVAL; 2477 } 2478 2479 nirqs = 4 * (xlen / 32); 2480 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 2481 2482 old_val = 0; 2483 for (i = 0; i < nirqs; i++) { 2484 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 2485 } 2486 2487 if (val) { 2488 *val = old_val; 2489 } 2490 2491 if (wr_mask) { 2492 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 2493 for (i = 0; i < nirqs; i++) { 2494 /* 2495 * M-level and S-level external IRQ priority always read-only 2496 * zero. This means default priority order is always preferred 2497 * for M-level and S-level external IRQs. 2498 */ 2499 if ((firq + i) == ext_irq_no) { 2500 continue; 2501 } 2502 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 2503 } 2504 } 2505 2506 return 0; 2507 } 2508 2509 static int rmw_ctrsource(CPURISCVState *env, int isel, target_ulong *val, 2510 target_ulong new_val, target_ulong wr_mask) 2511 { 2512 /* 2513 * CTR arrays are treated as circular buffers and TOS always points to next 2514 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2515 * 0 is always the latest one, traversal is a bit different here. See the 2516 * below example. 2517 * 2518 * Depth = 16. 2519 * 2520 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2521 * TOS H 2522 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2523 */ 2524 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2525 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2526 uint64_t idx; 2527 2528 /* Entry greater than depth-1 is read-only zero */ 2529 if (entry >= depth) { 2530 if (val) { 2531 *val = 0; 2532 } 2533 return 0; 2534 } 2535 2536 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2537 idx = (idx - entry - 1) & (depth - 1); 2538 2539 if (val) { 2540 *val = env->ctr_src[idx]; 2541 } 2542 2543 env->ctr_src[idx] = (env->ctr_src[idx] & ~wr_mask) | (new_val & wr_mask); 2544 2545 return 0; 2546 } 2547 2548 static int rmw_ctrtarget(CPURISCVState *env, int isel, target_ulong *val, 2549 target_ulong new_val, target_ulong wr_mask) 2550 { 2551 /* 2552 * CTR arrays are treated as circular buffers and TOS always points to next 2553 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2554 * 0 is always the latest one, traversal is a bit different here. See the 2555 * below example. 2556 * 2557 * Depth = 16. 2558 * 2559 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2560 * head H 2561 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2562 */ 2563 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2564 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2565 uint64_t idx; 2566 2567 /* Entry greater than depth-1 is read-only zero */ 2568 if (entry >= depth) { 2569 if (val) { 2570 *val = 0; 2571 } 2572 return 0; 2573 } 2574 2575 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2576 idx = (idx - entry - 1) & (depth - 1); 2577 2578 if (val) { 2579 *val = env->ctr_dst[idx]; 2580 } 2581 2582 env->ctr_dst[idx] = (env->ctr_dst[idx] & ~wr_mask) | (new_val & wr_mask); 2583 2584 return 0; 2585 } 2586 2587 static int rmw_ctrdata(CPURISCVState *env, int isel, target_ulong *val, 2588 target_ulong new_val, target_ulong wr_mask) 2589 { 2590 /* 2591 * CTR arrays are treated as circular buffers and TOS always points to next 2592 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2593 * 0 is always the latest one, traversal is a bit different here. See the 2594 * below example. 2595 * 2596 * Depth = 16. 2597 * 2598 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2599 * head H 2600 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2601 */ 2602 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2603 const uint64_t mask = wr_mask & CTRDATA_MASK; 2604 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2605 uint64_t idx; 2606 2607 /* Entry greater than depth-1 is read-only zero */ 2608 if (entry >= depth) { 2609 if (val) { 2610 *val = 0; 2611 } 2612 return 0; 2613 } 2614 2615 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2616 idx = (idx - entry - 1) & (depth - 1); 2617 2618 if (val) { 2619 *val = env->ctr_data[idx]; 2620 } 2621 2622 env->ctr_data[idx] = (env->ctr_data[idx] & ~mask) | (new_val & mask); 2623 2624 return 0; 2625 } 2626 2627 static RISCVException rmw_xireg_aia(CPURISCVState *env, int csrno, 2628 target_ulong isel, target_ulong *val, 2629 target_ulong new_val, target_ulong wr_mask) 2630 { 2631 bool virt = false, isel_reserved = false; 2632 int ret = -EINVAL; 2633 uint8_t *iprio; 2634 target_ulong priv, vgein; 2635 2636 /* VS-mode CSR number passed in has already been translated */ 2637 switch (csrno) { 2638 case CSR_MIREG: 2639 if (!riscv_cpu_cfg(env)->ext_smaia) { 2640 goto done; 2641 } 2642 iprio = env->miprio; 2643 priv = PRV_M; 2644 break; 2645 case CSR_SIREG: 2646 if (!riscv_cpu_cfg(env)->ext_ssaia || 2647 (env->priv == PRV_S && env->mvien & MIP_SEIP && 2648 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 2649 env->siselect <= ISELECT_IMSIC_EIE63)) { 2650 goto done; 2651 } 2652 iprio = env->siprio; 2653 priv = PRV_S; 2654 break; 2655 case CSR_VSIREG: 2656 if (!riscv_cpu_cfg(env)->ext_ssaia) { 2657 goto done; 2658 } 2659 iprio = env->hviprio; 2660 priv = PRV_S; 2661 virt = true; 2662 break; 2663 default: 2664 goto done; 2665 }; 2666 2667 /* Find the selected guest interrupt file */ 2668 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2669 2670 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 2671 /* Local interrupt priority registers not available for VS-mode */ 2672 if (!virt) { 2673 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 2674 isel, iprio, val, new_val, wr_mask, 2675 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 2676 } 2677 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 2678 /* IMSIC registers only available when machine implements it. */ 2679 if (env->aia_ireg_rmw_fn[priv]) { 2680 /* Selected guest interrupt file should not be zero */ 2681 if (virt && (!vgein || env->geilen < vgein)) { 2682 goto done; 2683 } 2684 /* Call machine specific IMSIC register emulation */ 2685 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2686 AIA_MAKE_IREG(isel, priv, virt, vgein, 2687 riscv_cpu_mxl_bits(env)), 2688 val, new_val, wr_mask); 2689 } 2690 } else { 2691 isel_reserved = true; 2692 } 2693 2694 done: 2695 /* 2696 * If AIA is not enabled, illegal instruction exception is always 2697 * returned regardless of whether we are in VS-mode or not 2698 */ 2699 if (ret) { 2700 return (env->virt_enabled && virt && !isel_reserved) ? 2701 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2702 } 2703 2704 return RISCV_EXCP_NONE; 2705 } 2706 2707 static int rmw_xireg_cd(CPURISCVState *env, int csrno, 2708 target_ulong isel, target_ulong *val, 2709 target_ulong new_val, target_ulong wr_mask) 2710 { 2711 int ret = -EINVAL; 2712 int ctr_index = isel - ISELECT_CD_FIRST; 2713 int isel_hpm_start = ISELECT_CD_FIRST + 3; 2714 2715 if (!riscv_cpu_cfg(env)->ext_smcdeleg || !riscv_cpu_cfg(env)->ext_ssccfg) { 2716 ret = RISCV_EXCP_ILLEGAL_INST; 2717 goto done; 2718 } 2719 2720 /* Invalid siselect value for reserved */ 2721 if (ctr_index == 1) { 2722 goto done; 2723 } 2724 2725 /* sireg4 and sireg5 provides access RV32 only CSRs */ 2726 if (((csrno == CSR_SIREG5) || (csrno == CSR_SIREG4)) && 2727 (riscv_cpu_mxl(env) != MXL_RV32)) { 2728 ret = RISCV_EXCP_ILLEGAL_INST; 2729 goto done; 2730 } 2731 2732 /* Check Sscofpmf dependancy */ 2733 if (!riscv_cpu_cfg(env)->ext_sscofpmf && csrno == CSR_SIREG5 && 2734 (isel_hpm_start <= isel && isel <= ISELECT_CD_LAST)) { 2735 goto done; 2736 } 2737 2738 /* Check smcntrpmf dependancy */ 2739 if (!riscv_cpu_cfg(env)->ext_smcntrpmf && 2740 (csrno == CSR_SIREG2 || csrno == CSR_SIREG5) && 2741 (ISELECT_CD_FIRST <= isel && isel < isel_hpm_start)) { 2742 goto done; 2743 } 2744 2745 if (!get_field(env->mcounteren, BIT(ctr_index)) || 2746 !get_field(env->menvcfg, MENVCFG_CDE)) { 2747 goto done; 2748 } 2749 2750 switch (csrno) { 2751 case CSR_SIREG: 2752 ret = rmw_cd_mhpmcounter(env, ctr_index, val, new_val, wr_mask); 2753 break; 2754 case CSR_SIREG4: 2755 ret = rmw_cd_mhpmcounterh(env, ctr_index, val, new_val, wr_mask); 2756 break; 2757 case CSR_SIREG2: 2758 if (ctr_index <= 2) { 2759 ret = rmw_cd_ctr_cfg(env, ctr_index, val, new_val, wr_mask); 2760 } else { 2761 ret = rmw_cd_mhpmevent(env, ctr_index, val, new_val, wr_mask); 2762 } 2763 break; 2764 case CSR_SIREG5: 2765 if (ctr_index <= 2) { 2766 ret = rmw_cd_ctr_cfgh(env, ctr_index, val, new_val, wr_mask); 2767 } else { 2768 ret = rmw_cd_mhpmeventh(env, ctr_index, val, new_val, wr_mask); 2769 } 2770 break; 2771 default: 2772 goto done; 2773 } 2774 2775 done: 2776 return ret; 2777 } 2778 2779 static int rmw_xireg_ctr(CPURISCVState *env, int csrno, 2780 target_ulong isel, target_ulong *val, 2781 target_ulong new_val, target_ulong wr_mask) 2782 { 2783 if (!riscv_cpu_cfg(env)->ext_smctr && !riscv_cpu_cfg(env)->ext_ssctr) { 2784 return -EINVAL; 2785 } 2786 2787 if (csrno == CSR_SIREG || csrno == CSR_VSIREG) { 2788 return rmw_ctrsource(env, isel, val, new_val, wr_mask); 2789 } else if (csrno == CSR_SIREG2 || csrno == CSR_VSIREG2) { 2790 return rmw_ctrtarget(env, isel, val, new_val, wr_mask); 2791 } else if (csrno == CSR_SIREG3 || csrno == CSR_VSIREG3) { 2792 return rmw_ctrdata(env, isel, val, new_val, wr_mask); 2793 } else if (val) { 2794 *val = 0; 2795 } 2796 2797 return 0; 2798 } 2799 2800 /* 2801 * rmw_xireg_csrind: Perform indirect access to xireg and xireg2-xireg6 2802 * 2803 * Perform indirect access to xireg and xireg2-xireg6. 2804 * This is a generic interface for all xireg CSRs. Apart from AIA, all other 2805 * extension using csrind should be implemented here. 2806 */ 2807 static int rmw_xireg_csrind(CPURISCVState *env, int csrno, 2808 target_ulong isel, target_ulong *val, 2809 target_ulong new_val, target_ulong wr_mask) 2810 { 2811 bool virt = csrno == CSR_VSIREG ? true : false; 2812 int ret = -EINVAL; 2813 2814 if (xiselect_cd_range(isel)) { 2815 ret = rmw_xireg_cd(env, csrno, isel, val, new_val, wr_mask); 2816 } else if (xiselect_ctr_range(csrno, isel)) { 2817 ret = rmw_xireg_ctr(env, csrno, isel, val, new_val, wr_mask); 2818 } else { 2819 /* 2820 * As per the specification, access to unimplented region is undefined 2821 * but recommendation is to raise illegal instruction exception. 2822 */ 2823 return RISCV_EXCP_ILLEGAL_INST; 2824 } 2825 2826 if (ret) { 2827 return (env->virt_enabled && virt) ? 2828 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2829 } 2830 2831 return RISCV_EXCP_NONE; 2832 } 2833 2834 static int rmw_xiregi(CPURISCVState *env, int csrno, target_ulong *val, 2835 target_ulong new_val, target_ulong wr_mask) 2836 { 2837 int ret = -EINVAL; 2838 target_ulong isel; 2839 2840 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2841 if (ret != RISCV_EXCP_NONE) { 2842 return ret; 2843 } 2844 2845 /* Translate CSR number for VS-mode */ 2846 csrno = csrind_xlate_vs_csrno(env, csrno); 2847 2848 if (CSR_MIREG <= csrno && csrno <= CSR_MIREG6 && 2849 csrno != CSR_MIREG4 - 1) { 2850 isel = env->miselect; 2851 } else if (CSR_SIREG <= csrno && csrno <= CSR_SIREG6 && 2852 csrno != CSR_SIREG4 - 1) { 2853 isel = env->siselect; 2854 } else if (CSR_VSIREG <= csrno && csrno <= CSR_VSIREG6 && 2855 csrno != CSR_VSIREG4 - 1) { 2856 isel = env->vsiselect; 2857 } else { 2858 return RISCV_EXCP_ILLEGAL_INST; 2859 } 2860 2861 return rmw_xireg_csrind(env, csrno, isel, val, new_val, wr_mask); 2862 } 2863 2864 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 2865 target_ulong *val, target_ulong new_val, 2866 target_ulong wr_mask) 2867 { 2868 int ret = -EINVAL; 2869 target_ulong isel; 2870 2871 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2872 if (ret != RISCV_EXCP_NONE) { 2873 return ret; 2874 } 2875 2876 /* Translate CSR number for VS-mode */ 2877 csrno = csrind_xlate_vs_csrno(env, csrno); 2878 2879 /* Decode register details from CSR number */ 2880 switch (csrno) { 2881 case CSR_MIREG: 2882 isel = env->miselect; 2883 break; 2884 case CSR_SIREG: 2885 isel = env->siselect; 2886 break; 2887 case CSR_VSIREG: 2888 isel = env->vsiselect; 2889 break; 2890 default: 2891 goto done; 2892 }; 2893 2894 /* 2895 * Use the xiselect range to determine actual op on xireg. 2896 * 2897 * Since we only checked the existence of AIA or Indirect Access in the 2898 * predicate, we should check the existence of the exact extension when 2899 * we get to a specific range and return illegal instruction exception even 2900 * in VS-mode. 2901 */ 2902 if (xiselect_aia_range(isel)) { 2903 return rmw_xireg_aia(env, csrno, isel, val, new_val, wr_mask); 2904 } else if (riscv_cpu_cfg(env)->ext_smcsrind || 2905 riscv_cpu_cfg(env)->ext_sscsrind) { 2906 return rmw_xireg_csrind(env, csrno, isel, val, new_val, wr_mask); 2907 } 2908 2909 done: 2910 return RISCV_EXCP_ILLEGAL_INST; 2911 } 2912 2913 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 2914 target_ulong *val, target_ulong new_val, 2915 target_ulong wr_mask) 2916 { 2917 bool virt; 2918 int ret = -EINVAL; 2919 target_ulong priv, vgein; 2920 2921 /* Translate CSR number for VS-mode */ 2922 csrno = aia_xlate_vs_csrno(env, csrno); 2923 2924 /* Decode register details from CSR number */ 2925 virt = false; 2926 switch (csrno) { 2927 case CSR_MTOPEI: 2928 priv = PRV_M; 2929 break; 2930 case CSR_STOPEI: 2931 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 2932 goto done; 2933 } 2934 priv = PRV_S; 2935 break; 2936 case CSR_VSTOPEI: 2937 priv = PRV_S; 2938 virt = true; 2939 break; 2940 default: 2941 goto done; 2942 }; 2943 2944 /* IMSIC CSRs only available when machine implements IMSIC. */ 2945 if (!env->aia_ireg_rmw_fn[priv]) { 2946 goto done; 2947 } 2948 2949 /* Find the selected guest interrupt file */ 2950 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2951 2952 /* Selected guest interrupt file should be valid */ 2953 if (virt && (!vgein || env->geilen < vgein)) { 2954 goto done; 2955 } 2956 2957 /* Call machine specific IMSIC register emulation for TOPEI */ 2958 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2959 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 2960 riscv_cpu_mxl_bits(env)), 2961 val, new_val, wr_mask); 2962 2963 done: 2964 if (ret) { 2965 return (env->virt_enabled && virt) ? 2966 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2967 } 2968 return RISCV_EXCP_NONE; 2969 } 2970 2971 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 2972 target_ulong *val) 2973 { 2974 *val = env->mtvec; 2975 return RISCV_EXCP_NONE; 2976 } 2977 2978 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 2979 target_ulong val, uintptr_t ra) 2980 { 2981 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2982 if ((val & 3) < 2) { 2983 env->mtvec = val; 2984 } else { 2985 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 2986 } 2987 return RISCV_EXCP_NONE; 2988 } 2989 2990 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 2991 target_ulong *val) 2992 { 2993 *val = env->mcountinhibit; 2994 return RISCV_EXCP_NONE; 2995 } 2996 2997 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 2998 target_ulong val, uintptr_t ra) 2999 { 3000 int cidx; 3001 PMUCTRState *counter; 3002 RISCVCPU *cpu = env_archcpu(env); 3003 uint32_t present_ctrs = cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR; 3004 target_ulong updated_ctrs = (env->mcountinhibit ^ val) & present_ctrs; 3005 uint64_t mhpmctr_val, prev_count, curr_count; 3006 3007 /* WARL register - disable unavailable counters; TM bit is always 0 */ 3008 env->mcountinhibit = val & present_ctrs; 3009 3010 /* Check if any other counter is also monitoring cycles/instructions */ 3011 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 3012 if (!(updated_ctrs & BIT(cidx)) || 3013 (!riscv_pmu_ctr_monitor_cycles(env, cidx) && 3014 !riscv_pmu_ctr_monitor_instructions(env, cidx))) { 3015 continue; 3016 } 3017 3018 counter = &env->pmu_ctrs[cidx]; 3019 3020 if (!get_field(env->mcountinhibit, BIT(cidx))) { 3021 counter->mhpmcounter_prev = 3022 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 3023 if (riscv_cpu_mxl(env) == MXL_RV32) { 3024 counter->mhpmcounterh_prev = 3025 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 3026 } 3027 3028 if (cidx > 2) { 3029 mhpmctr_val = counter->mhpmcounter_val; 3030 if (riscv_cpu_mxl(env) == MXL_RV32) { 3031 mhpmctr_val = mhpmctr_val | 3032 ((uint64_t)counter->mhpmcounterh_val << 32); 3033 } 3034 riscv_pmu_setup_timer(env, mhpmctr_val, cidx); 3035 } 3036 } else { 3037 curr_count = riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 3038 3039 mhpmctr_val = counter->mhpmcounter_val; 3040 prev_count = counter->mhpmcounter_prev; 3041 if (riscv_cpu_mxl(env) == MXL_RV32) { 3042 uint64_t tmp = 3043 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 3044 3045 curr_count = curr_count | (tmp << 32); 3046 mhpmctr_val = mhpmctr_val | 3047 ((uint64_t)counter->mhpmcounterh_val << 32); 3048 prev_count = prev_count | 3049 ((uint64_t)counter->mhpmcounterh_prev << 32); 3050 } 3051 3052 /* Adjust the counter for later reads. */ 3053 mhpmctr_val = curr_count - prev_count + mhpmctr_val; 3054 counter->mhpmcounter_val = mhpmctr_val; 3055 if (riscv_cpu_mxl(env) == MXL_RV32) { 3056 counter->mhpmcounterh_val = mhpmctr_val >> 32; 3057 } 3058 } 3059 } 3060 3061 return RISCV_EXCP_NONE; 3062 } 3063 3064 static RISCVException read_scountinhibit(CPURISCVState *env, int csrno, 3065 target_ulong *val) 3066 { 3067 /* S-mode can only access the bits delegated by M-mode */ 3068 *val = env->mcountinhibit & env->mcounteren; 3069 return RISCV_EXCP_NONE; 3070 } 3071 3072 static RISCVException write_scountinhibit(CPURISCVState *env, int csrno, 3073 target_ulong val, uintptr_t ra) 3074 { 3075 return write_mcountinhibit(env, csrno, val & env->mcounteren, ra); 3076 } 3077 3078 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 3079 target_ulong *val) 3080 { 3081 *val = env->mcounteren; 3082 return RISCV_EXCP_NONE; 3083 } 3084 3085 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 3086 target_ulong val, uintptr_t ra) 3087 { 3088 RISCVCPU *cpu = env_archcpu(env); 3089 3090 /* WARL register - disable unavailable counters */ 3091 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3092 COUNTEREN_IR); 3093 return RISCV_EXCP_NONE; 3094 } 3095 3096 /* Machine Trap Handling */ 3097 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 3098 Int128 *val) 3099 { 3100 *val = int128_make128(env->mscratch, env->mscratchh); 3101 return RISCV_EXCP_NONE; 3102 } 3103 3104 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 3105 Int128 val) 3106 { 3107 env->mscratch = int128_getlo(val); 3108 env->mscratchh = int128_gethi(val); 3109 return RISCV_EXCP_NONE; 3110 } 3111 3112 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 3113 target_ulong *val) 3114 { 3115 *val = env->mscratch; 3116 return RISCV_EXCP_NONE; 3117 } 3118 3119 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 3120 target_ulong val, uintptr_t ra) 3121 { 3122 env->mscratch = val; 3123 return RISCV_EXCP_NONE; 3124 } 3125 3126 static RISCVException read_mepc(CPURISCVState *env, int csrno, 3127 target_ulong *val) 3128 { 3129 *val = env->mepc; 3130 return RISCV_EXCP_NONE; 3131 } 3132 3133 static RISCVException write_mepc(CPURISCVState *env, int csrno, 3134 target_ulong val, uintptr_t ra) 3135 { 3136 env->mepc = val; 3137 return RISCV_EXCP_NONE; 3138 } 3139 3140 static RISCVException read_mcause(CPURISCVState *env, int csrno, 3141 target_ulong *val) 3142 { 3143 *val = env->mcause; 3144 return RISCV_EXCP_NONE; 3145 } 3146 3147 static RISCVException write_mcause(CPURISCVState *env, int csrno, 3148 target_ulong val, uintptr_t ra) 3149 { 3150 env->mcause = val; 3151 return RISCV_EXCP_NONE; 3152 } 3153 3154 static RISCVException read_mtval(CPURISCVState *env, int csrno, 3155 target_ulong *val) 3156 { 3157 *val = env->mtval; 3158 return RISCV_EXCP_NONE; 3159 } 3160 3161 static RISCVException write_mtval(CPURISCVState *env, int csrno, 3162 target_ulong val, uintptr_t ra) 3163 { 3164 env->mtval = val; 3165 return RISCV_EXCP_NONE; 3166 } 3167 3168 /* Execution environment configuration setup */ 3169 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 3170 target_ulong *val) 3171 { 3172 *val = env->menvcfg; 3173 return RISCV_EXCP_NONE; 3174 } 3175 3176 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 3177 target_ulong val, uintptr_t ra); 3178 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 3179 target_ulong val, uintptr_t ra) 3180 { 3181 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 3182 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | 3183 MENVCFG_CBZE | MENVCFG_CDE; 3184 3185 if (riscv_cpu_mxl(env) == MXL_RV64) { 3186 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 3187 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 3188 (cfg->ext_smcdeleg ? MENVCFG_CDE : 0) | 3189 (cfg->ext_svadu ? MENVCFG_ADUE : 0) | 3190 (cfg->ext_ssdbltrp ? MENVCFG_DTE : 0); 3191 3192 if (env_archcpu(env)->cfg.ext_zicfilp) { 3193 mask |= MENVCFG_LPE; 3194 } 3195 3196 if (env_archcpu(env)->cfg.ext_zicfiss) { 3197 mask |= MENVCFG_SSE; 3198 } 3199 3200 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3201 if (env_archcpu(env)->cfg.ext_smnpm && 3202 get_field(val, MENVCFG_PMM) != PMM_FIELD_RESERVED) { 3203 mask |= MENVCFG_PMM; 3204 } 3205 3206 if ((val & MENVCFG_DTE) == 0) { 3207 env->mstatus &= ~MSTATUS_SDT; 3208 } 3209 } 3210 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 3211 return write_henvcfg(env, CSR_HENVCFG, env->henvcfg, ra); 3212 } 3213 3214 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 3215 target_ulong *val) 3216 { 3217 *val = env->menvcfg >> 32; 3218 return RISCV_EXCP_NONE; 3219 } 3220 3221 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 3222 target_ulong val, uintptr_t ra); 3223 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 3224 target_ulong val, uintptr_t ra) 3225 { 3226 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 3227 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 3228 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 3229 (cfg->ext_svadu ? MENVCFG_ADUE : 0) | 3230 (cfg->ext_smcdeleg ? MENVCFG_CDE : 0) | 3231 (cfg->ext_ssdbltrp ? MENVCFG_DTE : 0); 3232 uint64_t valh = (uint64_t)val << 32; 3233 3234 if ((valh & MENVCFG_DTE) == 0) { 3235 env->mstatus &= ~MSTATUS_SDT; 3236 } 3237 3238 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 3239 return write_henvcfgh(env, CSR_HENVCFGH, env->henvcfg >> 32, ra); 3240 } 3241 3242 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 3243 target_ulong *val) 3244 { 3245 RISCVException ret; 3246 3247 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3248 if (ret != RISCV_EXCP_NONE) { 3249 return ret; 3250 } 3251 3252 *val = env->senvcfg; 3253 return RISCV_EXCP_NONE; 3254 } 3255 3256 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 3257 target_ulong val, uintptr_t ra) 3258 { 3259 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 3260 RISCVException ret; 3261 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3262 if (env_archcpu(env)->cfg.ext_ssnpm && 3263 riscv_cpu_mxl(env) == MXL_RV64 && 3264 get_field(val, SENVCFG_PMM) != PMM_FIELD_RESERVED) { 3265 mask |= SENVCFG_PMM; 3266 } 3267 3268 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3269 if (ret != RISCV_EXCP_NONE) { 3270 return ret; 3271 } 3272 3273 if (env_archcpu(env)->cfg.ext_zicfilp) { 3274 mask |= SENVCFG_LPE; 3275 } 3276 3277 /* Higher mode SSE must be ON for next-less mode SSE to be ON */ 3278 if (env_archcpu(env)->cfg.ext_zicfiss && 3279 get_field(env->menvcfg, MENVCFG_SSE) && 3280 (env->virt_enabled ? get_field(env->henvcfg, HENVCFG_SSE) : true)) { 3281 mask |= SENVCFG_SSE; 3282 } 3283 3284 if (env_archcpu(env)->cfg.ext_svukte) { 3285 mask |= SENVCFG_UKTE; 3286 } 3287 3288 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 3289 return RISCV_EXCP_NONE; 3290 } 3291 3292 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 3293 target_ulong *val) 3294 { 3295 RISCVException ret; 3296 3297 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3298 if (ret != RISCV_EXCP_NONE) { 3299 return ret; 3300 } 3301 3302 /* 3303 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 3304 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 3305 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 3306 * henvcfg.dte is read_only 0 when menvcfg.dte = 0 3307 */ 3308 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3309 HENVCFG_DTE) | env->menvcfg); 3310 return RISCV_EXCP_NONE; 3311 } 3312 3313 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 3314 target_ulong val, uintptr_t ra) 3315 { 3316 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 3317 RISCVException ret; 3318 3319 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3320 if (ret != RISCV_EXCP_NONE) { 3321 return ret; 3322 } 3323 3324 if (riscv_cpu_mxl(env) == MXL_RV64) { 3325 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3326 HENVCFG_DTE); 3327 3328 if (env_archcpu(env)->cfg.ext_zicfilp) { 3329 mask |= HENVCFG_LPE; 3330 } 3331 3332 /* H can light up SSE for VS only if HS had it from menvcfg */ 3333 if (env_archcpu(env)->cfg.ext_zicfiss && 3334 get_field(env->menvcfg, MENVCFG_SSE)) { 3335 mask |= HENVCFG_SSE; 3336 } 3337 3338 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3339 if (env_archcpu(env)->cfg.ext_ssnpm && 3340 get_field(val, HENVCFG_PMM) != PMM_FIELD_RESERVED) { 3341 mask |= HENVCFG_PMM; 3342 } 3343 } 3344 3345 env->henvcfg = val & mask; 3346 if ((env->henvcfg & HENVCFG_DTE) == 0) { 3347 env->vsstatus &= ~MSTATUS_SDT; 3348 } 3349 3350 return RISCV_EXCP_NONE; 3351 } 3352 3353 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 3354 target_ulong *val) 3355 { 3356 RISCVException ret; 3357 3358 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3359 if (ret != RISCV_EXCP_NONE) { 3360 return ret; 3361 } 3362 3363 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3364 HENVCFG_DTE) | env->menvcfg)) >> 32; 3365 return RISCV_EXCP_NONE; 3366 } 3367 3368 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 3369 target_ulong val, uintptr_t ra) 3370 { 3371 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 3372 HENVCFG_ADUE | HENVCFG_DTE); 3373 uint64_t valh = (uint64_t)val << 32; 3374 RISCVException ret; 3375 3376 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3377 if (ret != RISCV_EXCP_NONE) { 3378 return ret; 3379 } 3380 env->henvcfg = (env->henvcfg & 0xFFFFFFFF) | (valh & mask); 3381 if ((env->henvcfg & HENVCFG_DTE) == 0) { 3382 env->vsstatus &= ~MSTATUS_SDT; 3383 } 3384 return RISCV_EXCP_NONE; 3385 } 3386 3387 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 3388 target_ulong *val) 3389 { 3390 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 3391 3392 return RISCV_EXCP_NONE; 3393 } 3394 3395 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 3396 uint64_t wr_mask, target_ulong new_val) 3397 { 3398 uint64_t *reg; 3399 3400 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 3401 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3402 3403 return RISCV_EXCP_NONE; 3404 } 3405 3406 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 3407 target_ulong new_val, uintptr_t ra) 3408 { 3409 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3410 if (!riscv_has_ext(env, RVF)) { 3411 wr_mask |= SMSTATEEN0_FCSR; 3412 } 3413 3414 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 3415 wr_mask |= SMSTATEEN0_P1P13; 3416 } 3417 3418 if (riscv_cpu_cfg(env)->ext_smaia || riscv_cpu_cfg(env)->ext_smcsrind) { 3419 wr_mask |= SMSTATEEN0_SVSLCT; 3420 } 3421 3422 /* 3423 * As per the AIA specification, SMSTATEEN0_IMSIC is valid only if IMSIC is 3424 * implemented. However, that information is with MachineState and we can't 3425 * figure that out in csr.c. Just enable if Smaia is available. 3426 */ 3427 if (riscv_cpu_cfg(env)->ext_smaia) { 3428 wr_mask |= (SMSTATEEN0_AIA | SMSTATEEN0_IMSIC); 3429 } 3430 3431 if (riscv_cpu_cfg(env)->ext_ssctr) { 3432 wr_mask |= SMSTATEEN0_CTR; 3433 } 3434 3435 return write_mstateen(env, csrno, wr_mask, new_val); 3436 } 3437 3438 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 3439 target_ulong new_val, uintptr_t ra) 3440 { 3441 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3442 } 3443 3444 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 3445 target_ulong *val) 3446 { 3447 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 3448 3449 return RISCV_EXCP_NONE; 3450 } 3451 3452 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 3453 uint64_t wr_mask, target_ulong new_val) 3454 { 3455 uint64_t *reg, val; 3456 3457 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 3458 val = (uint64_t)new_val << 32; 3459 val |= *reg & 0xFFFFFFFF; 3460 *reg = (*reg & ~wr_mask) | (val & wr_mask); 3461 3462 return RISCV_EXCP_NONE; 3463 } 3464 3465 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 3466 target_ulong new_val, uintptr_t ra) 3467 { 3468 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3469 3470 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 3471 wr_mask |= SMSTATEEN0_P1P13; 3472 } 3473 3474 if (riscv_cpu_cfg(env)->ext_ssctr) { 3475 wr_mask |= SMSTATEEN0_CTR; 3476 } 3477 3478 return write_mstateenh(env, csrno, wr_mask, new_val); 3479 } 3480 3481 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 3482 target_ulong new_val, uintptr_t ra) 3483 { 3484 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 3485 } 3486 3487 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 3488 target_ulong *val) 3489 { 3490 int index = csrno - CSR_HSTATEEN0; 3491 3492 *val = env->hstateen[index] & env->mstateen[index]; 3493 3494 return RISCV_EXCP_NONE; 3495 } 3496 3497 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 3498 uint64_t mask, target_ulong new_val) 3499 { 3500 int index = csrno - CSR_HSTATEEN0; 3501 uint64_t *reg, wr_mask; 3502 3503 reg = &env->hstateen[index]; 3504 wr_mask = env->mstateen[index] & mask; 3505 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3506 3507 return RISCV_EXCP_NONE; 3508 } 3509 3510 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 3511 target_ulong new_val, uintptr_t ra) 3512 { 3513 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3514 3515 if (!riscv_has_ext(env, RVF)) { 3516 wr_mask |= SMSTATEEN0_FCSR; 3517 } 3518 3519 if (riscv_cpu_cfg(env)->ext_ssaia || riscv_cpu_cfg(env)->ext_sscsrind) { 3520 wr_mask |= SMSTATEEN0_SVSLCT; 3521 } 3522 3523 /* 3524 * As per the AIA specification, SMSTATEEN0_IMSIC is valid only if IMSIC is 3525 * implemented. However, that information is with MachineState and we can't 3526 * figure that out in csr.c. Just enable if Ssaia is available. 3527 */ 3528 if (riscv_cpu_cfg(env)->ext_ssaia) { 3529 wr_mask |= (SMSTATEEN0_AIA | SMSTATEEN0_IMSIC); 3530 } 3531 3532 if (riscv_cpu_cfg(env)->ext_ssctr) { 3533 wr_mask |= SMSTATEEN0_CTR; 3534 } 3535 3536 return write_hstateen(env, csrno, wr_mask, new_val); 3537 } 3538 3539 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 3540 target_ulong new_val, uintptr_t ra) 3541 { 3542 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3543 } 3544 3545 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 3546 target_ulong *val) 3547 { 3548 int index = csrno - CSR_HSTATEEN0H; 3549 3550 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 3551 3552 return RISCV_EXCP_NONE; 3553 } 3554 3555 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 3556 uint64_t mask, target_ulong new_val) 3557 { 3558 int index = csrno - CSR_HSTATEEN0H; 3559 uint64_t *reg, wr_mask, val; 3560 3561 reg = &env->hstateen[index]; 3562 val = (uint64_t)new_val << 32; 3563 val |= *reg & 0xFFFFFFFF; 3564 wr_mask = env->mstateen[index] & mask; 3565 *reg = (*reg & ~wr_mask) | (val & wr_mask); 3566 3567 return RISCV_EXCP_NONE; 3568 } 3569 3570 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 3571 target_ulong new_val, uintptr_t ra) 3572 { 3573 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3574 3575 if (riscv_cpu_cfg(env)->ext_ssctr) { 3576 wr_mask |= SMSTATEEN0_CTR; 3577 } 3578 3579 return write_hstateenh(env, csrno, wr_mask, new_val); 3580 } 3581 3582 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 3583 target_ulong new_val, uintptr_t ra) 3584 { 3585 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 3586 } 3587 3588 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 3589 target_ulong *val) 3590 { 3591 bool virt = env->virt_enabled; 3592 int index = csrno - CSR_SSTATEEN0; 3593 3594 *val = env->sstateen[index] & env->mstateen[index]; 3595 if (virt) { 3596 *val &= env->hstateen[index]; 3597 } 3598 3599 return RISCV_EXCP_NONE; 3600 } 3601 3602 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 3603 uint64_t mask, target_ulong new_val) 3604 { 3605 bool virt = env->virt_enabled; 3606 int index = csrno - CSR_SSTATEEN0; 3607 uint64_t wr_mask; 3608 uint64_t *reg; 3609 3610 wr_mask = env->mstateen[index] & mask; 3611 if (virt) { 3612 wr_mask &= env->hstateen[index]; 3613 } 3614 3615 reg = &env->sstateen[index]; 3616 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3617 3618 return RISCV_EXCP_NONE; 3619 } 3620 3621 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 3622 target_ulong new_val, uintptr_t ra) 3623 { 3624 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3625 3626 if (!riscv_has_ext(env, RVF)) { 3627 wr_mask |= SMSTATEEN0_FCSR; 3628 } 3629 3630 return write_sstateen(env, csrno, wr_mask, new_val); 3631 } 3632 3633 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 3634 target_ulong new_val, uintptr_t ra) 3635 { 3636 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3637 } 3638 3639 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 3640 uint64_t *ret_val, 3641 uint64_t new_val, uint64_t wr_mask) 3642 { 3643 uint64_t old_mip, mask = wr_mask & delegable_ints; 3644 uint32_t gin; 3645 3646 if (mask & MIP_SEIP) { 3647 env->software_seip = new_val & MIP_SEIP; 3648 new_val |= env->external_seip * MIP_SEIP; 3649 } 3650 3651 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 3652 get_field(env->menvcfg, MENVCFG_STCE)) { 3653 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 3654 mask = mask & ~(MIP_STIP | MIP_VSTIP); 3655 } 3656 3657 if (mask) { 3658 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 3659 } else { 3660 old_mip = env->mip; 3661 } 3662 3663 if (csrno != CSR_HVIP) { 3664 gin = get_field(env->hstatus, HSTATUS_VGEIN); 3665 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 3666 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 3667 } 3668 3669 if (ret_val) { 3670 *ret_val = old_mip; 3671 } 3672 3673 return RISCV_EXCP_NONE; 3674 } 3675 3676 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 3677 target_ulong *ret_val, 3678 target_ulong new_val, target_ulong wr_mask) 3679 { 3680 uint64_t rval; 3681 RISCVException ret; 3682 3683 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 3684 if (ret_val) { 3685 *ret_val = rval; 3686 } 3687 3688 return ret; 3689 } 3690 3691 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 3692 target_ulong *ret_val, 3693 target_ulong new_val, target_ulong wr_mask) 3694 { 3695 uint64_t rval; 3696 RISCVException ret; 3697 3698 ret = rmw_mip64(env, csrno, &rval, 3699 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3700 if (ret_val) { 3701 *ret_val = rval >> 32; 3702 } 3703 3704 return ret; 3705 } 3706 3707 /* 3708 * The function is written for two use-cases: 3709 * 1- To access mvip csr as is for m-mode access. 3710 * 2- To access sip as a combination of mip and mvip for s-mode. 3711 * 3712 * Both report bits 1, 5, 9 and 13:63 but with the exception of 3713 * STIP being read-only zero in case of mvip when sstc extension 3714 * is present. 3715 * Also, sip needs to be read-only zero when both mideleg[i] and 3716 * mvien[i] are zero but mvip needs to be an alias of mip. 3717 */ 3718 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 3719 uint64_t *ret_val, 3720 uint64_t new_val, uint64_t wr_mask) 3721 { 3722 RISCVCPU *cpu = env_archcpu(env); 3723 target_ulong ret_mip = 0; 3724 RISCVException ret; 3725 uint64_t old_mvip; 3726 3727 /* 3728 * mideleg[i] mvien[i] 3729 * 0 0 No delegation. mvip[i] is alias of mip[i]. 3730 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 3731 * 1 X mip[i] is source of interrupt and mvip[i] aliases 3732 * mip[i]. 3733 * 3734 * So alias condition would be for bits: 3735 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 3736 * (!sstc & MIP_STIP) 3737 * 3738 * Non-alias condition will be for bits: 3739 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 3740 * 3741 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 3742 * that come from hvip. 3743 */ 3744 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3745 (env->mideleg | ~env->mvien)) | MIP_STIP; 3746 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3747 (~env->mideleg & env->mvien); 3748 uint64_t wr_mask_mvip; 3749 uint64_t wr_mask_mip; 3750 3751 /* 3752 * mideleg[i] mvien[i] 3753 * 0 0 sip[i] read-only zero. 3754 * 0 1 sip[i] alias of mvip[i]. 3755 * 1 X sip[i] alias of mip[i]. 3756 * 3757 * Both alias and non-alias mask remain same for sip except for bits 3758 * which are zero in both mideleg and mvien. 3759 */ 3760 if (csrno == CSR_SIP) { 3761 /* Remove bits that are zero in both mideleg and mvien. */ 3762 alias_mask &= (env->mideleg | env->mvien); 3763 nalias_mask &= (env->mideleg | env->mvien); 3764 } 3765 3766 /* 3767 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 3768 * that our in mip returned value. 3769 */ 3770 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 3771 get_field(env->menvcfg, MENVCFG_STCE)) { 3772 alias_mask &= ~MIP_STIP; 3773 } 3774 3775 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 3776 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 3777 3778 /* 3779 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 3780 * this to rmw_mip. 3781 */ 3782 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 3783 if (ret != RISCV_EXCP_NONE) { 3784 return ret; 3785 } 3786 3787 old_mvip = env->mvip; 3788 3789 /* 3790 * Write to mvip. Update only non-alias bits. Alias bits were updated 3791 * in mip in rmw_mip above. 3792 */ 3793 if (wr_mask_mvip) { 3794 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 3795 3796 /* 3797 * Given mvip is separate source from mip, we need to trigger interrupt 3798 * from here separately. Normally this happen from riscv_cpu_update_mip. 3799 */ 3800 riscv_cpu_interrupt(env); 3801 } 3802 3803 if (ret_val) { 3804 ret_mip &= alias_mask; 3805 old_mvip &= nalias_mask; 3806 3807 *ret_val = old_mvip | ret_mip; 3808 } 3809 3810 return RISCV_EXCP_NONE; 3811 } 3812 3813 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 3814 target_ulong *ret_val, 3815 target_ulong new_val, target_ulong wr_mask) 3816 { 3817 uint64_t rval; 3818 RISCVException ret; 3819 3820 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 3821 if (ret_val) { 3822 *ret_val = rval; 3823 } 3824 3825 return ret; 3826 } 3827 3828 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 3829 target_ulong *ret_val, 3830 target_ulong new_val, target_ulong wr_mask) 3831 { 3832 uint64_t rval; 3833 RISCVException ret; 3834 3835 ret = rmw_mvip64(env, csrno, &rval, 3836 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3837 if (ret_val) { 3838 *ret_val = rval >> 32; 3839 } 3840 3841 return ret; 3842 } 3843 3844 /* Supervisor Trap Setup */ 3845 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 3846 Int128 *val) 3847 { 3848 uint64_t mask = sstatus_v1_10_mask; 3849 uint64_t sstatus = env->mstatus & mask; 3850 if (env->xl != MXL_RV32 || env->debugger) { 3851 mask |= SSTATUS64_UXL; 3852 } 3853 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3854 mask |= SSTATUS_SDT; 3855 } 3856 3857 if (env_archcpu(env)->cfg.ext_zicfilp) { 3858 mask |= SSTATUS_SPELP; 3859 } 3860 3861 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 3862 return RISCV_EXCP_NONE; 3863 } 3864 3865 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 3866 target_ulong *val) 3867 { 3868 target_ulong mask = (sstatus_v1_10_mask); 3869 if (env->xl != MXL_RV32 || env->debugger) { 3870 mask |= SSTATUS64_UXL; 3871 } 3872 3873 if (env_archcpu(env)->cfg.ext_zicfilp) { 3874 mask |= SSTATUS_SPELP; 3875 } 3876 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3877 mask |= SSTATUS_SDT; 3878 } 3879 /* TODO: Use SXL not MXL. */ 3880 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 3881 return RISCV_EXCP_NONE; 3882 } 3883 3884 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 3885 target_ulong val, uintptr_t ra) 3886 { 3887 target_ulong mask = (sstatus_v1_10_mask); 3888 3889 if (env->xl != MXL_RV32 || env->debugger) { 3890 if ((val & SSTATUS64_UXL) != 0) { 3891 mask |= SSTATUS64_UXL; 3892 } 3893 } 3894 3895 if (env_archcpu(env)->cfg.ext_zicfilp) { 3896 mask |= SSTATUS_SPELP; 3897 } 3898 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3899 mask |= SSTATUS_SDT; 3900 } 3901 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 3902 return write_mstatus(env, CSR_MSTATUS, newval, ra); 3903 } 3904 3905 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 3906 uint64_t *ret_val, 3907 uint64_t new_val, uint64_t wr_mask) 3908 { 3909 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 3910 env->hideleg; 3911 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 3912 uint64_t rval, rval_vs, vsbits; 3913 uint64_t wr_mask_vsie; 3914 uint64_t wr_mask_mie; 3915 RISCVException ret; 3916 3917 /* Bring VS-level bits to correct position */ 3918 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 3919 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 3920 new_val |= vsbits << 1; 3921 3922 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 3923 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 3924 wr_mask |= vsbits << 1; 3925 3926 wr_mask_mie = wr_mask & alias_mask; 3927 wr_mask_vsie = wr_mask & nalias_mask; 3928 3929 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 3930 3931 rval_vs = env->vsie & nalias_mask; 3932 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 3933 3934 if (ret_val) { 3935 rval &= alias_mask; 3936 vsbits = rval & VS_MODE_INTERRUPTS; 3937 rval &= ~VS_MODE_INTERRUPTS; 3938 *ret_val = rval | (vsbits >> 1) | rval_vs; 3939 } 3940 3941 return ret; 3942 } 3943 3944 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 3945 target_ulong *ret_val, 3946 target_ulong new_val, target_ulong wr_mask) 3947 { 3948 uint64_t rval; 3949 RISCVException ret; 3950 3951 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 3952 if (ret_val) { 3953 *ret_val = rval; 3954 } 3955 3956 return ret; 3957 } 3958 3959 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 3960 target_ulong *ret_val, 3961 target_ulong new_val, target_ulong wr_mask) 3962 { 3963 uint64_t rval; 3964 RISCVException ret; 3965 3966 ret = rmw_vsie64(env, csrno, &rval, 3967 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3968 if (ret_val) { 3969 *ret_val = rval >> 32; 3970 } 3971 3972 return ret; 3973 } 3974 3975 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 3976 uint64_t *ret_val, 3977 uint64_t new_val, uint64_t wr_mask) 3978 { 3979 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3980 (~env->mideleg & env->mvien); 3981 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 3982 uint64_t sie_mask = wr_mask & nalias_mask; 3983 RISCVException ret; 3984 3985 /* 3986 * mideleg[i] mvien[i] 3987 * 0 0 sie[i] read-only zero. 3988 * 0 1 sie[i] is a separate writable bit. 3989 * 1 X sie[i] alias of mie[i]. 3990 * 3991 * Both alias and non-alias mask remain same for sip except for bits 3992 * which are zero in both mideleg and mvien. 3993 */ 3994 if (env->virt_enabled) { 3995 if (env->hvictl & HVICTL_VTI) { 3996 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3997 } 3998 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 3999 if (ret_val) { 4000 *ret_val &= alias_mask; 4001 } 4002 } else { 4003 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 4004 if (ret_val) { 4005 *ret_val &= alias_mask; 4006 *ret_val |= env->sie & nalias_mask; 4007 } 4008 4009 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 4010 } 4011 4012 return ret; 4013 } 4014 4015 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 4016 target_ulong *ret_val, 4017 target_ulong new_val, target_ulong wr_mask) 4018 { 4019 uint64_t rval; 4020 RISCVException ret; 4021 4022 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 4023 if (ret == RISCV_EXCP_NONE && ret_val) { 4024 *ret_val = rval; 4025 } 4026 4027 return ret; 4028 } 4029 4030 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 4031 target_ulong *ret_val, 4032 target_ulong new_val, target_ulong wr_mask) 4033 { 4034 uint64_t rval; 4035 RISCVException ret; 4036 4037 ret = rmw_sie64(env, csrno, &rval, 4038 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4039 if (ret_val) { 4040 *ret_val = rval >> 32; 4041 } 4042 4043 return ret; 4044 } 4045 4046 static RISCVException read_stvec(CPURISCVState *env, int csrno, 4047 target_ulong *val) 4048 { 4049 *val = env->stvec; 4050 return RISCV_EXCP_NONE; 4051 } 4052 4053 static RISCVException write_stvec(CPURISCVState *env, int csrno, 4054 target_ulong val, uintptr_t ra) 4055 { 4056 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 4057 if ((val & 3) < 2) { 4058 env->stvec = val; 4059 } else { 4060 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 4061 } 4062 return RISCV_EXCP_NONE; 4063 } 4064 4065 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 4066 target_ulong *val) 4067 { 4068 *val = env->scounteren; 4069 return RISCV_EXCP_NONE; 4070 } 4071 4072 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 4073 target_ulong val, uintptr_t ra) 4074 { 4075 RISCVCPU *cpu = env_archcpu(env); 4076 4077 /* WARL register - disable unavailable counters */ 4078 env->scounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 4079 COUNTEREN_IR); 4080 return RISCV_EXCP_NONE; 4081 } 4082 4083 /* Supervisor Trap Handling */ 4084 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 4085 Int128 *val) 4086 { 4087 *val = int128_make128(env->sscratch, env->sscratchh); 4088 return RISCV_EXCP_NONE; 4089 } 4090 4091 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 4092 Int128 val) 4093 { 4094 env->sscratch = int128_getlo(val); 4095 env->sscratchh = int128_gethi(val); 4096 return RISCV_EXCP_NONE; 4097 } 4098 4099 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 4100 target_ulong *val) 4101 { 4102 *val = env->sscratch; 4103 return RISCV_EXCP_NONE; 4104 } 4105 4106 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 4107 target_ulong val, uintptr_t ra) 4108 { 4109 env->sscratch = val; 4110 return RISCV_EXCP_NONE; 4111 } 4112 4113 static RISCVException read_sepc(CPURISCVState *env, int csrno, 4114 target_ulong *val) 4115 { 4116 *val = env->sepc; 4117 return RISCV_EXCP_NONE; 4118 } 4119 4120 static RISCVException write_sepc(CPURISCVState *env, int csrno, 4121 target_ulong val, uintptr_t ra) 4122 { 4123 env->sepc = val; 4124 return RISCV_EXCP_NONE; 4125 } 4126 4127 static RISCVException read_scause(CPURISCVState *env, int csrno, 4128 target_ulong *val) 4129 { 4130 *val = env->scause; 4131 return RISCV_EXCP_NONE; 4132 } 4133 4134 static RISCVException write_scause(CPURISCVState *env, int csrno, 4135 target_ulong val, uintptr_t ra) 4136 { 4137 env->scause = val; 4138 return RISCV_EXCP_NONE; 4139 } 4140 4141 static RISCVException read_stval(CPURISCVState *env, int csrno, 4142 target_ulong *val) 4143 { 4144 *val = env->stval; 4145 return RISCV_EXCP_NONE; 4146 } 4147 4148 static RISCVException write_stval(CPURISCVState *env, int csrno, 4149 target_ulong val, uintptr_t ra) 4150 { 4151 env->stval = val; 4152 return RISCV_EXCP_NONE; 4153 } 4154 4155 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 4156 uint64_t *ret_val, 4157 uint64_t new_val, uint64_t wr_mask); 4158 4159 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 4160 uint64_t *ret_val, 4161 uint64_t new_val, uint64_t wr_mask) 4162 { 4163 RISCVException ret; 4164 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 4165 uint64_t vsbits; 4166 4167 /* Add virtualized bits into vsip mask. */ 4168 mask |= env->hvien & ~env->hideleg; 4169 4170 /* Bring VS-level bits to correct position */ 4171 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 4172 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 4173 new_val |= vsbits << 1; 4174 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 4175 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 4176 wr_mask |= vsbits << 1; 4177 4178 ret = rmw_hvip64(env, csrno, &rval, new_val, 4179 wr_mask & mask & vsip_writable_mask); 4180 if (ret_val) { 4181 rval &= mask; 4182 vsbits = rval & VS_MODE_INTERRUPTS; 4183 rval &= ~VS_MODE_INTERRUPTS; 4184 *ret_val = rval | (vsbits >> 1); 4185 } 4186 4187 return ret; 4188 } 4189 4190 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 4191 target_ulong *ret_val, 4192 target_ulong new_val, target_ulong wr_mask) 4193 { 4194 uint64_t rval; 4195 RISCVException ret; 4196 4197 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 4198 if (ret_val) { 4199 *ret_val = rval; 4200 } 4201 4202 return ret; 4203 } 4204 4205 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 4206 target_ulong *ret_val, 4207 target_ulong new_val, target_ulong wr_mask) 4208 { 4209 uint64_t rval; 4210 RISCVException ret; 4211 4212 ret = rmw_vsip64(env, csrno, &rval, 4213 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4214 if (ret_val) { 4215 *ret_val = rval >> 32; 4216 } 4217 4218 return ret; 4219 } 4220 4221 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 4222 uint64_t *ret_val, 4223 uint64_t new_val, uint64_t wr_mask) 4224 { 4225 RISCVException ret; 4226 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 4227 4228 if (env->virt_enabled) { 4229 if (env->hvictl & HVICTL_VTI) { 4230 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4231 } 4232 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 4233 } else { 4234 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 4235 } 4236 4237 if (ret_val) { 4238 *ret_val &= (env->mideleg | env->mvien) & 4239 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 4240 } 4241 4242 return ret; 4243 } 4244 4245 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 4246 target_ulong *ret_val, 4247 target_ulong new_val, target_ulong wr_mask) 4248 { 4249 uint64_t rval; 4250 RISCVException ret; 4251 4252 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 4253 if (ret_val) { 4254 *ret_val = rval; 4255 } 4256 4257 return ret; 4258 } 4259 4260 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 4261 target_ulong *ret_val, 4262 target_ulong new_val, target_ulong wr_mask) 4263 { 4264 uint64_t rval; 4265 RISCVException ret; 4266 4267 ret = rmw_sip64(env, csrno, &rval, 4268 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4269 if (ret_val) { 4270 *ret_val = rval >> 32; 4271 } 4272 4273 return ret; 4274 } 4275 4276 /* Supervisor Protection and Translation */ 4277 static RISCVException read_satp(CPURISCVState *env, int csrno, 4278 target_ulong *val) 4279 { 4280 if (!riscv_cpu_cfg(env)->mmu) { 4281 *val = 0; 4282 return RISCV_EXCP_NONE; 4283 } 4284 *val = env->satp; 4285 return RISCV_EXCP_NONE; 4286 } 4287 4288 static RISCVException write_satp(CPURISCVState *env, int csrno, 4289 target_ulong val, uintptr_t ra) 4290 { 4291 if (!riscv_cpu_cfg(env)->mmu) { 4292 return RISCV_EXCP_NONE; 4293 } 4294 4295 env->satp = legalize_xatp(env, env->satp, val); 4296 return RISCV_EXCP_NONE; 4297 } 4298 4299 static RISCVException rmw_sctrdepth(CPURISCVState *env, int csrno, 4300 target_ulong *ret_val, 4301 target_ulong new_val, target_ulong wr_mask) 4302 { 4303 uint64_t mask = wr_mask & SCTRDEPTH_MASK; 4304 4305 if (ret_val) { 4306 *ret_val = env->sctrdepth; 4307 } 4308 4309 env->sctrdepth = (env->sctrdepth & ~mask) | (new_val & mask); 4310 4311 /* Correct depth. */ 4312 if (mask) { 4313 uint64_t depth = get_field(env->sctrdepth, SCTRDEPTH_MASK); 4314 4315 if (depth > SCTRDEPTH_MAX) { 4316 depth = SCTRDEPTH_MAX; 4317 env->sctrdepth = set_field(env->sctrdepth, SCTRDEPTH_MASK, depth); 4318 } 4319 4320 /* Update sctrstatus.WRPTR with a legal value */ 4321 depth = 16ULL << depth; 4322 env->sctrstatus = 4323 env->sctrstatus & (~SCTRSTATUS_WRPTR_MASK | (depth - 1)); 4324 } 4325 4326 return RISCV_EXCP_NONE; 4327 } 4328 4329 static RISCVException rmw_sctrstatus(CPURISCVState *env, int csrno, 4330 target_ulong *ret_val, 4331 target_ulong new_val, target_ulong wr_mask) 4332 { 4333 uint32_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 4334 uint32_t mask = wr_mask & SCTRSTATUS_MASK; 4335 4336 if (ret_val) { 4337 *ret_val = env->sctrstatus; 4338 } 4339 4340 env->sctrstatus = (env->sctrstatus & ~mask) | (new_val & mask); 4341 4342 /* Update sctrstatus.WRPTR with a legal value */ 4343 env->sctrstatus = env->sctrstatus & (~SCTRSTATUS_WRPTR_MASK | (depth - 1)); 4344 4345 return RISCV_EXCP_NONE; 4346 } 4347 4348 static RISCVException rmw_xctrctl(CPURISCVState *env, int csrno, 4349 target_ulong *ret_val, 4350 target_ulong new_val, target_ulong wr_mask) 4351 { 4352 uint64_t csr_mask, mask = wr_mask; 4353 uint64_t *ctl_ptr = &env->mctrctl; 4354 4355 if (csrno == CSR_MCTRCTL) { 4356 csr_mask = MCTRCTL_MASK; 4357 } else if (csrno == CSR_SCTRCTL && !env->virt_enabled) { 4358 csr_mask = SCTRCTL_MASK; 4359 } else { 4360 /* 4361 * This is for csrno == CSR_SCTRCTL and env->virt_enabled == true 4362 * or csrno == CSR_VSCTRCTL. 4363 */ 4364 csr_mask = VSCTRCTL_MASK; 4365 ctl_ptr = &env->vsctrctl; 4366 } 4367 4368 mask &= csr_mask; 4369 4370 if (ret_val) { 4371 *ret_val = *ctl_ptr & csr_mask; 4372 } 4373 4374 *ctl_ptr = (*ctl_ptr & ~mask) | (new_val & mask); 4375 4376 return RISCV_EXCP_NONE; 4377 } 4378 4379 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 4380 target_ulong *val) 4381 { 4382 int irq, ret; 4383 target_ulong topei; 4384 uint64_t vseip, vsgein; 4385 uint32_t iid, iprio, hviid, hviprio, gein; 4386 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 4387 4388 gein = get_field(env->hstatus, HSTATUS_VGEIN); 4389 hviid = get_field(env->hvictl, HVICTL_IID); 4390 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 4391 4392 if (gein) { 4393 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 4394 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 4395 if (gein <= env->geilen && vseip) { 4396 siid[scount] = IRQ_S_EXT; 4397 siprio[scount] = IPRIO_MMAXIPRIO + 1; 4398 if (env->aia_ireg_rmw_fn[PRV_S]) { 4399 /* 4400 * Call machine specific IMSIC register emulation for 4401 * reading TOPEI. 4402 */ 4403 ret = env->aia_ireg_rmw_fn[PRV_S]( 4404 env->aia_ireg_rmw_fn_arg[PRV_S], 4405 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 4406 riscv_cpu_mxl_bits(env)), 4407 &topei, 0, 0); 4408 if (!ret && topei) { 4409 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 4410 } 4411 } 4412 scount++; 4413 } 4414 } else { 4415 if (hviid == IRQ_S_EXT && hviprio) { 4416 siid[scount] = IRQ_S_EXT; 4417 siprio[scount] = hviprio; 4418 scount++; 4419 } 4420 } 4421 4422 if (env->hvictl & HVICTL_VTI) { 4423 if (hviid != IRQ_S_EXT) { 4424 siid[scount] = hviid; 4425 siprio[scount] = hviprio; 4426 scount++; 4427 } 4428 } else { 4429 irq = riscv_cpu_vsirq_pending(env); 4430 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 4431 siid[scount] = irq; 4432 siprio[scount] = env->hviprio[irq]; 4433 scount++; 4434 } 4435 } 4436 4437 iid = 0; 4438 iprio = UINT_MAX; 4439 for (s = 0; s < scount; s++) { 4440 if (siprio[s] < iprio) { 4441 iid = siid[s]; 4442 iprio = siprio[s]; 4443 } 4444 } 4445 4446 if (iid) { 4447 if (env->hvictl & HVICTL_IPRIOM) { 4448 if (iprio > IPRIO_MMAXIPRIO) { 4449 iprio = IPRIO_MMAXIPRIO; 4450 } 4451 if (!iprio) { 4452 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 4453 iprio = IPRIO_MMAXIPRIO; 4454 } 4455 } 4456 } else { 4457 iprio = 1; 4458 } 4459 } else { 4460 iprio = 0; 4461 } 4462 4463 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 4464 *val |= iprio; 4465 4466 return RISCV_EXCP_NONE; 4467 } 4468 4469 static RISCVException read_stopi(CPURISCVState *env, int csrno, 4470 target_ulong *val) 4471 { 4472 int irq; 4473 uint8_t iprio; 4474 4475 if (env->virt_enabled) { 4476 return read_vstopi(env, CSR_VSTOPI, val); 4477 } 4478 4479 irq = riscv_cpu_sirq_pending(env); 4480 if (irq <= 0 || irq > 63) { 4481 *val = 0; 4482 } else { 4483 iprio = env->siprio[irq]; 4484 if (!iprio) { 4485 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 4486 iprio = IPRIO_MMAXIPRIO; 4487 } 4488 } 4489 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 4490 *val |= iprio; 4491 } 4492 4493 return RISCV_EXCP_NONE; 4494 } 4495 4496 /* Hypervisor Extensions */ 4497 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 4498 target_ulong *val) 4499 { 4500 *val = env->hstatus; 4501 if (riscv_cpu_mxl(env) != MXL_RV32) { 4502 /* We only support 64-bit VSXL */ 4503 *val = set_field(*val, HSTATUS_VSXL, 2); 4504 } 4505 /* We only support little endian */ 4506 *val = set_field(*val, HSTATUS_VSBE, 0); 4507 return RISCV_EXCP_NONE; 4508 } 4509 4510 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 4511 target_ulong val, uintptr_t ra) 4512 { 4513 uint64_t mask = (target_ulong)-1; 4514 if (!env_archcpu(env)->cfg.ext_svukte) { 4515 mask &= ~HSTATUS_HUKTE; 4516 } 4517 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 4518 if (!env_archcpu(env)->cfg.ext_ssnpm || 4519 riscv_cpu_mxl(env) != MXL_RV64 || 4520 get_field(val, HSTATUS_HUPMM) == PMM_FIELD_RESERVED) { 4521 mask &= ~HSTATUS_HUPMM; 4522 } 4523 env->hstatus = (env->hstatus & ~mask) | (val & mask); 4524 4525 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 4526 qemu_log_mask(LOG_UNIMP, 4527 "QEMU does not support mixed HSXLEN options."); 4528 } 4529 if (get_field(val, HSTATUS_VSBE) != 0) { 4530 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 4531 } 4532 return RISCV_EXCP_NONE; 4533 } 4534 4535 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 4536 target_ulong *val) 4537 { 4538 *val = env->hedeleg; 4539 return RISCV_EXCP_NONE; 4540 } 4541 4542 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 4543 target_ulong val, uintptr_t ra) 4544 { 4545 env->hedeleg = val & vs_delegable_excps; 4546 return RISCV_EXCP_NONE; 4547 } 4548 4549 static RISCVException read_hedelegh(CPURISCVState *env, int csrno, 4550 target_ulong *val) 4551 { 4552 RISCVException ret; 4553 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 4554 if (ret != RISCV_EXCP_NONE) { 4555 return ret; 4556 } 4557 4558 /* Reserved, now read zero */ 4559 *val = 0; 4560 return RISCV_EXCP_NONE; 4561 } 4562 4563 static RISCVException write_hedelegh(CPURISCVState *env, int csrno, 4564 target_ulong val, uintptr_t ra) 4565 { 4566 RISCVException ret; 4567 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 4568 if (ret != RISCV_EXCP_NONE) { 4569 return ret; 4570 } 4571 4572 /* Reserved, now write ignore */ 4573 return RISCV_EXCP_NONE; 4574 } 4575 4576 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 4577 uint64_t *ret_val, 4578 uint64_t new_val, uint64_t wr_mask) 4579 { 4580 uint64_t mask = wr_mask & hvien_writable_mask; 4581 4582 if (ret_val) { 4583 *ret_val = env->hvien; 4584 } 4585 4586 env->hvien = (env->hvien & ~mask) | (new_val & mask); 4587 4588 return RISCV_EXCP_NONE; 4589 } 4590 4591 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 4592 target_ulong *ret_val, 4593 target_ulong new_val, target_ulong wr_mask) 4594 { 4595 uint64_t rval; 4596 RISCVException ret; 4597 4598 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 4599 if (ret_val) { 4600 *ret_val = rval; 4601 } 4602 4603 return ret; 4604 } 4605 4606 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 4607 target_ulong *ret_val, 4608 target_ulong new_val, target_ulong wr_mask) 4609 { 4610 uint64_t rval; 4611 RISCVException ret; 4612 4613 ret = rmw_hvien64(env, csrno, &rval, 4614 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4615 if (ret_val) { 4616 *ret_val = rval >> 32; 4617 } 4618 4619 return ret; 4620 } 4621 4622 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 4623 uint64_t *ret_val, 4624 uint64_t new_val, uint64_t wr_mask) 4625 { 4626 uint64_t mask = wr_mask & vs_delegable_ints; 4627 4628 if (ret_val) { 4629 *ret_val = env->hideleg & vs_delegable_ints; 4630 } 4631 4632 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 4633 return RISCV_EXCP_NONE; 4634 } 4635 4636 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 4637 target_ulong *ret_val, 4638 target_ulong new_val, target_ulong wr_mask) 4639 { 4640 uint64_t rval; 4641 RISCVException ret; 4642 4643 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 4644 if (ret_val) { 4645 *ret_val = rval; 4646 } 4647 4648 return ret; 4649 } 4650 4651 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 4652 target_ulong *ret_val, 4653 target_ulong new_val, target_ulong wr_mask) 4654 { 4655 uint64_t rval; 4656 RISCVException ret; 4657 4658 ret = rmw_hideleg64(env, csrno, &rval, 4659 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4660 if (ret_val) { 4661 *ret_val = rval >> 32; 4662 } 4663 4664 return ret; 4665 } 4666 4667 /* 4668 * The function is written for two use-cases: 4669 * 1- To access hvip csr as is for HS-mode access. 4670 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 4671 * 4672 * Both report bits 2, 6, 10 and 13:63. 4673 * vsip needs to be read-only zero when both hideleg[i] and 4674 * hvien[i] are zero. 4675 */ 4676 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 4677 uint64_t *ret_val, 4678 uint64_t new_val, uint64_t wr_mask) 4679 { 4680 RISCVException ret; 4681 uint64_t old_hvip; 4682 uint64_t ret_mip; 4683 4684 /* 4685 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 4686 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 4687 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 4688 * bits are actually being maintained in mip so we read them from there. 4689 * This way we have a single source of truth and allows for easier 4690 * implementation. 4691 * 4692 * For bits 13:63 we have: 4693 * 4694 * hideleg[i] hvien[i] 4695 * 0 0 No delegation. vsip[i] readonly zero. 4696 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 4697 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 4698 * 4699 * alias_mask denotes the bits that come from sip (mip here given we 4700 * maintain all bits there). nalias_mask denotes bits that come from 4701 * hvip. 4702 */ 4703 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 4704 uint64_t nalias_mask = (~env->hideleg & env->hvien); 4705 uint64_t wr_mask_hvip; 4706 uint64_t wr_mask_mip; 4707 4708 /* 4709 * Both alias and non-alias mask remain same for vsip except: 4710 * 1- For VS* bits if they are zero in hideleg. 4711 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 4712 */ 4713 if (csrno == CSR_VSIP) { 4714 /* zero-out VS* bits that are not delegated to VS mode. */ 4715 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 4716 4717 /* 4718 * zero-out 13:63 bits that are zero in both hideleg and hvien. 4719 * nalias_mask mask can not contain any VS* bits so only second 4720 * condition applies on it. 4721 */ 4722 nalias_mask &= (env->hideleg | env->hvien); 4723 alias_mask &= (env->hideleg | env->hvien); 4724 } 4725 4726 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 4727 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 4728 4729 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 4730 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 4731 if (ret != RISCV_EXCP_NONE) { 4732 return ret; 4733 } 4734 4735 old_hvip = env->hvip; 4736 4737 if (wr_mask_hvip) { 4738 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 4739 4740 /* 4741 * Given hvip is separate source from mip, we need to trigger interrupt 4742 * from here separately. Normally this happen from riscv_cpu_update_mip. 4743 */ 4744 riscv_cpu_interrupt(env); 4745 } 4746 4747 if (ret_val) { 4748 /* Only take VS* bits from mip. */ 4749 ret_mip &= alias_mask; 4750 4751 /* Take in non-delegated 13:63 bits from hvip. */ 4752 old_hvip &= nalias_mask; 4753 4754 *ret_val = ret_mip | old_hvip; 4755 } 4756 4757 return ret; 4758 } 4759 4760 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 4761 target_ulong *ret_val, 4762 target_ulong new_val, target_ulong wr_mask) 4763 { 4764 uint64_t rval; 4765 RISCVException ret; 4766 4767 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 4768 if (ret_val) { 4769 *ret_val = rval; 4770 } 4771 4772 return ret; 4773 } 4774 4775 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 4776 target_ulong *ret_val, 4777 target_ulong new_val, target_ulong wr_mask) 4778 { 4779 uint64_t rval; 4780 RISCVException ret; 4781 4782 ret = rmw_hvip64(env, csrno, &rval, 4783 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4784 if (ret_val) { 4785 *ret_val = rval >> 32; 4786 } 4787 4788 return ret; 4789 } 4790 4791 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 4792 target_ulong *ret_value, 4793 target_ulong new_value, target_ulong write_mask) 4794 { 4795 int ret = rmw_mip(env, csrno, ret_value, new_value, 4796 write_mask & hip_writable_mask); 4797 4798 if (ret_value) { 4799 *ret_value &= HS_MODE_INTERRUPTS; 4800 } 4801 return ret; 4802 } 4803 4804 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 4805 target_ulong *ret_val, 4806 target_ulong new_val, target_ulong wr_mask) 4807 { 4808 uint64_t rval; 4809 RISCVException ret; 4810 4811 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 4812 if (ret_val) { 4813 *ret_val = rval & HS_MODE_INTERRUPTS; 4814 } 4815 4816 return ret; 4817 } 4818 4819 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 4820 target_ulong *val) 4821 { 4822 *val = env->hcounteren; 4823 return RISCV_EXCP_NONE; 4824 } 4825 4826 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 4827 target_ulong val, uintptr_t ra) 4828 { 4829 RISCVCPU *cpu = env_archcpu(env); 4830 4831 /* WARL register - disable unavailable counters */ 4832 env->hcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 4833 COUNTEREN_IR); 4834 return RISCV_EXCP_NONE; 4835 } 4836 4837 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 4838 target_ulong *val) 4839 { 4840 if (val) { 4841 *val = env->hgeie; 4842 } 4843 return RISCV_EXCP_NONE; 4844 } 4845 4846 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 4847 target_ulong val, uintptr_t ra) 4848 { 4849 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 4850 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 4851 env->hgeie = val; 4852 /* Update mip.SGEIP bit */ 4853 riscv_cpu_update_mip(env, MIP_SGEIP, 4854 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 4855 return RISCV_EXCP_NONE; 4856 } 4857 4858 static RISCVException read_htval(CPURISCVState *env, int csrno, 4859 target_ulong *val) 4860 { 4861 *val = env->htval; 4862 return RISCV_EXCP_NONE; 4863 } 4864 4865 static RISCVException write_htval(CPURISCVState *env, int csrno, 4866 target_ulong val, uintptr_t ra) 4867 { 4868 env->htval = val; 4869 return RISCV_EXCP_NONE; 4870 } 4871 4872 static RISCVException read_htinst(CPURISCVState *env, int csrno, 4873 target_ulong *val) 4874 { 4875 *val = env->htinst; 4876 return RISCV_EXCP_NONE; 4877 } 4878 4879 static RISCVException write_htinst(CPURISCVState *env, int csrno, 4880 target_ulong val, uintptr_t ra) 4881 { 4882 return RISCV_EXCP_NONE; 4883 } 4884 4885 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 4886 target_ulong *val) 4887 { 4888 if (val) { 4889 *val = env->hgeip; 4890 } 4891 return RISCV_EXCP_NONE; 4892 } 4893 4894 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 4895 target_ulong *val) 4896 { 4897 *val = env->hgatp; 4898 return RISCV_EXCP_NONE; 4899 } 4900 4901 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 4902 target_ulong val, uintptr_t ra) 4903 { 4904 env->hgatp = legalize_xatp(env, env->hgatp, val); 4905 return RISCV_EXCP_NONE; 4906 } 4907 4908 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 4909 target_ulong *val) 4910 { 4911 if (!env->rdtime_fn) { 4912 return RISCV_EXCP_ILLEGAL_INST; 4913 } 4914 4915 *val = env->htimedelta; 4916 return RISCV_EXCP_NONE; 4917 } 4918 4919 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 4920 target_ulong val, uintptr_t ra) 4921 { 4922 if (!env->rdtime_fn) { 4923 return RISCV_EXCP_ILLEGAL_INST; 4924 } 4925 4926 if (riscv_cpu_mxl(env) == MXL_RV32) { 4927 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 4928 } else { 4929 env->htimedelta = val; 4930 } 4931 4932 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 4933 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 4934 env->htimedelta, MIP_VSTIP); 4935 } 4936 4937 return RISCV_EXCP_NONE; 4938 } 4939 4940 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 4941 target_ulong *val) 4942 { 4943 if (!env->rdtime_fn) { 4944 return RISCV_EXCP_ILLEGAL_INST; 4945 } 4946 4947 *val = env->htimedelta >> 32; 4948 return RISCV_EXCP_NONE; 4949 } 4950 4951 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 4952 target_ulong val, uintptr_t ra) 4953 { 4954 if (!env->rdtime_fn) { 4955 return RISCV_EXCP_ILLEGAL_INST; 4956 } 4957 4958 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 4959 4960 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 4961 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 4962 env->htimedelta, MIP_VSTIP); 4963 } 4964 4965 return RISCV_EXCP_NONE; 4966 } 4967 4968 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 4969 target_ulong *val) 4970 { 4971 *val = env->hvictl; 4972 return RISCV_EXCP_NONE; 4973 } 4974 4975 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 4976 target_ulong val, uintptr_t ra) 4977 { 4978 env->hvictl = val & HVICTL_VALID_MASK; 4979 return RISCV_EXCP_NONE; 4980 } 4981 4982 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 4983 uint8_t *iprio, target_ulong *val) 4984 { 4985 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 4986 4987 /* First index has to be a multiple of number of irqs per register */ 4988 if (first_index % num_irqs) { 4989 return (env->virt_enabled) ? 4990 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 4991 } 4992 4993 /* Fill-up return value */ 4994 *val = 0; 4995 for (i = 0; i < num_irqs; i++) { 4996 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 4997 continue; 4998 } 4999 if (rdzero) { 5000 continue; 5001 } 5002 *val |= ((target_ulong)iprio[irq]) << (i * 8); 5003 } 5004 5005 return RISCV_EXCP_NONE; 5006 } 5007 5008 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 5009 uint8_t *iprio, target_ulong val) 5010 { 5011 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 5012 5013 /* First index has to be a multiple of number of irqs per register */ 5014 if (first_index % num_irqs) { 5015 return (env->virt_enabled) ? 5016 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 5017 } 5018 5019 /* Fill-up priority array */ 5020 for (i = 0; i < num_irqs; i++) { 5021 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 5022 continue; 5023 } 5024 if (rdzero) { 5025 iprio[irq] = 0; 5026 } else { 5027 iprio[irq] = (val >> (i * 8)) & 0xff; 5028 } 5029 } 5030 5031 return RISCV_EXCP_NONE; 5032 } 5033 5034 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 5035 target_ulong *val) 5036 { 5037 return read_hvipriox(env, 0, env->hviprio, val); 5038 } 5039 5040 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 5041 target_ulong val, uintptr_t ra) 5042 { 5043 return write_hvipriox(env, 0, env->hviprio, val); 5044 } 5045 5046 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 5047 target_ulong *val) 5048 { 5049 return read_hvipriox(env, 4, env->hviprio, val); 5050 } 5051 5052 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 5053 target_ulong val, uintptr_t ra) 5054 { 5055 return write_hvipriox(env, 4, env->hviprio, val); 5056 } 5057 5058 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 5059 target_ulong *val) 5060 { 5061 return read_hvipriox(env, 8, env->hviprio, val); 5062 } 5063 5064 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 5065 target_ulong val, uintptr_t ra) 5066 { 5067 return write_hvipriox(env, 8, env->hviprio, val); 5068 } 5069 5070 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 5071 target_ulong *val) 5072 { 5073 return read_hvipriox(env, 12, env->hviprio, val); 5074 } 5075 5076 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 5077 target_ulong val, uintptr_t ra) 5078 { 5079 return write_hvipriox(env, 12, env->hviprio, val); 5080 } 5081 5082 /* Virtual CSR Registers */ 5083 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 5084 target_ulong *val) 5085 { 5086 *val = env->vsstatus; 5087 return RISCV_EXCP_NONE; 5088 } 5089 5090 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 5091 target_ulong val, uintptr_t ra) 5092 { 5093 uint64_t mask = (target_ulong)-1; 5094 if ((val & VSSTATUS64_UXL) == 0) { 5095 mask &= ~VSSTATUS64_UXL; 5096 } 5097 if ((env->henvcfg & HENVCFG_DTE)) { 5098 if ((val & SSTATUS_SDT) != 0) { 5099 val &= ~SSTATUS_SIE; 5100 } 5101 } else { 5102 val &= ~SSTATUS_SDT; 5103 } 5104 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 5105 return RISCV_EXCP_NONE; 5106 } 5107 5108 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 5109 target_ulong *val) 5110 { 5111 *val = env->vstvec; 5112 return RISCV_EXCP_NONE; 5113 } 5114 5115 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 5116 target_ulong val, uintptr_t ra) 5117 { 5118 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 5119 if ((val & 3) < 2) { 5120 env->vstvec = val; 5121 } else { 5122 qemu_log_mask(LOG_UNIMP, "CSR_VSTVEC: reserved mode not supported\n"); 5123 } 5124 return RISCV_EXCP_NONE; 5125 } 5126 5127 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 5128 target_ulong *val) 5129 { 5130 *val = env->vsscratch; 5131 return RISCV_EXCP_NONE; 5132 } 5133 5134 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 5135 target_ulong val, uintptr_t ra) 5136 { 5137 env->vsscratch = val; 5138 return RISCV_EXCP_NONE; 5139 } 5140 5141 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 5142 target_ulong *val) 5143 { 5144 *val = env->vsepc; 5145 return RISCV_EXCP_NONE; 5146 } 5147 5148 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 5149 target_ulong val, uintptr_t ra) 5150 { 5151 env->vsepc = val; 5152 return RISCV_EXCP_NONE; 5153 } 5154 5155 static RISCVException read_vscause(CPURISCVState *env, int csrno, 5156 target_ulong *val) 5157 { 5158 *val = env->vscause; 5159 return RISCV_EXCP_NONE; 5160 } 5161 5162 static RISCVException write_vscause(CPURISCVState *env, int csrno, 5163 target_ulong val, uintptr_t ra) 5164 { 5165 env->vscause = val; 5166 return RISCV_EXCP_NONE; 5167 } 5168 5169 static RISCVException read_vstval(CPURISCVState *env, int csrno, 5170 target_ulong *val) 5171 { 5172 *val = env->vstval; 5173 return RISCV_EXCP_NONE; 5174 } 5175 5176 static RISCVException write_vstval(CPURISCVState *env, int csrno, 5177 target_ulong val, uintptr_t ra) 5178 { 5179 env->vstval = val; 5180 return RISCV_EXCP_NONE; 5181 } 5182 5183 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 5184 target_ulong *val) 5185 { 5186 *val = env->vsatp; 5187 return RISCV_EXCP_NONE; 5188 } 5189 5190 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 5191 target_ulong val, uintptr_t ra) 5192 { 5193 env->vsatp = legalize_xatp(env, env->vsatp, val); 5194 return RISCV_EXCP_NONE; 5195 } 5196 5197 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 5198 target_ulong *val) 5199 { 5200 *val = env->mtval2; 5201 return RISCV_EXCP_NONE; 5202 } 5203 5204 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 5205 target_ulong val, uintptr_t ra) 5206 { 5207 env->mtval2 = val; 5208 return RISCV_EXCP_NONE; 5209 } 5210 5211 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 5212 target_ulong *val) 5213 { 5214 *val = env->mtinst; 5215 return RISCV_EXCP_NONE; 5216 } 5217 5218 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 5219 target_ulong val, uintptr_t ra) 5220 { 5221 env->mtinst = val; 5222 return RISCV_EXCP_NONE; 5223 } 5224 5225 /* Physical Memory Protection */ 5226 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 5227 target_ulong *val) 5228 { 5229 *val = mseccfg_csr_read(env); 5230 return RISCV_EXCP_NONE; 5231 } 5232 5233 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 5234 target_ulong val, uintptr_t ra) 5235 { 5236 mseccfg_csr_write(env, val); 5237 return RISCV_EXCP_NONE; 5238 } 5239 5240 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 5241 target_ulong *val) 5242 { 5243 uint32_t reg_index = csrno - CSR_PMPCFG0; 5244 5245 *val = pmpcfg_csr_read(env, reg_index); 5246 return RISCV_EXCP_NONE; 5247 } 5248 5249 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 5250 target_ulong val, uintptr_t ra) 5251 { 5252 uint32_t reg_index = csrno - CSR_PMPCFG0; 5253 5254 pmpcfg_csr_write(env, reg_index, val); 5255 return RISCV_EXCP_NONE; 5256 } 5257 5258 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 5259 target_ulong *val) 5260 { 5261 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 5262 return RISCV_EXCP_NONE; 5263 } 5264 5265 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 5266 target_ulong val, uintptr_t ra) 5267 { 5268 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 5269 return RISCV_EXCP_NONE; 5270 } 5271 5272 static RISCVException read_tselect(CPURISCVState *env, int csrno, 5273 target_ulong *val) 5274 { 5275 *val = tselect_csr_read(env); 5276 return RISCV_EXCP_NONE; 5277 } 5278 5279 static RISCVException write_tselect(CPURISCVState *env, int csrno, 5280 target_ulong val, uintptr_t ra) 5281 { 5282 tselect_csr_write(env, val); 5283 return RISCV_EXCP_NONE; 5284 } 5285 5286 static RISCVException read_tdata(CPURISCVState *env, int csrno, 5287 target_ulong *val) 5288 { 5289 /* return 0 in tdata1 to end the trigger enumeration */ 5290 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 5291 *val = 0; 5292 return RISCV_EXCP_NONE; 5293 } 5294 5295 if (!tdata_available(env, csrno - CSR_TDATA1)) { 5296 return RISCV_EXCP_ILLEGAL_INST; 5297 } 5298 5299 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 5300 return RISCV_EXCP_NONE; 5301 } 5302 5303 static RISCVException write_tdata(CPURISCVState *env, int csrno, 5304 target_ulong val, uintptr_t ra) 5305 { 5306 if (!tdata_available(env, csrno - CSR_TDATA1)) { 5307 return RISCV_EXCP_ILLEGAL_INST; 5308 } 5309 5310 tdata_csr_write(env, csrno - CSR_TDATA1, val); 5311 return RISCV_EXCP_NONE; 5312 } 5313 5314 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 5315 target_ulong *val) 5316 { 5317 *val = tinfo_csr_read(env); 5318 return RISCV_EXCP_NONE; 5319 } 5320 5321 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 5322 target_ulong *val) 5323 { 5324 *val = env->mcontext; 5325 return RISCV_EXCP_NONE; 5326 } 5327 5328 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 5329 target_ulong val, uintptr_t ra) 5330 { 5331 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 5332 int32_t mask; 5333 5334 if (riscv_has_ext(env, RVH)) { 5335 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 5336 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 5337 } else { 5338 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 5339 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 5340 } 5341 5342 env->mcontext = val & mask; 5343 return RISCV_EXCP_NONE; 5344 } 5345 5346 static RISCVException read_mnscratch(CPURISCVState *env, int csrno, 5347 target_ulong *val) 5348 { 5349 *val = env->mnscratch; 5350 return RISCV_EXCP_NONE; 5351 } 5352 5353 static RISCVException write_mnscratch(CPURISCVState *env, int csrno, 5354 target_ulong val, uintptr_t ra) 5355 { 5356 env->mnscratch = val; 5357 return RISCV_EXCP_NONE; 5358 } 5359 5360 static RISCVException read_mnepc(CPURISCVState *env, int csrno, 5361 target_ulong *val) 5362 { 5363 *val = env->mnepc; 5364 return RISCV_EXCP_NONE; 5365 } 5366 5367 static RISCVException write_mnepc(CPURISCVState *env, int csrno, 5368 target_ulong val, uintptr_t ra) 5369 { 5370 env->mnepc = val; 5371 return RISCV_EXCP_NONE; 5372 } 5373 5374 static RISCVException read_mncause(CPURISCVState *env, int csrno, 5375 target_ulong *val) 5376 { 5377 *val = env->mncause; 5378 return RISCV_EXCP_NONE; 5379 } 5380 5381 static RISCVException write_mncause(CPURISCVState *env, int csrno, 5382 target_ulong val, uintptr_t ra) 5383 { 5384 env->mncause = val; 5385 return RISCV_EXCP_NONE; 5386 } 5387 5388 static RISCVException read_mnstatus(CPURISCVState *env, int csrno, 5389 target_ulong *val) 5390 { 5391 *val = env->mnstatus; 5392 return RISCV_EXCP_NONE; 5393 } 5394 5395 static RISCVException write_mnstatus(CPURISCVState *env, int csrno, 5396 target_ulong val, uintptr_t ra) 5397 { 5398 target_ulong mask = (MNSTATUS_NMIE | MNSTATUS_MNPP); 5399 5400 if (riscv_has_ext(env, RVH)) { 5401 /* Flush tlb on mnstatus fields that affect VM. */ 5402 if ((val ^ env->mnstatus) & MNSTATUS_MNPV) { 5403 tlb_flush(env_cpu(env)); 5404 } 5405 5406 mask |= MNSTATUS_MNPV; 5407 } 5408 5409 /* mnstatus.mnie can only be cleared by hardware. */ 5410 env->mnstatus = (env->mnstatus & MNSTATUS_NMIE) | (val & mask); 5411 return RISCV_EXCP_NONE; 5412 } 5413 5414 #endif 5415 5416 /* Crypto Extension */ 5417 target_ulong riscv_new_csr_seed(target_ulong new_value, 5418 target_ulong write_mask) 5419 { 5420 uint16_t random_v; 5421 Error *random_e = NULL; 5422 int random_r; 5423 target_ulong rval; 5424 5425 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 5426 if (unlikely(random_r < 0)) { 5427 /* 5428 * Failed, for unknown reasons in the crypto subsystem. 5429 * The best we can do is log the reason and return a 5430 * failure indication to the guest. There is no reason 5431 * we know to expect the failure to be transitory, so 5432 * indicate DEAD to avoid having the guest spin on WAIT. 5433 */ 5434 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5435 __func__, error_get_pretty(random_e)); 5436 error_free(random_e); 5437 rval = SEED_OPST_DEAD; 5438 } else { 5439 rval = random_v | SEED_OPST_ES16; 5440 } 5441 5442 return rval; 5443 } 5444 5445 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 5446 target_ulong *ret_value, 5447 target_ulong new_value, 5448 target_ulong write_mask) 5449 { 5450 target_ulong rval; 5451 5452 rval = riscv_new_csr_seed(new_value, write_mask); 5453 5454 if (ret_value) { 5455 *ret_value = rval; 5456 } 5457 5458 return RISCV_EXCP_NONE; 5459 } 5460 5461 /* 5462 * riscv_csrrw - read and/or update control and status register 5463 * 5464 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 5465 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 5466 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 5467 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 5468 */ 5469 5470 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 5471 int csrno, 5472 bool write) 5473 { 5474 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 5475 bool read_only = get_field(csrno, 0xC00) == 3; 5476 int csr_min_priv = csr_ops[csrno].min_priv_ver; 5477 5478 /* ensure the CSR extension is enabled */ 5479 if (!riscv_cpu_cfg(env)->ext_zicsr) { 5480 return RISCV_EXCP_ILLEGAL_INST; 5481 } 5482 5483 /* ensure CSR is implemented by checking predicate */ 5484 if (!csr_ops[csrno].predicate) { 5485 return RISCV_EXCP_ILLEGAL_INST; 5486 } 5487 5488 /* privileged spec version check */ 5489 if (env->priv_ver < csr_min_priv) { 5490 return RISCV_EXCP_ILLEGAL_INST; 5491 } 5492 5493 /* read / write check */ 5494 if (write && read_only) { 5495 return RISCV_EXCP_ILLEGAL_INST; 5496 } 5497 5498 /* 5499 * The predicate() not only does existence check but also does some 5500 * access control check which triggers for example virtual instruction 5501 * exception in some cases. When writing read-only CSRs in those cases 5502 * illegal instruction exception should be triggered instead of virtual 5503 * instruction exception. Hence this comes after the read / write check. 5504 */ 5505 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 5506 if (ret != RISCV_EXCP_NONE) { 5507 return ret; 5508 } 5509 5510 #if !defined(CONFIG_USER_ONLY) 5511 int csr_priv, effective_priv = env->priv; 5512 5513 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 5514 !env->virt_enabled) { 5515 /* 5516 * We are in HS mode. Add 1 to the effective privilege level to 5517 * allow us to access the Hypervisor CSRs. 5518 */ 5519 effective_priv++; 5520 } 5521 5522 csr_priv = get_field(csrno, 0x300); 5523 if (!env->debugger && (effective_priv < csr_priv)) { 5524 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 5525 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 5526 } 5527 return RISCV_EXCP_ILLEGAL_INST; 5528 } 5529 #endif 5530 return RISCV_EXCP_NONE; 5531 } 5532 5533 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 5534 target_ulong *ret_value, 5535 target_ulong new_value, 5536 target_ulong write_mask, 5537 uintptr_t ra) 5538 { 5539 RISCVException ret; 5540 target_ulong old_value = 0; 5541 5542 /* execute combined read/write operation if it exists */ 5543 if (csr_ops[csrno].op) { 5544 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 5545 } 5546 5547 /* 5548 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 5549 * and we can't throw side effects caused by CSR reads. 5550 */ 5551 if (ret_value) { 5552 /* if no accessor exists then return failure */ 5553 if (!csr_ops[csrno].read) { 5554 return RISCV_EXCP_ILLEGAL_INST; 5555 } 5556 /* read old value */ 5557 ret = csr_ops[csrno].read(env, csrno, &old_value); 5558 if (ret != RISCV_EXCP_NONE) { 5559 return ret; 5560 } 5561 } 5562 5563 /* write value if writable and write mask set, otherwise drop writes */ 5564 if (write_mask) { 5565 new_value = (old_value & ~write_mask) | (new_value & write_mask); 5566 if (csr_ops[csrno].write) { 5567 ret = csr_ops[csrno].write(env, csrno, new_value, ra); 5568 if (ret != RISCV_EXCP_NONE) { 5569 return ret; 5570 } 5571 } 5572 } 5573 5574 /* return old value */ 5575 if (ret_value) { 5576 *ret_value = old_value; 5577 } 5578 5579 return RISCV_EXCP_NONE; 5580 } 5581 5582 RISCVException riscv_csrr(CPURISCVState *env, int csrno, 5583 target_ulong *ret_value) 5584 { 5585 RISCVException ret = riscv_csrrw_check(env, csrno, false); 5586 if (ret != RISCV_EXCP_NONE) { 5587 return ret; 5588 } 5589 5590 return riscv_csrrw_do64(env, csrno, ret_value, 0, 0, 0); 5591 } 5592 5593 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 5594 target_ulong *ret_value, target_ulong new_value, 5595 target_ulong write_mask, uintptr_t ra) 5596 { 5597 RISCVException ret = riscv_csrrw_check(env, csrno, true); 5598 if (ret != RISCV_EXCP_NONE) { 5599 return ret; 5600 } 5601 5602 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask, ra); 5603 } 5604 5605 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 5606 Int128 *ret_value, 5607 Int128 new_value, 5608 Int128 write_mask, uintptr_t ra) 5609 { 5610 RISCVException ret; 5611 Int128 old_value; 5612 5613 /* read old value */ 5614 ret = csr_ops[csrno].read128(env, csrno, &old_value); 5615 if (ret != RISCV_EXCP_NONE) { 5616 return ret; 5617 } 5618 5619 /* write value if writable and write mask set, otherwise drop writes */ 5620 if (int128_nz(write_mask)) { 5621 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 5622 int128_and(new_value, write_mask)); 5623 if (csr_ops[csrno].write128) { 5624 ret = csr_ops[csrno].write128(env, csrno, new_value); 5625 if (ret != RISCV_EXCP_NONE) { 5626 return ret; 5627 } 5628 } else if (csr_ops[csrno].write) { 5629 /* avoids having to write wrappers for all registers */ 5630 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value), ra); 5631 if (ret != RISCV_EXCP_NONE) { 5632 return ret; 5633 } 5634 } 5635 } 5636 5637 /* return old value */ 5638 if (ret_value) { 5639 *ret_value = old_value; 5640 } 5641 5642 return RISCV_EXCP_NONE; 5643 } 5644 5645 RISCVException riscv_csrr_i128(CPURISCVState *env, int csrno, 5646 Int128 *ret_value) 5647 { 5648 RISCVException ret; 5649 5650 ret = riscv_csrrw_check(env, csrno, false); 5651 if (ret != RISCV_EXCP_NONE) { 5652 return ret; 5653 } 5654 5655 if (csr_ops[csrno].read128) { 5656 return riscv_csrrw_do128(env, csrno, ret_value, 5657 int128_zero(), int128_zero(), 0); 5658 } 5659 5660 /* 5661 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 5662 * at all defined. 5663 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 5664 * significant), for those, this fallback is correctly handling the 5665 * accesses 5666 */ 5667 target_ulong old_value; 5668 ret = riscv_csrrw_do64(env, csrno, &old_value, 0, 0, 0); 5669 if (ret == RISCV_EXCP_NONE && ret_value) { 5670 *ret_value = int128_make64(old_value); 5671 } 5672 return ret; 5673 } 5674 5675 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 5676 Int128 *ret_value, Int128 new_value, 5677 Int128 write_mask, uintptr_t ra) 5678 { 5679 RISCVException ret; 5680 5681 ret = riscv_csrrw_check(env, csrno, true); 5682 if (ret != RISCV_EXCP_NONE) { 5683 return ret; 5684 } 5685 5686 if (csr_ops[csrno].read128) { 5687 return riscv_csrrw_do128(env, csrno, ret_value, 5688 new_value, write_mask, ra); 5689 } 5690 5691 /* 5692 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 5693 * at all defined. 5694 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 5695 * significant), for those, this fallback is correctly handling the 5696 * accesses 5697 */ 5698 target_ulong old_value; 5699 ret = riscv_csrrw_do64(env, csrno, &old_value, 5700 int128_getlo(new_value), 5701 int128_getlo(write_mask), ra); 5702 if (ret == RISCV_EXCP_NONE && ret_value) { 5703 *ret_value = int128_make64(old_value); 5704 } 5705 return ret; 5706 } 5707 5708 /* 5709 * Debugger support. If not in user mode, set env->debugger before the 5710 * riscv_csrrw call and clear it after the call. 5711 */ 5712 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 5713 target_ulong *ret_value, 5714 target_ulong new_value, 5715 target_ulong write_mask) 5716 { 5717 RISCVException ret; 5718 #if !defined(CONFIG_USER_ONLY) 5719 env->debugger = true; 5720 #endif 5721 if (!write_mask) { 5722 ret = riscv_csrr(env, csrno, ret_value); 5723 } else { 5724 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask, 0); 5725 } 5726 #if !defined(CONFIG_USER_ONLY) 5727 env->debugger = false; 5728 #endif 5729 return ret; 5730 } 5731 5732 static RISCVException read_jvt(CPURISCVState *env, int csrno, 5733 target_ulong *val) 5734 { 5735 *val = env->jvt; 5736 return RISCV_EXCP_NONE; 5737 } 5738 5739 static RISCVException write_jvt(CPURISCVState *env, int csrno, 5740 target_ulong val, uintptr_t ra) 5741 { 5742 env->jvt = val; 5743 return RISCV_EXCP_NONE; 5744 } 5745 5746 /* 5747 * Control and Status Register function table 5748 * riscv_csr_operations::predicate() must be provided for an implemented CSR 5749 */ 5750 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 5751 /* User Floating-Point CSRs */ 5752 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 5753 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 5754 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 5755 /* Vector CSRs */ 5756 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 5757 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 5758 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 5759 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 5760 [CSR_VL] = { "vl", vs, read_vl }, 5761 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 5762 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 5763 /* User Timers and Counters */ 5764 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 5765 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 5766 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 5767 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 5768 5769 /* 5770 * In privileged mode, the monitor will have to emulate TIME CSRs only if 5771 * rdtime callback is not provided by machine/platform emulation. 5772 */ 5773 [CSR_TIME] = { "time", ctr, read_time }, 5774 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 5775 5776 /* Crypto Extension */ 5777 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 5778 5779 /* Zcmt Extension */ 5780 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 5781 5782 /* zicfiss Extension, shadow stack register */ 5783 [CSR_SSP] = { "ssp", cfi_ss, read_ssp, write_ssp }, 5784 5785 #if !defined(CONFIG_USER_ONLY) 5786 /* Machine Timers and Counters */ 5787 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 5788 write_mhpmcounter }, 5789 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 5790 write_mhpmcounter }, 5791 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 5792 write_mhpmcounterh }, 5793 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 5794 write_mhpmcounterh }, 5795 5796 /* Machine Information Registers */ 5797 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 5798 [CSR_MARCHID] = { "marchid", any, read_marchid }, 5799 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 5800 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 5801 5802 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 5803 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5804 /* Machine Trap Setup */ 5805 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 5806 NULL, read_mstatus_i128 }, 5807 [CSR_MISA] = { "misa", any, read_misa, write_misa, 5808 NULL, read_misa_i128 }, 5809 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 5810 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 5811 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 5812 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 5813 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 5814 write_mcounteren }, 5815 5816 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 5817 write_mstatush }, 5818 [CSR_MEDELEGH] = { "medelegh", any32, read_zero, write_ignore, 5819 .min_priv_ver = PRIV_VERSION_1_13_0 }, 5820 [CSR_HEDELEGH] = { "hedelegh", hmode32, read_hedelegh, write_hedelegh, 5821 .min_priv_ver = PRIV_VERSION_1_13_0 }, 5822 5823 /* Machine Trap Handling */ 5824 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 5825 NULL, read_mscratch_i128, write_mscratch_i128 }, 5826 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 5827 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 5828 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 5829 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 5830 5831 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 5832 [CSR_MISELECT] = { "miselect", csrind_or_aia_any, NULL, NULL, 5833 rmw_xiselect }, 5834 [CSR_MIREG] = { "mireg", csrind_or_aia_any, NULL, NULL, 5835 rmw_xireg }, 5836 5837 /* Machine Indirect Register Alias */ 5838 [CSR_MIREG2] = { "mireg2", csrind_any, NULL, NULL, rmw_xiregi, 5839 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5840 [CSR_MIREG3] = { "mireg3", csrind_any, NULL, NULL, rmw_xiregi, 5841 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5842 [CSR_MIREG4] = { "mireg4", csrind_any, NULL, NULL, rmw_xiregi, 5843 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5844 [CSR_MIREG5] = { "mireg5", csrind_any, NULL, NULL, rmw_xiregi, 5845 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5846 [CSR_MIREG6] = { "mireg6", csrind_any, NULL, NULL, rmw_xiregi, 5847 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5848 5849 /* Machine-Level Interrupts (AIA) */ 5850 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 5851 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 5852 5853 /* Virtual Interrupts for Supervisor Level (AIA) */ 5854 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 5855 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 5856 5857 /* Machine-Level High-Half CSRs (AIA) */ 5858 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 5859 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 5860 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 5861 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 5862 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 5863 5864 /* Execution environment configuration */ 5865 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 5866 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5867 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 5868 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5869 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 5870 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5871 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 5872 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5873 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 5874 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5875 5876 /* Smstateen extension CSRs */ 5877 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 5878 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5879 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 5880 write_mstateen0h, 5881 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5882 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 5883 write_mstateen_1_3, 5884 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5885 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 5886 write_mstateenh_1_3, 5887 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5888 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 5889 write_mstateen_1_3, 5890 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5891 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 5892 write_mstateenh_1_3, 5893 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5894 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 5895 write_mstateen_1_3, 5896 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5897 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 5898 write_mstateenh_1_3, 5899 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5900 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 5901 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5902 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 5903 write_hstateen0h, 5904 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5905 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 5906 write_hstateen_1_3, 5907 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5908 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 5909 write_hstateenh_1_3, 5910 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5911 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 5912 write_hstateen_1_3, 5913 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5914 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 5915 write_hstateenh_1_3, 5916 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5917 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 5918 write_hstateen_1_3, 5919 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5920 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 5921 write_hstateenh_1_3, 5922 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5923 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 5924 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5925 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 5926 write_sstateen_1_3, 5927 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5928 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 5929 write_sstateen_1_3, 5930 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5931 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 5932 write_sstateen_1_3, 5933 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5934 5935 /* RNMI */ 5936 [CSR_MNSCRATCH] = { "mnscratch", rnmi, read_mnscratch, write_mnscratch, 5937 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5938 [CSR_MNEPC] = { "mnepc", rnmi, read_mnepc, write_mnepc, 5939 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5940 [CSR_MNCAUSE] = { "mncause", rnmi, read_mncause, write_mncause, 5941 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5942 [CSR_MNSTATUS] = { "mnstatus", rnmi, read_mnstatus, write_mnstatus, 5943 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5944 5945 /* Supervisor Counter Delegation */ 5946 [CSR_SCOUNTINHIBIT] = {"scountinhibit", scountinhibit_pred, 5947 read_scountinhibit, write_scountinhibit, 5948 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5949 5950 /* Supervisor Trap Setup */ 5951 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 5952 NULL, read_sstatus_i128 }, 5953 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 5954 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 5955 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 5956 write_scounteren }, 5957 5958 /* Supervisor Trap Handling */ 5959 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 5960 NULL, read_sscratch_i128, write_sscratch_i128 }, 5961 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 5962 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 5963 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 5964 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 5965 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 5966 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5967 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 5968 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5969 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 5970 write_vstimecmp, 5971 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5972 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 5973 write_vstimecmph, 5974 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5975 5976 /* Supervisor Protection and Translation */ 5977 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 5978 5979 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 5980 [CSR_SISELECT] = { "siselect", csrind_or_aia_smode, NULL, NULL, 5981 rmw_xiselect }, 5982 [CSR_SIREG] = { "sireg", csrind_or_aia_smode, NULL, NULL, 5983 rmw_xireg }, 5984 5985 /* Supervisor Indirect Register Alias */ 5986 [CSR_SIREG2] = { "sireg2", csrind_smode, NULL, NULL, rmw_xiregi, 5987 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5988 [CSR_SIREG3] = { "sireg3", csrind_smode, NULL, NULL, rmw_xiregi, 5989 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5990 [CSR_SIREG4] = { "sireg4", csrind_smode, NULL, NULL, rmw_xiregi, 5991 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5992 [CSR_SIREG5] = { "sireg5", csrind_smode, NULL, NULL, rmw_xiregi, 5993 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5994 [CSR_SIREG6] = { "sireg6", csrind_smode, NULL, NULL, rmw_xiregi, 5995 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5996 5997 /* Supervisor-Level Interrupts (AIA) */ 5998 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 5999 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 6000 6001 /* Supervisor-Level High-Half CSRs (AIA) */ 6002 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 6003 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 6004 6005 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 6006 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6007 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 6008 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6009 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 6010 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6011 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 6012 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6013 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 6014 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6015 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 6016 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6017 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 6018 write_hcounteren, 6019 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6020 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 6021 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6022 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 6023 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6024 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 6025 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6026 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 6027 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6028 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 6029 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6030 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 6031 write_htimedelta, 6032 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6033 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 6034 write_htimedeltah, 6035 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6036 6037 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 6038 write_vsstatus, 6039 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6040 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 6041 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6042 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 6043 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6044 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 6045 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6046 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 6047 write_vsscratch, 6048 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6049 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 6050 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6051 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 6052 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6053 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 6054 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6055 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 6056 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6057 6058 [CSR_MTVAL2] = { "mtval2", dbltrp_hmode, read_mtval2, write_mtval2, 6059 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6060 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 6061 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6062 6063 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 6064 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 6065 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 6066 write_hvictl }, 6067 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 6068 write_hviprio1 }, 6069 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 6070 write_hviprio2 }, 6071 /* 6072 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 6073 */ 6074 [CSR_VSISELECT] = { "vsiselect", csrind_or_aia_hmode, NULL, NULL, 6075 rmw_xiselect }, 6076 [CSR_VSIREG] = { "vsireg", csrind_or_aia_hmode, NULL, NULL, 6077 rmw_xireg }, 6078 6079 /* Virtual Supervisor Indirect Alias */ 6080 [CSR_VSIREG2] = { "vsireg2", csrind_hmode, NULL, NULL, rmw_xiregi, 6081 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6082 [CSR_VSIREG3] = { "vsireg3", csrind_hmode, NULL, NULL, rmw_xiregi, 6083 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6084 [CSR_VSIREG4] = { "vsireg4", csrind_hmode, NULL, NULL, rmw_xiregi, 6085 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6086 [CSR_VSIREG5] = { "vsireg5", csrind_hmode, NULL, NULL, rmw_xiregi, 6087 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6088 [CSR_VSIREG6] = { "vsireg6", csrind_hmode, NULL, NULL, rmw_xiregi, 6089 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6090 6091 /* VS-Level Interrupts (H-extension with AIA) */ 6092 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 6093 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 6094 6095 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 6096 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 6097 rmw_hidelegh }, 6098 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 6099 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 6100 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 6101 write_hviprio1h }, 6102 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 6103 write_hviprio2h }, 6104 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 6105 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 6106 6107 /* Physical Memory Protection */ 6108 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 6109 .min_priv_ver = PRIV_VERSION_1_11_0 }, 6110 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 6111 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 6112 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 6113 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 6114 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 6115 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 6116 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 6117 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 6118 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 6119 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 6120 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 6121 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 6122 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 6123 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 6124 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 6125 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 6126 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 6127 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 6128 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 6129 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 6130 6131 /* Debug CSRs */ 6132 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 6133 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 6134 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 6135 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 6136 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 6137 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 6138 6139 [CSR_MCTRCTL] = { "mctrctl", ctr_mmode, NULL, NULL, rmw_xctrctl }, 6140 [CSR_SCTRCTL] = { "sctrctl", ctr_smode, NULL, NULL, rmw_xctrctl }, 6141 [CSR_VSCTRCTL] = { "vsctrctl", ctr_smode, NULL, NULL, rmw_xctrctl }, 6142 [CSR_SCTRDEPTH] = { "sctrdepth", ctr_smode, NULL, NULL, rmw_sctrdepth }, 6143 [CSR_SCTRSTATUS] = { "sctrstatus", ctr_smode, NULL, NULL, rmw_sctrstatus }, 6144 6145 /* Performance Counters */ 6146 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 6147 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 6148 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 6149 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 6150 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 6151 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 6152 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 6153 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 6154 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 6155 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 6156 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 6157 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 6158 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 6159 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 6160 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 6161 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 6162 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 6163 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 6164 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 6165 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 6166 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 6167 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 6168 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 6169 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 6170 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 6171 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 6172 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 6173 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 6174 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 6175 6176 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 6177 write_mhpmcounter }, 6178 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 6179 write_mhpmcounter }, 6180 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 6181 write_mhpmcounter }, 6182 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 6183 write_mhpmcounter }, 6184 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 6185 write_mhpmcounter }, 6186 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 6187 write_mhpmcounter }, 6188 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 6189 write_mhpmcounter }, 6190 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 6191 write_mhpmcounter }, 6192 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 6193 write_mhpmcounter }, 6194 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 6195 write_mhpmcounter }, 6196 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 6197 write_mhpmcounter }, 6198 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 6199 write_mhpmcounter }, 6200 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 6201 write_mhpmcounter }, 6202 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 6203 write_mhpmcounter }, 6204 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 6205 write_mhpmcounter }, 6206 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 6207 write_mhpmcounter }, 6208 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 6209 write_mhpmcounter }, 6210 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 6211 write_mhpmcounter }, 6212 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 6213 write_mhpmcounter }, 6214 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 6215 write_mhpmcounter }, 6216 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 6217 write_mhpmcounter }, 6218 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 6219 write_mhpmcounter }, 6220 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 6221 write_mhpmcounter }, 6222 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 6223 write_mhpmcounter }, 6224 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 6225 write_mhpmcounter }, 6226 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 6227 write_mhpmcounter }, 6228 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 6229 write_mhpmcounter }, 6230 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 6231 write_mhpmcounter }, 6232 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 6233 write_mhpmcounter }, 6234 6235 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 6236 write_mcountinhibit, 6237 .min_priv_ver = PRIV_VERSION_1_11_0 }, 6238 6239 [CSR_MCYCLECFG] = { "mcyclecfg", smcntrpmf, read_mcyclecfg, 6240 write_mcyclecfg, 6241 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6242 [CSR_MINSTRETCFG] = { "minstretcfg", smcntrpmf, read_minstretcfg, 6243 write_minstretcfg, 6244 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6245 6246 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 6247 write_mhpmevent }, 6248 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 6249 write_mhpmevent }, 6250 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 6251 write_mhpmevent }, 6252 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 6253 write_mhpmevent }, 6254 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 6255 write_mhpmevent }, 6256 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 6257 write_mhpmevent }, 6258 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 6259 write_mhpmevent }, 6260 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 6261 write_mhpmevent }, 6262 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 6263 write_mhpmevent }, 6264 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 6265 write_mhpmevent }, 6266 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 6267 write_mhpmevent }, 6268 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 6269 write_mhpmevent }, 6270 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 6271 write_mhpmevent }, 6272 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 6273 write_mhpmevent }, 6274 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 6275 write_mhpmevent }, 6276 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 6277 write_mhpmevent }, 6278 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 6279 write_mhpmevent }, 6280 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 6281 write_mhpmevent }, 6282 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 6283 write_mhpmevent }, 6284 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 6285 write_mhpmevent }, 6286 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 6287 write_mhpmevent }, 6288 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 6289 write_mhpmevent }, 6290 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 6291 write_mhpmevent }, 6292 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 6293 write_mhpmevent }, 6294 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 6295 write_mhpmevent }, 6296 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 6297 write_mhpmevent }, 6298 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 6299 write_mhpmevent }, 6300 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 6301 write_mhpmevent }, 6302 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 6303 write_mhpmevent }, 6304 6305 [CSR_MCYCLECFGH] = { "mcyclecfgh", smcntrpmf_32, read_mcyclecfgh, 6306 write_mcyclecfgh, 6307 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6308 [CSR_MINSTRETCFGH] = { "minstretcfgh", smcntrpmf_32, read_minstretcfgh, 6309 write_minstretcfgh, 6310 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6311 6312 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf_32, read_mhpmeventh, 6313 write_mhpmeventh, 6314 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6315 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf_32, read_mhpmeventh, 6316 write_mhpmeventh, 6317 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6318 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf_32, read_mhpmeventh, 6319 write_mhpmeventh, 6320 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6321 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf_32, read_mhpmeventh, 6322 write_mhpmeventh, 6323 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6324 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf_32, read_mhpmeventh, 6325 write_mhpmeventh, 6326 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6327 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf_32, read_mhpmeventh, 6328 write_mhpmeventh, 6329 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6330 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf_32, read_mhpmeventh, 6331 write_mhpmeventh, 6332 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6333 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf_32, read_mhpmeventh, 6334 write_mhpmeventh, 6335 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6336 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf_32, read_mhpmeventh, 6337 write_mhpmeventh, 6338 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6339 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf_32, read_mhpmeventh, 6340 write_mhpmeventh, 6341 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6342 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf_32, read_mhpmeventh, 6343 write_mhpmeventh, 6344 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6345 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf_32, read_mhpmeventh, 6346 write_mhpmeventh, 6347 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6348 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf_32, read_mhpmeventh, 6349 write_mhpmeventh, 6350 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6351 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf_32, read_mhpmeventh, 6352 write_mhpmeventh, 6353 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6354 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf_32, read_mhpmeventh, 6355 write_mhpmeventh, 6356 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6357 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf_32, read_mhpmeventh, 6358 write_mhpmeventh, 6359 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6360 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf_32, read_mhpmeventh, 6361 write_mhpmeventh, 6362 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6363 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf_32, read_mhpmeventh, 6364 write_mhpmeventh, 6365 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6366 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf_32, read_mhpmeventh, 6367 write_mhpmeventh, 6368 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6369 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf_32, read_mhpmeventh, 6370 write_mhpmeventh, 6371 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6372 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf_32, read_mhpmeventh, 6373 write_mhpmeventh, 6374 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6375 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf_32, read_mhpmeventh, 6376 write_mhpmeventh, 6377 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6378 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf_32, read_mhpmeventh, 6379 write_mhpmeventh, 6380 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6381 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf_32, read_mhpmeventh, 6382 write_mhpmeventh, 6383 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6384 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf_32, read_mhpmeventh, 6385 write_mhpmeventh, 6386 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6387 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf_32, read_mhpmeventh, 6388 write_mhpmeventh, 6389 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6390 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf_32, read_mhpmeventh, 6391 write_mhpmeventh, 6392 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6393 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf_32, read_mhpmeventh, 6394 write_mhpmeventh, 6395 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6396 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf_32, read_mhpmeventh, 6397 write_mhpmeventh, 6398 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6399 6400 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 6401 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 6402 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 6403 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 6404 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 6405 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 6406 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 6407 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 6408 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 6409 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 6410 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 6411 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 6412 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 6413 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 6414 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 6415 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 6416 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 6417 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 6418 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 6419 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 6420 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 6421 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 6422 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 6423 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 6424 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 6425 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 6426 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 6427 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 6428 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 6429 6430 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 6431 write_mhpmcounterh }, 6432 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 6433 write_mhpmcounterh }, 6434 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 6435 write_mhpmcounterh }, 6436 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 6437 write_mhpmcounterh }, 6438 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 6439 write_mhpmcounterh }, 6440 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 6441 write_mhpmcounterh }, 6442 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 6443 write_mhpmcounterh }, 6444 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 6445 write_mhpmcounterh }, 6446 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 6447 write_mhpmcounterh }, 6448 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 6449 write_mhpmcounterh }, 6450 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 6451 write_mhpmcounterh }, 6452 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 6453 write_mhpmcounterh }, 6454 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 6455 write_mhpmcounterh }, 6456 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 6457 write_mhpmcounterh }, 6458 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 6459 write_mhpmcounterh }, 6460 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 6461 write_mhpmcounterh }, 6462 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 6463 write_mhpmcounterh }, 6464 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 6465 write_mhpmcounterh }, 6466 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 6467 write_mhpmcounterh }, 6468 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 6469 write_mhpmcounterh }, 6470 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 6471 write_mhpmcounterh }, 6472 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 6473 write_mhpmcounterh }, 6474 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 6475 write_mhpmcounterh }, 6476 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 6477 write_mhpmcounterh }, 6478 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 6479 write_mhpmcounterh }, 6480 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 6481 write_mhpmcounterh }, 6482 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 6483 write_mhpmcounterh }, 6484 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 6485 write_mhpmcounterh }, 6486 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 6487 write_mhpmcounterh }, 6488 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 6489 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6490 6491 #endif /* !CONFIG_USER_ONLY */ 6492 }; 6493