1 /* 2 * RISC-V Control and Status Registers. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/timer.h" 23 #include "cpu.h" 24 #include "tcg/tcg-cpu.h" 25 #include "pmu.h" 26 #include "time_helper.h" 27 #include "exec/exec-all.h" 28 #include "exec/cputlb.h" 29 #include "exec/tb-flush.h" 30 #include "system/cpu-timers.h" 31 #include "qemu/guest-random.h" 32 #include "qapi/error.h" 33 #include <stdbool.h> 34 35 /* CSR function table public API */ 36 void riscv_get_csr_ops(int csrno, riscv_csr_operations *ops) 37 { 38 *ops = csr_ops[csrno & (CSR_TABLE_SIZE - 1)]; 39 } 40 41 void riscv_set_csr_ops(int csrno, riscv_csr_operations *ops) 42 { 43 csr_ops[csrno & (CSR_TABLE_SIZE - 1)] = *ops; 44 } 45 46 /* Predicates */ 47 #if !defined(CONFIG_USER_ONLY) 48 RISCVException smstateen_acc_ok(CPURISCVState *env, int index, uint64_t bit) 49 { 50 bool virt = env->virt_enabled; 51 52 if (env->priv == PRV_M || !riscv_cpu_cfg(env)->ext_smstateen) { 53 return RISCV_EXCP_NONE; 54 } 55 56 if (!(env->mstateen[index] & bit)) { 57 return RISCV_EXCP_ILLEGAL_INST; 58 } 59 60 if (virt) { 61 if (!(env->hstateen[index] & bit)) { 62 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 63 } 64 65 if (env->priv == PRV_U && !(env->sstateen[index] & bit)) { 66 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 67 } 68 } 69 70 if (env->priv == PRV_U && riscv_has_ext(env, RVS)) { 71 if (!(env->sstateen[index] & bit)) { 72 return RISCV_EXCP_ILLEGAL_INST; 73 } 74 } 75 76 return RISCV_EXCP_NONE; 77 } 78 #endif 79 80 static RISCVException fs(CPURISCVState *env, int csrno) 81 { 82 #if !defined(CONFIG_USER_ONLY) 83 if (!env->debugger && !riscv_cpu_fp_enabled(env) && 84 !riscv_cpu_cfg(env)->ext_zfinx) { 85 return RISCV_EXCP_ILLEGAL_INST; 86 } 87 88 if (!env->debugger && !riscv_cpu_fp_enabled(env)) { 89 return smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR); 90 } 91 #endif 92 return RISCV_EXCP_NONE; 93 } 94 95 static RISCVException vs(CPURISCVState *env, int csrno) 96 { 97 if (riscv_cpu_cfg(env)->ext_zve32x) { 98 #if !defined(CONFIG_USER_ONLY) 99 if (!env->debugger && !riscv_cpu_vector_enabled(env)) { 100 return RISCV_EXCP_ILLEGAL_INST; 101 } 102 #endif 103 return RISCV_EXCP_NONE; 104 } 105 return RISCV_EXCP_ILLEGAL_INST; 106 } 107 108 static RISCVException ctr(CPURISCVState *env, int csrno) 109 { 110 #if !defined(CONFIG_USER_ONLY) 111 RISCVCPU *cpu = env_archcpu(env); 112 int ctr_index; 113 target_ulong ctr_mask; 114 int base_csrno = CSR_CYCLE; 115 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 116 117 if (rv32 && csrno >= CSR_CYCLEH) { 118 /* Offset for RV32 hpmcounternh counters */ 119 base_csrno += 0x80; 120 } 121 ctr_index = csrno - base_csrno; 122 ctr_mask = BIT(ctr_index); 123 124 if ((csrno >= CSR_CYCLE && csrno <= CSR_INSTRET) || 125 (csrno >= CSR_CYCLEH && csrno <= CSR_INSTRETH)) { 126 if (!riscv_cpu_cfg(env)->ext_zicntr) { 127 return RISCV_EXCP_ILLEGAL_INST; 128 } 129 130 goto skip_ext_pmu_check; 131 } 132 133 if (!(cpu->pmu_avail_ctrs & ctr_mask)) { 134 /* No counter is enabled in PMU or the counter is out of range */ 135 return RISCV_EXCP_ILLEGAL_INST; 136 } 137 138 skip_ext_pmu_check: 139 140 if (env->debugger) { 141 return RISCV_EXCP_NONE; 142 } 143 144 if (env->priv < PRV_M && !get_field(env->mcounteren, ctr_mask)) { 145 return RISCV_EXCP_ILLEGAL_INST; 146 } 147 148 if (env->virt_enabled) { 149 if (!get_field(env->hcounteren, ctr_mask) || 150 (env->priv == PRV_U && !get_field(env->scounteren, ctr_mask))) { 151 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 152 } 153 } 154 155 if (riscv_has_ext(env, RVS) && env->priv == PRV_U && 156 !get_field(env->scounteren, ctr_mask)) { 157 return RISCV_EXCP_ILLEGAL_INST; 158 } 159 160 #endif 161 return RISCV_EXCP_NONE; 162 } 163 164 static RISCVException ctr32(CPURISCVState *env, int csrno) 165 { 166 if (riscv_cpu_mxl(env) != MXL_RV32) { 167 return RISCV_EXCP_ILLEGAL_INST; 168 } 169 170 return ctr(env, csrno); 171 } 172 173 static RISCVException zcmt(CPURISCVState *env, int csrno) 174 { 175 if (!riscv_cpu_cfg(env)->ext_zcmt) { 176 return RISCV_EXCP_ILLEGAL_INST; 177 } 178 179 #if !defined(CONFIG_USER_ONLY) 180 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_JVT); 181 if (ret != RISCV_EXCP_NONE) { 182 return ret; 183 } 184 #endif 185 186 return RISCV_EXCP_NONE; 187 } 188 189 static RISCVException cfi_ss(CPURISCVState *env, int csrno) 190 { 191 if (!env_archcpu(env)->cfg.ext_zicfiss) { 192 return RISCV_EXCP_ILLEGAL_INST; 193 } 194 195 /* If ext implemented, M-mode always have access to SSP CSR */ 196 if (env->priv == PRV_M) { 197 return RISCV_EXCP_NONE; 198 } 199 200 /* if bcfi not active for current env, access to csr is illegal */ 201 if (!cpu_get_bcfien(env)) { 202 #if !defined(CONFIG_USER_ONLY) 203 if (env->debugger) { 204 return RISCV_EXCP_NONE; 205 } 206 #endif 207 return RISCV_EXCP_ILLEGAL_INST; 208 } 209 210 return RISCV_EXCP_NONE; 211 } 212 213 #if !defined(CONFIG_USER_ONLY) 214 static RISCVException mctr(CPURISCVState *env, int csrno) 215 { 216 RISCVCPU *cpu = env_archcpu(env); 217 uint32_t pmu_avail_ctrs = cpu->pmu_avail_ctrs; 218 int ctr_index; 219 int base_csrno = CSR_MHPMCOUNTER3; 220 221 if ((riscv_cpu_mxl(env) == MXL_RV32) && csrno >= CSR_MCYCLEH) { 222 /* Offset for RV32 mhpmcounternh counters */ 223 csrno -= 0x80; 224 } 225 226 g_assert(csrno >= CSR_MHPMCOUNTER3 && csrno <= CSR_MHPMCOUNTER31); 227 228 ctr_index = csrno - base_csrno; 229 if ((BIT(ctr_index) & pmu_avail_ctrs >> 3) == 0) { 230 /* The PMU is not enabled or counter is out of range */ 231 return RISCV_EXCP_ILLEGAL_INST; 232 } 233 234 return RISCV_EXCP_NONE; 235 } 236 237 static RISCVException mctr32(CPURISCVState *env, int csrno) 238 { 239 if (riscv_cpu_mxl(env) != MXL_RV32) { 240 return RISCV_EXCP_ILLEGAL_INST; 241 } 242 243 return mctr(env, csrno); 244 } 245 246 static RISCVException sscofpmf(CPURISCVState *env, int csrno) 247 { 248 if (!riscv_cpu_cfg(env)->ext_sscofpmf) { 249 return RISCV_EXCP_ILLEGAL_INST; 250 } 251 252 return RISCV_EXCP_NONE; 253 } 254 255 static RISCVException sscofpmf_32(CPURISCVState *env, int csrno) 256 { 257 if (riscv_cpu_mxl(env) != MXL_RV32) { 258 return RISCV_EXCP_ILLEGAL_INST; 259 } 260 261 return sscofpmf(env, csrno); 262 } 263 264 static RISCVException smcntrpmf(CPURISCVState *env, int csrno) 265 { 266 if (!riscv_cpu_cfg(env)->ext_smcntrpmf) { 267 return RISCV_EXCP_ILLEGAL_INST; 268 } 269 270 return RISCV_EXCP_NONE; 271 } 272 273 static RISCVException smcntrpmf_32(CPURISCVState *env, int csrno) 274 { 275 if (riscv_cpu_mxl(env) != MXL_RV32) { 276 return RISCV_EXCP_ILLEGAL_INST; 277 } 278 279 return smcntrpmf(env, csrno); 280 } 281 282 static RISCVException any(CPURISCVState *env, int csrno) 283 { 284 return RISCV_EXCP_NONE; 285 } 286 287 static RISCVException any32(CPURISCVState *env, int csrno) 288 { 289 if (riscv_cpu_mxl(env) != MXL_RV32) { 290 return RISCV_EXCP_ILLEGAL_INST; 291 } 292 293 return any(env, csrno); 294 295 } 296 297 static RISCVException aia_any(CPURISCVState *env, int csrno) 298 { 299 if (!riscv_cpu_cfg(env)->ext_smaia) { 300 return RISCV_EXCP_ILLEGAL_INST; 301 } 302 303 return any(env, csrno); 304 } 305 306 static RISCVException aia_any32(CPURISCVState *env, int csrno) 307 { 308 if (!riscv_cpu_cfg(env)->ext_smaia) { 309 return RISCV_EXCP_ILLEGAL_INST; 310 } 311 312 return any32(env, csrno); 313 } 314 315 static RISCVException csrind_any(CPURISCVState *env, int csrno) 316 { 317 if (!riscv_cpu_cfg(env)->ext_smcsrind) { 318 return RISCV_EXCP_ILLEGAL_INST; 319 } 320 321 return RISCV_EXCP_NONE; 322 } 323 324 static RISCVException csrind_or_aia_any(CPURISCVState *env, int csrno) 325 { 326 if (!riscv_cpu_cfg(env)->ext_smaia && !riscv_cpu_cfg(env)->ext_smcsrind) { 327 return RISCV_EXCP_ILLEGAL_INST; 328 } 329 330 return any(env, csrno); 331 } 332 333 static RISCVException smode(CPURISCVState *env, int csrno) 334 { 335 if (riscv_has_ext(env, RVS)) { 336 return RISCV_EXCP_NONE; 337 } 338 339 return RISCV_EXCP_ILLEGAL_INST; 340 } 341 342 static RISCVException smode32(CPURISCVState *env, int csrno) 343 { 344 if (riscv_cpu_mxl(env) != MXL_RV32) { 345 return RISCV_EXCP_ILLEGAL_INST; 346 } 347 348 return smode(env, csrno); 349 } 350 351 static RISCVException aia_smode(CPURISCVState *env, int csrno) 352 { 353 int ret; 354 355 if (!riscv_cpu_cfg(env)->ext_ssaia) { 356 return RISCV_EXCP_ILLEGAL_INST; 357 } 358 359 if (csrno == CSR_STOPEI) { 360 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_IMSIC); 361 } else { 362 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 363 } 364 365 if (ret != RISCV_EXCP_NONE) { 366 return ret; 367 } 368 369 return smode(env, csrno); 370 } 371 372 static RISCVException aia_smode32(CPURISCVState *env, int csrno) 373 { 374 int ret; 375 376 if (!riscv_cpu_cfg(env)->ext_ssaia) { 377 return RISCV_EXCP_ILLEGAL_INST; 378 } 379 380 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 381 if (ret != RISCV_EXCP_NONE) { 382 return ret; 383 } 384 385 return smode32(env, csrno); 386 } 387 388 static RISCVException scountinhibit_pred(CPURISCVState *env, int csrno) 389 { 390 RISCVCPU *cpu = env_archcpu(env); 391 392 if (!cpu->cfg.ext_ssccfg || !cpu->cfg.ext_smcdeleg) { 393 return RISCV_EXCP_ILLEGAL_INST; 394 } 395 396 if (env->virt_enabled) { 397 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 398 } 399 400 return smode(env, csrno); 401 } 402 403 static bool csrind_extensions_present(CPURISCVState *env) 404 { 405 return riscv_cpu_cfg(env)->ext_smcsrind || riscv_cpu_cfg(env)->ext_sscsrind; 406 } 407 408 static bool aia_extensions_present(CPURISCVState *env) 409 { 410 return riscv_cpu_cfg(env)->ext_smaia || riscv_cpu_cfg(env)->ext_ssaia; 411 } 412 413 static bool csrind_or_aia_extensions_present(CPURISCVState *env) 414 { 415 return csrind_extensions_present(env) || aia_extensions_present(env); 416 } 417 418 static RISCVException csrind_smode(CPURISCVState *env, int csrno) 419 { 420 if (!csrind_extensions_present(env)) { 421 return RISCV_EXCP_ILLEGAL_INST; 422 } 423 424 return smode(env, csrno); 425 } 426 427 static RISCVException csrind_or_aia_smode(CPURISCVState *env, int csrno) 428 { 429 if (!csrind_or_aia_extensions_present(env)) { 430 return RISCV_EXCP_ILLEGAL_INST; 431 } 432 433 return smode(env, csrno); 434 } 435 436 static RISCVException hmode(CPURISCVState *env, int csrno) 437 { 438 if (riscv_has_ext(env, RVH)) { 439 return RISCV_EXCP_NONE; 440 } 441 442 return RISCV_EXCP_ILLEGAL_INST; 443 } 444 445 static RISCVException hmode32(CPURISCVState *env, int csrno) 446 { 447 if (riscv_cpu_mxl(env) != MXL_RV32) { 448 return RISCV_EXCP_ILLEGAL_INST; 449 } 450 451 return hmode(env, csrno); 452 453 } 454 455 static RISCVException csrind_hmode(CPURISCVState *env, int csrno) 456 { 457 if (!csrind_extensions_present(env)) { 458 return RISCV_EXCP_ILLEGAL_INST; 459 } 460 461 return hmode(env, csrno); 462 } 463 464 static RISCVException csrind_or_aia_hmode(CPURISCVState *env, int csrno) 465 { 466 if (!csrind_or_aia_extensions_present(env)) { 467 return RISCV_EXCP_ILLEGAL_INST; 468 } 469 470 return hmode(env, csrno); 471 } 472 473 static RISCVException umode(CPURISCVState *env, int csrno) 474 { 475 if (riscv_has_ext(env, RVU)) { 476 return RISCV_EXCP_NONE; 477 } 478 479 return RISCV_EXCP_ILLEGAL_INST; 480 } 481 482 static RISCVException umode32(CPURISCVState *env, int csrno) 483 { 484 if (riscv_cpu_mxl(env) != MXL_RV32) { 485 return RISCV_EXCP_ILLEGAL_INST; 486 } 487 488 return umode(env, csrno); 489 } 490 491 static RISCVException mstateen(CPURISCVState *env, int csrno) 492 { 493 if (!riscv_cpu_cfg(env)->ext_smstateen) { 494 return RISCV_EXCP_ILLEGAL_INST; 495 } 496 497 return any(env, csrno); 498 } 499 500 static RISCVException hstateen_pred(CPURISCVState *env, int csrno, int base) 501 { 502 if (!riscv_cpu_cfg(env)->ext_smstateen) { 503 return RISCV_EXCP_ILLEGAL_INST; 504 } 505 506 RISCVException ret = hmode(env, csrno); 507 if (ret != RISCV_EXCP_NONE) { 508 return ret; 509 } 510 511 if (env->debugger) { 512 return RISCV_EXCP_NONE; 513 } 514 515 if (env->priv < PRV_M) { 516 if (!(env->mstateen[csrno - base] & SMSTATEEN_STATEEN)) { 517 return RISCV_EXCP_ILLEGAL_INST; 518 } 519 } 520 521 return RISCV_EXCP_NONE; 522 } 523 524 static RISCVException hstateen(CPURISCVState *env, int csrno) 525 { 526 return hstateen_pred(env, csrno, CSR_HSTATEEN0); 527 } 528 529 static RISCVException hstateenh(CPURISCVState *env, int csrno) 530 { 531 return hstateen_pred(env, csrno, CSR_HSTATEEN0H); 532 } 533 534 static RISCVException sstateen(CPURISCVState *env, int csrno) 535 { 536 bool virt = env->virt_enabled; 537 int index = csrno - CSR_SSTATEEN0; 538 539 if (!riscv_cpu_cfg(env)->ext_smstateen) { 540 return RISCV_EXCP_ILLEGAL_INST; 541 } 542 543 RISCVException ret = smode(env, csrno); 544 if (ret != RISCV_EXCP_NONE) { 545 return ret; 546 } 547 548 if (env->debugger) { 549 return RISCV_EXCP_NONE; 550 } 551 552 if (env->priv < PRV_M) { 553 if (!(env->mstateen[index] & SMSTATEEN_STATEEN)) { 554 return RISCV_EXCP_ILLEGAL_INST; 555 } 556 557 if (virt) { 558 if (!(env->hstateen[index] & SMSTATEEN_STATEEN)) { 559 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 560 } 561 } 562 } 563 564 return RISCV_EXCP_NONE; 565 } 566 567 static RISCVException sstc(CPURISCVState *env, int csrno) 568 { 569 bool hmode_check = false; 570 571 if (!riscv_cpu_cfg(env)->ext_sstc || !env->rdtime_fn) { 572 return RISCV_EXCP_ILLEGAL_INST; 573 } 574 575 if ((csrno == CSR_VSTIMECMP) || (csrno == CSR_VSTIMECMPH)) { 576 hmode_check = true; 577 } 578 579 RISCVException ret = hmode_check ? hmode(env, csrno) : smode(env, csrno); 580 if (ret != RISCV_EXCP_NONE) { 581 return ret; 582 } 583 584 if (env->debugger) { 585 return RISCV_EXCP_NONE; 586 } 587 588 if (env->priv == PRV_M) { 589 return RISCV_EXCP_NONE; 590 } 591 592 /* 593 * No need of separate function for rv32 as menvcfg stores both menvcfg 594 * menvcfgh for RV32. 595 */ 596 if (!(get_field(env->mcounteren, COUNTEREN_TM) && 597 get_field(env->menvcfg, MENVCFG_STCE))) { 598 return RISCV_EXCP_ILLEGAL_INST; 599 } 600 601 if (env->virt_enabled) { 602 if (!(get_field(env->hcounteren, COUNTEREN_TM) && 603 get_field(env->henvcfg, HENVCFG_STCE))) { 604 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 605 } 606 } 607 608 return RISCV_EXCP_NONE; 609 } 610 611 static RISCVException sstc_32(CPURISCVState *env, int csrno) 612 { 613 if (riscv_cpu_mxl(env) != MXL_RV32) { 614 return RISCV_EXCP_ILLEGAL_INST; 615 } 616 617 return sstc(env, csrno); 618 } 619 620 static RISCVException satp(CPURISCVState *env, int csrno) 621 { 622 if (env->priv == PRV_S && !env->virt_enabled && 623 get_field(env->mstatus, MSTATUS_TVM)) { 624 return RISCV_EXCP_ILLEGAL_INST; 625 } 626 if (env->priv == PRV_S && env->virt_enabled && 627 get_field(env->hstatus, HSTATUS_VTVM)) { 628 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 629 } 630 631 return smode(env, csrno); 632 } 633 634 static RISCVException hgatp(CPURISCVState *env, int csrno) 635 { 636 if (env->priv == PRV_S && !env->virt_enabled && 637 get_field(env->mstatus, MSTATUS_TVM)) { 638 return RISCV_EXCP_ILLEGAL_INST; 639 } 640 641 return hmode(env, csrno); 642 } 643 644 /* 645 * M-mode: 646 * Without ext_smctr raise illegal inst excep. 647 * Otherwise everything is accessible to m-mode. 648 * 649 * S-mode: 650 * Without ext_ssctr or mstateen.ctr raise illegal inst excep. 651 * Otherwise everything other than mctrctl is accessible. 652 * 653 * VS-mode: 654 * Without ext_ssctr or mstateen.ctr raise illegal inst excep. 655 * Without hstateen.ctr raise virtual illegal inst excep. 656 * Otherwise allow sctrctl (vsctrctl), sctrstatus, 0x200-0x2ff entry range. 657 * Always raise illegal instruction exception for sctrdepth. 658 */ 659 static RISCVException ctr_mmode(CPURISCVState *env, int csrno) 660 { 661 /* Check if smctr-ext is present */ 662 if (riscv_cpu_cfg(env)->ext_smctr) { 663 return RISCV_EXCP_NONE; 664 } 665 666 return RISCV_EXCP_ILLEGAL_INST; 667 } 668 669 static RISCVException ctr_smode(CPURISCVState *env, int csrno) 670 { 671 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 672 673 if (!cfg->ext_smctr && !cfg->ext_ssctr) { 674 return RISCV_EXCP_ILLEGAL_INST; 675 } 676 677 RISCVException ret = smstateen_acc_ok(env, 0, SMSTATEEN0_CTR); 678 if (ret == RISCV_EXCP_NONE && csrno == CSR_SCTRDEPTH && 679 env->virt_enabled) { 680 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 681 } 682 683 return ret; 684 } 685 686 static RISCVException aia_hmode(CPURISCVState *env, int csrno) 687 { 688 int ret; 689 690 if (!riscv_cpu_cfg(env)->ext_ssaia) { 691 return RISCV_EXCP_ILLEGAL_INST; 692 } 693 694 if (csrno == CSR_VSTOPEI) { 695 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_IMSIC); 696 } else { 697 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 698 } 699 700 if (ret != RISCV_EXCP_NONE) { 701 return ret; 702 } 703 704 return hmode(env, csrno); 705 } 706 707 static RISCVException aia_hmode32(CPURISCVState *env, int csrno) 708 { 709 int ret; 710 711 if (!riscv_cpu_cfg(env)->ext_ssaia) { 712 return RISCV_EXCP_ILLEGAL_INST; 713 } 714 715 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_AIA); 716 if (ret != RISCV_EXCP_NONE) { 717 return ret; 718 } 719 720 if (!riscv_cpu_cfg(env)->ext_ssaia) { 721 return RISCV_EXCP_ILLEGAL_INST; 722 } 723 724 return hmode32(env, csrno); 725 } 726 727 static RISCVException dbltrp_hmode(CPURISCVState *env, int csrno) 728 { 729 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 730 return RISCV_EXCP_NONE; 731 } 732 733 return hmode(env, csrno); 734 } 735 736 static RISCVException pmp(CPURISCVState *env, int csrno) 737 { 738 if (riscv_cpu_cfg(env)->pmp) { 739 if (csrno <= CSR_PMPCFG3) { 740 uint32_t reg_index = csrno - CSR_PMPCFG0; 741 742 /* TODO: RV128 restriction check */ 743 if ((reg_index & 1) && (riscv_cpu_mxl(env) == MXL_RV64)) { 744 return RISCV_EXCP_ILLEGAL_INST; 745 } 746 } 747 748 return RISCV_EXCP_NONE; 749 } 750 751 return RISCV_EXCP_ILLEGAL_INST; 752 } 753 754 static RISCVException have_mseccfg(CPURISCVState *env, int csrno) 755 { 756 if (riscv_cpu_cfg(env)->ext_smepmp) { 757 return RISCV_EXCP_NONE; 758 } 759 if (riscv_cpu_cfg(env)->ext_zkr) { 760 return RISCV_EXCP_NONE; 761 } 762 if (riscv_cpu_cfg(env)->ext_smmpm) { 763 return RISCV_EXCP_NONE; 764 } 765 766 return RISCV_EXCP_ILLEGAL_INST; 767 } 768 769 static RISCVException debug(CPURISCVState *env, int csrno) 770 { 771 if (riscv_cpu_cfg(env)->debug) { 772 return RISCV_EXCP_NONE; 773 } 774 775 return RISCV_EXCP_ILLEGAL_INST; 776 } 777 778 static RISCVException rnmi(CPURISCVState *env, int csrno) 779 { 780 RISCVCPU *cpu = env_archcpu(env); 781 782 if (cpu->cfg.ext_smrnmi) { 783 return RISCV_EXCP_NONE; 784 } 785 786 return RISCV_EXCP_ILLEGAL_INST; 787 } 788 #endif 789 790 static RISCVException seed(CPURISCVState *env, int csrno) 791 { 792 if (!riscv_cpu_cfg(env)->ext_zkr) { 793 return RISCV_EXCP_ILLEGAL_INST; 794 } 795 796 #if !defined(CONFIG_USER_ONLY) 797 if (env->debugger) { 798 return RISCV_EXCP_NONE; 799 } 800 801 /* 802 * With a CSR read-write instruction: 803 * 1) The seed CSR is always available in machine mode as normal. 804 * 2) Attempted access to seed from virtual modes VS and VU always raises 805 * an exception(virtual instruction exception only if mseccfg.sseed=1). 806 * 3) Without the corresponding access control bit set to 1, any attempted 807 * access to seed from U, S or HS modes will raise an illegal instruction 808 * exception. 809 */ 810 if (env->priv == PRV_M) { 811 return RISCV_EXCP_NONE; 812 } else if (env->virt_enabled) { 813 if (env->mseccfg & MSECCFG_SSEED) { 814 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 815 } else { 816 return RISCV_EXCP_ILLEGAL_INST; 817 } 818 } else { 819 if (env->priv == PRV_S && (env->mseccfg & MSECCFG_SSEED)) { 820 return RISCV_EXCP_NONE; 821 } else if (env->priv == PRV_U && (env->mseccfg & MSECCFG_USEED)) { 822 return RISCV_EXCP_NONE; 823 } else { 824 return RISCV_EXCP_ILLEGAL_INST; 825 } 826 } 827 #else 828 return RISCV_EXCP_NONE; 829 #endif 830 } 831 832 /* zicfiss CSR_SSP read and write */ 833 static int read_ssp(CPURISCVState *env, int csrno, target_ulong *val) 834 { 835 *val = env->ssp; 836 return RISCV_EXCP_NONE; 837 } 838 839 static int write_ssp(CPURISCVState *env, int csrno, target_ulong val) 840 { 841 env->ssp = val; 842 return RISCV_EXCP_NONE; 843 } 844 845 /* User Floating-Point CSRs */ 846 static RISCVException read_fflags(CPURISCVState *env, int csrno, 847 target_ulong *val) 848 { 849 *val = riscv_cpu_get_fflags(env); 850 return RISCV_EXCP_NONE; 851 } 852 853 static RISCVException write_fflags(CPURISCVState *env, int csrno, 854 target_ulong val) 855 { 856 #if !defined(CONFIG_USER_ONLY) 857 if (riscv_has_ext(env, RVF)) { 858 env->mstatus |= MSTATUS_FS; 859 } 860 #endif 861 riscv_cpu_set_fflags(env, val & (FSR_AEXC >> FSR_AEXC_SHIFT)); 862 return RISCV_EXCP_NONE; 863 } 864 865 static RISCVException read_frm(CPURISCVState *env, int csrno, 866 target_ulong *val) 867 { 868 *val = env->frm; 869 return RISCV_EXCP_NONE; 870 } 871 872 static RISCVException write_frm(CPURISCVState *env, int csrno, 873 target_ulong val) 874 { 875 #if !defined(CONFIG_USER_ONLY) 876 if (riscv_has_ext(env, RVF)) { 877 env->mstatus |= MSTATUS_FS; 878 } 879 #endif 880 env->frm = val & (FSR_RD >> FSR_RD_SHIFT); 881 return RISCV_EXCP_NONE; 882 } 883 884 static RISCVException read_fcsr(CPURISCVState *env, int csrno, 885 target_ulong *val) 886 { 887 *val = (riscv_cpu_get_fflags(env) << FSR_AEXC_SHIFT) 888 | (env->frm << FSR_RD_SHIFT); 889 return RISCV_EXCP_NONE; 890 } 891 892 static RISCVException write_fcsr(CPURISCVState *env, int csrno, 893 target_ulong val) 894 { 895 #if !defined(CONFIG_USER_ONLY) 896 if (riscv_has_ext(env, RVF)) { 897 env->mstatus |= MSTATUS_FS; 898 } 899 #endif 900 env->frm = (val & FSR_RD) >> FSR_RD_SHIFT; 901 riscv_cpu_set_fflags(env, (val & FSR_AEXC) >> FSR_AEXC_SHIFT); 902 return RISCV_EXCP_NONE; 903 } 904 905 static RISCVException read_vtype(CPURISCVState *env, int csrno, 906 target_ulong *val) 907 { 908 uint64_t vill; 909 switch (env->xl) { 910 case MXL_RV32: 911 vill = (uint32_t)env->vill << 31; 912 break; 913 case MXL_RV64: 914 vill = (uint64_t)env->vill << 63; 915 break; 916 default: 917 g_assert_not_reached(); 918 } 919 *val = (target_ulong)vill | env->vtype; 920 return RISCV_EXCP_NONE; 921 } 922 923 static RISCVException read_vl(CPURISCVState *env, int csrno, 924 target_ulong *val) 925 { 926 *val = env->vl; 927 return RISCV_EXCP_NONE; 928 } 929 930 static RISCVException read_vlenb(CPURISCVState *env, int csrno, 931 target_ulong *val) 932 { 933 *val = riscv_cpu_cfg(env)->vlenb; 934 return RISCV_EXCP_NONE; 935 } 936 937 static RISCVException read_vxrm(CPURISCVState *env, int csrno, 938 target_ulong *val) 939 { 940 *val = env->vxrm; 941 return RISCV_EXCP_NONE; 942 } 943 944 static RISCVException write_vxrm(CPURISCVState *env, int csrno, 945 target_ulong val) 946 { 947 #if !defined(CONFIG_USER_ONLY) 948 env->mstatus |= MSTATUS_VS; 949 #endif 950 env->vxrm = val; 951 return RISCV_EXCP_NONE; 952 } 953 954 static RISCVException read_vxsat(CPURISCVState *env, int csrno, 955 target_ulong *val) 956 { 957 *val = env->vxsat & BIT(0); 958 return RISCV_EXCP_NONE; 959 } 960 961 static RISCVException write_vxsat(CPURISCVState *env, int csrno, 962 target_ulong val) 963 { 964 #if !defined(CONFIG_USER_ONLY) 965 env->mstatus |= MSTATUS_VS; 966 #endif 967 env->vxsat = val & BIT(0); 968 return RISCV_EXCP_NONE; 969 } 970 971 static RISCVException read_vstart(CPURISCVState *env, int csrno, 972 target_ulong *val) 973 { 974 *val = env->vstart; 975 return RISCV_EXCP_NONE; 976 } 977 978 static RISCVException write_vstart(CPURISCVState *env, int csrno, 979 target_ulong val) 980 { 981 #if !defined(CONFIG_USER_ONLY) 982 env->mstatus |= MSTATUS_VS; 983 #endif 984 /* 985 * The vstart CSR is defined to have only enough writable bits 986 * to hold the largest element index, i.e. lg2(VLEN) bits. 987 */ 988 env->vstart = val & ~(~0ULL << ctzl(riscv_cpu_cfg(env)->vlenb << 3)); 989 return RISCV_EXCP_NONE; 990 } 991 992 static RISCVException read_vcsr(CPURISCVState *env, int csrno, 993 target_ulong *val) 994 { 995 *val = (env->vxrm << VCSR_VXRM_SHIFT) | (env->vxsat << VCSR_VXSAT_SHIFT); 996 return RISCV_EXCP_NONE; 997 } 998 999 static RISCVException write_vcsr(CPURISCVState *env, int csrno, 1000 target_ulong val) 1001 { 1002 #if !defined(CONFIG_USER_ONLY) 1003 env->mstatus |= MSTATUS_VS; 1004 #endif 1005 env->vxrm = (val & VCSR_VXRM) >> VCSR_VXRM_SHIFT; 1006 env->vxsat = (val & VCSR_VXSAT) >> VCSR_VXSAT_SHIFT; 1007 return RISCV_EXCP_NONE; 1008 } 1009 1010 #if defined(CONFIG_USER_ONLY) 1011 /* User Timers and Counters */ 1012 static target_ulong get_ticks(bool shift) 1013 { 1014 int64_t val = cpu_get_host_ticks(); 1015 target_ulong result = shift ? val >> 32 : val; 1016 1017 return result; 1018 } 1019 1020 static RISCVException read_time(CPURISCVState *env, int csrno, 1021 target_ulong *val) 1022 { 1023 *val = cpu_get_host_ticks(); 1024 return RISCV_EXCP_NONE; 1025 } 1026 1027 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1028 target_ulong *val) 1029 { 1030 *val = cpu_get_host_ticks() >> 32; 1031 return RISCV_EXCP_NONE; 1032 } 1033 1034 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1035 target_ulong *val) 1036 { 1037 *val = get_ticks(false); 1038 return RISCV_EXCP_NONE; 1039 } 1040 1041 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1042 target_ulong *val) 1043 { 1044 *val = get_ticks(true); 1045 return RISCV_EXCP_NONE; 1046 } 1047 1048 #else /* CONFIG_USER_ONLY */ 1049 1050 static RISCVException read_mcyclecfg(CPURISCVState *env, int csrno, 1051 target_ulong *val) 1052 { 1053 *val = env->mcyclecfg; 1054 return RISCV_EXCP_NONE; 1055 } 1056 1057 static RISCVException write_mcyclecfg(CPURISCVState *env, int csrno, 1058 target_ulong val) 1059 { 1060 uint64_t inh_avail_mask; 1061 1062 if (riscv_cpu_mxl(env) == MXL_RV32) { 1063 env->mcyclecfg = val; 1064 } else { 1065 /* Set xINH fields if priv mode supported */ 1066 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MCYCLECFG_BIT_MINH; 1067 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFG_BIT_UINH : 0; 1068 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFG_BIT_SINH : 0; 1069 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1070 riscv_has_ext(env, RVU)) ? MCYCLECFG_BIT_VUINH : 0; 1071 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1072 riscv_has_ext(env, RVS)) ? MCYCLECFG_BIT_VSINH : 0; 1073 env->mcyclecfg = val & inh_avail_mask; 1074 } 1075 1076 return RISCV_EXCP_NONE; 1077 } 1078 1079 static RISCVException read_mcyclecfgh(CPURISCVState *env, int csrno, 1080 target_ulong *val) 1081 { 1082 *val = env->mcyclecfgh; 1083 return RISCV_EXCP_NONE; 1084 } 1085 1086 static RISCVException write_mcyclecfgh(CPURISCVState *env, int csrno, 1087 target_ulong val) 1088 { 1089 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1090 MCYCLECFGH_BIT_MINH); 1091 1092 /* Set xINH fields if priv mode supported */ 1093 inh_avail_mask |= riscv_has_ext(env, RVU) ? MCYCLECFGH_BIT_UINH : 0; 1094 inh_avail_mask |= riscv_has_ext(env, RVS) ? MCYCLECFGH_BIT_SINH : 0; 1095 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1096 riscv_has_ext(env, RVU)) ? MCYCLECFGH_BIT_VUINH : 0; 1097 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1098 riscv_has_ext(env, RVS)) ? MCYCLECFGH_BIT_VSINH : 0; 1099 1100 env->mcyclecfgh = val & inh_avail_mask; 1101 return RISCV_EXCP_NONE; 1102 } 1103 1104 static RISCVException read_minstretcfg(CPURISCVState *env, int csrno, 1105 target_ulong *val) 1106 { 1107 *val = env->minstretcfg; 1108 return RISCV_EXCP_NONE; 1109 } 1110 1111 static RISCVException write_minstretcfg(CPURISCVState *env, int csrno, 1112 target_ulong val) 1113 { 1114 uint64_t inh_avail_mask; 1115 1116 if (riscv_cpu_mxl(env) == MXL_RV32) { 1117 env->minstretcfg = val; 1118 } else { 1119 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MINSTRETCFG_BIT_MINH; 1120 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFG_BIT_UINH : 0; 1121 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFG_BIT_SINH : 0; 1122 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1123 riscv_has_ext(env, RVU)) ? MINSTRETCFG_BIT_VUINH : 0; 1124 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1125 riscv_has_ext(env, RVS)) ? MINSTRETCFG_BIT_VSINH : 0; 1126 env->minstretcfg = val & inh_avail_mask; 1127 } 1128 return RISCV_EXCP_NONE; 1129 } 1130 1131 static RISCVException read_minstretcfgh(CPURISCVState *env, int csrno, 1132 target_ulong *val) 1133 { 1134 *val = env->minstretcfgh; 1135 return RISCV_EXCP_NONE; 1136 } 1137 1138 static RISCVException write_minstretcfgh(CPURISCVState *env, int csrno, 1139 target_ulong val) 1140 { 1141 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1142 MINSTRETCFGH_BIT_MINH); 1143 1144 inh_avail_mask |= riscv_has_ext(env, RVU) ? MINSTRETCFGH_BIT_UINH : 0; 1145 inh_avail_mask |= riscv_has_ext(env, RVS) ? MINSTRETCFGH_BIT_SINH : 0; 1146 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1147 riscv_has_ext(env, RVU)) ? MINSTRETCFGH_BIT_VUINH : 0; 1148 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1149 riscv_has_ext(env, RVS)) ? MINSTRETCFGH_BIT_VSINH : 0; 1150 1151 env->minstretcfgh = val & inh_avail_mask; 1152 return RISCV_EXCP_NONE; 1153 } 1154 1155 static RISCVException read_mhpmevent(CPURISCVState *env, int csrno, 1156 target_ulong *val) 1157 { 1158 int evt_index = csrno - CSR_MCOUNTINHIBIT; 1159 1160 *val = env->mhpmevent_val[evt_index]; 1161 1162 return RISCV_EXCP_NONE; 1163 } 1164 1165 static RISCVException write_mhpmevent(CPURISCVState *env, int csrno, 1166 target_ulong val) 1167 { 1168 int evt_index = csrno - CSR_MCOUNTINHIBIT; 1169 uint64_t mhpmevt_val = val; 1170 uint64_t inh_avail_mask; 1171 1172 if (riscv_cpu_mxl(env) == MXL_RV32) { 1173 env->mhpmevent_val[evt_index] = val; 1174 mhpmevt_val = mhpmevt_val | 1175 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 1176 } else { 1177 inh_avail_mask = ~MHPMEVENT_FILTER_MASK | MHPMEVENT_BIT_MINH; 1178 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENT_BIT_UINH : 0; 1179 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENT_BIT_SINH : 0; 1180 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1181 riscv_has_ext(env, RVU)) ? MHPMEVENT_BIT_VUINH : 0; 1182 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1183 riscv_has_ext(env, RVS)) ? MHPMEVENT_BIT_VSINH : 0; 1184 mhpmevt_val = val & inh_avail_mask; 1185 env->mhpmevent_val[evt_index] = mhpmevt_val; 1186 } 1187 1188 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1189 1190 return RISCV_EXCP_NONE; 1191 } 1192 1193 static RISCVException read_mhpmeventh(CPURISCVState *env, int csrno, 1194 target_ulong *val) 1195 { 1196 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 1197 1198 *val = env->mhpmeventh_val[evt_index]; 1199 1200 return RISCV_EXCP_NONE; 1201 } 1202 1203 static RISCVException write_mhpmeventh(CPURISCVState *env, int csrno, 1204 target_ulong val) 1205 { 1206 int evt_index = csrno - CSR_MHPMEVENT3H + 3; 1207 uint64_t mhpmevth_val; 1208 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 1209 target_ulong inh_avail_mask = (target_ulong)(~MHPMEVENTH_FILTER_MASK | 1210 MHPMEVENTH_BIT_MINH); 1211 1212 inh_avail_mask |= riscv_has_ext(env, RVU) ? MHPMEVENTH_BIT_UINH : 0; 1213 inh_avail_mask |= riscv_has_ext(env, RVS) ? MHPMEVENTH_BIT_SINH : 0; 1214 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1215 riscv_has_ext(env, RVU)) ? MHPMEVENTH_BIT_VUINH : 0; 1216 inh_avail_mask |= (riscv_has_ext(env, RVH) && 1217 riscv_has_ext(env, RVS)) ? MHPMEVENTH_BIT_VSINH : 0; 1218 1219 mhpmevth_val = val & inh_avail_mask; 1220 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1221 env->mhpmeventh_val[evt_index] = mhpmevth_val; 1222 1223 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1224 1225 return RISCV_EXCP_NONE; 1226 } 1227 1228 static target_ulong riscv_pmu_ctr_get_fixed_counters_val(CPURISCVState *env, 1229 int counter_idx, 1230 bool upper_half) 1231 { 1232 int inst = riscv_pmu_ctr_monitor_instructions(env, counter_idx); 1233 uint64_t *counter_arr_virt = env->pmu_fixed_ctrs[inst].counter_virt; 1234 uint64_t *counter_arr = env->pmu_fixed_ctrs[inst].counter; 1235 target_ulong result = 0; 1236 uint64_t curr_val = 0; 1237 uint64_t cfg_val = 0; 1238 1239 if (counter_idx == 0) { 1240 cfg_val = upper_half ? ((uint64_t)env->mcyclecfgh << 32) : 1241 env->mcyclecfg; 1242 } else if (counter_idx == 2) { 1243 cfg_val = upper_half ? ((uint64_t)env->minstretcfgh << 32) : 1244 env->minstretcfg; 1245 } else { 1246 cfg_val = upper_half ? 1247 ((uint64_t)env->mhpmeventh_val[counter_idx] << 32) : 1248 env->mhpmevent_val[counter_idx]; 1249 cfg_val &= MHPMEVENT_FILTER_MASK; 1250 } 1251 1252 if (!cfg_val) { 1253 if (icount_enabled()) { 1254 curr_val = inst ? icount_get_raw() : icount_get(); 1255 } else { 1256 curr_val = cpu_get_host_ticks(); 1257 } 1258 1259 goto done; 1260 } 1261 1262 /* Update counter before reading. */ 1263 riscv_pmu_update_fixed_ctrs(env, env->priv, env->virt_enabled); 1264 1265 if (!(cfg_val & MCYCLECFG_BIT_MINH)) { 1266 curr_val += counter_arr[PRV_M]; 1267 } 1268 1269 if (!(cfg_val & MCYCLECFG_BIT_SINH)) { 1270 curr_val += counter_arr[PRV_S]; 1271 } 1272 1273 if (!(cfg_val & MCYCLECFG_BIT_UINH)) { 1274 curr_val += counter_arr[PRV_U]; 1275 } 1276 1277 if (!(cfg_val & MCYCLECFG_BIT_VSINH)) { 1278 curr_val += counter_arr_virt[PRV_S]; 1279 } 1280 1281 if (!(cfg_val & MCYCLECFG_BIT_VUINH)) { 1282 curr_val += counter_arr_virt[PRV_U]; 1283 } 1284 1285 done: 1286 if (riscv_cpu_mxl(env) == MXL_RV32) { 1287 result = upper_half ? curr_val >> 32 : curr_val; 1288 } else { 1289 result = curr_val; 1290 } 1291 1292 return result; 1293 } 1294 1295 static RISCVException riscv_pmu_write_ctr(CPURISCVState *env, target_ulong val, 1296 uint32_t ctr_idx) 1297 { 1298 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1299 uint64_t mhpmctr_val = val; 1300 1301 counter->mhpmcounter_val = val; 1302 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1303 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1304 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1305 counter->mhpmcounter_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1306 ctr_idx, false); 1307 if (ctr_idx > 2) { 1308 if (riscv_cpu_mxl(env) == MXL_RV32) { 1309 mhpmctr_val = mhpmctr_val | 1310 ((uint64_t)counter->mhpmcounterh_val << 32); 1311 } 1312 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1313 } 1314 } else { 1315 /* Other counters can keep incrementing from the given value */ 1316 counter->mhpmcounter_prev = val; 1317 } 1318 1319 return RISCV_EXCP_NONE; 1320 } 1321 1322 static RISCVException riscv_pmu_write_ctrh(CPURISCVState *env, target_ulong val, 1323 uint32_t ctr_idx) 1324 { 1325 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1326 uint64_t mhpmctr_val = counter->mhpmcounter_val; 1327 uint64_t mhpmctrh_val = val; 1328 1329 counter->mhpmcounterh_val = val; 1330 mhpmctr_val = mhpmctr_val | (mhpmctrh_val << 32); 1331 if (!get_field(env->mcountinhibit, BIT(ctr_idx)) && 1332 (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1333 riscv_pmu_ctr_monitor_instructions(env, ctr_idx))) { 1334 counter->mhpmcounterh_prev = riscv_pmu_ctr_get_fixed_counters_val(env, 1335 ctr_idx, true); 1336 if (ctr_idx > 2) { 1337 riscv_pmu_setup_timer(env, mhpmctr_val, ctr_idx); 1338 } 1339 } else { 1340 counter->mhpmcounterh_prev = val; 1341 } 1342 1343 return RISCV_EXCP_NONE; 1344 } 1345 1346 static int write_mhpmcounter(CPURISCVState *env, int csrno, target_ulong val) 1347 { 1348 int ctr_idx = csrno - CSR_MCYCLE; 1349 1350 return riscv_pmu_write_ctr(env, val, ctr_idx); 1351 } 1352 1353 static int write_mhpmcounterh(CPURISCVState *env, int csrno, target_ulong val) 1354 { 1355 int ctr_idx = csrno - CSR_MCYCLEH; 1356 1357 return riscv_pmu_write_ctrh(env, val, ctr_idx); 1358 } 1359 1360 RISCVException riscv_pmu_read_ctr(CPURISCVState *env, target_ulong *val, 1361 bool upper_half, uint32_t ctr_idx) 1362 { 1363 PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; 1364 target_ulong ctr_prev = upper_half ? counter->mhpmcounterh_prev : 1365 counter->mhpmcounter_prev; 1366 target_ulong ctr_val = upper_half ? counter->mhpmcounterh_val : 1367 counter->mhpmcounter_val; 1368 1369 if (get_field(env->mcountinhibit, BIT(ctr_idx))) { 1370 /* 1371 * Counter should not increment if inhibit bit is set. Just return the 1372 * current counter value. 1373 */ 1374 *val = ctr_val; 1375 return RISCV_EXCP_NONE; 1376 } 1377 1378 /* 1379 * The kernel computes the perf delta by subtracting the current value from 1380 * the value it initialized previously (ctr_val). 1381 */ 1382 if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || 1383 riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { 1384 *val = riscv_pmu_ctr_get_fixed_counters_val(env, ctr_idx, upper_half) - 1385 ctr_prev + ctr_val; 1386 } else { 1387 *val = ctr_val; 1388 } 1389 1390 return RISCV_EXCP_NONE; 1391 } 1392 1393 static RISCVException read_hpmcounter(CPURISCVState *env, int csrno, 1394 target_ulong *val) 1395 { 1396 uint16_t ctr_index; 1397 1398 if (csrno >= CSR_MCYCLE && csrno <= CSR_MHPMCOUNTER31) { 1399 ctr_index = csrno - CSR_MCYCLE; 1400 } else if (csrno >= CSR_CYCLE && csrno <= CSR_HPMCOUNTER31) { 1401 ctr_index = csrno - CSR_CYCLE; 1402 } else { 1403 return RISCV_EXCP_ILLEGAL_INST; 1404 } 1405 1406 return riscv_pmu_read_ctr(env, val, false, ctr_index); 1407 } 1408 1409 static RISCVException read_hpmcounterh(CPURISCVState *env, int csrno, 1410 target_ulong *val) 1411 { 1412 uint16_t ctr_index; 1413 1414 if (csrno >= CSR_MCYCLEH && csrno <= CSR_MHPMCOUNTER31H) { 1415 ctr_index = csrno - CSR_MCYCLEH; 1416 } else if (csrno >= CSR_CYCLEH && csrno <= CSR_HPMCOUNTER31H) { 1417 ctr_index = csrno - CSR_CYCLEH; 1418 } else { 1419 return RISCV_EXCP_ILLEGAL_INST; 1420 } 1421 1422 return riscv_pmu_read_ctr(env, val, true, ctr_index); 1423 } 1424 1425 static int rmw_cd_mhpmcounter(CPURISCVState *env, int ctr_idx, 1426 target_ulong *val, target_ulong new_val, 1427 target_ulong wr_mask) 1428 { 1429 if (wr_mask != 0 && wr_mask != -1) { 1430 return -EINVAL; 1431 } 1432 1433 if (!wr_mask && val) { 1434 riscv_pmu_read_ctr(env, val, false, ctr_idx); 1435 } else if (wr_mask) { 1436 riscv_pmu_write_ctr(env, new_val, ctr_idx); 1437 } else { 1438 return -EINVAL; 1439 } 1440 1441 return 0; 1442 } 1443 1444 static int rmw_cd_mhpmcounterh(CPURISCVState *env, int ctr_idx, 1445 target_ulong *val, target_ulong new_val, 1446 target_ulong wr_mask) 1447 { 1448 if (wr_mask != 0 && wr_mask != -1) { 1449 return -EINVAL; 1450 } 1451 1452 if (!wr_mask && val) { 1453 riscv_pmu_read_ctr(env, val, true, ctr_idx); 1454 } else if (wr_mask) { 1455 riscv_pmu_write_ctrh(env, new_val, ctr_idx); 1456 } else { 1457 return -EINVAL; 1458 } 1459 1460 return 0; 1461 } 1462 1463 static int rmw_cd_mhpmevent(CPURISCVState *env, int evt_index, 1464 target_ulong *val, target_ulong new_val, 1465 target_ulong wr_mask) 1466 { 1467 uint64_t mhpmevt_val = new_val; 1468 1469 if (wr_mask != 0 && wr_mask != -1) { 1470 return -EINVAL; 1471 } 1472 1473 if (!wr_mask && val) { 1474 *val = env->mhpmevent_val[evt_index]; 1475 if (riscv_cpu_cfg(env)->ext_sscofpmf) { 1476 *val &= ~MHPMEVENT_BIT_MINH; 1477 } 1478 } else if (wr_mask) { 1479 wr_mask &= ~MHPMEVENT_BIT_MINH; 1480 mhpmevt_val = (new_val & wr_mask) | 1481 (env->mhpmevent_val[evt_index] & ~wr_mask); 1482 if (riscv_cpu_mxl(env) == MXL_RV32) { 1483 mhpmevt_val = mhpmevt_val | 1484 ((uint64_t)env->mhpmeventh_val[evt_index] << 32); 1485 } 1486 env->mhpmevent_val[evt_index] = mhpmevt_val; 1487 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1488 } else { 1489 return -EINVAL; 1490 } 1491 1492 return 0; 1493 } 1494 1495 static int rmw_cd_mhpmeventh(CPURISCVState *env, int evt_index, 1496 target_ulong *val, target_ulong new_val, 1497 target_ulong wr_mask) 1498 { 1499 uint64_t mhpmevth_val; 1500 uint64_t mhpmevt_val = env->mhpmevent_val[evt_index]; 1501 1502 if (wr_mask != 0 && wr_mask != -1) { 1503 return -EINVAL; 1504 } 1505 1506 if (!wr_mask && val) { 1507 *val = env->mhpmeventh_val[evt_index]; 1508 if (riscv_cpu_cfg(env)->ext_sscofpmf) { 1509 *val &= ~MHPMEVENTH_BIT_MINH; 1510 } 1511 } else if (wr_mask) { 1512 wr_mask &= ~MHPMEVENTH_BIT_MINH; 1513 env->mhpmeventh_val[evt_index] = 1514 (new_val & wr_mask) | (env->mhpmeventh_val[evt_index] & ~wr_mask); 1515 mhpmevth_val = env->mhpmeventh_val[evt_index]; 1516 mhpmevt_val = mhpmevt_val | (mhpmevth_val << 32); 1517 riscv_pmu_update_event_map(env, mhpmevt_val, evt_index); 1518 } else { 1519 return -EINVAL; 1520 } 1521 1522 return 0; 1523 } 1524 1525 static int rmw_cd_ctr_cfg(CPURISCVState *env, int cfg_index, target_ulong *val, 1526 target_ulong new_val, target_ulong wr_mask) 1527 { 1528 switch (cfg_index) { 1529 case 0: /* CYCLECFG */ 1530 if (wr_mask) { 1531 wr_mask &= ~MCYCLECFG_BIT_MINH; 1532 env->mcyclecfg = (new_val & wr_mask) | (env->mcyclecfg & ~wr_mask); 1533 } else { 1534 *val = env->mcyclecfg &= ~MHPMEVENTH_BIT_MINH; 1535 } 1536 break; 1537 case 2: /* INSTRETCFG */ 1538 if (wr_mask) { 1539 wr_mask &= ~MINSTRETCFG_BIT_MINH; 1540 env->minstretcfg = (new_val & wr_mask) | 1541 (env->minstretcfg & ~wr_mask); 1542 } else { 1543 *val = env->minstretcfg &= ~MHPMEVENTH_BIT_MINH; 1544 } 1545 break; 1546 default: 1547 return -EINVAL; 1548 } 1549 return 0; 1550 } 1551 1552 static int rmw_cd_ctr_cfgh(CPURISCVState *env, int cfg_index, target_ulong *val, 1553 target_ulong new_val, target_ulong wr_mask) 1554 { 1555 1556 if (riscv_cpu_mxl(env) != MXL_RV32) { 1557 return RISCV_EXCP_ILLEGAL_INST; 1558 } 1559 1560 switch (cfg_index) { 1561 case 0: /* CYCLECFGH */ 1562 if (wr_mask) { 1563 wr_mask &= ~MCYCLECFGH_BIT_MINH; 1564 env->mcyclecfgh = (new_val & wr_mask) | 1565 (env->mcyclecfgh & ~wr_mask); 1566 } else { 1567 *val = env->mcyclecfgh; 1568 } 1569 break; 1570 case 2: /* INSTRETCFGH */ 1571 if (wr_mask) { 1572 wr_mask &= ~MINSTRETCFGH_BIT_MINH; 1573 env->minstretcfgh = (new_val & wr_mask) | 1574 (env->minstretcfgh & ~wr_mask); 1575 } else { 1576 *val = env->minstretcfgh; 1577 } 1578 break; 1579 default: 1580 return -EINVAL; 1581 } 1582 return 0; 1583 } 1584 1585 1586 static RISCVException read_scountovf(CPURISCVState *env, int csrno, 1587 target_ulong *val) 1588 { 1589 int mhpmevt_start = CSR_MHPMEVENT3 - CSR_MCOUNTINHIBIT; 1590 int i; 1591 *val = 0; 1592 target_ulong *mhpm_evt_val; 1593 uint64_t of_bit_mask; 1594 1595 /* Virtualize scountovf for counter delegation */ 1596 if (riscv_cpu_cfg(env)->ext_sscofpmf && 1597 riscv_cpu_cfg(env)->ext_ssccfg && 1598 get_field(env->menvcfg, MENVCFG_CDE) && 1599 env->virt_enabled) { 1600 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1601 } 1602 1603 if (riscv_cpu_mxl(env) == MXL_RV32) { 1604 mhpm_evt_val = env->mhpmeventh_val; 1605 of_bit_mask = MHPMEVENTH_BIT_OF; 1606 } else { 1607 mhpm_evt_val = env->mhpmevent_val; 1608 of_bit_mask = MHPMEVENT_BIT_OF; 1609 } 1610 1611 for (i = mhpmevt_start; i < RV_MAX_MHPMEVENTS; i++) { 1612 if ((get_field(env->mcounteren, BIT(i))) && 1613 (mhpm_evt_val[i] & of_bit_mask)) { 1614 *val |= BIT(i); 1615 } 1616 } 1617 1618 return RISCV_EXCP_NONE; 1619 } 1620 1621 static RISCVException read_time(CPURISCVState *env, int csrno, 1622 target_ulong *val) 1623 { 1624 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1625 1626 if (!env->rdtime_fn) { 1627 return RISCV_EXCP_ILLEGAL_INST; 1628 } 1629 1630 *val = env->rdtime_fn(env->rdtime_fn_arg) + delta; 1631 return RISCV_EXCP_NONE; 1632 } 1633 1634 static RISCVException read_timeh(CPURISCVState *env, int csrno, 1635 target_ulong *val) 1636 { 1637 uint64_t delta = env->virt_enabled ? env->htimedelta : 0; 1638 1639 if (!env->rdtime_fn) { 1640 return RISCV_EXCP_ILLEGAL_INST; 1641 } 1642 1643 *val = (env->rdtime_fn(env->rdtime_fn_arg) + delta) >> 32; 1644 return RISCV_EXCP_NONE; 1645 } 1646 1647 static RISCVException read_vstimecmp(CPURISCVState *env, int csrno, 1648 target_ulong *val) 1649 { 1650 *val = env->vstimecmp; 1651 1652 return RISCV_EXCP_NONE; 1653 } 1654 1655 static RISCVException read_vstimecmph(CPURISCVState *env, int csrno, 1656 target_ulong *val) 1657 { 1658 *val = env->vstimecmp >> 32; 1659 1660 return RISCV_EXCP_NONE; 1661 } 1662 1663 static RISCVException write_vstimecmp(CPURISCVState *env, int csrno, 1664 target_ulong val) 1665 { 1666 if (riscv_cpu_mxl(env) == MXL_RV32) { 1667 env->vstimecmp = deposit64(env->vstimecmp, 0, 32, (uint64_t)val); 1668 } else { 1669 env->vstimecmp = val; 1670 } 1671 1672 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1673 env->htimedelta, MIP_VSTIP); 1674 1675 return RISCV_EXCP_NONE; 1676 } 1677 1678 static RISCVException write_vstimecmph(CPURISCVState *env, int csrno, 1679 target_ulong val) 1680 { 1681 env->vstimecmp = deposit64(env->vstimecmp, 32, 32, (uint64_t)val); 1682 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 1683 env->htimedelta, MIP_VSTIP); 1684 1685 return RISCV_EXCP_NONE; 1686 } 1687 1688 static RISCVException read_stimecmp(CPURISCVState *env, int csrno, 1689 target_ulong *val) 1690 { 1691 if (env->virt_enabled) { 1692 *val = env->vstimecmp; 1693 } else { 1694 *val = env->stimecmp; 1695 } 1696 1697 return RISCV_EXCP_NONE; 1698 } 1699 1700 static RISCVException read_stimecmph(CPURISCVState *env, int csrno, 1701 target_ulong *val) 1702 { 1703 if (env->virt_enabled) { 1704 *val = env->vstimecmp >> 32; 1705 } else { 1706 *val = env->stimecmp >> 32; 1707 } 1708 1709 return RISCV_EXCP_NONE; 1710 } 1711 1712 static RISCVException write_stimecmp(CPURISCVState *env, int csrno, 1713 target_ulong val) 1714 { 1715 if (env->virt_enabled) { 1716 if (env->hvictl & HVICTL_VTI) { 1717 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1718 } 1719 return write_vstimecmp(env, csrno, val); 1720 } 1721 1722 if (riscv_cpu_mxl(env) == MXL_RV32) { 1723 env->stimecmp = deposit64(env->stimecmp, 0, 32, (uint64_t)val); 1724 } else { 1725 env->stimecmp = val; 1726 } 1727 1728 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1729 1730 return RISCV_EXCP_NONE; 1731 } 1732 1733 static RISCVException write_stimecmph(CPURISCVState *env, int csrno, 1734 target_ulong val) 1735 { 1736 if (env->virt_enabled) { 1737 if (env->hvictl & HVICTL_VTI) { 1738 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 1739 } 1740 return write_vstimecmph(env, csrno, val); 1741 } 1742 1743 env->stimecmp = deposit64(env->stimecmp, 32, 32, (uint64_t)val); 1744 riscv_timer_write_timecmp(env, env->stimer, env->stimecmp, 0, MIP_STIP); 1745 1746 return RISCV_EXCP_NONE; 1747 } 1748 1749 #define VSTOPI_NUM_SRCS 5 1750 1751 /* 1752 * All core local interrupts except the fixed ones 0:12. This macro is for 1753 * virtual interrupts logic so please don't change this to avoid messing up 1754 * the whole support, For reference see AIA spec: `5.3 Interrupt filtering and 1755 * virtual interrupts for supervisor level` and `6.3.2 Virtual interrupts for 1756 * VS level`. 1757 */ 1758 #define LOCAL_INTERRUPTS (~0x1FFFULL) 1759 1760 static const uint64_t delegable_ints = 1761 S_MODE_INTERRUPTS | VS_MODE_INTERRUPTS | MIP_LCOFIP; 1762 static const uint64_t vs_delegable_ints = 1763 (VS_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & ~MIP_LCOFIP; 1764 static const uint64_t all_ints = M_MODE_INTERRUPTS | S_MODE_INTERRUPTS | 1765 HS_MODE_INTERRUPTS | LOCAL_INTERRUPTS; 1766 #define DELEGABLE_EXCPS ((1ULL << (RISCV_EXCP_INST_ADDR_MIS)) | \ 1767 (1ULL << (RISCV_EXCP_INST_ACCESS_FAULT)) | \ 1768 (1ULL << (RISCV_EXCP_ILLEGAL_INST)) | \ 1769 (1ULL << (RISCV_EXCP_BREAKPOINT)) | \ 1770 (1ULL << (RISCV_EXCP_LOAD_ADDR_MIS)) | \ 1771 (1ULL << (RISCV_EXCP_LOAD_ACCESS_FAULT)) | \ 1772 (1ULL << (RISCV_EXCP_STORE_AMO_ADDR_MIS)) | \ 1773 (1ULL << (RISCV_EXCP_STORE_AMO_ACCESS_FAULT)) | \ 1774 (1ULL << (RISCV_EXCP_U_ECALL)) | \ 1775 (1ULL << (RISCV_EXCP_S_ECALL)) | \ 1776 (1ULL << (RISCV_EXCP_VS_ECALL)) | \ 1777 (1ULL << (RISCV_EXCP_M_ECALL)) | \ 1778 (1ULL << (RISCV_EXCP_INST_PAGE_FAULT)) | \ 1779 (1ULL << (RISCV_EXCP_LOAD_PAGE_FAULT)) | \ 1780 (1ULL << (RISCV_EXCP_STORE_PAGE_FAULT)) | \ 1781 (1ULL << (RISCV_EXCP_SW_CHECK)) | \ 1782 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | \ 1783 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | \ 1784 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | \ 1785 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))) 1786 static const target_ulong vs_delegable_excps = DELEGABLE_EXCPS & 1787 ~((1ULL << (RISCV_EXCP_S_ECALL)) | 1788 (1ULL << (RISCV_EXCP_VS_ECALL)) | 1789 (1ULL << (RISCV_EXCP_M_ECALL)) | 1790 (1ULL << (RISCV_EXCP_INST_GUEST_PAGE_FAULT)) | 1791 (1ULL << (RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT)) | 1792 (1ULL << (RISCV_EXCP_VIRT_INSTRUCTION_FAULT)) | 1793 (1ULL << (RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT))); 1794 static const target_ulong sstatus_v1_10_mask = SSTATUS_SIE | SSTATUS_SPIE | 1795 SSTATUS_UIE | SSTATUS_UPIE | SSTATUS_SPP | SSTATUS_FS | SSTATUS_XS | 1796 SSTATUS_SUM | SSTATUS_MXR | SSTATUS_VS; 1797 1798 /* 1799 * Spec allows for bits 13:63 to be either read-only or writable. 1800 * So far we have interrupt LCOFIP in that region which is writable. 1801 * 1802 * Also, spec allows to inject virtual interrupts in this region even 1803 * without any hardware interrupts for that interrupt number. 1804 * 1805 * For now interrupt in 13:63 region are all kept writable. 13 being 1806 * LCOFIP and 14:63 being virtual only. Change this in future if we 1807 * introduce more interrupts that are not writable. 1808 */ 1809 1810 /* Bit STIP can be an alias of mip.STIP that's why it's writable in mvip. */ 1811 static const uint64_t mvip_writable_mask = MIP_SSIP | MIP_STIP | MIP_SEIP | 1812 LOCAL_INTERRUPTS; 1813 static const uint64_t mvien_writable_mask = MIP_SSIP | MIP_SEIP | 1814 LOCAL_INTERRUPTS; 1815 1816 static const uint64_t sip_writable_mask = SIP_SSIP | LOCAL_INTERRUPTS; 1817 static const uint64_t hip_writable_mask = MIP_VSSIP; 1818 static const uint64_t hvip_writable_mask = MIP_VSSIP | MIP_VSTIP | 1819 MIP_VSEIP | LOCAL_INTERRUPTS; 1820 static const uint64_t hvien_writable_mask = LOCAL_INTERRUPTS; 1821 1822 static const uint64_t vsip_writable_mask = MIP_VSSIP | LOCAL_INTERRUPTS; 1823 1824 const bool valid_vm_1_10_32[16] = { 1825 [VM_1_10_MBARE] = true, 1826 [VM_1_10_SV32] = true 1827 }; 1828 1829 const bool valid_vm_1_10_64[16] = { 1830 [VM_1_10_MBARE] = true, 1831 [VM_1_10_SV39] = true, 1832 [VM_1_10_SV48] = true, 1833 [VM_1_10_SV57] = true 1834 }; 1835 1836 /* Machine Information Registers */ 1837 static RISCVException read_zero(CPURISCVState *env, int csrno, 1838 target_ulong *val) 1839 { 1840 *val = 0; 1841 return RISCV_EXCP_NONE; 1842 } 1843 1844 static RISCVException write_ignore(CPURISCVState *env, int csrno, 1845 target_ulong val) 1846 { 1847 return RISCV_EXCP_NONE; 1848 } 1849 1850 static RISCVException read_mvendorid(CPURISCVState *env, int csrno, 1851 target_ulong *val) 1852 { 1853 *val = riscv_cpu_cfg(env)->mvendorid; 1854 return RISCV_EXCP_NONE; 1855 } 1856 1857 static RISCVException read_marchid(CPURISCVState *env, int csrno, 1858 target_ulong *val) 1859 { 1860 *val = riscv_cpu_cfg(env)->marchid; 1861 return RISCV_EXCP_NONE; 1862 } 1863 1864 static RISCVException read_mimpid(CPURISCVState *env, int csrno, 1865 target_ulong *val) 1866 { 1867 *val = riscv_cpu_cfg(env)->mimpid; 1868 return RISCV_EXCP_NONE; 1869 } 1870 1871 static RISCVException read_mhartid(CPURISCVState *env, int csrno, 1872 target_ulong *val) 1873 { 1874 *val = env->mhartid; 1875 return RISCV_EXCP_NONE; 1876 } 1877 1878 /* Machine Trap Setup */ 1879 1880 /* We do not store SD explicitly, only compute it on demand. */ 1881 static uint64_t add_status_sd(RISCVMXL xl, uint64_t status) 1882 { 1883 if ((status & MSTATUS_FS) == MSTATUS_FS || 1884 (status & MSTATUS_VS) == MSTATUS_VS || 1885 (status & MSTATUS_XS) == MSTATUS_XS) { 1886 switch (xl) { 1887 case MXL_RV32: 1888 return status | MSTATUS32_SD; 1889 case MXL_RV64: 1890 return status | MSTATUS64_SD; 1891 case MXL_RV128: 1892 return MSTATUSH128_SD; 1893 default: 1894 g_assert_not_reached(); 1895 } 1896 } 1897 return status; 1898 } 1899 1900 static RISCVException read_mstatus(CPURISCVState *env, int csrno, 1901 target_ulong *val) 1902 { 1903 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus); 1904 return RISCV_EXCP_NONE; 1905 } 1906 1907 static bool validate_vm(CPURISCVState *env, target_ulong vm) 1908 { 1909 uint64_t mode_supported = riscv_cpu_cfg(env)->satp_mode.map; 1910 return get_field(mode_supported, (1 << vm)); 1911 } 1912 1913 static target_ulong legalize_xatp(CPURISCVState *env, target_ulong old_xatp, 1914 target_ulong val) 1915 { 1916 target_ulong mask; 1917 bool vm; 1918 if (riscv_cpu_mxl(env) == MXL_RV32) { 1919 vm = validate_vm(env, get_field(val, SATP32_MODE)); 1920 mask = (val ^ old_xatp) & (SATP32_MODE | SATP32_ASID | SATP32_PPN); 1921 } else { 1922 vm = validate_vm(env, get_field(val, SATP64_MODE)); 1923 mask = (val ^ old_xatp) & (SATP64_MODE | SATP64_ASID | SATP64_PPN); 1924 } 1925 1926 if (vm && mask) { 1927 /* 1928 * The ISA defines SATP.MODE=Bare as "no translation", but we still 1929 * pass these through QEMU's TLB emulation as it improves 1930 * performance. Flushing the TLB on SATP writes with paging 1931 * enabled avoids leaking those invalid cached mappings. 1932 */ 1933 tlb_flush(env_cpu(env)); 1934 return val; 1935 } 1936 return old_xatp; 1937 } 1938 1939 static target_ulong legalize_mpp(CPURISCVState *env, target_ulong old_mpp, 1940 target_ulong val) 1941 { 1942 bool valid = false; 1943 target_ulong new_mpp = get_field(val, MSTATUS_MPP); 1944 1945 switch (new_mpp) { 1946 case PRV_M: 1947 valid = true; 1948 break; 1949 case PRV_S: 1950 valid = riscv_has_ext(env, RVS); 1951 break; 1952 case PRV_U: 1953 valid = riscv_has_ext(env, RVU); 1954 break; 1955 } 1956 1957 /* Remain field unchanged if new_mpp value is invalid */ 1958 if (!valid) { 1959 val = set_field(val, MSTATUS_MPP, old_mpp); 1960 } 1961 1962 return val; 1963 } 1964 1965 static RISCVException write_mstatus(CPURISCVState *env, int csrno, 1966 target_ulong val) 1967 { 1968 uint64_t mstatus = env->mstatus; 1969 uint64_t mask = 0; 1970 RISCVMXL xl = riscv_cpu_mxl(env); 1971 1972 /* 1973 * MPP field have been made WARL since priv version 1.11. However, 1974 * legalization for it will not break any software running on 1.10. 1975 */ 1976 val = legalize_mpp(env, get_field(mstatus, MSTATUS_MPP), val); 1977 1978 /* flush tlb on mstatus fields that affect VM */ 1979 if ((val ^ mstatus) & MSTATUS_MXR) { 1980 tlb_flush(env_cpu(env)); 1981 } 1982 mask = MSTATUS_SIE | MSTATUS_SPIE | MSTATUS_MIE | MSTATUS_MPIE | 1983 MSTATUS_SPP | MSTATUS_MPRV | MSTATUS_SUM | 1984 MSTATUS_MPP | MSTATUS_MXR | MSTATUS_TVM | MSTATUS_TSR | 1985 MSTATUS_TW; 1986 1987 if (riscv_has_ext(env, RVF)) { 1988 mask |= MSTATUS_FS; 1989 } 1990 if (riscv_has_ext(env, RVV)) { 1991 mask |= MSTATUS_VS; 1992 } 1993 1994 if (riscv_env_smode_dbltrp_enabled(env, env->virt_enabled)) { 1995 mask |= MSTATUS_SDT; 1996 if ((val & MSTATUS_SDT) != 0) { 1997 val &= ~MSTATUS_SIE; 1998 } 1999 } 2000 2001 if (riscv_cpu_cfg(env)->ext_smdbltrp) { 2002 mask |= MSTATUS_MDT; 2003 if ((val & MSTATUS_MDT) != 0) { 2004 val &= ~MSTATUS_MIE; 2005 } 2006 } 2007 2008 if (xl != MXL_RV32 || env->debugger) { 2009 if (riscv_has_ext(env, RVH)) { 2010 mask |= MSTATUS_MPV | MSTATUS_GVA; 2011 } 2012 if ((val & MSTATUS64_UXL) != 0) { 2013 mask |= MSTATUS64_UXL; 2014 } 2015 } 2016 2017 /* If cfi lp extension is available, then apply cfi lp mask */ 2018 if (env_archcpu(env)->cfg.ext_zicfilp) { 2019 mask |= (MSTATUS_MPELP | MSTATUS_SPELP); 2020 } 2021 2022 mstatus = (mstatus & ~mask) | (val & mask); 2023 2024 env->mstatus = mstatus; 2025 2026 /* 2027 * Except in debug mode, UXL/SXL can only be modified by higher 2028 * privilege mode. So xl will not be changed in normal mode. 2029 */ 2030 if (env->debugger) { 2031 env->xl = cpu_recompute_xl(env); 2032 } 2033 2034 return RISCV_EXCP_NONE; 2035 } 2036 2037 static RISCVException read_mstatush(CPURISCVState *env, int csrno, 2038 target_ulong *val) 2039 { 2040 *val = env->mstatus >> 32; 2041 return RISCV_EXCP_NONE; 2042 } 2043 2044 static RISCVException write_mstatush(CPURISCVState *env, int csrno, 2045 target_ulong val) 2046 { 2047 uint64_t valh = (uint64_t)val << 32; 2048 uint64_t mask = riscv_has_ext(env, RVH) ? MSTATUS_MPV | MSTATUS_GVA : 0; 2049 2050 if (riscv_cpu_cfg(env)->ext_smdbltrp) { 2051 mask |= MSTATUS_MDT; 2052 if ((valh & MSTATUS_MDT) != 0) { 2053 mask |= MSTATUS_MIE; 2054 } 2055 } 2056 env->mstatus = (env->mstatus & ~mask) | (valh & mask); 2057 2058 return RISCV_EXCP_NONE; 2059 } 2060 2061 static RISCVException read_mstatus_i128(CPURISCVState *env, int csrno, 2062 Int128 *val) 2063 { 2064 *val = int128_make128(env->mstatus, add_status_sd(MXL_RV128, 2065 env->mstatus)); 2066 return RISCV_EXCP_NONE; 2067 } 2068 2069 static RISCVException read_misa_i128(CPURISCVState *env, int csrno, 2070 Int128 *val) 2071 { 2072 *val = int128_make128(env->misa_ext, (uint64_t)MXL_RV128 << 62); 2073 return RISCV_EXCP_NONE; 2074 } 2075 2076 static RISCVException read_misa(CPURISCVState *env, int csrno, 2077 target_ulong *val) 2078 { 2079 target_ulong misa; 2080 2081 switch (env->misa_mxl) { 2082 case MXL_RV32: 2083 misa = (target_ulong)MXL_RV32 << 30; 2084 break; 2085 #ifdef TARGET_RISCV64 2086 case MXL_RV64: 2087 misa = (target_ulong)MXL_RV64 << 62; 2088 break; 2089 #endif 2090 default: 2091 g_assert_not_reached(); 2092 } 2093 2094 *val = misa | env->misa_ext; 2095 return RISCV_EXCP_NONE; 2096 } 2097 2098 static RISCVException write_misa(CPURISCVState *env, int csrno, 2099 target_ulong val) 2100 { 2101 RISCVCPU *cpu = env_archcpu(env); 2102 uint32_t orig_misa_ext = env->misa_ext; 2103 Error *local_err = NULL; 2104 2105 if (!riscv_cpu_cfg(env)->misa_w) { 2106 /* drop write to misa */ 2107 return RISCV_EXCP_NONE; 2108 } 2109 2110 /* Mask extensions that are not supported by this hart */ 2111 val &= env->misa_ext_mask; 2112 2113 /* 2114 * Suppress 'C' if next instruction is not aligned 2115 * TODO: this should check next_pc 2116 */ 2117 if ((val & RVC) && (GETPC() & ~3) != 0) { 2118 val &= ~RVC; 2119 } 2120 2121 /* Disable RVG if any of its dependencies are disabled */ 2122 if (!(val & RVI && val & RVM && val & RVA && 2123 val & RVF && val & RVD)) { 2124 val &= ~RVG; 2125 } 2126 2127 /* If nothing changed, do nothing. */ 2128 if (val == env->misa_ext) { 2129 return RISCV_EXCP_NONE; 2130 } 2131 2132 env->misa_ext = val; 2133 riscv_cpu_validate_set_extensions(cpu, &local_err); 2134 if (local_err != NULL) { 2135 /* Rollback on validation error */ 2136 qemu_log_mask(LOG_GUEST_ERROR, "Unable to write MISA ext value " 2137 "0x%x, keeping existing MISA ext 0x%x\n", 2138 env->misa_ext, orig_misa_ext); 2139 2140 env->misa_ext = orig_misa_ext; 2141 2142 return RISCV_EXCP_NONE; 2143 } 2144 2145 if (!(env->misa_ext & RVF)) { 2146 env->mstatus &= ~MSTATUS_FS; 2147 } 2148 2149 /* flush translation cache */ 2150 tb_flush(env_cpu(env)); 2151 env->xl = riscv_cpu_mxl(env); 2152 return RISCV_EXCP_NONE; 2153 } 2154 2155 static RISCVException read_medeleg(CPURISCVState *env, int csrno, 2156 target_ulong *val) 2157 { 2158 *val = env->medeleg; 2159 return RISCV_EXCP_NONE; 2160 } 2161 2162 static RISCVException write_medeleg(CPURISCVState *env, int csrno, 2163 target_ulong val) 2164 { 2165 env->medeleg = (env->medeleg & ~DELEGABLE_EXCPS) | (val & DELEGABLE_EXCPS); 2166 return RISCV_EXCP_NONE; 2167 } 2168 2169 static RISCVException rmw_mideleg64(CPURISCVState *env, int csrno, 2170 uint64_t *ret_val, 2171 uint64_t new_val, uint64_t wr_mask) 2172 { 2173 uint64_t mask = wr_mask & delegable_ints; 2174 2175 if (ret_val) { 2176 *ret_val = env->mideleg; 2177 } 2178 2179 env->mideleg = (env->mideleg & ~mask) | (new_val & mask); 2180 2181 if (riscv_has_ext(env, RVH)) { 2182 env->mideleg |= HS_MODE_INTERRUPTS; 2183 } 2184 2185 return RISCV_EXCP_NONE; 2186 } 2187 2188 static RISCVException rmw_mideleg(CPURISCVState *env, int csrno, 2189 target_ulong *ret_val, 2190 target_ulong new_val, target_ulong wr_mask) 2191 { 2192 uint64_t rval; 2193 RISCVException ret; 2194 2195 ret = rmw_mideleg64(env, csrno, &rval, new_val, wr_mask); 2196 if (ret_val) { 2197 *ret_val = rval; 2198 } 2199 2200 return ret; 2201 } 2202 2203 static RISCVException rmw_midelegh(CPURISCVState *env, int csrno, 2204 target_ulong *ret_val, 2205 target_ulong new_val, 2206 target_ulong wr_mask) 2207 { 2208 uint64_t rval; 2209 RISCVException ret; 2210 2211 ret = rmw_mideleg64(env, csrno, &rval, 2212 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2213 if (ret_val) { 2214 *ret_val = rval >> 32; 2215 } 2216 2217 return ret; 2218 } 2219 2220 static RISCVException rmw_mie64(CPURISCVState *env, int csrno, 2221 uint64_t *ret_val, 2222 uint64_t new_val, uint64_t wr_mask) 2223 { 2224 uint64_t mask = wr_mask & all_ints; 2225 2226 if (ret_val) { 2227 *ret_val = env->mie; 2228 } 2229 2230 env->mie = (env->mie & ~mask) | (new_val & mask); 2231 2232 if (!riscv_has_ext(env, RVH)) { 2233 env->mie &= ~((uint64_t)HS_MODE_INTERRUPTS); 2234 } 2235 2236 return RISCV_EXCP_NONE; 2237 } 2238 2239 static RISCVException rmw_mie(CPURISCVState *env, int csrno, 2240 target_ulong *ret_val, 2241 target_ulong new_val, target_ulong wr_mask) 2242 { 2243 uint64_t rval; 2244 RISCVException ret; 2245 2246 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask); 2247 if (ret_val) { 2248 *ret_val = rval; 2249 } 2250 2251 return ret; 2252 } 2253 2254 static RISCVException rmw_mieh(CPURISCVState *env, int csrno, 2255 target_ulong *ret_val, 2256 target_ulong new_val, target_ulong wr_mask) 2257 { 2258 uint64_t rval; 2259 RISCVException ret; 2260 2261 ret = rmw_mie64(env, csrno, &rval, 2262 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2263 if (ret_val) { 2264 *ret_val = rval >> 32; 2265 } 2266 2267 return ret; 2268 } 2269 2270 static RISCVException rmw_mvien64(CPURISCVState *env, int csrno, 2271 uint64_t *ret_val, 2272 uint64_t new_val, uint64_t wr_mask) 2273 { 2274 uint64_t mask = wr_mask & mvien_writable_mask; 2275 2276 if (ret_val) { 2277 *ret_val = env->mvien; 2278 } 2279 2280 env->mvien = (env->mvien & ~mask) | (new_val & mask); 2281 2282 return RISCV_EXCP_NONE; 2283 } 2284 2285 static RISCVException rmw_mvien(CPURISCVState *env, int csrno, 2286 target_ulong *ret_val, 2287 target_ulong new_val, target_ulong wr_mask) 2288 { 2289 uint64_t rval; 2290 RISCVException ret; 2291 2292 ret = rmw_mvien64(env, csrno, &rval, new_val, wr_mask); 2293 if (ret_val) { 2294 *ret_val = rval; 2295 } 2296 2297 return ret; 2298 } 2299 2300 static RISCVException rmw_mvienh(CPURISCVState *env, int csrno, 2301 target_ulong *ret_val, 2302 target_ulong new_val, target_ulong wr_mask) 2303 { 2304 uint64_t rval; 2305 RISCVException ret; 2306 2307 ret = rmw_mvien64(env, csrno, &rval, 2308 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 2309 if (ret_val) { 2310 *ret_val = rval >> 32; 2311 } 2312 2313 return ret; 2314 } 2315 2316 static RISCVException read_mtopi(CPURISCVState *env, int csrno, 2317 target_ulong *val) 2318 { 2319 int irq; 2320 uint8_t iprio; 2321 2322 irq = riscv_cpu_mirq_pending(env); 2323 if (irq <= 0 || irq > 63) { 2324 *val = 0; 2325 } else { 2326 iprio = env->miprio[irq]; 2327 if (!iprio) { 2328 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_M) { 2329 iprio = IPRIO_MMAXIPRIO; 2330 } 2331 } 2332 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 2333 *val |= iprio; 2334 } 2335 2336 return RISCV_EXCP_NONE; 2337 } 2338 2339 static int aia_xlate_vs_csrno(CPURISCVState *env, int csrno) 2340 { 2341 if (!env->virt_enabled) { 2342 return csrno; 2343 } 2344 2345 switch (csrno) { 2346 case CSR_SISELECT: 2347 return CSR_VSISELECT; 2348 case CSR_SIREG: 2349 return CSR_VSIREG; 2350 case CSR_STOPEI: 2351 return CSR_VSTOPEI; 2352 default: 2353 return csrno; 2354 }; 2355 } 2356 2357 static int csrind_xlate_vs_csrno(CPURISCVState *env, int csrno) 2358 { 2359 if (!env->virt_enabled) { 2360 return csrno; 2361 } 2362 2363 switch (csrno) { 2364 case CSR_SISELECT: 2365 return CSR_VSISELECT; 2366 case CSR_SIREG: 2367 case CSR_SIREG2: 2368 case CSR_SIREG3: 2369 case CSR_SIREG4: 2370 case CSR_SIREG5: 2371 case CSR_SIREG6: 2372 return CSR_VSIREG + (csrno - CSR_SIREG); 2373 default: 2374 return csrno; 2375 }; 2376 } 2377 2378 static RISCVException rmw_xiselect(CPURISCVState *env, int csrno, 2379 target_ulong *val, target_ulong new_val, 2380 target_ulong wr_mask) 2381 { 2382 target_ulong *iselect; 2383 int ret; 2384 2385 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2386 if (ret != RISCV_EXCP_NONE) { 2387 return ret; 2388 } 2389 2390 /* Translate CSR number for VS-mode */ 2391 csrno = csrind_xlate_vs_csrno(env, csrno); 2392 2393 /* Find the iselect CSR based on CSR number */ 2394 switch (csrno) { 2395 case CSR_MISELECT: 2396 iselect = &env->miselect; 2397 break; 2398 case CSR_SISELECT: 2399 iselect = &env->siselect; 2400 break; 2401 case CSR_VSISELECT: 2402 iselect = &env->vsiselect; 2403 break; 2404 default: 2405 return RISCV_EXCP_ILLEGAL_INST; 2406 }; 2407 2408 if (val) { 2409 *val = *iselect; 2410 } 2411 2412 if (riscv_cpu_cfg(env)->ext_smcsrind || riscv_cpu_cfg(env)->ext_sscsrind) { 2413 wr_mask &= ISELECT_MASK_SXCSRIND; 2414 } else { 2415 wr_mask &= ISELECT_MASK_AIA; 2416 } 2417 2418 if (wr_mask) { 2419 *iselect = (*iselect & ~wr_mask) | (new_val & wr_mask); 2420 } 2421 2422 return RISCV_EXCP_NONE; 2423 } 2424 2425 static bool xiselect_aia_range(target_ulong isel) 2426 { 2427 return (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) || 2428 (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST); 2429 } 2430 2431 static bool xiselect_cd_range(target_ulong isel) 2432 { 2433 return (ISELECT_CD_FIRST <= isel && isel <= ISELECT_CD_LAST); 2434 } 2435 2436 static bool xiselect_ctr_range(int csrno, target_ulong isel) 2437 { 2438 /* MIREG-MIREG6 for the range 0x200-0x2ff are not used by CTR. */ 2439 return CTR_ENTRIES_FIRST <= isel && isel <= CTR_ENTRIES_LAST && 2440 csrno < CSR_MIREG; 2441 } 2442 2443 static int rmw_iprio(target_ulong xlen, 2444 target_ulong iselect, uint8_t *iprio, 2445 target_ulong *val, target_ulong new_val, 2446 target_ulong wr_mask, int ext_irq_no) 2447 { 2448 int i, firq, nirqs; 2449 target_ulong old_val; 2450 2451 if (iselect < ISELECT_IPRIO0 || ISELECT_IPRIO15 < iselect) { 2452 return -EINVAL; 2453 } 2454 if (xlen != 32 && iselect & 0x1) { 2455 return -EINVAL; 2456 } 2457 2458 nirqs = 4 * (xlen / 32); 2459 firq = ((iselect - ISELECT_IPRIO0) / (xlen / 32)) * (nirqs); 2460 2461 old_val = 0; 2462 for (i = 0; i < nirqs; i++) { 2463 old_val |= ((target_ulong)iprio[firq + i]) << (IPRIO_IRQ_BITS * i); 2464 } 2465 2466 if (val) { 2467 *val = old_val; 2468 } 2469 2470 if (wr_mask) { 2471 new_val = (old_val & ~wr_mask) | (new_val & wr_mask); 2472 for (i = 0; i < nirqs; i++) { 2473 /* 2474 * M-level and S-level external IRQ priority always read-only 2475 * zero. This means default priority order is always preferred 2476 * for M-level and S-level external IRQs. 2477 */ 2478 if ((firq + i) == ext_irq_no) { 2479 continue; 2480 } 2481 iprio[firq + i] = (new_val >> (IPRIO_IRQ_BITS * i)) & 0xff; 2482 } 2483 } 2484 2485 return 0; 2486 } 2487 2488 static int rmw_ctrsource(CPURISCVState *env, int isel, target_ulong *val, 2489 target_ulong new_val, target_ulong wr_mask) 2490 { 2491 /* 2492 * CTR arrays are treated as circular buffers and TOS always points to next 2493 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2494 * 0 is always the latest one, traversal is a bit different here. See the 2495 * below example. 2496 * 2497 * Depth = 16. 2498 * 2499 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2500 * TOS H 2501 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2502 */ 2503 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2504 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2505 uint64_t idx; 2506 2507 /* Entry greater than depth-1 is read-only zero */ 2508 if (entry >= depth) { 2509 if (val) { 2510 *val = 0; 2511 } 2512 return 0; 2513 } 2514 2515 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2516 idx = (idx - entry - 1) & (depth - 1); 2517 2518 if (val) { 2519 *val = env->ctr_src[idx]; 2520 } 2521 2522 env->ctr_src[idx] = (env->ctr_src[idx] & ~wr_mask) | (new_val & wr_mask); 2523 2524 return 0; 2525 } 2526 2527 static int rmw_ctrtarget(CPURISCVState *env, int isel, target_ulong *val, 2528 target_ulong new_val, target_ulong wr_mask) 2529 { 2530 /* 2531 * CTR arrays are treated as circular buffers and TOS always points to next 2532 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2533 * 0 is always the latest one, traversal is a bit different here. See the 2534 * below example. 2535 * 2536 * Depth = 16. 2537 * 2538 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2539 * head H 2540 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2541 */ 2542 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2543 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2544 uint64_t idx; 2545 2546 /* Entry greater than depth-1 is read-only zero */ 2547 if (entry >= depth) { 2548 if (val) { 2549 *val = 0; 2550 } 2551 return 0; 2552 } 2553 2554 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2555 idx = (idx - entry - 1) & (depth - 1); 2556 2557 if (val) { 2558 *val = env->ctr_dst[idx]; 2559 } 2560 2561 env->ctr_dst[idx] = (env->ctr_dst[idx] & ~wr_mask) | (new_val & wr_mask); 2562 2563 return 0; 2564 } 2565 2566 static int rmw_ctrdata(CPURISCVState *env, int isel, target_ulong *val, 2567 target_ulong new_val, target_ulong wr_mask) 2568 { 2569 /* 2570 * CTR arrays are treated as circular buffers and TOS always points to next 2571 * empty slot, keeping TOS - 1 always pointing to latest entry. Given entry 2572 * 0 is always the latest one, traversal is a bit different here. See the 2573 * below example. 2574 * 2575 * Depth = 16. 2576 * 2577 * idx [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F] 2578 * head H 2579 * entry 6 5 4 3 2 1 0 F E D C B A 9 8 7 2580 */ 2581 const uint64_t entry = isel - CTR_ENTRIES_FIRST; 2582 const uint64_t mask = wr_mask & CTRDATA_MASK; 2583 const uint64_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 2584 uint64_t idx; 2585 2586 /* Entry greater than depth-1 is read-only zero */ 2587 if (entry >= depth) { 2588 if (val) { 2589 *val = 0; 2590 } 2591 return 0; 2592 } 2593 2594 idx = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK); 2595 idx = (idx - entry - 1) & (depth - 1); 2596 2597 if (val) { 2598 *val = env->ctr_data[idx]; 2599 } 2600 2601 env->ctr_data[idx] = (env->ctr_data[idx] & ~mask) | (new_val & mask); 2602 2603 return 0; 2604 } 2605 2606 static RISCVException rmw_xireg_aia(CPURISCVState *env, int csrno, 2607 target_ulong isel, target_ulong *val, 2608 target_ulong new_val, target_ulong wr_mask) 2609 { 2610 bool virt = false, isel_reserved = false; 2611 int ret = -EINVAL; 2612 uint8_t *iprio; 2613 target_ulong priv, vgein; 2614 2615 /* VS-mode CSR number passed in has already been translated */ 2616 switch (csrno) { 2617 case CSR_MIREG: 2618 if (!riscv_cpu_cfg(env)->ext_smaia) { 2619 goto done; 2620 } 2621 iprio = env->miprio; 2622 priv = PRV_M; 2623 break; 2624 case CSR_SIREG: 2625 if (!riscv_cpu_cfg(env)->ext_ssaia || 2626 (env->priv == PRV_S && env->mvien & MIP_SEIP && 2627 env->siselect >= ISELECT_IMSIC_EIDELIVERY && 2628 env->siselect <= ISELECT_IMSIC_EIE63)) { 2629 goto done; 2630 } 2631 iprio = env->siprio; 2632 priv = PRV_S; 2633 break; 2634 case CSR_VSIREG: 2635 if (!riscv_cpu_cfg(env)->ext_ssaia) { 2636 goto done; 2637 } 2638 iprio = env->hviprio; 2639 priv = PRV_S; 2640 virt = true; 2641 break; 2642 default: 2643 goto done; 2644 }; 2645 2646 /* Find the selected guest interrupt file */ 2647 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2648 2649 if (ISELECT_IPRIO0 <= isel && isel <= ISELECT_IPRIO15) { 2650 /* Local interrupt priority registers not available for VS-mode */ 2651 if (!virt) { 2652 ret = rmw_iprio(riscv_cpu_mxl_bits(env), 2653 isel, iprio, val, new_val, wr_mask, 2654 (priv == PRV_M) ? IRQ_M_EXT : IRQ_S_EXT); 2655 } 2656 } else if (ISELECT_IMSIC_FIRST <= isel && isel <= ISELECT_IMSIC_LAST) { 2657 /* IMSIC registers only available when machine implements it. */ 2658 if (env->aia_ireg_rmw_fn[priv]) { 2659 /* Selected guest interrupt file should not be zero */ 2660 if (virt && (!vgein || env->geilen < vgein)) { 2661 goto done; 2662 } 2663 /* Call machine specific IMSIC register emulation */ 2664 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2665 AIA_MAKE_IREG(isel, priv, virt, vgein, 2666 riscv_cpu_mxl_bits(env)), 2667 val, new_val, wr_mask); 2668 } 2669 } else { 2670 isel_reserved = true; 2671 } 2672 2673 done: 2674 /* 2675 * If AIA is not enabled, illegal instruction exception is always 2676 * returned regardless of whether we are in VS-mode or not 2677 */ 2678 if (ret) { 2679 return (env->virt_enabled && virt && !isel_reserved) ? 2680 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2681 } 2682 2683 return RISCV_EXCP_NONE; 2684 } 2685 2686 static int rmw_xireg_cd(CPURISCVState *env, int csrno, 2687 target_ulong isel, target_ulong *val, 2688 target_ulong new_val, target_ulong wr_mask) 2689 { 2690 int ret = -EINVAL; 2691 int ctr_index = isel - ISELECT_CD_FIRST; 2692 int isel_hpm_start = ISELECT_CD_FIRST + 3; 2693 2694 if (!riscv_cpu_cfg(env)->ext_smcdeleg || !riscv_cpu_cfg(env)->ext_ssccfg) { 2695 ret = RISCV_EXCP_ILLEGAL_INST; 2696 goto done; 2697 } 2698 2699 /* Invalid siselect value for reserved */ 2700 if (ctr_index == 1) { 2701 goto done; 2702 } 2703 2704 /* sireg4 and sireg5 provides access RV32 only CSRs */ 2705 if (((csrno == CSR_SIREG5) || (csrno == CSR_SIREG4)) && 2706 (riscv_cpu_mxl(env) != MXL_RV32)) { 2707 ret = RISCV_EXCP_ILLEGAL_INST; 2708 goto done; 2709 } 2710 2711 /* Check Sscofpmf dependancy */ 2712 if (!riscv_cpu_cfg(env)->ext_sscofpmf && csrno == CSR_SIREG5 && 2713 (isel_hpm_start <= isel && isel <= ISELECT_CD_LAST)) { 2714 goto done; 2715 } 2716 2717 /* Check smcntrpmf dependancy */ 2718 if (!riscv_cpu_cfg(env)->ext_smcntrpmf && 2719 (csrno == CSR_SIREG2 || csrno == CSR_SIREG5) && 2720 (ISELECT_CD_FIRST <= isel && isel < isel_hpm_start)) { 2721 goto done; 2722 } 2723 2724 if (!get_field(env->mcounteren, BIT(ctr_index)) || 2725 !get_field(env->menvcfg, MENVCFG_CDE)) { 2726 goto done; 2727 } 2728 2729 switch (csrno) { 2730 case CSR_SIREG: 2731 ret = rmw_cd_mhpmcounter(env, ctr_index, val, new_val, wr_mask); 2732 break; 2733 case CSR_SIREG4: 2734 ret = rmw_cd_mhpmcounterh(env, ctr_index, val, new_val, wr_mask); 2735 break; 2736 case CSR_SIREG2: 2737 if (ctr_index <= 2) { 2738 ret = rmw_cd_ctr_cfg(env, ctr_index, val, new_val, wr_mask); 2739 } else { 2740 ret = rmw_cd_mhpmevent(env, ctr_index, val, new_val, wr_mask); 2741 } 2742 break; 2743 case CSR_SIREG5: 2744 if (ctr_index <= 2) { 2745 ret = rmw_cd_ctr_cfgh(env, ctr_index, val, new_val, wr_mask); 2746 } else { 2747 ret = rmw_cd_mhpmeventh(env, ctr_index, val, new_val, wr_mask); 2748 } 2749 break; 2750 default: 2751 goto done; 2752 } 2753 2754 done: 2755 return ret; 2756 } 2757 2758 static int rmw_xireg_ctr(CPURISCVState *env, int csrno, 2759 target_ulong isel, target_ulong *val, 2760 target_ulong new_val, target_ulong wr_mask) 2761 { 2762 if (!riscv_cpu_cfg(env)->ext_smctr && !riscv_cpu_cfg(env)->ext_ssctr) { 2763 return -EINVAL; 2764 } 2765 2766 if (csrno == CSR_SIREG || csrno == CSR_VSIREG) { 2767 return rmw_ctrsource(env, isel, val, new_val, wr_mask); 2768 } else if (csrno == CSR_SIREG2 || csrno == CSR_VSIREG2) { 2769 return rmw_ctrtarget(env, isel, val, new_val, wr_mask); 2770 } else if (csrno == CSR_SIREG3 || csrno == CSR_VSIREG3) { 2771 return rmw_ctrdata(env, isel, val, new_val, wr_mask); 2772 } else if (val) { 2773 *val = 0; 2774 } 2775 2776 return 0; 2777 } 2778 2779 /* 2780 * rmw_xireg_csrind: Perform indirect access to xireg and xireg2-xireg6 2781 * 2782 * Perform indirect access to xireg and xireg2-xireg6. 2783 * This is a generic interface for all xireg CSRs. Apart from AIA, all other 2784 * extension using csrind should be implemented here. 2785 */ 2786 static int rmw_xireg_csrind(CPURISCVState *env, int csrno, 2787 target_ulong isel, target_ulong *val, 2788 target_ulong new_val, target_ulong wr_mask) 2789 { 2790 bool virt = csrno == CSR_VSIREG ? true : false; 2791 int ret = -EINVAL; 2792 2793 if (xiselect_cd_range(isel)) { 2794 ret = rmw_xireg_cd(env, csrno, isel, val, new_val, wr_mask); 2795 } else if (xiselect_ctr_range(csrno, isel)) { 2796 ret = rmw_xireg_ctr(env, csrno, isel, val, new_val, wr_mask); 2797 } else { 2798 /* 2799 * As per the specification, access to unimplented region is undefined 2800 * but recommendation is to raise illegal instruction exception. 2801 */ 2802 return RISCV_EXCP_ILLEGAL_INST; 2803 } 2804 2805 if (ret) { 2806 return (env->virt_enabled && virt) ? 2807 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2808 } 2809 2810 return RISCV_EXCP_NONE; 2811 } 2812 2813 static int rmw_xiregi(CPURISCVState *env, int csrno, target_ulong *val, 2814 target_ulong new_val, target_ulong wr_mask) 2815 { 2816 int ret = -EINVAL; 2817 target_ulong isel; 2818 2819 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2820 if (ret != RISCV_EXCP_NONE) { 2821 return ret; 2822 } 2823 2824 /* Translate CSR number for VS-mode */ 2825 csrno = csrind_xlate_vs_csrno(env, csrno); 2826 2827 if (CSR_MIREG <= csrno && csrno <= CSR_MIREG6 && 2828 csrno != CSR_MIREG4 - 1) { 2829 isel = env->miselect; 2830 } else if (CSR_SIREG <= csrno && csrno <= CSR_SIREG6 && 2831 csrno != CSR_SIREG4 - 1) { 2832 isel = env->siselect; 2833 } else if (CSR_VSIREG <= csrno && csrno <= CSR_VSIREG6 && 2834 csrno != CSR_VSIREG4 - 1) { 2835 isel = env->vsiselect; 2836 } else { 2837 return RISCV_EXCP_ILLEGAL_INST; 2838 } 2839 2840 return rmw_xireg_csrind(env, csrno, isel, val, new_val, wr_mask); 2841 } 2842 2843 static RISCVException rmw_xireg(CPURISCVState *env, int csrno, 2844 target_ulong *val, target_ulong new_val, 2845 target_ulong wr_mask) 2846 { 2847 int ret = -EINVAL; 2848 target_ulong isel; 2849 2850 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_SVSLCT); 2851 if (ret != RISCV_EXCP_NONE) { 2852 return ret; 2853 } 2854 2855 /* Translate CSR number for VS-mode */ 2856 csrno = csrind_xlate_vs_csrno(env, csrno); 2857 2858 /* Decode register details from CSR number */ 2859 switch (csrno) { 2860 case CSR_MIREG: 2861 isel = env->miselect; 2862 break; 2863 case CSR_SIREG: 2864 isel = env->siselect; 2865 break; 2866 case CSR_VSIREG: 2867 isel = env->vsiselect; 2868 break; 2869 default: 2870 goto done; 2871 }; 2872 2873 /* 2874 * Use the xiselect range to determine actual op on xireg. 2875 * 2876 * Since we only checked the existence of AIA or Indirect Access in the 2877 * predicate, we should check the existence of the exact extension when 2878 * we get to a specific range and return illegal instruction exception even 2879 * in VS-mode. 2880 */ 2881 if (xiselect_aia_range(isel)) { 2882 return rmw_xireg_aia(env, csrno, isel, val, new_val, wr_mask); 2883 } else if (riscv_cpu_cfg(env)->ext_smcsrind || 2884 riscv_cpu_cfg(env)->ext_sscsrind) { 2885 return rmw_xireg_csrind(env, csrno, isel, val, new_val, wr_mask); 2886 } 2887 2888 done: 2889 return RISCV_EXCP_ILLEGAL_INST; 2890 } 2891 2892 static RISCVException rmw_xtopei(CPURISCVState *env, int csrno, 2893 target_ulong *val, target_ulong new_val, 2894 target_ulong wr_mask) 2895 { 2896 bool virt; 2897 int ret = -EINVAL; 2898 target_ulong priv, vgein; 2899 2900 /* Translate CSR number for VS-mode */ 2901 csrno = aia_xlate_vs_csrno(env, csrno); 2902 2903 /* Decode register details from CSR number */ 2904 virt = false; 2905 switch (csrno) { 2906 case CSR_MTOPEI: 2907 priv = PRV_M; 2908 break; 2909 case CSR_STOPEI: 2910 if (env->mvien & MIP_SEIP && env->priv == PRV_S) { 2911 goto done; 2912 } 2913 priv = PRV_S; 2914 break; 2915 case CSR_VSTOPEI: 2916 priv = PRV_S; 2917 virt = true; 2918 break; 2919 default: 2920 goto done; 2921 }; 2922 2923 /* IMSIC CSRs only available when machine implements IMSIC. */ 2924 if (!env->aia_ireg_rmw_fn[priv]) { 2925 goto done; 2926 } 2927 2928 /* Find the selected guest interrupt file */ 2929 vgein = (virt) ? get_field(env->hstatus, HSTATUS_VGEIN) : 0; 2930 2931 /* Selected guest interrupt file should be valid */ 2932 if (virt && (!vgein || env->geilen < vgein)) { 2933 goto done; 2934 } 2935 2936 /* Call machine specific IMSIC register emulation for TOPEI */ 2937 ret = env->aia_ireg_rmw_fn[priv](env->aia_ireg_rmw_fn_arg[priv], 2938 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, priv, virt, vgein, 2939 riscv_cpu_mxl_bits(env)), 2940 val, new_val, wr_mask); 2941 2942 done: 2943 if (ret) { 2944 return (env->virt_enabled && virt) ? 2945 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 2946 } 2947 return RISCV_EXCP_NONE; 2948 } 2949 2950 static RISCVException read_mtvec(CPURISCVState *env, int csrno, 2951 target_ulong *val) 2952 { 2953 *val = env->mtvec; 2954 return RISCV_EXCP_NONE; 2955 } 2956 2957 static RISCVException write_mtvec(CPURISCVState *env, int csrno, 2958 target_ulong val) 2959 { 2960 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 2961 if ((val & 3) < 2) { 2962 env->mtvec = val; 2963 } else { 2964 qemu_log_mask(LOG_UNIMP, "CSR_MTVEC: reserved mode not supported\n"); 2965 } 2966 return RISCV_EXCP_NONE; 2967 } 2968 2969 static RISCVException read_mcountinhibit(CPURISCVState *env, int csrno, 2970 target_ulong *val) 2971 { 2972 *val = env->mcountinhibit; 2973 return RISCV_EXCP_NONE; 2974 } 2975 2976 static RISCVException write_mcountinhibit(CPURISCVState *env, int csrno, 2977 target_ulong val) 2978 { 2979 int cidx; 2980 PMUCTRState *counter; 2981 RISCVCPU *cpu = env_archcpu(env); 2982 uint32_t present_ctrs = cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_IR; 2983 target_ulong updated_ctrs = (env->mcountinhibit ^ val) & present_ctrs; 2984 uint64_t mhpmctr_val, prev_count, curr_count; 2985 2986 /* WARL register - disable unavailable counters; TM bit is always 0 */ 2987 env->mcountinhibit = val & present_ctrs; 2988 2989 /* Check if any other counter is also monitoring cycles/instructions */ 2990 for (cidx = 0; cidx < RV_MAX_MHPMCOUNTERS; cidx++) { 2991 if (!(updated_ctrs & BIT(cidx)) || 2992 (!riscv_pmu_ctr_monitor_cycles(env, cidx) && 2993 !riscv_pmu_ctr_monitor_instructions(env, cidx))) { 2994 continue; 2995 } 2996 2997 counter = &env->pmu_ctrs[cidx]; 2998 2999 if (!get_field(env->mcountinhibit, BIT(cidx))) { 3000 counter->mhpmcounter_prev = 3001 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 3002 if (riscv_cpu_mxl(env) == MXL_RV32) { 3003 counter->mhpmcounterh_prev = 3004 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 3005 } 3006 3007 if (cidx > 2) { 3008 mhpmctr_val = counter->mhpmcounter_val; 3009 if (riscv_cpu_mxl(env) == MXL_RV32) { 3010 mhpmctr_val = mhpmctr_val | 3011 ((uint64_t)counter->mhpmcounterh_val << 32); 3012 } 3013 riscv_pmu_setup_timer(env, mhpmctr_val, cidx); 3014 } 3015 } else { 3016 curr_count = riscv_pmu_ctr_get_fixed_counters_val(env, cidx, false); 3017 3018 mhpmctr_val = counter->mhpmcounter_val; 3019 prev_count = counter->mhpmcounter_prev; 3020 if (riscv_cpu_mxl(env) == MXL_RV32) { 3021 uint64_t tmp = 3022 riscv_pmu_ctr_get_fixed_counters_val(env, cidx, true); 3023 3024 curr_count = curr_count | (tmp << 32); 3025 mhpmctr_val = mhpmctr_val | 3026 ((uint64_t)counter->mhpmcounterh_val << 32); 3027 prev_count = prev_count | 3028 ((uint64_t)counter->mhpmcounterh_prev << 32); 3029 } 3030 3031 /* Adjust the counter for later reads. */ 3032 mhpmctr_val = curr_count - prev_count + mhpmctr_val; 3033 counter->mhpmcounter_val = mhpmctr_val; 3034 if (riscv_cpu_mxl(env) == MXL_RV32) { 3035 counter->mhpmcounterh_val = mhpmctr_val >> 32; 3036 } 3037 } 3038 } 3039 3040 return RISCV_EXCP_NONE; 3041 } 3042 3043 static RISCVException read_scountinhibit(CPURISCVState *env, int csrno, 3044 target_ulong *val) 3045 { 3046 /* S-mode can only access the bits delegated by M-mode */ 3047 *val = env->mcountinhibit & env->mcounteren; 3048 return RISCV_EXCP_NONE; 3049 } 3050 3051 static RISCVException write_scountinhibit(CPURISCVState *env, int csrno, 3052 target_ulong val) 3053 { 3054 write_mcountinhibit(env, csrno, val & env->mcounteren); 3055 return RISCV_EXCP_NONE; 3056 } 3057 3058 static RISCVException read_mcounteren(CPURISCVState *env, int csrno, 3059 target_ulong *val) 3060 { 3061 *val = env->mcounteren; 3062 return RISCV_EXCP_NONE; 3063 } 3064 3065 static RISCVException write_mcounteren(CPURISCVState *env, int csrno, 3066 target_ulong val) 3067 { 3068 RISCVCPU *cpu = env_archcpu(env); 3069 3070 /* WARL register - disable unavailable counters */ 3071 env->mcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 3072 COUNTEREN_IR); 3073 return RISCV_EXCP_NONE; 3074 } 3075 3076 /* Machine Trap Handling */ 3077 static RISCVException read_mscratch_i128(CPURISCVState *env, int csrno, 3078 Int128 *val) 3079 { 3080 *val = int128_make128(env->mscratch, env->mscratchh); 3081 return RISCV_EXCP_NONE; 3082 } 3083 3084 static RISCVException write_mscratch_i128(CPURISCVState *env, int csrno, 3085 Int128 val) 3086 { 3087 env->mscratch = int128_getlo(val); 3088 env->mscratchh = int128_gethi(val); 3089 return RISCV_EXCP_NONE; 3090 } 3091 3092 static RISCVException read_mscratch(CPURISCVState *env, int csrno, 3093 target_ulong *val) 3094 { 3095 *val = env->mscratch; 3096 return RISCV_EXCP_NONE; 3097 } 3098 3099 static RISCVException write_mscratch(CPURISCVState *env, int csrno, 3100 target_ulong val) 3101 { 3102 env->mscratch = val; 3103 return RISCV_EXCP_NONE; 3104 } 3105 3106 static RISCVException read_mepc(CPURISCVState *env, int csrno, 3107 target_ulong *val) 3108 { 3109 *val = env->mepc; 3110 return RISCV_EXCP_NONE; 3111 } 3112 3113 static RISCVException write_mepc(CPURISCVState *env, int csrno, 3114 target_ulong val) 3115 { 3116 env->mepc = val; 3117 return RISCV_EXCP_NONE; 3118 } 3119 3120 static RISCVException read_mcause(CPURISCVState *env, int csrno, 3121 target_ulong *val) 3122 { 3123 *val = env->mcause; 3124 return RISCV_EXCP_NONE; 3125 } 3126 3127 static RISCVException write_mcause(CPURISCVState *env, int csrno, 3128 target_ulong val) 3129 { 3130 env->mcause = val; 3131 return RISCV_EXCP_NONE; 3132 } 3133 3134 static RISCVException read_mtval(CPURISCVState *env, int csrno, 3135 target_ulong *val) 3136 { 3137 *val = env->mtval; 3138 return RISCV_EXCP_NONE; 3139 } 3140 3141 static RISCVException write_mtval(CPURISCVState *env, int csrno, 3142 target_ulong val) 3143 { 3144 env->mtval = val; 3145 return RISCV_EXCP_NONE; 3146 } 3147 3148 /* Execution environment configuration setup */ 3149 static RISCVException read_menvcfg(CPURISCVState *env, int csrno, 3150 target_ulong *val) 3151 { 3152 *val = env->menvcfg; 3153 return RISCV_EXCP_NONE; 3154 } 3155 3156 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 3157 target_ulong val); 3158 static RISCVException write_menvcfg(CPURISCVState *env, int csrno, 3159 target_ulong val) 3160 { 3161 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 3162 uint64_t mask = MENVCFG_FIOM | MENVCFG_CBIE | MENVCFG_CBCFE | 3163 MENVCFG_CBZE | MENVCFG_CDE; 3164 3165 if (riscv_cpu_mxl(env) == MXL_RV64) { 3166 mask |= (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 3167 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 3168 (cfg->ext_smcdeleg ? MENVCFG_CDE : 0) | 3169 (cfg->ext_svadu ? MENVCFG_ADUE : 0) | 3170 (cfg->ext_ssdbltrp ? MENVCFG_DTE : 0); 3171 3172 if (env_archcpu(env)->cfg.ext_zicfilp) { 3173 mask |= MENVCFG_LPE; 3174 } 3175 3176 if (env_archcpu(env)->cfg.ext_zicfiss) { 3177 mask |= MENVCFG_SSE; 3178 } 3179 3180 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3181 if (env_archcpu(env)->cfg.ext_smnpm && 3182 get_field(val, MENVCFG_PMM) != PMM_FIELD_RESERVED) { 3183 mask |= MENVCFG_PMM; 3184 } 3185 3186 if ((val & MENVCFG_DTE) == 0) { 3187 env->mstatus &= ~MSTATUS_SDT; 3188 } 3189 } 3190 env->menvcfg = (env->menvcfg & ~mask) | (val & mask); 3191 write_henvcfg(env, CSR_HENVCFG, env->henvcfg); 3192 3193 return RISCV_EXCP_NONE; 3194 } 3195 3196 static RISCVException read_menvcfgh(CPURISCVState *env, int csrno, 3197 target_ulong *val) 3198 { 3199 *val = env->menvcfg >> 32; 3200 return RISCV_EXCP_NONE; 3201 } 3202 3203 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 3204 target_ulong val); 3205 static RISCVException write_menvcfgh(CPURISCVState *env, int csrno, 3206 target_ulong val) 3207 { 3208 const RISCVCPUConfig *cfg = riscv_cpu_cfg(env); 3209 uint64_t mask = (cfg->ext_svpbmt ? MENVCFG_PBMTE : 0) | 3210 (cfg->ext_sstc ? MENVCFG_STCE : 0) | 3211 (cfg->ext_svadu ? MENVCFG_ADUE : 0) | 3212 (cfg->ext_smcdeleg ? MENVCFG_CDE : 0) | 3213 (cfg->ext_ssdbltrp ? MENVCFG_DTE : 0); 3214 uint64_t valh = (uint64_t)val << 32; 3215 3216 if ((valh & MENVCFG_DTE) == 0) { 3217 env->mstatus &= ~MSTATUS_SDT; 3218 } 3219 3220 env->menvcfg = (env->menvcfg & ~mask) | (valh & mask); 3221 write_henvcfgh(env, CSR_HENVCFGH, env->henvcfg >> 32); 3222 3223 return RISCV_EXCP_NONE; 3224 } 3225 3226 static RISCVException read_senvcfg(CPURISCVState *env, int csrno, 3227 target_ulong *val) 3228 { 3229 RISCVException ret; 3230 3231 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3232 if (ret != RISCV_EXCP_NONE) { 3233 return ret; 3234 } 3235 3236 *val = env->senvcfg; 3237 return RISCV_EXCP_NONE; 3238 } 3239 3240 static RISCVException write_senvcfg(CPURISCVState *env, int csrno, 3241 target_ulong val) 3242 { 3243 uint64_t mask = SENVCFG_FIOM | SENVCFG_CBIE | SENVCFG_CBCFE | SENVCFG_CBZE; 3244 RISCVException ret; 3245 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3246 if (env_archcpu(env)->cfg.ext_ssnpm && 3247 riscv_cpu_mxl(env) == MXL_RV64 && 3248 get_field(val, SENVCFG_PMM) != PMM_FIELD_RESERVED) { 3249 mask |= SENVCFG_PMM; 3250 } 3251 3252 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3253 if (ret != RISCV_EXCP_NONE) { 3254 return ret; 3255 } 3256 3257 if (env_archcpu(env)->cfg.ext_zicfilp) { 3258 mask |= SENVCFG_LPE; 3259 } 3260 3261 /* Higher mode SSE must be ON for next-less mode SSE to be ON */ 3262 if (env_archcpu(env)->cfg.ext_zicfiss && 3263 get_field(env->menvcfg, MENVCFG_SSE) && 3264 (env->virt_enabled ? get_field(env->henvcfg, HENVCFG_SSE) : true)) { 3265 mask |= SENVCFG_SSE; 3266 } 3267 3268 if (env_archcpu(env)->cfg.ext_svukte) { 3269 mask |= SENVCFG_UKTE; 3270 } 3271 3272 env->senvcfg = (env->senvcfg & ~mask) | (val & mask); 3273 return RISCV_EXCP_NONE; 3274 } 3275 3276 static RISCVException read_henvcfg(CPURISCVState *env, int csrno, 3277 target_ulong *val) 3278 { 3279 RISCVException ret; 3280 3281 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3282 if (ret != RISCV_EXCP_NONE) { 3283 return ret; 3284 } 3285 3286 /* 3287 * henvcfg.pbmte is read_only 0 when menvcfg.pbmte = 0 3288 * henvcfg.stce is read_only 0 when menvcfg.stce = 0 3289 * henvcfg.adue is read_only 0 when menvcfg.adue = 0 3290 * henvcfg.dte is read_only 0 when menvcfg.dte = 0 3291 */ 3292 *val = env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3293 HENVCFG_DTE) | env->menvcfg); 3294 return RISCV_EXCP_NONE; 3295 } 3296 3297 static RISCVException write_henvcfg(CPURISCVState *env, int csrno, 3298 target_ulong val) 3299 { 3300 uint64_t mask = HENVCFG_FIOM | HENVCFG_CBIE | HENVCFG_CBCFE | HENVCFG_CBZE; 3301 RISCVException ret; 3302 3303 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3304 if (ret != RISCV_EXCP_NONE) { 3305 return ret; 3306 } 3307 3308 if (riscv_cpu_mxl(env) == MXL_RV64) { 3309 mask |= env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3310 HENVCFG_DTE); 3311 3312 if (env_archcpu(env)->cfg.ext_zicfilp) { 3313 mask |= HENVCFG_LPE; 3314 } 3315 3316 /* H can light up SSE for VS only if HS had it from menvcfg */ 3317 if (env_archcpu(env)->cfg.ext_zicfiss && 3318 get_field(env->menvcfg, MENVCFG_SSE)) { 3319 mask |= HENVCFG_SSE; 3320 } 3321 3322 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 3323 if (env_archcpu(env)->cfg.ext_ssnpm && 3324 get_field(val, HENVCFG_PMM) != PMM_FIELD_RESERVED) { 3325 mask |= HENVCFG_PMM; 3326 } 3327 } 3328 3329 env->henvcfg = val & mask; 3330 if ((env->henvcfg & HENVCFG_DTE) == 0) { 3331 env->vsstatus &= ~MSTATUS_SDT; 3332 } 3333 3334 return RISCV_EXCP_NONE; 3335 } 3336 3337 static RISCVException read_henvcfgh(CPURISCVState *env, int csrno, 3338 target_ulong *val) 3339 { 3340 RISCVException ret; 3341 3342 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3343 if (ret != RISCV_EXCP_NONE) { 3344 return ret; 3345 } 3346 3347 *val = (env->henvcfg & (~(HENVCFG_PBMTE | HENVCFG_STCE | HENVCFG_ADUE | 3348 HENVCFG_DTE) | env->menvcfg)) >> 32; 3349 return RISCV_EXCP_NONE; 3350 } 3351 3352 static RISCVException write_henvcfgh(CPURISCVState *env, int csrno, 3353 target_ulong val) 3354 { 3355 uint64_t mask = env->menvcfg & (HENVCFG_PBMTE | HENVCFG_STCE | 3356 HENVCFG_ADUE | HENVCFG_DTE); 3357 uint64_t valh = (uint64_t)val << 32; 3358 RISCVException ret; 3359 3360 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_HSENVCFG); 3361 if (ret != RISCV_EXCP_NONE) { 3362 return ret; 3363 } 3364 env->henvcfg = (env->henvcfg & 0xFFFFFFFF) | (valh & mask); 3365 if ((env->henvcfg & HENVCFG_DTE) == 0) { 3366 env->vsstatus &= ~MSTATUS_SDT; 3367 } 3368 return RISCV_EXCP_NONE; 3369 } 3370 3371 static RISCVException read_mstateen(CPURISCVState *env, int csrno, 3372 target_ulong *val) 3373 { 3374 *val = env->mstateen[csrno - CSR_MSTATEEN0]; 3375 3376 return RISCV_EXCP_NONE; 3377 } 3378 3379 static RISCVException write_mstateen(CPURISCVState *env, int csrno, 3380 uint64_t wr_mask, target_ulong new_val) 3381 { 3382 uint64_t *reg; 3383 3384 reg = &env->mstateen[csrno - CSR_MSTATEEN0]; 3385 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3386 3387 return RISCV_EXCP_NONE; 3388 } 3389 3390 static RISCVException write_mstateen0(CPURISCVState *env, int csrno, 3391 target_ulong new_val) 3392 { 3393 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3394 if (!riscv_has_ext(env, RVF)) { 3395 wr_mask |= SMSTATEEN0_FCSR; 3396 } 3397 3398 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 3399 wr_mask |= SMSTATEEN0_P1P13; 3400 } 3401 3402 if (riscv_cpu_cfg(env)->ext_smaia || riscv_cpu_cfg(env)->ext_smcsrind) { 3403 wr_mask |= SMSTATEEN0_SVSLCT; 3404 } 3405 3406 /* 3407 * As per the AIA specification, SMSTATEEN0_IMSIC is valid only if IMSIC is 3408 * implemented. However, that information is with MachineState and we can't 3409 * figure that out in csr.c. Just enable if Smaia is available. 3410 */ 3411 if (riscv_cpu_cfg(env)->ext_smaia) { 3412 wr_mask |= (SMSTATEEN0_AIA | SMSTATEEN0_IMSIC); 3413 } 3414 3415 if (riscv_cpu_cfg(env)->ext_ssctr) { 3416 wr_mask |= SMSTATEEN0_CTR; 3417 } 3418 3419 return write_mstateen(env, csrno, wr_mask, new_val); 3420 } 3421 3422 static RISCVException write_mstateen_1_3(CPURISCVState *env, int csrno, 3423 target_ulong new_val) 3424 { 3425 return write_mstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3426 } 3427 3428 static RISCVException read_mstateenh(CPURISCVState *env, int csrno, 3429 target_ulong *val) 3430 { 3431 *val = env->mstateen[csrno - CSR_MSTATEEN0H] >> 32; 3432 3433 return RISCV_EXCP_NONE; 3434 } 3435 3436 static RISCVException write_mstateenh(CPURISCVState *env, int csrno, 3437 uint64_t wr_mask, target_ulong new_val) 3438 { 3439 uint64_t *reg, val; 3440 3441 reg = &env->mstateen[csrno - CSR_MSTATEEN0H]; 3442 val = (uint64_t)new_val << 32; 3443 val |= *reg & 0xFFFFFFFF; 3444 *reg = (*reg & ~wr_mask) | (val & wr_mask); 3445 3446 return RISCV_EXCP_NONE; 3447 } 3448 3449 static RISCVException write_mstateen0h(CPURISCVState *env, int csrno, 3450 target_ulong new_val) 3451 { 3452 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3453 3454 if (env->priv_ver >= PRIV_VERSION_1_13_0) { 3455 wr_mask |= SMSTATEEN0_P1P13; 3456 } 3457 3458 if (riscv_cpu_cfg(env)->ext_ssctr) { 3459 wr_mask |= SMSTATEEN0_CTR; 3460 } 3461 3462 return write_mstateenh(env, csrno, wr_mask, new_val); 3463 } 3464 3465 static RISCVException write_mstateenh_1_3(CPURISCVState *env, int csrno, 3466 target_ulong new_val) 3467 { 3468 return write_mstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 3469 } 3470 3471 static RISCVException read_hstateen(CPURISCVState *env, int csrno, 3472 target_ulong *val) 3473 { 3474 int index = csrno - CSR_HSTATEEN0; 3475 3476 *val = env->hstateen[index] & env->mstateen[index]; 3477 3478 return RISCV_EXCP_NONE; 3479 } 3480 3481 static RISCVException write_hstateen(CPURISCVState *env, int csrno, 3482 uint64_t mask, target_ulong new_val) 3483 { 3484 int index = csrno - CSR_HSTATEEN0; 3485 uint64_t *reg, wr_mask; 3486 3487 reg = &env->hstateen[index]; 3488 wr_mask = env->mstateen[index] & mask; 3489 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3490 3491 return RISCV_EXCP_NONE; 3492 } 3493 3494 static RISCVException write_hstateen0(CPURISCVState *env, int csrno, 3495 target_ulong new_val) 3496 { 3497 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3498 3499 if (!riscv_has_ext(env, RVF)) { 3500 wr_mask |= SMSTATEEN0_FCSR; 3501 } 3502 3503 if (riscv_cpu_cfg(env)->ext_ssaia || riscv_cpu_cfg(env)->ext_sscsrind) { 3504 wr_mask |= SMSTATEEN0_SVSLCT; 3505 } 3506 3507 /* 3508 * As per the AIA specification, SMSTATEEN0_IMSIC is valid only if IMSIC is 3509 * implemented. However, that information is with MachineState and we can't 3510 * figure that out in csr.c. Just enable if Ssaia is available. 3511 */ 3512 if (riscv_cpu_cfg(env)->ext_ssaia) { 3513 wr_mask |= (SMSTATEEN0_AIA | SMSTATEEN0_IMSIC); 3514 } 3515 3516 if (riscv_cpu_cfg(env)->ext_ssctr) { 3517 wr_mask |= SMSTATEEN0_CTR; 3518 } 3519 3520 return write_hstateen(env, csrno, wr_mask, new_val); 3521 } 3522 3523 static RISCVException write_hstateen_1_3(CPURISCVState *env, int csrno, 3524 target_ulong new_val) 3525 { 3526 return write_hstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3527 } 3528 3529 static RISCVException read_hstateenh(CPURISCVState *env, int csrno, 3530 target_ulong *val) 3531 { 3532 int index = csrno - CSR_HSTATEEN0H; 3533 3534 *val = (env->hstateen[index] >> 32) & (env->mstateen[index] >> 32); 3535 3536 return RISCV_EXCP_NONE; 3537 } 3538 3539 static RISCVException write_hstateenh(CPURISCVState *env, int csrno, 3540 uint64_t mask, target_ulong new_val) 3541 { 3542 int index = csrno - CSR_HSTATEEN0H; 3543 uint64_t *reg, wr_mask, val; 3544 3545 reg = &env->hstateen[index]; 3546 val = (uint64_t)new_val << 32; 3547 val |= *reg & 0xFFFFFFFF; 3548 wr_mask = env->mstateen[index] & mask; 3549 *reg = (*reg & ~wr_mask) | (val & wr_mask); 3550 3551 return RISCV_EXCP_NONE; 3552 } 3553 3554 static RISCVException write_hstateen0h(CPURISCVState *env, int csrno, 3555 target_ulong new_val) 3556 { 3557 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3558 3559 if (riscv_cpu_cfg(env)->ext_ssctr) { 3560 wr_mask |= SMSTATEEN0_CTR; 3561 } 3562 3563 return write_hstateenh(env, csrno, wr_mask, new_val); 3564 } 3565 3566 static RISCVException write_hstateenh_1_3(CPURISCVState *env, int csrno, 3567 target_ulong new_val) 3568 { 3569 return write_hstateenh(env, csrno, SMSTATEEN_STATEEN, new_val); 3570 } 3571 3572 static RISCVException read_sstateen(CPURISCVState *env, int csrno, 3573 target_ulong *val) 3574 { 3575 bool virt = env->virt_enabled; 3576 int index = csrno - CSR_SSTATEEN0; 3577 3578 *val = env->sstateen[index] & env->mstateen[index]; 3579 if (virt) { 3580 *val &= env->hstateen[index]; 3581 } 3582 3583 return RISCV_EXCP_NONE; 3584 } 3585 3586 static RISCVException write_sstateen(CPURISCVState *env, int csrno, 3587 uint64_t mask, target_ulong new_val) 3588 { 3589 bool virt = env->virt_enabled; 3590 int index = csrno - CSR_SSTATEEN0; 3591 uint64_t wr_mask; 3592 uint64_t *reg; 3593 3594 wr_mask = env->mstateen[index] & mask; 3595 if (virt) { 3596 wr_mask &= env->hstateen[index]; 3597 } 3598 3599 reg = &env->sstateen[index]; 3600 *reg = (*reg & ~wr_mask) | (new_val & wr_mask); 3601 3602 return RISCV_EXCP_NONE; 3603 } 3604 3605 static RISCVException write_sstateen0(CPURISCVState *env, int csrno, 3606 target_ulong new_val) 3607 { 3608 uint64_t wr_mask = SMSTATEEN_STATEEN | SMSTATEEN0_HSENVCFG; 3609 3610 if (!riscv_has_ext(env, RVF)) { 3611 wr_mask |= SMSTATEEN0_FCSR; 3612 } 3613 3614 return write_sstateen(env, csrno, wr_mask, new_val); 3615 } 3616 3617 static RISCVException write_sstateen_1_3(CPURISCVState *env, int csrno, 3618 target_ulong new_val) 3619 { 3620 return write_sstateen(env, csrno, SMSTATEEN_STATEEN, new_val); 3621 } 3622 3623 static RISCVException rmw_mip64(CPURISCVState *env, int csrno, 3624 uint64_t *ret_val, 3625 uint64_t new_val, uint64_t wr_mask) 3626 { 3627 uint64_t old_mip, mask = wr_mask & delegable_ints; 3628 uint32_t gin; 3629 3630 if (mask & MIP_SEIP) { 3631 env->software_seip = new_val & MIP_SEIP; 3632 new_val |= env->external_seip * MIP_SEIP; 3633 } 3634 3635 if (riscv_cpu_cfg(env)->ext_sstc && (env->priv == PRV_M) && 3636 get_field(env->menvcfg, MENVCFG_STCE)) { 3637 /* sstc extension forbids STIP & VSTIP to be writeable in mip */ 3638 mask = mask & ~(MIP_STIP | MIP_VSTIP); 3639 } 3640 3641 if (mask) { 3642 old_mip = riscv_cpu_update_mip(env, mask, (new_val & mask)); 3643 } else { 3644 old_mip = env->mip; 3645 } 3646 3647 if (csrno != CSR_HVIP) { 3648 gin = get_field(env->hstatus, HSTATUS_VGEIN); 3649 old_mip |= (env->hgeip & ((target_ulong)1 << gin)) ? MIP_VSEIP : 0; 3650 old_mip |= env->vstime_irq ? MIP_VSTIP : 0; 3651 } 3652 3653 if (ret_val) { 3654 *ret_val = old_mip; 3655 } 3656 3657 return RISCV_EXCP_NONE; 3658 } 3659 3660 static RISCVException rmw_mip(CPURISCVState *env, int csrno, 3661 target_ulong *ret_val, 3662 target_ulong new_val, target_ulong wr_mask) 3663 { 3664 uint64_t rval; 3665 RISCVException ret; 3666 3667 ret = rmw_mip64(env, csrno, &rval, new_val, wr_mask); 3668 if (ret_val) { 3669 *ret_val = rval; 3670 } 3671 3672 return ret; 3673 } 3674 3675 static RISCVException rmw_miph(CPURISCVState *env, int csrno, 3676 target_ulong *ret_val, 3677 target_ulong new_val, target_ulong wr_mask) 3678 { 3679 uint64_t rval; 3680 RISCVException ret; 3681 3682 ret = rmw_mip64(env, csrno, &rval, 3683 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3684 if (ret_val) { 3685 *ret_val = rval >> 32; 3686 } 3687 3688 return ret; 3689 } 3690 3691 /* 3692 * The function is written for two use-cases: 3693 * 1- To access mvip csr as is for m-mode access. 3694 * 2- To access sip as a combination of mip and mvip for s-mode. 3695 * 3696 * Both report bits 1, 5, 9 and 13:63 but with the exception of 3697 * STIP being read-only zero in case of mvip when sstc extension 3698 * is present. 3699 * Also, sip needs to be read-only zero when both mideleg[i] and 3700 * mvien[i] are zero but mvip needs to be an alias of mip. 3701 */ 3702 static RISCVException rmw_mvip64(CPURISCVState *env, int csrno, 3703 uint64_t *ret_val, 3704 uint64_t new_val, uint64_t wr_mask) 3705 { 3706 RISCVCPU *cpu = env_archcpu(env); 3707 target_ulong ret_mip = 0; 3708 RISCVException ret; 3709 uint64_t old_mvip; 3710 3711 /* 3712 * mideleg[i] mvien[i] 3713 * 0 0 No delegation. mvip[i] is alias of mip[i]. 3714 * 0 1 mvip[i] becomes source of interrupt, mip bypassed. 3715 * 1 X mip[i] is source of interrupt and mvip[i] aliases 3716 * mip[i]. 3717 * 3718 * So alias condition would be for bits: 3719 * ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (mideleg | ~mvien)) | 3720 * (!sstc & MIP_STIP) 3721 * 3722 * Non-alias condition will be for bits: 3723 * (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & (~mideleg & mvien) 3724 * 3725 * alias_mask denotes the bits that come from mip nalias_mask denotes bits 3726 * that come from hvip. 3727 */ 3728 uint64_t alias_mask = ((S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3729 (env->mideleg | ~env->mvien)) | MIP_STIP; 3730 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3731 (~env->mideleg & env->mvien); 3732 uint64_t wr_mask_mvip; 3733 uint64_t wr_mask_mip; 3734 3735 /* 3736 * mideleg[i] mvien[i] 3737 * 0 0 sip[i] read-only zero. 3738 * 0 1 sip[i] alias of mvip[i]. 3739 * 1 X sip[i] alias of mip[i]. 3740 * 3741 * Both alias and non-alias mask remain same for sip except for bits 3742 * which are zero in both mideleg and mvien. 3743 */ 3744 if (csrno == CSR_SIP) { 3745 /* Remove bits that are zero in both mideleg and mvien. */ 3746 alias_mask &= (env->mideleg | env->mvien); 3747 nalias_mask &= (env->mideleg | env->mvien); 3748 } 3749 3750 /* 3751 * If sstc is present, mvip.STIP is not an alias of mip.STIP so clear 3752 * that our in mip returned value. 3753 */ 3754 if (cpu->cfg.ext_sstc && (env->priv == PRV_M) && 3755 get_field(env->menvcfg, MENVCFG_STCE)) { 3756 alias_mask &= ~MIP_STIP; 3757 } 3758 3759 wr_mask_mip = wr_mask & alias_mask & mvip_writable_mask; 3760 wr_mask_mvip = wr_mask & nalias_mask & mvip_writable_mask; 3761 3762 /* 3763 * For bits set in alias_mask, mvip needs to be alias of mip, so forward 3764 * this to rmw_mip. 3765 */ 3766 ret = rmw_mip(env, CSR_MIP, &ret_mip, new_val, wr_mask_mip); 3767 if (ret != RISCV_EXCP_NONE) { 3768 return ret; 3769 } 3770 3771 old_mvip = env->mvip; 3772 3773 /* 3774 * Write to mvip. Update only non-alias bits. Alias bits were updated 3775 * in mip in rmw_mip above. 3776 */ 3777 if (wr_mask_mvip) { 3778 env->mvip = (env->mvip & ~wr_mask_mvip) | (new_val & wr_mask_mvip); 3779 3780 /* 3781 * Given mvip is separate source from mip, we need to trigger interrupt 3782 * from here separately. Normally this happen from riscv_cpu_update_mip. 3783 */ 3784 riscv_cpu_interrupt(env); 3785 } 3786 3787 if (ret_val) { 3788 ret_mip &= alias_mask; 3789 old_mvip &= nalias_mask; 3790 3791 *ret_val = old_mvip | ret_mip; 3792 } 3793 3794 return RISCV_EXCP_NONE; 3795 } 3796 3797 static RISCVException rmw_mvip(CPURISCVState *env, int csrno, 3798 target_ulong *ret_val, 3799 target_ulong new_val, target_ulong wr_mask) 3800 { 3801 uint64_t rval; 3802 RISCVException ret; 3803 3804 ret = rmw_mvip64(env, csrno, &rval, new_val, wr_mask); 3805 if (ret_val) { 3806 *ret_val = rval; 3807 } 3808 3809 return ret; 3810 } 3811 3812 static RISCVException rmw_mviph(CPURISCVState *env, int csrno, 3813 target_ulong *ret_val, 3814 target_ulong new_val, target_ulong wr_mask) 3815 { 3816 uint64_t rval; 3817 RISCVException ret; 3818 3819 ret = rmw_mvip64(env, csrno, &rval, 3820 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3821 if (ret_val) { 3822 *ret_val = rval >> 32; 3823 } 3824 3825 return ret; 3826 } 3827 3828 /* Supervisor Trap Setup */ 3829 static RISCVException read_sstatus_i128(CPURISCVState *env, int csrno, 3830 Int128 *val) 3831 { 3832 uint64_t mask = sstatus_v1_10_mask; 3833 uint64_t sstatus = env->mstatus & mask; 3834 if (env->xl != MXL_RV32 || env->debugger) { 3835 mask |= SSTATUS64_UXL; 3836 } 3837 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3838 mask |= SSTATUS_SDT; 3839 } 3840 3841 if (env_archcpu(env)->cfg.ext_zicfilp) { 3842 mask |= SSTATUS_SPELP; 3843 } 3844 3845 *val = int128_make128(sstatus, add_status_sd(MXL_RV128, sstatus)); 3846 return RISCV_EXCP_NONE; 3847 } 3848 3849 static RISCVException read_sstatus(CPURISCVState *env, int csrno, 3850 target_ulong *val) 3851 { 3852 target_ulong mask = (sstatus_v1_10_mask); 3853 if (env->xl != MXL_RV32 || env->debugger) { 3854 mask |= SSTATUS64_UXL; 3855 } 3856 3857 if (env_archcpu(env)->cfg.ext_zicfilp) { 3858 mask |= SSTATUS_SPELP; 3859 } 3860 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3861 mask |= SSTATUS_SDT; 3862 } 3863 /* TODO: Use SXL not MXL. */ 3864 *val = add_status_sd(riscv_cpu_mxl(env), env->mstatus & mask); 3865 return RISCV_EXCP_NONE; 3866 } 3867 3868 static RISCVException write_sstatus(CPURISCVState *env, int csrno, 3869 target_ulong val) 3870 { 3871 target_ulong mask = (sstatus_v1_10_mask); 3872 3873 if (env->xl != MXL_RV32 || env->debugger) { 3874 if ((val & SSTATUS64_UXL) != 0) { 3875 mask |= SSTATUS64_UXL; 3876 } 3877 } 3878 3879 if (env_archcpu(env)->cfg.ext_zicfilp) { 3880 mask |= SSTATUS_SPELP; 3881 } 3882 if (riscv_cpu_cfg(env)->ext_ssdbltrp) { 3883 mask |= SSTATUS_SDT; 3884 } 3885 target_ulong newval = (env->mstatus & ~mask) | (val & mask); 3886 return write_mstatus(env, CSR_MSTATUS, newval); 3887 } 3888 3889 static RISCVException rmw_vsie64(CPURISCVState *env, int csrno, 3890 uint64_t *ret_val, 3891 uint64_t new_val, uint64_t wr_mask) 3892 { 3893 uint64_t alias_mask = (LOCAL_INTERRUPTS | VS_MODE_INTERRUPTS) & 3894 env->hideleg; 3895 uint64_t nalias_mask = LOCAL_INTERRUPTS & (~env->hideleg & env->hvien); 3896 uint64_t rval, rval_vs, vsbits; 3897 uint64_t wr_mask_vsie; 3898 uint64_t wr_mask_mie; 3899 RISCVException ret; 3900 3901 /* Bring VS-level bits to correct position */ 3902 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 3903 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 3904 new_val |= vsbits << 1; 3905 3906 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 3907 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 3908 wr_mask |= vsbits << 1; 3909 3910 wr_mask_mie = wr_mask & alias_mask; 3911 wr_mask_vsie = wr_mask & nalias_mask; 3912 3913 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask_mie); 3914 3915 rval_vs = env->vsie & nalias_mask; 3916 env->vsie = (env->vsie & ~wr_mask_vsie) | (new_val & wr_mask_vsie); 3917 3918 if (ret_val) { 3919 rval &= alias_mask; 3920 vsbits = rval & VS_MODE_INTERRUPTS; 3921 rval &= ~VS_MODE_INTERRUPTS; 3922 *ret_val = rval | (vsbits >> 1) | rval_vs; 3923 } 3924 3925 return ret; 3926 } 3927 3928 static RISCVException rmw_vsie(CPURISCVState *env, int csrno, 3929 target_ulong *ret_val, 3930 target_ulong new_val, target_ulong wr_mask) 3931 { 3932 uint64_t rval; 3933 RISCVException ret; 3934 3935 ret = rmw_vsie64(env, csrno, &rval, new_val, wr_mask); 3936 if (ret_val) { 3937 *ret_val = rval; 3938 } 3939 3940 return ret; 3941 } 3942 3943 static RISCVException rmw_vsieh(CPURISCVState *env, int csrno, 3944 target_ulong *ret_val, 3945 target_ulong new_val, target_ulong wr_mask) 3946 { 3947 uint64_t rval; 3948 RISCVException ret; 3949 3950 ret = rmw_vsie64(env, csrno, &rval, 3951 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 3952 if (ret_val) { 3953 *ret_val = rval >> 32; 3954 } 3955 3956 return ret; 3957 } 3958 3959 static RISCVException rmw_sie64(CPURISCVState *env, int csrno, 3960 uint64_t *ret_val, 3961 uint64_t new_val, uint64_t wr_mask) 3962 { 3963 uint64_t nalias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & 3964 (~env->mideleg & env->mvien); 3965 uint64_t alias_mask = (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS) & env->mideleg; 3966 uint64_t sie_mask = wr_mask & nalias_mask; 3967 RISCVException ret; 3968 3969 /* 3970 * mideleg[i] mvien[i] 3971 * 0 0 sie[i] read-only zero. 3972 * 0 1 sie[i] is a separate writable bit. 3973 * 1 X sie[i] alias of mie[i]. 3974 * 3975 * Both alias and non-alias mask remain same for sip except for bits 3976 * which are zero in both mideleg and mvien. 3977 */ 3978 if (env->virt_enabled) { 3979 if (env->hvictl & HVICTL_VTI) { 3980 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 3981 } 3982 ret = rmw_vsie64(env, CSR_VSIE, ret_val, new_val, wr_mask); 3983 if (ret_val) { 3984 *ret_val &= alias_mask; 3985 } 3986 } else { 3987 ret = rmw_mie64(env, csrno, ret_val, new_val, wr_mask & alias_mask); 3988 if (ret_val) { 3989 *ret_val &= alias_mask; 3990 *ret_val |= env->sie & nalias_mask; 3991 } 3992 3993 env->sie = (env->sie & ~sie_mask) | (new_val & sie_mask); 3994 } 3995 3996 return ret; 3997 } 3998 3999 static RISCVException rmw_sie(CPURISCVState *env, int csrno, 4000 target_ulong *ret_val, 4001 target_ulong new_val, target_ulong wr_mask) 4002 { 4003 uint64_t rval; 4004 RISCVException ret; 4005 4006 ret = rmw_sie64(env, csrno, &rval, new_val, wr_mask); 4007 if (ret == RISCV_EXCP_NONE && ret_val) { 4008 *ret_val = rval; 4009 } 4010 4011 return ret; 4012 } 4013 4014 static RISCVException rmw_sieh(CPURISCVState *env, int csrno, 4015 target_ulong *ret_val, 4016 target_ulong new_val, target_ulong wr_mask) 4017 { 4018 uint64_t rval; 4019 RISCVException ret; 4020 4021 ret = rmw_sie64(env, csrno, &rval, 4022 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4023 if (ret_val) { 4024 *ret_val = rval >> 32; 4025 } 4026 4027 return ret; 4028 } 4029 4030 static RISCVException read_stvec(CPURISCVState *env, int csrno, 4031 target_ulong *val) 4032 { 4033 *val = env->stvec; 4034 return RISCV_EXCP_NONE; 4035 } 4036 4037 static RISCVException write_stvec(CPURISCVState *env, int csrno, 4038 target_ulong val) 4039 { 4040 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 4041 if ((val & 3) < 2) { 4042 env->stvec = val; 4043 } else { 4044 qemu_log_mask(LOG_UNIMP, "CSR_STVEC: reserved mode not supported\n"); 4045 } 4046 return RISCV_EXCP_NONE; 4047 } 4048 4049 static RISCVException read_scounteren(CPURISCVState *env, int csrno, 4050 target_ulong *val) 4051 { 4052 *val = env->scounteren; 4053 return RISCV_EXCP_NONE; 4054 } 4055 4056 static RISCVException write_scounteren(CPURISCVState *env, int csrno, 4057 target_ulong val) 4058 { 4059 RISCVCPU *cpu = env_archcpu(env); 4060 4061 /* WARL register - disable unavailable counters */ 4062 env->scounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 4063 COUNTEREN_IR); 4064 return RISCV_EXCP_NONE; 4065 } 4066 4067 /* Supervisor Trap Handling */ 4068 static RISCVException read_sscratch_i128(CPURISCVState *env, int csrno, 4069 Int128 *val) 4070 { 4071 *val = int128_make128(env->sscratch, env->sscratchh); 4072 return RISCV_EXCP_NONE; 4073 } 4074 4075 static RISCVException write_sscratch_i128(CPURISCVState *env, int csrno, 4076 Int128 val) 4077 { 4078 env->sscratch = int128_getlo(val); 4079 env->sscratchh = int128_gethi(val); 4080 return RISCV_EXCP_NONE; 4081 } 4082 4083 static RISCVException read_sscratch(CPURISCVState *env, int csrno, 4084 target_ulong *val) 4085 { 4086 *val = env->sscratch; 4087 return RISCV_EXCP_NONE; 4088 } 4089 4090 static RISCVException write_sscratch(CPURISCVState *env, int csrno, 4091 target_ulong val) 4092 { 4093 env->sscratch = val; 4094 return RISCV_EXCP_NONE; 4095 } 4096 4097 static RISCVException read_sepc(CPURISCVState *env, int csrno, 4098 target_ulong *val) 4099 { 4100 *val = env->sepc; 4101 return RISCV_EXCP_NONE; 4102 } 4103 4104 static RISCVException write_sepc(CPURISCVState *env, int csrno, 4105 target_ulong val) 4106 { 4107 env->sepc = val; 4108 return RISCV_EXCP_NONE; 4109 } 4110 4111 static RISCVException read_scause(CPURISCVState *env, int csrno, 4112 target_ulong *val) 4113 { 4114 *val = env->scause; 4115 return RISCV_EXCP_NONE; 4116 } 4117 4118 static RISCVException write_scause(CPURISCVState *env, int csrno, 4119 target_ulong val) 4120 { 4121 env->scause = val; 4122 return RISCV_EXCP_NONE; 4123 } 4124 4125 static RISCVException read_stval(CPURISCVState *env, int csrno, 4126 target_ulong *val) 4127 { 4128 *val = env->stval; 4129 return RISCV_EXCP_NONE; 4130 } 4131 4132 static RISCVException write_stval(CPURISCVState *env, int csrno, 4133 target_ulong val) 4134 { 4135 env->stval = val; 4136 return RISCV_EXCP_NONE; 4137 } 4138 4139 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 4140 uint64_t *ret_val, 4141 uint64_t new_val, uint64_t wr_mask); 4142 4143 static RISCVException rmw_vsip64(CPURISCVState *env, int csrno, 4144 uint64_t *ret_val, 4145 uint64_t new_val, uint64_t wr_mask) 4146 { 4147 RISCVException ret; 4148 uint64_t rval, mask = env->hideleg & VS_MODE_INTERRUPTS; 4149 uint64_t vsbits; 4150 4151 /* Add virtualized bits into vsip mask. */ 4152 mask |= env->hvien & ~env->hideleg; 4153 4154 /* Bring VS-level bits to correct position */ 4155 vsbits = new_val & (VS_MODE_INTERRUPTS >> 1); 4156 new_val &= ~(VS_MODE_INTERRUPTS >> 1); 4157 new_val |= vsbits << 1; 4158 vsbits = wr_mask & (VS_MODE_INTERRUPTS >> 1); 4159 wr_mask &= ~(VS_MODE_INTERRUPTS >> 1); 4160 wr_mask |= vsbits << 1; 4161 4162 ret = rmw_hvip64(env, csrno, &rval, new_val, 4163 wr_mask & mask & vsip_writable_mask); 4164 if (ret_val) { 4165 rval &= mask; 4166 vsbits = rval & VS_MODE_INTERRUPTS; 4167 rval &= ~VS_MODE_INTERRUPTS; 4168 *ret_val = rval | (vsbits >> 1); 4169 } 4170 4171 return ret; 4172 } 4173 4174 static RISCVException rmw_vsip(CPURISCVState *env, int csrno, 4175 target_ulong *ret_val, 4176 target_ulong new_val, target_ulong wr_mask) 4177 { 4178 uint64_t rval; 4179 RISCVException ret; 4180 4181 ret = rmw_vsip64(env, csrno, &rval, new_val, wr_mask); 4182 if (ret_val) { 4183 *ret_val = rval; 4184 } 4185 4186 return ret; 4187 } 4188 4189 static RISCVException rmw_vsiph(CPURISCVState *env, int csrno, 4190 target_ulong *ret_val, 4191 target_ulong new_val, target_ulong wr_mask) 4192 { 4193 uint64_t rval; 4194 RISCVException ret; 4195 4196 ret = rmw_vsip64(env, csrno, &rval, 4197 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4198 if (ret_val) { 4199 *ret_val = rval >> 32; 4200 } 4201 4202 return ret; 4203 } 4204 4205 static RISCVException rmw_sip64(CPURISCVState *env, int csrno, 4206 uint64_t *ret_val, 4207 uint64_t new_val, uint64_t wr_mask) 4208 { 4209 RISCVException ret; 4210 uint64_t mask = (env->mideleg | env->mvien) & sip_writable_mask; 4211 4212 if (env->virt_enabled) { 4213 if (env->hvictl & HVICTL_VTI) { 4214 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 4215 } 4216 ret = rmw_vsip64(env, CSR_VSIP, ret_val, new_val, wr_mask); 4217 } else { 4218 ret = rmw_mvip64(env, csrno, ret_val, new_val, wr_mask & mask); 4219 } 4220 4221 if (ret_val) { 4222 *ret_val &= (env->mideleg | env->mvien) & 4223 (S_MODE_INTERRUPTS | LOCAL_INTERRUPTS); 4224 } 4225 4226 return ret; 4227 } 4228 4229 static RISCVException rmw_sip(CPURISCVState *env, int csrno, 4230 target_ulong *ret_val, 4231 target_ulong new_val, target_ulong wr_mask) 4232 { 4233 uint64_t rval; 4234 RISCVException ret; 4235 4236 ret = rmw_sip64(env, csrno, &rval, new_val, wr_mask); 4237 if (ret_val) { 4238 *ret_val = rval; 4239 } 4240 4241 return ret; 4242 } 4243 4244 static RISCVException rmw_siph(CPURISCVState *env, int csrno, 4245 target_ulong *ret_val, 4246 target_ulong new_val, target_ulong wr_mask) 4247 { 4248 uint64_t rval; 4249 RISCVException ret; 4250 4251 ret = rmw_sip64(env, csrno, &rval, 4252 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4253 if (ret_val) { 4254 *ret_val = rval >> 32; 4255 } 4256 4257 return ret; 4258 } 4259 4260 /* Supervisor Protection and Translation */ 4261 static RISCVException read_satp(CPURISCVState *env, int csrno, 4262 target_ulong *val) 4263 { 4264 if (!riscv_cpu_cfg(env)->mmu) { 4265 *val = 0; 4266 return RISCV_EXCP_NONE; 4267 } 4268 *val = env->satp; 4269 return RISCV_EXCP_NONE; 4270 } 4271 4272 static RISCVException write_satp(CPURISCVState *env, int csrno, 4273 target_ulong val) 4274 { 4275 if (!riscv_cpu_cfg(env)->mmu) { 4276 return RISCV_EXCP_NONE; 4277 } 4278 4279 env->satp = legalize_xatp(env, env->satp, val); 4280 return RISCV_EXCP_NONE; 4281 } 4282 4283 static RISCVException rmw_sctrdepth(CPURISCVState *env, int csrno, 4284 target_ulong *ret_val, 4285 target_ulong new_val, target_ulong wr_mask) 4286 { 4287 uint64_t mask = wr_mask & SCTRDEPTH_MASK; 4288 4289 if (ret_val) { 4290 *ret_val = env->sctrdepth; 4291 } 4292 4293 env->sctrdepth = (env->sctrdepth & ~mask) | (new_val & mask); 4294 4295 /* Correct depth. */ 4296 if (mask) { 4297 uint64_t depth = get_field(env->sctrdepth, SCTRDEPTH_MASK); 4298 4299 if (depth > SCTRDEPTH_MAX) { 4300 depth = SCTRDEPTH_MAX; 4301 env->sctrdepth = set_field(env->sctrdepth, SCTRDEPTH_MASK, depth); 4302 } 4303 4304 /* Update sctrstatus.WRPTR with a legal value */ 4305 depth = 16ULL << depth; 4306 env->sctrstatus = 4307 env->sctrstatus & (~SCTRSTATUS_WRPTR_MASK | (depth - 1)); 4308 } 4309 4310 return RISCV_EXCP_NONE; 4311 } 4312 4313 static RISCVException rmw_sctrstatus(CPURISCVState *env, int csrno, 4314 target_ulong *ret_val, 4315 target_ulong new_val, target_ulong wr_mask) 4316 { 4317 uint32_t depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK); 4318 uint32_t mask = wr_mask & SCTRSTATUS_MASK; 4319 4320 if (ret_val) { 4321 *ret_val = env->sctrstatus; 4322 } 4323 4324 env->sctrstatus = (env->sctrstatus & ~mask) | (new_val & mask); 4325 4326 /* Update sctrstatus.WRPTR with a legal value */ 4327 env->sctrstatus = env->sctrstatus & (~SCTRSTATUS_WRPTR_MASK | (depth - 1)); 4328 4329 return RISCV_EXCP_NONE; 4330 } 4331 4332 static RISCVException rmw_xctrctl(CPURISCVState *env, int csrno, 4333 target_ulong *ret_val, 4334 target_ulong new_val, target_ulong wr_mask) 4335 { 4336 uint64_t csr_mask, mask = wr_mask; 4337 uint64_t *ctl_ptr = &env->mctrctl; 4338 4339 if (csrno == CSR_MCTRCTL) { 4340 csr_mask = MCTRCTL_MASK; 4341 } else if (csrno == CSR_SCTRCTL && !env->virt_enabled) { 4342 csr_mask = SCTRCTL_MASK; 4343 } else { 4344 /* 4345 * This is for csrno == CSR_SCTRCTL and env->virt_enabled == true 4346 * or csrno == CSR_VSCTRCTL. 4347 */ 4348 csr_mask = VSCTRCTL_MASK; 4349 ctl_ptr = &env->vsctrctl; 4350 } 4351 4352 mask &= csr_mask; 4353 4354 if (ret_val) { 4355 *ret_val = *ctl_ptr & csr_mask; 4356 } 4357 4358 *ctl_ptr = (*ctl_ptr & ~mask) | (new_val & mask); 4359 4360 return RISCV_EXCP_NONE; 4361 } 4362 4363 static RISCVException read_vstopi(CPURISCVState *env, int csrno, 4364 target_ulong *val) 4365 { 4366 int irq, ret; 4367 target_ulong topei; 4368 uint64_t vseip, vsgein; 4369 uint32_t iid, iprio, hviid, hviprio, gein; 4370 uint32_t s, scount = 0, siid[VSTOPI_NUM_SRCS], siprio[VSTOPI_NUM_SRCS]; 4371 4372 gein = get_field(env->hstatus, HSTATUS_VGEIN); 4373 hviid = get_field(env->hvictl, HVICTL_IID); 4374 hviprio = get_field(env->hvictl, HVICTL_IPRIO); 4375 4376 if (gein) { 4377 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 4378 vseip = env->mie & (env->mip | vsgein) & MIP_VSEIP; 4379 if (gein <= env->geilen && vseip) { 4380 siid[scount] = IRQ_S_EXT; 4381 siprio[scount] = IPRIO_MMAXIPRIO + 1; 4382 if (env->aia_ireg_rmw_fn[PRV_S]) { 4383 /* 4384 * Call machine specific IMSIC register emulation for 4385 * reading TOPEI. 4386 */ 4387 ret = env->aia_ireg_rmw_fn[PRV_S]( 4388 env->aia_ireg_rmw_fn_arg[PRV_S], 4389 AIA_MAKE_IREG(ISELECT_IMSIC_TOPEI, PRV_S, true, gein, 4390 riscv_cpu_mxl_bits(env)), 4391 &topei, 0, 0); 4392 if (!ret && topei) { 4393 siprio[scount] = topei & IMSIC_TOPEI_IPRIO_MASK; 4394 } 4395 } 4396 scount++; 4397 } 4398 } else { 4399 if (hviid == IRQ_S_EXT && hviprio) { 4400 siid[scount] = IRQ_S_EXT; 4401 siprio[scount] = hviprio; 4402 scount++; 4403 } 4404 } 4405 4406 if (env->hvictl & HVICTL_VTI) { 4407 if (hviid != IRQ_S_EXT) { 4408 siid[scount] = hviid; 4409 siprio[scount] = hviprio; 4410 scount++; 4411 } 4412 } else { 4413 irq = riscv_cpu_vsirq_pending(env); 4414 if (irq != IRQ_S_EXT && 0 < irq && irq <= 63) { 4415 siid[scount] = irq; 4416 siprio[scount] = env->hviprio[irq]; 4417 scount++; 4418 } 4419 } 4420 4421 iid = 0; 4422 iprio = UINT_MAX; 4423 for (s = 0; s < scount; s++) { 4424 if (siprio[s] < iprio) { 4425 iid = siid[s]; 4426 iprio = siprio[s]; 4427 } 4428 } 4429 4430 if (iid) { 4431 if (env->hvictl & HVICTL_IPRIOM) { 4432 if (iprio > IPRIO_MMAXIPRIO) { 4433 iprio = IPRIO_MMAXIPRIO; 4434 } 4435 if (!iprio) { 4436 if (riscv_cpu_default_priority(iid) > IPRIO_DEFAULT_S) { 4437 iprio = IPRIO_MMAXIPRIO; 4438 } 4439 } 4440 } else { 4441 iprio = 1; 4442 } 4443 } else { 4444 iprio = 0; 4445 } 4446 4447 *val = (iid & TOPI_IID_MASK) << TOPI_IID_SHIFT; 4448 *val |= iprio; 4449 4450 return RISCV_EXCP_NONE; 4451 } 4452 4453 static RISCVException read_stopi(CPURISCVState *env, int csrno, 4454 target_ulong *val) 4455 { 4456 int irq; 4457 uint8_t iprio; 4458 4459 if (env->virt_enabled) { 4460 return read_vstopi(env, CSR_VSTOPI, val); 4461 } 4462 4463 irq = riscv_cpu_sirq_pending(env); 4464 if (irq <= 0 || irq > 63) { 4465 *val = 0; 4466 } else { 4467 iprio = env->siprio[irq]; 4468 if (!iprio) { 4469 if (riscv_cpu_default_priority(irq) > IPRIO_DEFAULT_S) { 4470 iprio = IPRIO_MMAXIPRIO; 4471 } 4472 } 4473 *val = (irq & TOPI_IID_MASK) << TOPI_IID_SHIFT; 4474 *val |= iprio; 4475 } 4476 4477 return RISCV_EXCP_NONE; 4478 } 4479 4480 /* Hypervisor Extensions */ 4481 static RISCVException read_hstatus(CPURISCVState *env, int csrno, 4482 target_ulong *val) 4483 { 4484 *val = env->hstatus; 4485 if (riscv_cpu_mxl(env) != MXL_RV32) { 4486 /* We only support 64-bit VSXL */ 4487 *val = set_field(*val, HSTATUS_VSXL, 2); 4488 } 4489 /* We only support little endian */ 4490 *val = set_field(*val, HSTATUS_VSBE, 0); 4491 return RISCV_EXCP_NONE; 4492 } 4493 4494 static RISCVException write_hstatus(CPURISCVState *env, int csrno, 4495 target_ulong val) 4496 { 4497 uint64_t mask = (target_ulong)-1; 4498 if (!env_archcpu(env)->cfg.ext_svukte) { 4499 mask &= ~HSTATUS_HUKTE; 4500 } 4501 /* Update PMM field only if the value is valid according to Zjpm v1.0 */ 4502 if (!env_archcpu(env)->cfg.ext_ssnpm || 4503 riscv_cpu_mxl(env) != MXL_RV64 || 4504 get_field(val, HSTATUS_HUPMM) == PMM_FIELD_RESERVED) { 4505 mask &= ~HSTATUS_HUPMM; 4506 } 4507 env->hstatus = (env->hstatus & ~mask) | (val & mask); 4508 4509 if (riscv_cpu_mxl(env) != MXL_RV32 && get_field(val, HSTATUS_VSXL) != 2) { 4510 qemu_log_mask(LOG_UNIMP, 4511 "QEMU does not support mixed HSXLEN options."); 4512 } 4513 if (get_field(val, HSTATUS_VSBE) != 0) { 4514 qemu_log_mask(LOG_UNIMP, "QEMU does not support big endian guests."); 4515 } 4516 return RISCV_EXCP_NONE; 4517 } 4518 4519 static RISCVException read_hedeleg(CPURISCVState *env, int csrno, 4520 target_ulong *val) 4521 { 4522 *val = env->hedeleg; 4523 return RISCV_EXCP_NONE; 4524 } 4525 4526 static RISCVException write_hedeleg(CPURISCVState *env, int csrno, 4527 target_ulong val) 4528 { 4529 env->hedeleg = val & vs_delegable_excps; 4530 return RISCV_EXCP_NONE; 4531 } 4532 4533 static RISCVException read_hedelegh(CPURISCVState *env, int csrno, 4534 target_ulong *val) 4535 { 4536 RISCVException ret; 4537 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 4538 if (ret != RISCV_EXCP_NONE) { 4539 return ret; 4540 } 4541 4542 /* Reserved, now read zero */ 4543 *val = 0; 4544 return RISCV_EXCP_NONE; 4545 } 4546 4547 static RISCVException write_hedelegh(CPURISCVState *env, int csrno, 4548 target_ulong val) 4549 { 4550 RISCVException ret; 4551 ret = smstateen_acc_ok(env, 0, SMSTATEEN0_P1P13); 4552 if (ret != RISCV_EXCP_NONE) { 4553 return ret; 4554 } 4555 4556 /* Reserved, now write ignore */ 4557 return RISCV_EXCP_NONE; 4558 } 4559 4560 static RISCVException rmw_hvien64(CPURISCVState *env, int csrno, 4561 uint64_t *ret_val, 4562 uint64_t new_val, uint64_t wr_mask) 4563 { 4564 uint64_t mask = wr_mask & hvien_writable_mask; 4565 4566 if (ret_val) { 4567 *ret_val = env->hvien; 4568 } 4569 4570 env->hvien = (env->hvien & ~mask) | (new_val & mask); 4571 4572 return RISCV_EXCP_NONE; 4573 } 4574 4575 static RISCVException rmw_hvien(CPURISCVState *env, int csrno, 4576 target_ulong *ret_val, 4577 target_ulong new_val, target_ulong wr_mask) 4578 { 4579 uint64_t rval; 4580 RISCVException ret; 4581 4582 ret = rmw_hvien64(env, csrno, &rval, new_val, wr_mask); 4583 if (ret_val) { 4584 *ret_val = rval; 4585 } 4586 4587 return ret; 4588 } 4589 4590 static RISCVException rmw_hvienh(CPURISCVState *env, int csrno, 4591 target_ulong *ret_val, 4592 target_ulong new_val, target_ulong wr_mask) 4593 { 4594 uint64_t rval; 4595 RISCVException ret; 4596 4597 ret = rmw_hvien64(env, csrno, &rval, 4598 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4599 if (ret_val) { 4600 *ret_val = rval >> 32; 4601 } 4602 4603 return ret; 4604 } 4605 4606 static RISCVException rmw_hideleg64(CPURISCVState *env, int csrno, 4607 uint64_t *ret_val, 4608 uint64_t new_val, uint64_t wr_mask) 4609 { 4610 uint64_t mask = wr_mask & vs_delegable_ints; 4611 4612 if (ret_val) { 4613 *ret_val = env->hideleg & vs_delegable_ints; 4614 } 4615 4616 env->hideleg = (env->hideleg & ~mask) | (new_val & mask); 4617 return RISCV_EXCP_NONE; 4618 } 4619 4620 static RISCVException rmw_hideleg(CPURISCVState *env, int csrno, 4621 target_ulong *ret_val, 4622 target_ulong new_val, target_ulong wr_mask) 4623 { 4624 uint64_t rval; 4625 RISCVException ret; 4626 4627 ret = rmw_hideleg64(env, csrno, &rval, new_val, wr_mask); 4628 if (ret_val) { 4629 *ret_val = rval; 4630 } 4631 4632 return ret; 4633 } 4634 4635 static RISCVException rmw_hidelegh(CPURISCVState *env, int csrno, 4636 target_ulong *ret_val, 4637 target_ulong new_val, target_ulong wr_mask) 4638 { 4639 uint64_t rval; 4640 RISCVException ret; 4641 4642 ret = rmw_hideleg64(env, csrno, &rval, 4643 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4644 if (ret_val) { 4645 *ret_val = rval >> 32; 4646 } 4647 4648 return ret; 4649 } 4650 4651 /* 4652 * The function is written for two use-cases: 4653 * 1- To access hvip csr as is for HS-mode access. 4654 * 2- To access vsip as a combination of hvip, and mip for vs-mode. 4655 * 4656 * Both report bits 2, 6, 10 and 13:63. 4657 * vsip needs to be read-only zero when both hideleg[i] and 4658 * hvien[i] are zero. 4659 */ 4660 static RISCVException rmw_hvip64(CPURISCVState *env, int csrno, 4661 uint64_t *ret_val, 4662 uint64_t new_val, uint64_t wr_mask) 4663 { 4664 RISCVException ret; 4665 uint64_t old_hvip; 4666 uint64_t ret_mip; 4667 4668 /* 4669 * For bits 10, 6 and 2, vsip[i] is an alias of hip[i]. These bits are 4670 * present in hip, hvip and mip. Where mip[i] is alias of hip[i] and hvip[i] 4671 * is OR'ed in hip[i] to inject virtual interrupts from hypervisor. These 4672 * bits are actually being maintained in mip so we read them from there. 4673 * This way we have a single source of truth and allows for easier 4674 * implementation. 4675 * 4676 * For bits 13:63 we have: 4677 * 4678 * hideleg[i] hvien[i] 4679 * 0 0 No delegation. vsip[i] readonly zero. 4680 * 0 1 vsip[i] is alias of hvip[i], sip bypassed. 4681 * 1 X vsip[i] is alias of sip[i], hvip bypassed. 4682 * 4683 * alias_mask denotes the bits that come from sip (mip here given we 4684 * maintain all bits there). nalias_mask denotes bits that come from 4685 * hvip. 4686 */ 4687 uint64_t alias_mask = (env->hideleg | ~env->hvien) | VS_MODE_INTERRUPTS; 4688 uint64_t nalias_mask = (~env->hideleg & env->hvien); 4689 uint64_t wr_mask_hvip; 4690 uint64_t wr_mask_mip; 4691 4692 /* 4693 * Both alias and non-alias mask remain same for vsip except: 4694 * 1- For VS* bits if they are zero in hideleg. 4695 * 2- For 13:63 bits if they are zero in both hideleg and hvien. 4696 */ 4697 if (csrno == CSR_VSIP) { 4698 /* zero-out VS* bits that are not delegated to VS mode. */ 4699 alias_mask &= (env->hideleg | ~VS_MODE_INTERRUPTS); 4700 4701 /* 4702 * zero-out 13:63 bits that are zero in both hideleg and hvien. 4703 * nalias_mask mask can not contain any VS* bits so only second 4704 * condition applies on it. 4705 */ 4706 nalias_mask &= (env->hideleg | env->hvien); 4707 alias_mask &= (env->hideleg | env->hvien); 4708 } 4709 4710 wr_mask_hvip = wr_mask & nalias_mask & hvip_writable_mask; 4711 wr_mask_mip = wr_mask & alias_mask & hvip_writable_mask; 4712 4713 /* Aliased bits, bits 10, 6, 2 need to come from mip. */ 4714 ret = rmw_mip64(env, csrno, &ret_mip, new_val, wr_mask_mip); 4715 if (ret != RISCV_EXCP_NONE) { 4716 return ret; 4717 } 4718 4719 old_hvip = env->hvip; 4720 4721 if (wr_mask_hvip) { 4722 env->hvip = (env->hvip & ~wr_mask_hvip) | (new_val & wr_mask_hvip); 4723 4724 /* 4725 * Given hvip is separate source from mip, we need to trigger interrupt 4726 * from here separately. Normally this happen from riscv_cpu_update_mip. 4727 */ 4728 riscv_cpu_interrupt(env); 4729 } 4730 4731 if (ret_val) { 4732 /* Only take VS* bits from mip. */ 4733 ret_mip &= alias_mask; 4734 4735 /* Take in non-delegated 13:63 bits from hvip. */ 4736 old_hvip &= nalias_mask; 4737 4738 *ret_val = ret_mip | old_hvip; 4739 } 4740 4741 return ret; 4742 } 4743 4744 static RISCVException rmw_hvip(CPURISCVState *env, int csrno, 4745 target_ulong *ret_val, 4746 target_ulong new_val, target_ulong wr_mask) 4747 { 4748 uint64_t rval; 4749 RISCVException ret; 4750 4751 ret = rmw_hvip64(env, csrno, &rval, new_val, wr_mask); 4752 if (ret_val) { 4753 *ret_val = rval; 4754 } 4755 4756 return ret; 4757 } 4758 4759 static RISCVException rmw_hviph(CPURISCVState *env, int csrno, 4760 target_ulong *ret_val, 4761 target_ulong new_val, target_ulong wr_mask) 4762 { 4763 uint64_t rval; 4764 RISCVException ret; 4765 4766 ret = rmw_hvip64(env, csrno, &rval, 4767 ((uint64_t)new_val) << 32, ((uint64_t)wr_mask) << 32); 4768 if (ret_val) { 4769 *ret_val = rval >> 32; 4770 } 4771 4772 return ret; 4773 } 4774 4775 static RISCVException rmw_hip(CPURISCVState *env, int csrno, 4776 target_ulong *ret_value, 4777 target_ulong new_value, target_ulong write_mask) 4778 { 4779 int ret = rmw_mip(env, csrno, ret_value, new_value, 4780 write_mask & hip_writable_mask); 4781 4782 if (ret_value) { 4783 *ret_value &= HS_MODE_INTERRUPTS; 4784 } 4785 return ret; 4786 } 4787 4788 static RISCVException rmw_hie(CPURISCVState *env, int csrno, 4789 target_ulong *ret_val, 4790 target_ulong new_val, target_ulong wr_mask) 4791 { 4792 uint64_t rval; 4793 RISCVException ret; 4794 4795 ret = rmw_mie64(env, csrno, &rval, new_val, wr_mask & HS_MODE_INTERRUPTS); 4796 if (ret_val) { 4797 *ret_val = rval & HS_MODE_INTERRUPTS; 4798 } 4799 4800 return ret; 4801 } 4802 4803 static RISCVException read_hcounteren(CPURISCVState *env, int csrno, 4804 target_ulong *val) 4805 { 4806 *val = env->hcounteren; 4807 return RISCV_EXCP_NONE; 4808 } 4809 4810 static RISCVException write_hcounteren(CPURISCVState *env, int csrno, 4811 target_ulong val) 4812 { 4813 RISCVCPU *cpu = env_archcpu(env); 4814 4815 /* WARL register - disable unavailable counters */ 4816 env->hcounteren = val & (cpu->pmu_avail_ctrs | COUNTEREN_CY | COUNTEREN_TM | 4817 COUNTEREN_IR); 4818 return RISCV_EXCP_NONE; 4819 } 4820 4821 static RISCVException read_hgeie(CPURISCVState *env, int csrno, 4822 target_ulong *val) 4823 { 4824 if (val) { 4825 *val = env->hgeie; 4826 } 4827 return RISCV_EXCP_NONE; 4828 } 4829 4830 static RISCVException write_hgeie(CPURISCVState *env, int csrno, 4831 target_ulong val) 4832 { 4833 /* Only GEILEN:1 bits implemented and BIT0 is never implemented */ 4834 val &= ((((target_ulong)1) << env->geilen) - 1) << 1; 4835 env->hgeie = val; 4836 /* Update mip.SGEIP bit */ 4837 riscv_cpu_update_mip(env, MIP_SGEIP, 4838 BOOL_TO_MASK(!!(env->hgeie & env->hgeip))); 4839 return RISCV_EXCP_NONE; 4840 } 4841 4842 static RISCVException read_htval(CPURISCVState *env, int csrno, 4843 target_ulong *val) 4844 { 4845 *val = env->htval; 4846 return RISCV_EXCP_NONE; 4847 } 4848 4849 static RISCVException write_htval(CPURISCVState *env, int csrno, 4850 target_ulong val) 4851 { 4852 env->htval = val; 4853 return RISCV_EXCP_NONE; 4854 } 4855 4856 static RISCVException read_htinst(CPURISCVState *env, int csrno, 4857 target_ulong *val) 4858 { 4859 *val = env->htinst; 4860 return RISCV_EXCP_NONE; 4861 } 4862 4863 static RISCVException write_htinst(CPURISCVState *env, int csrno, 4864 target_ulong val) 4865 { 4866 return RISCV_EXCP_NONE; 4867 } 4868 4869 static RISCVException read_hgeip(CPURISCVState *env, int csrno, 4870 target_ulong *val) 4871 { 4872 if (val) { 4873 *val = env->hgeip; 4874 } 4875 return RISCV_EXCP_NONE; 4876 } 4877 4878 static RISCVException read_hgatp(CPURISCVState *env, int csrno, 4879 target_ulong *val) 4880 { 4881 *val = env->hgatp; 4882 return RISCV_EXCP_NONE; 4883 } 4884 4885 static RISCVException write_hgatp(CPURISCVState *env, int csrno, 4886 target_ulong val) 4887 { 4888 env->hgatp = legalize_xatp(env, env->hgatp, val); 4889 return RISCV_EXCP_NONE; 4890 } 4891 4892 static RISCVException read_htimedelta(CPURISCVState *env, int csrno, 4893 target_ulong *val) 4894 { 4895 if (!env->rdtime_fn) { 4896 return RISCV_EXCP_ILLEGAL_INST; 4897 } 4898 4899 *val = env->htimedelta; 4900 return RISCV_EXCP_NONE; 4901 } 4902 4903 static RISCVException write_htimedelta(CPURISCVState *env, int csrno, 4904 target_ulong val) 4905 { 4906 if (!env->rdtime_fn) { 4907 return RISCV_EXCP_ILLEGAL_INST; 4908 } 4909 4910 if (riscv_cpu_mxl(env) == MXL_RV32) { 4911 env->htimedelta = deposit64(env->htimedelta, 0, 32, (uint64_t)val); 4912 } else { 4913 env->htimedelta = val; 4914 } 4915 4916 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 4917 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 4918 env->htimedelta, MIP_VSTIP); 4919 } 4920 4921 return RISCV_EXCP_NONE; 4922 } 4923 4924 static RISCVException read_htimedeltah(CPURISCVState *env, int csrno, 4925 target_ulong *val) 4926 { 4927 if (!env->rdtime_fn) { 4928 return RISCV_EXCP_ILLEGAL_INST; 4929 } 4930 4931 *val = env->htimedelta >> 32; 4932 return RISCV_EXCP_NONE; 4933 } 4934 4935 static RISCVException write_htimedeltah(CPURISCVState *env, int csrno, 4936 target_ulong val) 4937 { 4938 if (!env->rdtime_fn) { 4939 return RISCV_EXCP_ILLEGAL_INST; 4940 } 4941 4942 env->htimedelta = deposit64(env->htimedelta, 32, 32, (uint64_t)val); 4943 4944 if (riscv_cpu_cfg(env)->ext_sstc && env->rdtime_fn) { 4945 riscv_timer_write_timecmp(env, env->vstimer, env->vstimecmp, 4946 env->htimedelta, MIP_VSTIP); 4947 } 4948 4949 return RISCV_EXCP_NONE; 4950 } 4951 4952 static RISCVException read_hvictl(CPURISCVState *env, int csrno, 4953 target_ulong *val) 4954 { 4955 *val = env->hvictl; 4956 return RISCV_EXCP_NONE; 4957 } 4958 4959 static RISCVException write_hvictl(CPURISCVState *env, int csrno, 4960 target_ulong val) 4961 { 4962 env->hvictl = val & HVICTL_VALID_MASK; 4963 return RISCV_EXCP_NONE; 4964 } 4965 4966 static RISCVException read_hvipriox(CPURISCVState *env, int first_index, 4967 uint8_t *iprio, target_ulong *val) 4968 { 4969 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 4970 4971 /* First index has to be a multiple of number of irqs per register */ 4972 if (first_index % num_irqs) { 4973 return (env->virt_enabled) ? 4974 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 4975 } 4976 4977 /* Fill-up return value */ 4978 *val = 0; 4979 for (i = 0; i < num_irqs; i++) { 4980 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 4981 continue; 4982 } 4983 if (rdzero) { 4984 continue; 4985 } 4986 *val |= ((target_ulong)iprio[irq]) << (i * 8); 4987 } 4988 4989 return RISCV_EXCP_NONE; 4990 } 4991 4992 static RISCVException write_hvipriox(CPURISCVState *env, int first_index, 4993 uint8_t *iprio, target_ulong val) 4994 { 4995 int i, irq, rdzero, num_irqs = 4 * (riscv_cpu_mxl_bits(env) / 32); 4996 4997 /* First index has to be a multiple of number of irqs per register */ 4998 if (first_index % num_irqs) { 4999 return (env->virt_enabled) ? 5000 RISCV_EXCP_VIRT_INSTRUCTION_FAULT : RISCV_EXCP_ILLEGAL_INST; 5001 } 5002 5003 /* Fill-up priority array */ 5004 for (i = 0; i < num_irqs; i++) { 5005 if (riscv_cpu_hviprio_index2irq(first_index + i, &irq, &rdzero)) { 5006 continue; 5007 } 5008 if (rdzero) { 5009 iprio[irq] = 0; 5010 } else { 5011 iprio[irq] = (val >> (i * 8)) & 0xff; 5012 } 5013 } 5014 5015 return RISCV_EXCP_NONE; 5016 } 5017 5018 static RISCVException read_hviprio1(CPURISCVState *env, int csrno, 5019 target_ulong *val) 5020 { 5021 return read_hvipriox(env, 0, env->hviprio, val); 5022 } 5023 5024 static RISCVException write_hviprio1(CPURISCVState *env, int csrno, 5025 target_ulong val) 5026 { 5027 return write_hvipriox(env, 0, env->hviprio, val); 5028 } 5029 5030 static RISCVException read_hviprio1h(CPURISCVState *env, int csrno, 5031 target_ulong *val) 5032 { 5033 return read_hvipriox(env, 4, env->hviprio, val); 5034 } 5035 5036 static RISCVException write_hviprio1h(CPURISCVState *env, int csrno, 5037 target_ulong val) 5038 { 5039 return write_hvipriox(env, 4, env->hviprio, val); 5040 } 5041 5042 static RISCVException read_hviprio2(CPURISCVState *env, int csrno, 5043 target_ulong *val) 5044 { 5045 return read_hvipriox(env, 8, env->hviprio, val); 5046 } 5047 5048 static RISCVException write_hviprio2(CPURISCVState *env, int csrno, 5049 target_ulong val) 5050 { 5051 return write_hvipriox(env, 8, env->hviprio, val); 5052 } 5053 5054 static RISCVException read_hviprio2h(CPURISCVState *env, int csrno, 5055 target_ulong *val) 5056 { 5057 return read_hvipriox(env, 12, env->hviprio, val); 5058 } 5059 5060 static RISCVException write_hviprio2h(CPURISCVState *env, int csrno, 5061 target_ulong val) 5062 { 5063 return write_hvipriox(env, 12, env->hviprio, val); 5064 } 5065 5066 /* Virtual CSR Registers */ 5067 static RISCVException read_vsstatus(CPURISCVState *env, int csrno, 5068 target_ulong *val) 5069 { 5070 *val = env->vsstatus; 5071 return RISCV_EXCP_NONE; 5072 } 5073 5074 static RISCVException write_vsstatus(CPURISCVState *env, int csrno, 5075 target_ulong val) 5076 { 5077 uint64_t mask = (target_ulong)-1; 5078 if ((val & VSSTATUS64_UXL) == 0) { 5079 mask &= ~VSSTATUS64_UXL; 5080 } 5081 if ((env->henvcfg & HENVCFG_DTE)) { 5082 if ((val & SSTATUS_SDT) != 0) { 5083 val &= ~SSTATUS_SIE; 5084 } 5085 } else { 5086 val &= ~SSTATUS_SDT; 5087 } 5088 env->vsstatus = (env->vsstatus & ~mask) | (uint64_t)val; 5089 return RISCV_EXCP_NONE; 5090 } 5091 5092 static RISCVException read_vstvec(CPURISCVState *env, int csrno, 5093 target_ulong *val) 5094 { 5095 *val = env->vstvec; 5096 return RISCV_EXCP_NONE; 5097 } 5098 5099 static RISCVException write_vstvec(CPURISCVState *env, int csrno, 5100 target_ulong val) 5101 { 5102 /* bits [1:0] encode mode; 0 = direct, 1 = vectored, 2 >= reserved */ 5103 if ((val & 3) < 2) { 5104 env->vstvec = val; 5105 } else { 5106 qemu_log_mask(LOG_UNIMP, "CSR_VSTVEC: reserved mode not supported\n"); 5107 } 5108 return RISCV_EXCP_NONE; 5109 } 5110 5111 static RISCVException read_vsscratch(CPURISCVState *env, int csrno, 5112 target_ulong *val) 5113 { 5114 *val = env->vsscratch; 5115 return RISCV_EXCP_NONE; 5116 } 5117 5118 static RISCVException write_vsscratch(CPURISCVState *env, int csrno, 5119 target_ulong val) 5120 { 5121 env->vsscratch = val; 5122 return RISCV_EXCP_NONE; 5123 } 5124 5125 static RISCVException read_vsepc(CPURISCVState *env, int csrno, 5126 target_ulong *val) 5127 { 5128 *val = env->vsepc; 5129 return RISCV_EXCP_NONE; 5130 } 5131 5132 static RISCVException write_vsepc(CPURISCVState *env, int csrno, 5133 target_ulong val) 5134 { 5135 env->vsepc = val; 5136 return RISCV_EXCP_NONE; 5137 } 5138 5139 static RISCVException read_vscause(CPURISCVState *env, int csrno, 5140 target_ulong *val) 5141 { 5142 *val = env->vscause; 5143 return RISCV_EXCP_NONE; 5144 } 5145 5146 static RISCVException write_vscause(CPURISCVState *env, int csrno, 5147 target_ulong val) 5148 { 5149 env->vscause = val; 5150 return RISCV_EXCP_NONE; 5151 } 5152 5153 static RISCVException read_vstval(CPURISCVState *env, int csrno, 5154 target_ulong *val) 5155 { 5156 *val = env->vstval; 5157 return RISCV_EXCP_NONE; 5158 } 5159 5160 static RISCVException write_vstval(CPURISCVState *env, int csrno, 5161 target_ulong val) 5162 { 5163 env->vstval = val; 5164 return RISCV_EXCP_NONE; 5165 } 5166 5167 static RISCVException read_vsatp(CPURISCVState *env, int csrno, 5168 target_ulong *val) 5169 { 5170 *val = env->vsatp; 5171 return RISCV_EXCP_NONE; 5172 } 5173 5174 static RISCVException write_vsatp(CPURISCVState *env, int csrno, 5175 target_ulong val) 5176 { 5177 env->vsatp = legalize_xatp(env, env->vsatp, val); 5178 return RISCV_EXCP_NONE; 5179 } 5180 5181 static RISCVException read_mtval2(CPURISCVState *env, int csrno, 5182 target_ulong *val) 5183 { 5184 *val = env->mtval2; 5185 return RISCV_EXCP_NONE; 5186 } 5187 5188 static RISCVException write_mtval2(CPURISCVState *env, int csrno, 5189 target_ulong val) 5190 { 5191 env->mtval2 = val; 5192 return RISCV_EXCP_NONE; 5193 } 5194 5195 static RISCVException read_mtinst(CPURISCVState *env, int csrno, 5196 target_ulong *val) 5197 { 5198 *val = env->mtinst; 5199 return RISCV_EXCP_NONE; 5200 } 5201 5202 static RISCVException write_mtinst(CPURISCVState *env, int csrno, 5203 target_ulong val) 5204 { 5205 env->mtinst = val; 5206 return RISCV_EXCP_NONE; 5207 } 5208 5209 /* Physical Memory Protection */ 5210 static RISCVException read_mseccfg(CPURISCVState *env, int csrno, 5211 target_ulong *val) 5212 { 5213 *val = mseccfg_csr_read(env); 5214 return RISCV_EXCP_NONE; 5215 } 5216 5217 static RISCVException write_mseccfg(CPURISCVState *env, int csrno, 5218 target_ulong val) 5219 { 5220 mseccfg_csr_write(env, val); 5221 return RISCV_EXCP_NONE; 5222 } 5223 5224 static RISCVException read_pmpcfg(CPURISCVState *env, int csrno, 5225 target_ulong *val) 5226 { 5227 uint32_t reg_index = csrno - CSR_PMPCFG0; 5228 5229 *val = pmpcfg_csr_read(env, reg_index); 5230 return RISCV_EXCP_NONE; 5231 } 5232 5233 static RISCVException write_pmpcfg(CPURISCVState *env, int csrno, 5234 target_ulong val) 5235 { 5236 uint32_t reg_index = csrno - CSR_PMPCFG0; 5237 5238 pmpcfg_csr_write(env, reg_index, val); 5239 return RISCV_EXCP_NONE; 5240 } 5241 5242 static RISCVException read_pmpaddr(CPURISCVState *env, int csrno, 5243 target_ulong *val) 5244 { 5245 *val = pmpaddr_csr_read(env, csrno - CSR_PMPADDR0); 5246 return RISCV_EXCP_NONE; 5247 } 5248 5249 static RISCVException write_pmpaddr(CPURISCVState *env, int csrno, 5250 target_ulong val) 5251 { 5252 pmpaddr_csr_write(env, csrno - CSR_PMPADDR0, val); 5253 return RISCV_EXCP_NONE; 5254 } 5255 5256 static RISCVException read_tselect(CPURISCVState *env, int csrno, 5257 target_ulong *val) 5258 { 5259 *val = tselect_csr_read(env); 5260 return RISCV_EXCP_NONE; 5261 } 5262 5263 static RISCVException write_tselect(CPURISCVState *env, int csrno, 5264 target_ulong val) 5265 { 5266 tselect_csr_write(env, val); 5267 return RISCV_EXCP_NONE; 5268 } 5269 5270 static RISCVException read_tdata(CPURISCVState *env, int csrno, 5271 target_ulong *val) 5272 { 5273 /* return 0 in tdata1 to end the trigger enumeration */ 5274 if (env->trigger_cur >= RV_MAX_TRIGGERS && csrno == CSR_TDATA1) { 5275 *val = 0; 5276 return RISCV_EXCP_NONE; 5277 } 5278 5279 if (!tdata_available(env, csrno - CSR_TDATA1)) { 5280 return RISCV_EXCP_ILLEGAL_INST; 5281 } 5282 5283 *val = tdata_csr_read(env, csrno - CSR_TDATA1); 5284 return RISCV_EXCP_NONE; 5285 } 5286 5287 static RISCVException write_tdata(CPURISCVState *env, int csrno, 5288 target_ulong val) 5289 { 5290 if (!tdata_available(env, csrno - CSR_TDATA1)) { 5291 return RISCV_EXCP_ILLEGAL_INST; 5292 } 5293 5294 tdata_csr_write(env, csrno - CSR_TDATA1, val); 5295 return RISCV_EXCP_NONE; 5296 } 5297 5298 static RISCVException read_tinfo(CPURISCVState *env, int csrno, 5299 target_ulong *val) 5300 { 5301 *val = tinfo_csr_read(env); 5302 return RISCV_EXCP_NONE; 5303 } 5304 5305 static RISCVException read_mcontext(CPURISCVState *env, int csrno, 5306 target_ulong *val) 5307 { 5308 *val = env->mcontext; 5309 return RISCV_EXCP_NONE; 5310 } 5311 5312 static RISCVException write_mcontext(CPURISCVState *env, int csrno, 5313 target_ulong val) 5314 { 5315 bool rv32 = riscv_cpu_mxl(env) == MXL_RV32 ? true : false; 5316 int32_t mask; 5317 5318 if (riscv_has_ext(env, RVH)) { 5319 /* Spec suggest 7-bit for RV32 and 14-bit for RV64 w/ H extension */ 5320 mask = rv32 ? MCONTEXT32_HCONTEXT : MCONTEXT64_HCONTEXT; 5321 } else { 5322 /* Spec suggest 6-bit for RV32 and 13-bit for RV64 w/o H extension */ 5323 mask = rv32 ? MCONTEXT32 : MCONTEXT64; 5324 } 5325 5326 env->mcontext = val & mask; 5327 return RISCV_EXCP_NONE; 5328 } 5329 5330 static RISCVException read_mnscratch(CPURISCVState *env, int csrno, 5331 target_ulong *val) 5332 { 5333 *val = env->mnscratch; 5334 return RISCV_EXCP_NONE; 5335 } 5336 5337 static int write_mnscratch(CPURISCVState *env, int csrno, target_ulong val) 5338 { 5339 env->mnscratch = val; 5340 return RISCV_EXCP_NONE; 5341 } 5342 5343 static int read_mnepc(CPURISCVState *env, int csrno, target_ulong *val) 5344 { 5345 *val = env->mnepc; 5346 return RISCV_EXCP_NONE; 5347 } 5348 5349 static int write_mnepc(CPURISCVState *env, int csrno, target_ulong val) 5350 { 5351 env->mnepc = val; 5352 return RISCV_EXCP_NONE; 5353 } 5354 5355 static int read_mncause(CPURISCVState *env, int csrno, target_ulong *val) 5356 { 5357 *val = env->mncause; 5358 return RISCV_EXCP_NONE; 5359 } 5360 5361 static int write_mncause(CPURISCVState *env, int csrno, target_ulong val) 5362 { 5363 env->mncause = val; 5364 return RISCV_EXCP_NONE; 5365 } 5366 5367 static int read_mnstatus(CPURISCVState *env, int csrno, target_ulong *val) 5368 { 5369 *val = env->mnstatus; 5370 return RISCV_EXCP_NONE; 5371 } 5372 5373 static int write_mnstatus(CPURISCVState *env, int csrno, target_ulong val) 5374 { 5375 target_ulong mask = (MNSTATUS_NMIE | MNSTATUS_MNPP); 5376 5377 if (riscv_has_ext(env, RVH)) { 5378 /* Flush tlb on mnstatus fields that affect VM. */ 5379 if ((val ^ env->mnstatus) & MNSTATUS_MNPV) { 5380 tlb_flush(env_cpu(env)); 5381 } 5382 5383 mask |= MNSTATUS_MNPV; 5384 } 5385 5386 /* mnstatus.mnie can only be cleared by hardware. */ 5387 env->mnstatus = (env->mnstatus & MNSTATUS_NMIE) | (val & mask); 5388 return RISCV_EXCP_NONE; 5389 } 5390 5391 #endif 5392 5393 /* Crypto Extension */ 5394 target_ulong riscv_new_csr_seed(target_ulong new_value, 5395 target_ulong write_mask) 5396 { 5397 uint16_t random_v; 5398 Error *random_e = NULL; 5399 int random_r; 5400 target_ulong rval; 5401 5402 random_r = qemu_guest_getrandom(&random_v, 2, &random_e); 5403 if (unlikely(random_r < 0)) { 5404 /* 5405 * Failed, for unknown reasons in the crypto subsystem. 5406 * The best we can do is log the reason and return a 5407 * failure indication to the guest. There is no reason 5408 * we know to expect the failure to be transitory, so 5409 * indicate DEAD to avoid having the guest spin on WAIT. 5410 */ 5411 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5412 __func__, error_get_pretty(random_e)); 5413 error_free(random_e); 5414 rval = SEED_OPST_DEAD; 5415 } else { 5416 rval = random_v | SEED_OPST_ES16; 5417 } 5418 5419 return rval; 5420 } 5421 5422 static RISCVException rmw_seed(CPURISCVState *env, int csrno, 5423 target_ulong *ret_value, 5424 target_ulong new_value, 5425 target_ulong write_mask) 5426 { 5427 target_ulong rval; 5428 5429 rval = riscv_new_csr_seed(new_value, write_mask); 5430 5431 if (ret_value) { 5432 *ret_value = rval; 5433 } 5434 5435 return RISCV_EXCP_NONE; 5436 } 5437 5438 /* 5439 * riscv_csrrw - read and/or update control and status register 5440 * 5441 * csrr <-> riscv_csrrw(env, csrno, ret_value, 0, 0); 5442 * csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1); 5443 * csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value); 5444 * csrrc <-> riscv_csrrw(env, csrno, ret_value, 0, value); 5445 */ 5446 5447 static inline RISCVException riscv_csrrw_check(CPURISCVState *env, 5448 int csrno, 5449 bool write) 5450 { 5451 /* check privileges and return RISCV_EXCP_ILLEGAL_INST if check fails */ 5452 bool read_only = get_field(csrno, 0xC00) == 3; 5453 int csr_min_priv = csr_ops[csrno].min_priv_ver; 5454 5455 /* ensure the CSR extension is enabled */ 5456 if (!riscv_cpu_cfg(env)->ext_zicsr) { 5457 return RISCV_EXCP_ILLEGAL_INST; 5458 } 5459 5460 /* ensure CSR is implemented by checking predicate */ 5461 if (!csr_ops[csrno].predicate) { 5462 return RISCV_EXCP_ILLEGAL_INST; 5463 } 5464 5465 /* privileged spec version check */ 5466 if (env->priv_ver < csr_min_priv) { 5467 return RISCV_EXCP_ILLEGAL_INST; 5468 } 5469 5470 /* read / write check */ 5471 if (write && read_only) { 5472 return RISCV_EXCP_ILLEGAL_INST; 5473 } 5474 5475 /* 5476 * The predicate() not only does existence check but also does some 5477 * access control check which triggers for example virtual instruction 5478 * exception in some cases. When writing read-only CSRs in those cases 5479 * illegal instruction exception should be triggered instead of virtual 5480 * instruction exception. Hence this comes after the read / write check. 5481 */ 5482 RISCVException ret = csr_ops[csrno].predicate(env, csrno); 5483 if (ret != RISCV_EXCP_NONE) { 5484 return ret; 5485 } 5486 5487 #if !defined(CONFIG_USER_ONLY) 5488 int csr_priv, effective_priv = env->priv; 5489 5490 if (riscv_has_ext(env, RVH) && env->priv == PRV_S && 5491 !env->virt_enabled) { 5492 /* 5493 * We are in HS mode. Add 1 to the effective privilege level to 5494 * allow us to access the Hypervisor CSRs. 5495 */ 5496 effective_priv++; 5497 } 5498 5499 csr_priv = get_field(csrno, 0x300); 5500 if (!env->debugger && (effective_priv < csr_priv)) { 5501 if (csr_priv == (PRV_S + 1) && env->virt_enabled) { 5502 return RISCV_EXCP_VIRT_INSTRUCTION_FAULT; 5503 } 5504 return RISCV_EXCP_ILLEGAL_INST; 5505 } 5506 #endif 5507 return RISCV_EXCP_NONE; 5508 } 5509 5510 static RISCVException riscv_csrrw_do64(CPURISCVState *env, int csrno, 5511 target_ulong *ret_value, 5512 target_ulong new_value, 5513 target_ulong write_mask) 5514 { 5515 RISCVException ret; 5516 target_ulong old_value = 0; 5517 5518 /* execute combined read/write operation if it exists */ 5519 if (csr_ops[csrno].op) { 5520 return csr_ops[csrno].op(env, csrno, ret_value, new_value, write_mask); 5521 } 5522 5523 /* 5524 * ret_value == NULL means that rd=x0 and we're coming from helper_csrw() 5525 * and we can't throw side effects caused by CSR reads. 5526 */ 5527 if (ret_value) { 5528 /* if no accessor exists then return failure */ 5529 if (!csr_ops[csrno].read) { 5530 return RISCV_EXCP_ILLEGAL_INST; 5531 } 5532 /* read old value */ 5533 ret = csr_ops[csrno].read(env, csrno, &old_value); 5534 if (ret != RISCV_EXCP_NONE) { 5535 return ret; 5536 } 5537 } 5538 5539 /* write value if writable and write mask set, otherwise drop writes */ 5540 if (write_mask) { 5541 new_value = (old_value & ~write_mask) | (new_value & write_mask); 5542 if (csr_ops[csrno].write) { 5543 ret = csr_ops[csrno].write(env, csrno, new_value); 5544 if (ret != RISCV_EXCP_NONE) { 5545 return ret; 5546 } 5547 } 5548 } 5549 5550 /* return old value */ 5551 if (ret_value) { 5552 *ret_value = old_value; 5553 } 5554 5555 return RISCV_EXCP_NONE; 5556 } 5557 5558 RISCVException riscv_csrr(CPURISCVState *env, int csrno, 5559 target_ulong *ret_value) 5560 { 5561 RISCVException ret = riscv_csrrw_check(env, csrno, false); 5562 if (ret != RISCV_EXCP_NONE) { 5563 return ret; 5564 } 5565 5566 return riscv_csrrw_do64(env, csrno, ret_value, 0, 0); 5567 } 5568 5569 RISCVException riscv_csrrw(CPURISCVState *env, int csrno, 5570 target_ulong *ret_value, 5571 target_ulong new_value, target_ulong write_mask) 5572 { 5573 RISCVException ret = riscv_csrrw_check(env, csrno, true); 5574 if (ret != RISCV_EXCP_NONE) { 5575 return ret; 5576 } 5577 5578 return riscv_csrrw_do64(env, csrno, ret_value, new_value, write_mask); 5579 } 5580 5581 static RISCVException riscv_csrrw_do128(CPURISCVState *env, int csrno, 5582 Int128 *ret_value, 5583 Int128 new_value, 5584 Int128 write_mask) 5585 { 5586 RISCVException ret; 5587 Int128 old_value; 5588 5589 /* read old value */ 5590 ret = csr_ops[csrno].read128(env, csrno, &old_value); 5591 if (ret != RISCV_EXCP_NONE) { 5592 return ret; 5593 } 5594 5595 /* write value if writable and write mask set, otherwise drop writes */ 5596 if (int128_nz(write_mask)) { 5597 new_value = int128_or(int128_and(old_value, int128_not(write_mask)), 5598 int128_and(new_value, write_mask)); 5599 if (csr_ops[csrno].write128) { 5600 ret = csr_ops[csrno].write128(env, csrno, new_value); 5601 if (ret != RISCV_EXCP_NONE) { 5602 return ret; 5603 } 5604 } else if (csr_ops[csrno].write) { 5605 /* avoids having to write wrappers for all registers */ 5606 ret = csr_ops[csrno].write(env, csrno, int128_getlo(new_value)); 5607 if (ret != RISCV_EXCP_NONE) { 5608 return ret; 5609 } 5610 } 5611 } 5612 5613 /* return old value */ 5614 if (ret_value) { 5615 *ret_value = old_value; 5616 } 5617 5618 return RISCV_EXCP_NONE; 5619 } 5620 5621 RISCVException riscv_csrr_i128(CPURISCVState *env, int csrno, 5622 Int128 *ret_value) 5623 { 5624 RISCVException ret; 5625 5626 ret = riscv_csrrw_check(env, csrno, false); 5627 if (ret != RISCV_EXCP_NONE) { 5628 return ret; 5629 } 5630 5631 if (csr_ops[csrno].read128) { 5632 return riscv_csrrw_do128(env, csrno, ret_value, 5633 int128_zero(), int128_zero()); 5634 } 5635 5636 /* 5637 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 5638 * at all defined. 5639 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 5640 * significant), for those, this fallback is correctly handling the 5641 * accesses 5642 */ 5643 target_ulong old_value; 5644 ret = riscv_csrrw_do64(env, csrno, &old_value, 5645 (target_ulong)0, 5646 (target_ulong)0); 5647 if (ret == RISCV_EXCP_NONE && ret_value) { 5648 *ret_value = int128_make64(old_value); 5649 } 5650 return ret; 5651 } 5652 5653 RISCVException riscv_csrrw_i128(CPURISCVState *env, int csrno, 5654 Int128 *ret_value, 5655 Int128 new_value, Int128 write_mask) 5656 { 5657 RISCVException ret; 5658 5659 ret = riscv_csrrw_check(env, csrno, true); 5660 if (ret != RISCV_EXCP_NONE) { 5661 return ret; 5662 } 5663 5664 if (csr_ops[csrno].read128) { 5665 return riscv_csrrw_do128(env, csrno, ret_value, new_value, write_mask); 5666 } 5667 5668 /* 5669 * Fall back to 64-bit version for now, if the 128-bit alternative isn't 5670 * at all defined. 5671 * Note, some CSRs don't need to extend to MXLEN (64 upper bits non 5672 * significant), for those, this fallback is correctly handling the 5673 * accesses 5674 */ 5675 target_ulong old_value; 5676 ret = riscv_csrrw_do64(env, csrno, &old_value, 5677 int128_getlo(new_value), 5678 int128_getlo(write_mask)); 5679 if (ret == RISCV_EXCP_NONE && ret_value) { 5680 *ret_value = int128_make64(old_value); 5681 } 5682 return ret; 5683 } 5684 5685 /* 5686 * Debugger support. If not in user mode, set env->debugger before the 5687 * riscv_csrrw call and clear it after the call. 5688 */ 5689 RISCVException riscv_csrrw_debug(CPURISCVState *env, int csrno, 5690 target_ulong *ret_value, 5691 target_ulong new_value, 5692 target_ulong write_mask) 5693 { 5694 RISCVException ret; 5695 #if !defined(CONFIG_USER_ONLY) 5696 env->debugger = true; 5697 #endif 5698 if (!write_mask) { 5699 ret = riscv_csrr(env, csrno, ret_value); 5700 } else { 5701 ret = riscv_csrrw(env, csrno, ret_value, new_value, write_mask); 5702 } 5703 #if !defined(CONFIG_USER_ONLY) 5704 env->debugger = false; 5705 #endif 5706 return ret; 5707 } 5708 5709 static RISCVException read_jvt(CPURISCVState *env, int csrno, 5710 target_ulong *val) 5711 { 5712 *val = env->jvt; 5713 return RISCV_EXCP_NONE; 5714 } 5715 5716 static RISCVException write_jvt(CPURISCVState *env, int csrno, 5717 target_ulong val) 5718 { 5719 env->jvt = val; 5720 return RISCV_EXCP_NONE; 5721 } 5722 5723 /* 5724 * Control and Status Register function table 5725 * riscv_csr_operations::predicate() must be provided for an implemented CSR 5726 */ 5727 riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = { 5728 /* User Floating-Point CSRs */ 5729 [CSR_FFLAGS] = { "fflags", fs, read_fflags, write_fflags }, 5730 [CSR_FRM] = { "frm", fs, read_frm, write_frm }, 5731 [CSR_FCSR] = { "fcsr", fs, read_fcsr, write_fcsr }, 5732 /* Vector CSRs */ 5733 [CSR_VSTART] = { "vstart", vs, read_vstart, write_vstart }, 5734 [CSR_VXSAT] = { "vxsat", vs, read_vxsat, write_vxsat }, 5735 [CSR_VXRM] = { "vxrm", vs, read_vxrm, write_vxrm }, 5736 [CSR_VCSR] = { "vcsr", vs, read_vcsr, write_vcsr }, 5737 [CSR_VL] = { "vl", vs, read_vl }, 5738 [CSR_VTYPE] = { "vtype", vs, read_vtype }, 5739 [CSR_VLENB] = { "vlenb", vs, read_vlenb }, 5740 /* User Timers and Counters */ 5741 [CSR_CYCLE] = { "cycle", ctr, read_hpmcounter }, 5742 [CSR_INSTRET] = { "instret", ctr, read_hpmcounter }, 5743 [CSR_CYCLEH] = { "cycleh", ctr32, read_hpmcounterh }, 5744 [CSR_INSTRETH] = { "instreth", ctr32, read_hpmcounterh }, 5745 5746 /* 5747 * In privileged mode, the monitor will have to emulate TIME CSRs only if 5748 * rdtime callback is not provided by machine/platform emulation. 5749 */ 5750 [CSR_TIME] = { "time", ctr, read_time }, 5751 [CSR_TIMEH] = { "timeh", ctr32, read_timeh }, 5752 5753 /* Crypto Extension */ 5754 [CSR_SEED] = { "seed", seed, NULL, NULL, rmw_seed }, 5755 5756 /* Zcmt Extension */ 5757 [CSR_JVT] = {"jvt", zcmt, read_jvt, write_jvt}, 5758 5759 /* zicfiss Extension, shadow stack register */ 5760 [CSR_SSP] = { "ssp", cfi_ss, read_ssp, write_ssp }, 5761 5762 #if !defined(CONFIG_USER_ONLY) 5763 /* Machine Timers and Counters */ 5764 [CSR_MCYCLE] = { "mcycle", any, read_hpmcounter, 5765 write_mhpmcounter }, 5766 [CSR_MINSTRET] = { "minstret", any, read_hpmcounter, 5767 write_mhpmcounter }, 5768 [CSR_MCYCLEH] = { "mcycleh", any32, read_hpmcounterh, 5769 write_mhpmcounterh }, 5770 [CSR_MINSTRETH] = { "minstreth", any32, read_hpmcounterh, 5771 write_mhpmcounterh }, 5772 5773 /* Machine Information Registers */ 5774 [CSR_MVENDORID] = { "mvendorid", any, read_mvendorid }, 5775 [CSR_MARCHID] = { "marchid", any, read_marchid }, 5776 [CSR_MIMPID] = { "mimpid", any, read_mimpid }, 5777 [CSR_MHARTID] = { "mhartid", any, read_mhartid }, 5778 5779 [CSR_MCONFIGPTR] = { "mconfigptr", any, read_zero, 5780 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5781 /* Machine Trap Setup */ 5782 [CSR_MSTATUS] = { "mstatus", any, read_mstatus, write_mstatus, 5783 NULL, read_mstatus_i128 }, 5784 [CSR_MISA] = { "misa", any, read_misa, write_misa, 5785 NULL, read_misa_i128 }, 5786 [CSR_MIDELEG] = { "mideleg", any, NULL, NULL, rmw_mideleg }, 5787 [CSR_MEDELEG] = { "medeleg", any, read_medeleg, write_medeleg }, 5788 [CSR_MIE] = { "mie", any, NULL, NULL, rmw_mie }, 5789 [CSR_MTVEC] = { "mtvec", any, read_mtvec, write_mtvec }, 5790 [CSR_MCOUNTEREN] = { "mcounteren", umode, read_mcounteren, 5791 write_mcounteren }, 5792 5793 [CSR_MSTATUSH] = { "mstatush", any32, read_mstatush, 5794 write_mstatush }, 5795 [CSR_MEDELEGH] = { "medelegh", any32, read_zero, write_ignore, 5796 .min_priv_ver = PRIV_VERSION_1_13_0 }, 5797 [CSR_HEDELEGH] = { "hedelegh", hmode32, read_hedelegh, write_hedelegh, 5798 .min_priv_ver = PRIV_VERSION_1_13_0 }, 5799 5800 /* Machine Trap Handling */ 5801 [CSR_MSCRATCH] = { "mscratch", any, read_mscratch, write_mscratch, 5802 NULL, read_mscratch_i128, write_mscratch_i128 }, 5803 [CSR_MEPC] = { "mepc", any, read_mepc, write_mepc }, 5804 [CSR_MCAUSE] = { "mcause", any, read_mcause, write_mcause }, 5805 [CSR_MTVAL] = { "mtval", any, read_mtval, write_mtval }, 5806 [CSR_MIP] = { "mip", any, NULL, NULL, rmw_mip }, 5807 5808 /* Machine-Level Window to Indirectly Accessed Registers (AIA) */ 5809 [CSR_MISELECT] = { "miselect", csrind_or_aia_any, NULL, NULL, 5810 rmw_xiselect }, 5811 [CSR_MIREG] = { "mireg", csrind_or_aia_any, NULL, NULL, 5812 rmw_xireg }, 5813 5814 /* Machine Indirect Register Alias */ 5815 [CSR_MIREG2] = { "mireg2", csrind_any, NULL, NULL, rmw_xiregi, 5816 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5817 [CSR_MIREG3] = { "mireg3", csrind_any, NULL, NULL, rmw_xiregi, 5818 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5819 [CSR_MIREG4] = { "mireg4", csrind_any, NULL, NULL, rmw_xiregi, 5820 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5821 [CSR_MIREG5] = { "mireg5", csrind_any, NULL, NULL, rmw_xiregi, 5822 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5823 [CSR_MIREG6] = { "mireg6", csrind_any, NULL, NULL, rmw_xiregi, 5824 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5825 5826 /* Machine-Level Interrupts (AIA) */ 5827 [CSR_MTOPEI] = { "mtopei", aia_any, NULL, NULL, rmw_xtopei }, 5828 [CSR_MTOPI] = { "mtopi", aia_any, read_mtopi }, 5829 5830 /* Virtual Interrupts for Supervisor Level (AIA) */ 5831 [CSR_MVIEN] = { "mvien", aia_any, NULL, NULL, rmw_mvien }, 5832 [CSR_MVIP] = { "mvip", aia_any, NULL, NULL, rmw_mvip }, 5833 5834 /* Machine-Level High-Half CSRs (AIA) */ 5835 [CSR_MIDELEGH] = { "midelegh", aia_any32, NULL, NULL, rmw_midelegh }, 5836 [CSR_MIEH] = { "mieh", aia_any32, NULL, NULL, rmw_mieh }, 5837 [CSR_MVIENH] = { "mvienh", aia_any32, NULL, NULL, rmw_mvienh }, 5838 [CSR_MVIPH] = { "mviph", aia_any32, NULL, NULL, rmw_mviph }, 5839 [CSR_MIPH] = { "miph", aia_any32, NULL, NULL, rmw_miph }, 5840 5841 /* Execution environment configuration */ 5842 [CSR_MENVCFG] = { "menvcfg", umode, read_menvcfg, write_menvcfg, 5843 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5844 [CSR_MENVCFGH] = { "menvcfgh", umode32, read_menvcfgh, write_menvcfgh, 5845 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5846 [CSR_SENVCFG] = { "senvcfg", smode, read_senvcfg, write_senvcfg, 5847 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5848 [CSR_HENVCFG] = { "henvcfg", hmode, read_henvcfg, write_henvcfg, 5849 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5850 [CSR_HENVCFGH] = { "henvcfgh", hmode32, read_henvcfgh, write_henvcfgh, 5851 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5852 5853 /* Smstateen extension CSRs */ 5854 [CSR_MSTATEEN0] = { "mstateen0", mstateen, read_mstateen, write_mstateen0, 5855 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5856 [CSR_MSTATEEN0H] = { "mstateen0h", mstateen, read_mstateenh, 5857 write_mstateen0h, 5858 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5859 [CSR_MSTATEEN1] = { "mstateen1", mstateen, read_mstateen, 5860 write_mstateen_1_3, 5861 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5862 [CSR_MSTATEEN1H] = { "mstateen1h", mstateen, read_mstateenh, 5863 write_mstateenh_1_3, 5864 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5865 [CSR_MSTATEEN2] = { "mstateen2", mstateen, read_mstateen, 5866 write_mstateen_1_3, 5867 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5868 [CSR_MSTATEEN2H] = { "mstateen2h", mstateen, read_mstateenh, 5869 write_mstateenh_1_3, 5870 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5871 [CSR_MSTATEEN3] = { "mstateen3", mstateen, read_mstateen, 5872 write_mstateen_1_3, 5873 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5874 [CSR_MSTATEEN3H] = { "mstateen3h", mstateen, read_mstateenh, 5875 write_mstateenh_1_3, 5876 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5877 [CSR_HSTATEEN0] = { "hstateen0", hstateen, read_hstateen, write_hstateen0, 5878 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5879 [CSR_HSTATEEN0H] = { "hstateen0h", hstateenh, read_hstateenh, 5880 write_hstateen0h, 5881 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5882 [CSR_HSTATEEN1] = { "hstateen1", hstateen, read_hstateen, 5883 write_hstateen_1_3, 5884 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5885 [CSR_HSTATEEN1H] = { "hstateen1h", hstateenh, read_hstateenh, 5886 write_hstateenh_1_3, 5887 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5888 [CSR_HSTATEEN2] = { "hstateen2", hstateen, read_hstateen, 5889 write_hstateen_1_3, 5890 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5891 [CSR_HSTATEEN2H] = { "hstateen2h", hstateenh, read_hstateenh, 5892 write_hstateenh_1_3, 5893 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5894 [CSR_HSTATEEN3] = { "hstateen3", hstateen, read_hstateen, 5895 write_hstateen_1_3, 5896 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5897 [CSR_HSTATEEN3H] = { "hstateen3h", hstateenh, read_hstateenh, 5898 write_hstateenh_1_3, 5899 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5900 [CSR_SSTATEEN0] = { "sstateen0", sstateen, read_sstateen, write_sstateen0, 5901 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5902 [CSR_SSTATEEN1] = { "sstateen1", sstateen, read_sstateen, 5903 write_sstateen_1_3, 5904 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5905 [CSR_SSTATEEN2] = { "sstateen2", sstateen, read_sstateen, 5906 write_sstateen_1_3, 5907 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5908 [CSR_SSTATEEN3] = { "sstateen3", sstateen, read_sstateen, 5909 write_sstateen_1_3, 5910 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5911 5912 /* RNMI */ 5913 [CSR_MNSCRATCH] = { "mnscratch", rnmi, read_mnscratch, write_mnscratch, 5914 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5915 [CSR_MNEPC] = { "mnepc", rnmi, read_mnepc, write_mnepc, 5916 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5917 [CSR_MNCAUSE] = { "mncause", rnmi, read_mncause, write_mncause, 5918 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5919 [CSR_MNSTATUS] = { "mnstatus", rnmi, read_mnstatus, write_mnstatus, 5920 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5921 5922 /* Supervisor Counter Delegation */ 5923 [CSR_SCOUNTINHIBIT] = {"scountinhibit", scountinhibit_pred, 5924 read_scountinhibit, write_scountinhibit, 5925 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5926 5927 /* Supervisor Trap Setup */ 5928 [CSR_SSTATUS] = { "sstatus", smode, read_sstatus, write_sstatus, 5929 NULL, read_sstatus_i128 }, 5930 [CSR_SIE] = { "sie", smode, NULL, NULL, rmw_sie }, 5931 [CSR_STVEC] = { "stvec", smode, read_stvec, write_stvec }, 5932 [CSR_SCOUNTEREN] = { "scounteren", smode, read_scounteren, 5933 write_scounteren }, 5934 5935 /* Supervisor Trap Handling */ 5936 [CSR_SSCRATCH] = { "sscratch", smode, read_sscratch, write_sscratch, 5937 NULL, read_sscratch_i128, write_sscratch_i128 }, 5938 [CSR_SEPC] = { "sepc", smode, read_sepc, write_sepc }, 5939 [CSR_SCAUSE] = { "scause", smode, read_scause, write_scause }, 5940 [CSR_STVAL] = { "stval", smode, read_stval, write_stval }, 5941 [CSR_SIP] = { "sip", smode, NULL, NULL, rmw_sip }, 5942 [CSR_STIMECMP] = { "stimecmp", sstc, read_stimecmp, write_stimecmp, 5943 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5944 [CSR_STIMECMPH] = { "stimecmph", sstc_32, read_stimecmph, write_stimecmph, 5945 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5946 [CSR_VSTIMECMP] = { "vstimecmp", sstc, read_vstimecmp, 5947 write_vstimecmp, 5948 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5949 [CSR_VSTIMECMPH] = { "vstimecmph", sstc_32, read_vstimecmph, 5950 write_vstimecmph, 5951 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5952 5953 /* Supervisor Protection and Translation */ 5954 [CSR_SATP] = { "satp", satp, read_satp, write_satp }, 5955 5956 /* Supervisor-Level Window to Indirectly Accessed Registers (AIA) */ 5957 [CSR_SISELECT] = { "siselect", csrind_or_aia_smode, NULL, NULL, 5958 rmw_xiselect }, 5959 [CSR_SIREG] = { "sireg", csrind_or_aia_smode, NULL, NULL, 5960 rmw_xireg }, 5961 5962 /* Supervisor Indirect Register Alias */ 5963 [CSR_SIREG2] = { "sireg2", csrind_smode, NULL, NULL, rmw_xiregi, 5964 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5965 [CSR_SIREG3] = { "sireg3", csrind_smode, NULL, NULL, rmw_xiregi, 5966 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5967 [CSR_SIREG4] = { "sireg4", csrind_smode, NULL, NULL, rmw_xiregi, 5968 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5969 [CSR_SIREG5] = { "sireg5", csrind_smode, NULL, NULL, rmw_xiregi, 5970 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5971 [CSR_SIREG6] = { "sireg6", csrind_smode, NULL, NULL, rmw_xiregi, 5972 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5973 5974 /* Supervisor-Level Interrupts (AIA) */ 5975 [CSR_STOPEI] = { "stopei", aia_smode, NULL, NULL, rmw_xtopei }, 5976 [CSR_STOPI] = { "stopi", aia_smode, read_stopi }, 5977 5978 /* Supervisor-Level High-Half CSRs (AIA) */ 5979 [CSR_SIEH] = { "sieh", aia_smode32, NULL, NULL, rmw_sieh }, 5980 [CSR_SIPH] = { "siph", aia_smode32, NULL, NULL, rmw_siph }, 5981 5982 [CSR_HSTATUS] = { "hstatus", hmode, read_hstatus, write_hstatus, 5983 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5984 [CSR_HEDELEG] = { "hedeleg", hmode, read_hedeleg, write_hedeleg, 5985 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5986 [CSR_HIDELEG] = { "hideleg", hmode, NULL, NULL, rmw_hideleg, 5987 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5988 [CSR_HVIP] = { "hvip", hmode, NULL, NULL, rmw_hvip, 5989 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5990 [CSR_HIP] = { "hip", hmode, NULL, NULL, rmw_hip, 5991 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5992 [CSR_HIE] = { "hie", hmode, NULL, NULL, rmw_hie, 5993 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5994 [CSR_HCOUNTEREN] = { "hcounteren", hmode, read_hcounteren, 5995 write_hcounteren, 5996 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5997 [CSR_HGEIE] = { "hgeie", hmode, read_hgeie, write_hgeie, 5998 .min_priv_ver = PRIV_VERSION_1_12_0 }, 5999 [CSR_HTVAL] = { "htval", hmode, read_htval, write_htval, 6000 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6001 [CSR_HTINST] = { "htinst", hmode, read_htinst, write_htinst, 6002 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6003 [CSR_HGEIP] = { "hgeip", hmode, read_hgeip, 6004 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6005 [CSR_HGATP] = { "hgatp", hgatp, read_hgatp, write_hgatp, 6006 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6007 [CSR_HTIMEDELTA] = { "htimedelta", hmode, read_htimedelta, 6008 write_htimedelta, 6009 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6010 [CSR_HTIMEDELTAH] = { "htimedeltah", hmode32, read_htimedeltah, 6011 write_htimedeltah, 6012 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6013 6014 [CSR_VSSTATUS] = { "vsstatus", hmode, read_vsstatus, 6015 write_vsstatus, 6016 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6017 [CSR_VSIP] = { "vsip", hmode, NULL, NULL, rmw_vsip, 6018 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6019 [CSR_VSIE] = { "vsie", hmode, NULL, NULL, rmw_vsie , 6020 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6021 [CSR_VSTVEC] = { "vstvec", hmode, read_vstvec, write_vstvec, 6022 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6023 [CSR_VSSCRATCH] = { "vsscratch", hmode, read_vsscratch, 6024 write_vsscratch, 6025 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6026 [CSR_VSEPC] = { "vsepc", hmode, read_vsepc, write_vsepc, 6027 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6028 [CSR_VSCAUSE] = { "vscause", hmode, read_vscause, write_vscause, 6029 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6030 [CSR_VSTVAL] = { "vstval", hmode, read_vstval, write_vstval, 6031 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6032 [CSR_VSATP] = { "vsatp", hmode, read_vsatp, write_vsatp, 6033 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6034 6035 [CSR_MTVAL2] = { "mtval2", dbltrp_hmode, read_mtval2, write_mtval2, 6036 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6037 [CSR_MTINST] = { "mtinst", hmode, read_mtinst, write_mtinst, 6038 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6039 6040 /* Virtual Interrupts and Interrupt Priorities (H-extension with AIA) */ 6041 [CSR_HVIEN] = { "hvien", aia_hmode, NULL, NULL, rmw_hvien }, 6042 [CSR_HVICTL] = { "hvictl", aia_hmode, read_hvictl, 6043 write_hvictl }, 6044 [CSR_HVIPRIO1] = { "hviprio1", aia_hmode, read_hviprio1, 6045 write_hviprio1 }, 6046 [CSR_HVIPRIO2] = { "hviprio2", aia_hmode, read_hviprio2, 6047 write_hviprio2 }, 6048 /* 6049 * VS-Level Window to Indirectly Accessed Registers (H-extension with AIA) 6050 */ 6051 [CSR_VSISELECT] = { "vsiselect", csrind_or_aia_hmode, NULL, NULL, 6052 rmw_xiselect }, 6053 [CSR_VSIREG] = { "vsireg", csrind_or_aia_hmode, NULL, NULL, 6054 rmw_xireg }, 6055 6056 /* Virtual Supervisor Indirect Alias */ 6057 [CSR_VSIREG2] = { "vsireg2", csrind_hmode, NULL, NULL, rmw_xiregi, 6058 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6059 [CSR_VSIREG3] = { "vsireg3", csrind_hmode, NULL, NULL, rmw_xiregi, 6060 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6061 [CSR_VSIREG4] = { "vsireg4", csrind_hmode, NULL, NULL, rmw_xiregi, 6062 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6063 [CSR_VSIREG5] = { "vsireg5", csrind_hmode, NULL, NULL, rmw_xiregi, 6064 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6065 [CSR_VSIREG6] = { "vsireg6", csrind_hmode, NULL, NULL, rmw_xiregi, 6066 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6067 6068 /* VS-Level Interrupts (H-extension with AIA) */ 6069 [CSR_VSTOPEI] = { "vstopei", aia_hmode, NULL, NULL, rmw_xtopei }, 6070 [CSR_VSTOPI] = { "vstopi", aia_hmode, read_vstopi }, 6071 6072 /* Hypervisor and VS-Level High-Half CSRs (H-extension with AIA) */ 6073 [CSR_HIDELEGH] = { "hidelegh", aia_hmode32, NULL, NULL, 6074 rmw_hidelegh }, 6075 [CSR_HVIENH] = { "hvienh", aia_hmode32, NULL, NULL, rmw_hvienh }, 6076 [CSR_HVIPH] = { "hviph", aia_hmode32, NULL, NULL, rmw_hviph }, 6077 [CSR_HVIPRIO1H] = { "hviprio1h", aia_hmode32, read_hviprio1h, 6078 write_hviprio1h }, 6079 [CSR_HVIPRIO2H] = { "hviprio2h", aia_hmode32, read_hviprio2h, 6080 write_hviprio2h }, 6081 [CSR_VSIEH] = { "vsieh", aia_hmode32, NULL, NULL, rmw_vsieh }, 6082 [CSR_VSIPH] = { "vsiph", aia_hmode32, NULL, NULL, rmw_vsiph }, 6083 6084 /* Physical Memory Protection */ 6085 [CSR_MSECCFG] = { "mseccfg", have_mseccfg, read_mseccfg, write_mseccfg, 6086 .min_priv_ver = PRIV_VERSION_1_11_0 }, 6087 [CSR_PMPCFG0] = { "pmpcfg0", pmp, read_pmpcfg, write_pmpcfg }, 6088 [CSR_PMPCFG1] = { "pmpcfg1", pmp, read_pmpcfg, write_pmpcfg }, 6089 [CSR_PMPCFG2] = { "pmpcfg2", pmp, read_pmpcfg, write_pmpcfg }, 6090 [CSR_PMPCFG3] = { "pmpcfg3", pmp, read_pmpcfg, write_pmpcfg }, 6091 [CSR_PMPADDR0] = { "pmpaddr0", pmp, read_pmpaddr, write_pmpaddr }, 6092 [CSR_PMPADDR1] = { "pmpaddr1", pmp, read_pmpaddr, write_pmpaddr }, 6093 [CSR_PMPADDR2] = { "pmpaddr2", pmp, read_pmpaddr, write_pmpaddr }, 6094 [CSR_PMPADDR3] = { "pmpaddr3", pmp, read_pmpaddr, write_pmpaddr }, 6095 [CSR_PMPADDR4] = { "pmpaddr4", pmp, read_pmpaddr, write_pmpaddr }, 6096 [CSR_PMPADDR5] = { "pmpaddr5", pmp, read_pmpaddr, write_pmpaddr }, 6097 [CSR_PMPADDR6] = { "pmpaddr6", pmp, read_pmpaddr, write_pmpaddr }, 6098 [CSR_PMPADDR7] = { "pmpaddr7", pmp, read_pmpaddr, write_pmpaddr }, 6099 [CSR_PMPADDR8] = { "pmpaddr8", pmp, read_pmpaddr, write_pmpaddr }, 6100 [CSR_PMPADDR9] = { "pmpaddr9", pmp, read_pmpaddr, write_pmpaddr }, 6101 [CSR_PMPADDR10] = { "pmpaddr10", pmp, read_pmpaddr, write_pmpaddr }, 6102 [CSR_PMPADDR11] = { "pmpaddr11", pmp, read_pmpaddr, write_pmpaddr }, 6103 [CSR_PMPADDR12] = { "pmpaddr12", pmp, read_pmpaddr, write_pmpaddr }, 6104 [CSR_PMPADDR13] = { "pmpaddr13", pmp, read_pmpaddr, write_pmpaddr }, 6105 [CSR_PMPADDR14] = { "pmpaddr14", pmp, read_pmpaddr, write_pmpaddr }, 6106 [CSR_PMPADDR15] = { "pmpaddr15", pmp, read_pmpaddr, write_pmpaddr }, 6107 6108 /* Debug CSRs */ 6109 [CSR_TSELECT] = { "tselect", debug, read_tselect, write_tselect }, 6110 [CSR_TDATA1] = { "tdata1", debug, read_tdata, write_tdata }, 6111 [CSR_TDATA2] = { "tdata2", debug, read_tdata, write_tdata }, 6112 [CSR_TDATA3] = { "tdata3", debug, read_tdata, write_tdata }, 6113 [CSR_TINFO] = { "tinfo", debug, read_tinfo, write_ignore }, 6114 [CSR_MCONTEXT] = { "mcontext", debug, read_mcontext, write_mcontext }, 6115 6116 [CSR_MCTRCTL] = { "mctrctl", ctr_mmode, NULL, NULL, rmw_xctrctl }, 6117 [CSR_SCTRCTL] = { "sctrctl", ctr_smode, NULL, NULL, rmw_xctrctl }, 6118 [CSR_VSCTRCTL] = { "vsctrctl", ctr_smode, NULL, NULL, rmw_xctrctl }, 6119 [CSR_SCTRDEPTH] = { "sctrdepth", ctr_smode, NULL, NULL, rmw_sctrdepth }, 6120 [CSR_SCTRSTATUS] = { "sctrstatus", ctr_smode, NULL, NULL, rmw_sctrstatus }, 6121 6122 /* Performance Counters */ 6123 [CSR_HPMCOUNTER3] = { "hpmcounter3", ctr, read_hpmcounter }, 6124 [CSR_HPMCOUNTER4] = { "hpmcounter4", ctr, read_hpmcounter }, 6125 [CSR_HPMCOUNTER5] = { "hpmcounter5", ctr, read_hpmcounter }, 6126 [CSR_HPMCOUNTER6] = { "hpmcounter6", ctr, read_hpmcounter }, 6127 [CSR_HPMCOUNTER7] = { "hpmcounter7", ctr, read_hpmcounter }, 6128 [CSR_HPMCOUNTER8] = { "hpmcounter8", ctr, read_hpmcounter }, 6129 [CSR_HPMCOUNTER9] = { "hpmcounter9", ctr, read_hpmcounter }, 6130 [CSR_HPMCOUNTER10] = { "hpmcounter10", ctr, read_hpmcounter }, 6131 [CSR_HPMCOUNTER11] = { "hpmcounter11", ctr, read_hpmcounter }, 6132 [CSR_HPMCOUNTER12] = { "hpmcounter12", ctr, read_hpmcounter }, 6133 [CSR_HPMCOUNTER13] = { "hpmcounter13", ctr, read_hpmcounter }, 6134 [CSR_HPMCOUNTER14] = { "hpmcounter14", ctr, read_hpmcounter }, 6135 [CSR_HPMCOUNTER15] = { "hpmcounter15", ctr, read_hpmcounter }, 6136 [CSR_HPMCOUNTER16] = { "hpmcounter16", ctr, read_hpmcounter }, 6137 [CSR_HPMCOUNTER17] = { "hpmcounter17", ctr, read_hpmcounter }, 6138 [CSR_HPMCOUNTER18] = { "hpmcounter18", ctr, read_hpmcounter }, 6139 [CSR_HPMCOUNTER19] = { "hpmcounter19", ctr, read_hpmcounter }, 6140 [CSR_HPMCOUNTER20] = { "hpmcounter20", ctr, read_hpmcounter }, 6141 [CSR_HPMCOUNTER21] = { "hpmcounter21", ctr, read_hpmcounter }, 6142 [CSR_HPMCOUNTER22] = { "hpmcounter22", ctr, read_hpmcounter }, 6143 [CSR_HPMCOUNTER23] = { "hpmcounter23", ctr, read_hpmcounter }, 6144 [CSR_HPMCOUNTER24] = { "hpmcounter24", ctr, read_hpmcounter }, 6145 [CSR_HPMCOUNTER25] = { "hpmcounter25", ctr, read_hpmcounter }, 6146 [CSR_HPMCOUNTER26] = { "hpmcounter26", ctr, read_hpmcounter }, 6147 [CSR_HPMCOUNTER27] = { "hpmcounter27", ctr, read_hpmcounter }, 6148 [CSR_HPMCOUNTER28] = { "hpmcounter28", ctr, read_hpmcounter }, 6149 [CSR_HPMCOUNTER29] = { "hpmcounter29", ctr, read_hpmcounter }, 6150 [CSR_HPMCOUNTER30] = { "hpmcounter30", ctr, read_hpmcounter }, 6151 [CSR_HPMCOUNTER31] = { "hpmcounter31", ctr, read_hpmcounter }, 6152 6153 [CSR_MHPMCOUNTER3] = { "mhpmcounter3", mctr, read_hpmcounter, 6154 write_mhpmcounter }, 6155 [CSR_MHPMCOUNTER4] = { "mhpmcounter4", mctr, read_hpmcounter, 6156 write_mhpmcounter }, 6157 [CSR_MHPMCOUNTER5] = { "mhpmcounter5", mctr, read_hpmcounter, 6158 write_mhpmcounter }, 6159 [CSR_MHPMCOUNTER6] = { "mhpmcounter6", mctr, read_hpmcounter, 6160 write_mhpmcounter }, 6161 [CSR_MHPMCOUNTER7] = { "mhpmcounter7", mctr, read_hpmcounter, 6162 write_mhpmcounter }, 6163 [CSR_MHPMCOUNTER8] = { "mhpmcounter8", mctr, read_hpmcounter, 6164 write_mhpmcounter }, 6165 [CSR_MHPMCOUNTER9] = { "mhpmcounter9", mctr, read_hpmcounter, 6166 write_mhpmcounter }, 6167 [CSR_MHPMCOUNTER10] = { "mhpmcounter10", mctr, read_hpmcounter, 6168 write_mhpmcounter }, 6169 [CSR_MHPMCOUNTER11] = { "mhpmcounter11", mctr, read_hpmcounter, 6170 write_mhpmcounter }, 6171 [CSR_MHPMCOUNTER12] = { "mhpmcounter12", mctr, read_hpmcounter, 6172 write_mhpmcounter }, 6173 [CSR_MHPMCOUNTER13] = { "mhpmcounter13", mctr, read_hpmcounter, 6174 write_mhpmcounter }, 6175 [CSR_MHPMCOUNTER14] = { "mhpmcounter14", mctr, read_hpmcounter, 6176 write_mhpmcounter }, 6177 [CSR_MHPMCOUNTER15] = { "mhpmcounter15", mctr, read_hpmcounter, 6178 write_mhpmcounter }, 6179 [CSR_MHPMCOUNTER16] = { "mhpmcounter16", mctr, read_hpmcounter, 6180 write_mhpmcounter }, 6181 [CSR_MHPMCOUNTER17] = { "mhpmcounter17", mctr, read_hpmcounter, 6182 write_mhpmcounter }, 6183 [CSR_MHPMCOUNTER18] = { "mhpmcounter18", mctr, read_hpmcounter, 6184 write_mhpmcounter }, 6185 [CSR_MHPMCOUNTER19] = { "mhpmcounter19", mctr, read_hpmcounter, 6186 write_mhpmcounter }, 6187 [CSR_MHPMCOUNTER20] = { "mhpmcounter20", mctr, read_hpmcounter, 6188 write_mhpmcounter }, 6189 [CSR_MHPMCOUNTER21] = { "mhpmcounter21", mctr, read_hpmcounter, 6190 write_mhpmcounter }, 6191 [CSR_MHPMCOUNTER22] = { "mhpmcounter22", mctr, read_hpmcounter, 6192 write_mhpmcounter }, 6193 [CSR_MHPMCOUNTER23] = { "mhpmcounter23", mctr, read_hpmcounter, 6194 write_mhpmcounter }, 6195 [CSR_MHPMCOUNTER24] = { "mhpmcounter24", mctr, read_hpmcounter, 6196 write_mhpmcounter }, 6197 [CSR_MHPMCOUNTER25] = { "mhpmcounter25", mctr, read_hpmcounter, 6198 write_mhpmcounter }, 6199 [CSR_MHPMCOUNTER26] = { "mhpmcounter26", mctr, read_hpmcounter, 6200 write_mhpmcounter }, 6201 [CSR_MHPMCOUNTER27] = { "mhpmcounter27", mctr, read_hpmcounter, 6202 write_mhpmcounter }, 6203 [CSR_MHPMCOUNTER28] = { "mhpmcounter28", mctr, read_hpmcounter, 6204 write_mhpmcounter }, 6205 [CSR_MHPMCOUNTER29] = { "mhpmcounter29", mctr, read_hpmcounter, 6206 write_mhpmcounter }, 6207 [CSR_MHPMCOUNTER30] = { "mhpmcounter30", mctr, read_hpmcounter, 6208 write_mhpmcounter }, 6209 [CSR_MHPMCOUNTER31] = { "mhpmcounter31", mctr, read_hpmcounter, 6210 write_mhpmcounter }, 6211 6212 [CSR_MCOUNTINHIBIT] = { "mcountinhibit", any, read_mcountinhibit, 6213 write_mcountinhibit, 6214 .min_priv_ver = PRIV_VERSION_1_11_0 }, 6215 6216 [CSR_MCYCLECFG] = { "mcyclecfg", smcntrpmf, read_mcyclecfg, 6217 write_mcyclecfg, 6218 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6219 [CSR_MINSTRETCFG] = { "minstretcfg", smcntrpmf, read_minstretcfg, 6220 write_minstretcfg, 6221 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6222 6223 [CSR_MHPMEVENT3] = { "mhpmevent3", any, read_mhpmevent, 6224 write_mhpmevent }, 6225 [CSR_MHPMEVENT4] = { "mhpmevent4", any, read_mhpmevent, 6226 write_mhpmevent }, 6227 [CSR_MHPMEVENT5] = { "mhpmevent5", any, read_mhpmevent, 6228 write_mhpmevent }, 6229 [CSR_MHPMEVENT6] = { "mhpmevent6", any, read_mhpmevent, 6230 write_mhpmevent }, 6231 [CSR_MHPMEVENT7] = { "mhpmevent7", any, read_mhpmevent, 6232 write_mhpmevent }, 6233 [CSR_MHPMEVENT8] = { "mhpmevent8", any, read_mhpmevent, 6234 write_mhpmevent }, 6235 [CSR_MHPMEVENT9] = { "mhpmevent9", any, read_mhpmevent, 6236 write_mhpmevent }, 6237 [CSR_MHPMEVENT10] = { "mhpmevent10", any, read_mhpmevent, 6238 write_mhpmevent }, 6239 [CSR_MHPMEVENT11] = { "mhpmevent11", any, read_mhpmevent, 6240 write_mhpmevent }, 6241 [CSR_MHPMEVENT12] = { "mhpmevent12", any, read_mhpmevent, 6242 write_mhpmevent }, 6243 [CSR_MHPMEVENT13] = { "mhpmevent13", any, read_mhpmevent, 6244 write_mhpmevent }, 6245 [CSR_MHPMEVENT14] = { "mhpmevent14", any, read_mhpmevent, 6246 write_mhpmevent }, 6247 [CSR_MHPMEVENT15] = { "mhpmevent15", any, read_mhpmevent, 6248 write_mhpmevent }, 6249 [CSR_MHPMEVENT16] = { "mhpmevent16", any, read_mhpmevent, 6250 write_mhpmevent }, 6251 [CSR_MHPMEVENT17] = { "mhpmevent17", any, read_mhpmevent, 6252 write_mhpmevent }, 6253 [CSR_MHPMEVENT18] = { "mhpmevent18", any, read_mhpmevent, 6254 write_mhpmevent }, 6255 [CSR_MHPMEVENT19] = { "mhpmevent19", any, read_mhpmevent, 6256 write_mhpmevent }, 6257 [CSR_MHPMEVENT20] = { "mhpmevent20", any, read_mhpmevent, 6258 write_mhpmevent }, 6259 [CSR_MHPMEVENT21] = { "mhpmevent21", any, read_mhpmevent, 6260 write_mhpmevent }, 6261 [CSR_MHPMEVENT22] = { "mhpmevent22", any, read_mhpmevent, 6262 write_mhpmevent }, 6263 [CSR_MHPMEVENT23] = { "mhpmevent23", any, read_mhpmevent, 6264 write_mhpmevent }, 6265 [CSR_MHPMEVENT24] = { "mhpmevent24", any, read_mhpmevent, 6266 write_mhpmevent }, 6267 [CSR_MHPMEVENT25] = { "mhpmevent25", any, read_mhpmevent, 6268 write_mhpmevent }, 6269 [CSR_MHPMEVENT26] = { "mhpmevent26", any, read_mhpmevent, 6270 write_mhpmevent }, 6271 [CSR_MHPMEVENT27] = { "mhpmevent27", any, read_mhpmevent, 6272 write_mhpmevent }, 6273 [CSR_MHPMEVENT28] = { "mhpmevent28", any, read_mhpmevent, 6274 write_mhpmevent }, 6275 [CSR_MHPMEVENT29] = { "mhpmevent29", any, read_mhpmevent, 6276 write_mhpmevent }, 6277 [CSR_MHPMEVENT30] = { "mhpmevent30", any, read_mhpmevent, 6278 write_mhpmevent }, 6279 [CSR_MHPMEVENT31] = { "mhpmevent31", any, read_mhpmevent, 6280 write_mhpmevent }, 6281 6282 [CSR_MCYCLECFGH] = { "mcyclecfgh", smcntrpmf_32, read_mcyclecfgh, 6283 write_mcyclecfgh, 6284 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6285 [CSR_MINSTRETCFGH] = { "minstretcfgh", smcntrpmf_32, read_minstretcfgh, 6286 write_minstretcfgh, 6287 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6288 6289 [CSR_MHPMEVENT3H] = { "mhpmevent3h", sscofpmf_32, read_mhpmeventh, 6290 write_mhpmeventh, 6291 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6292 [CSR_MHPMEVENT4H] = { "mhpmevent4h", sscofpmf_32, read_mhpmeventh, 6293 write_mhpmeventh, 6294 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6295 [CSR_MHPMEVENT5H] = { "mhpmevent5h", sscofpmf_32, read_mhpmeventh, 6296 write_mhpmeventh, 6297 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6298 [CSR_MHPMEVENT6H] = { "mhpmevent6h", sscofpmf_32, read_mhpmeventh, 6299 write_mhpmeventh, 6300 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6301 [CSR_MHPMEVENT7H] = { "mhpmevent7h", sscofpmf_32, read_mhpmeventh, 6302 write_mhpmeventh, 6303 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6304 [CSR_MHPMEVENT8H] = { "mhpmevent8h", sscofpmf_32, read_mhpmeventh, 6305 write_mhpmeventh, 6306 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6307 [CSR_MHPMEVENT9H] = { "mhpmevent9h", sscofpmf_32, read_mhpmeventh, 6308 write_mhpmeventh, 6309 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6310 [CSR_MHPMEVENT10H] = { "mhpmevent10h", sscofpmf_32, read_mhpmeventh, 6311 write_mhpmeventh, 6312 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6313 [CSR_MHPMEVENT11H] = { "mhpmevent11h", sscofpmf_32, read_mhpmeventh, 6314 write_mhpmeventh, 6315 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6316 [CSR_MHPMEVENT12H] = { "mhpmevent12h", sscofpmf_32, read_mhpmeventh, 6317 write_mhpmeventh, 6318 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6319 [CSR_MHPMEVENT13H] = { "mhpmevent13h", sscofpmf_32, read_mhpmeventh, 6320 write_mhpmeventh, 6321 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6322 [CSR_MHPMEVENT14H] = { "mhpmevent14h", sscofpmf_32, read_mhpmeventh, 6323 write_mhpmeventh, 6324 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6325 [CSR_MHPMEVENT15H] = { "mhpmevent15h", sscofpmf_32, read_mhpmeventh, 6326 write_mhpmeventh, 6327 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6328 [CSR_MHPMEVENT16H] = { "mhpmevent16h", sscofpmf_32, read_mhpmeventh, 6329 write_mhpmeventh, 6330 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6331 [CSR_MHPMEVENT17H] = { "mhpmevent17h", sscofpmf_32, read_mhpmeventh, 6332 write_mhpmeventh, 6333 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6334 [CSR_MHPMEVENT18H] = { "mhpmevent18h", sscofpmf_32, read_mhpmeventh, 6335 write_mhpmeventh, 6336 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6337 [CSR_MHPMEVENT19H] = { "mhpmevent19h", sscofpmf_32, read_mhpmeventh, 6338 write_mhpmeventh, 6339 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6340 [CSR_MHPMEVENT20H] = { "mhpmevent20h", sscofpmf_32, read_mhpmeventh, 6341 write_mhpmeventh, 6342 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6343 [CSR_MHPMEVENT21H] = { "mhpmevent21h", sscofpmf_32, read_mhpmeventh, 6344 write_mhpmeventh, 6345 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6346 [CSR_MHPMEVENT22H] = { "mhpmevent22h", sscofpmf_32, read_mhpmeventh, 6347 write_mhpmeventh, 6348 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6349 [CSR_MHPMEVENT23H] = { "mhpmevent23h", sscofpmf_32, read_mhpmeventh, 6350 write_mhpmeventh, 6351 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6352 [CSR_MHPMEVENT24H] = { "mhpmevent24h", sscofpmf_32, read_mhpmeventh, 6353 write_mhpmeventh, 6354 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6355 [CSR_MHPMEVENT25H] = { "mhpmevent25h", sscofpmf_32, read_mhpmeventh, 6356 write_mhpmeventh, 6357 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6358 [CSR_MHPMEVENT26H] = { "mhpmevent26h", sscofpmf_32, read_mhpmeventh, 6359 write_mhpmeventh, 6360 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6361 [CSR_MHPMEVENT27H] = { "mhpmevent27h", sscofpmf_32, read_mhpmeventh, 6362 write_mhpmeventh, 6363 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6364 [CSR_MHPMEVENT28H] = { "mhpmevent28h", sscofpmf_32, read_mhpmeventh, 6365 write_mhpmeventh, 6366 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6367 [CSR_MHPMEVENT29H] = { "mhpmevent29h", sscofpmf_32, read_mhpmeventh, 6368 write_mhpmeventh, 6369 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6370 [CSR_MHPMEVENT30H] = { "mhpmevent30h", sscofpmf_32, read_mhpmeventh, 6371 write_mhpmeventh, 6372 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6373 [CSR_MHPMEVENT31H] = { "mhpmevent31h", sscofpmf_32, read_mhpmeventh, 6374 write_mhpmeventh, 6375 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6376 6377 [CSR_HPMCOUNTER3H] = { "hpmcounter3h", ctr32, read_hpmcounterh }, 6378 [CSR_HPMCOUNTER4H] = { "hpmcounter4h", ctr32, read_hpmcounterh }, 6379 [CSR_HPMCOUNTER5H] = { "hpmcounter5h", ctr32, read_hpmcounterh }, 6380 [CSR_HPMCOUNTER6H] = { "hpmcounter6h", ctr32, read_hpmcounterh }, 6381 [CSR_HPMCOUNTER7H] = { "hpmcounter7h", ctr32, read_hpmcounterh }, 6382 [CSR_HPMCOUNTER8H] = { "hpmcounter8h", ctr32, read_hpmcounterh }, 6383 [CSR_HPMCOUNTER9H] = { "hpmcounter9h", ctr32, read_hpmcounterh }, 6384 [CSR_HPMCOUNTER10H] = { "hpmcounter10h", ctr32, read_hpmcounterh }, 6385 [CSR_HPMCOUNTER11H] = { "hpmcounter11h", ctr32, read_hpmcounterh }, 6386 [CSR_HPMCOUNTER12H] = { "hpmcounter12h", ctr32, read_hpmcounterh }, 6387 [CSR_HPMCOUNTER13H] = { "hpmcounter13h", ctr32, read_hpmcounterh }, 6388 [CSR_HPMCOUNTER14H] = { "hpmcounter14h", ctr32, read_hpmcounterh }, 6389 [CSR_HPMCOUNTER15H] = { "hpmcounter15h", ctr32, read_hpmcounterh }, 6390 [CSR_HPMCOUNTER16H] = { "hpmcounter16h", ctr32, read_hpmcounterh }, 6391 [CSR_HPMCOUNTER17H] = { "hpmcounter17h", ctr32, read_hpmcounterh }, 6392 [CSR_HPMCOUNTER18H] = { "hpmcounter18h", ctr32, read_hpmcounterh }, 6393 [CSR_HPMCOUNTER19H] = { "hpmcounter19h", ctr32, read_hpmcounterh }, 6394 [CSR_HPMCOUNTER20H] = { "hpmcounter20h", ctr32, read_hpmcounterh }, 6395 [CSR_HPMCOUNTER21H] = { "hpmcounter21h", ctr32, read_hpmcounterh }, 6396 [CSR_HPMCOUNTER22H] = { "hpmcounter22h", ctr32, read_hpmcounterh }, 6397 [CSR_HPMCOUNTER23H] = { "hpmcounter23h", ctr32, read_hpmcounterh }, 6398 [CSR_HPMCOUNTER24H] = { "hpmcounter24h", ctr32, read_hpmcounterh }, 6399 [CSR_HPMCOUNTER25H] = { "hpmcounter25h", ctr32, read_hpmcounterh }, 6400 [CSR_HPMCOUNTER26H] = { "hpmcounter26h", ctr32, read_hpmcounterh }, 6401 [CSR_HPMCOUNTER27H] = { "hpmcounter27h", ctr32, read_hpmcounterh }, 6402 [CSR_HPMCOUNTER28H] = { "hpmcounter28h", ctr32, read_hpmcounterh }, 6403 [CSR_HPMCOUNTER29H] = { "hpmcounter29h", ctr32, read_hpmcounterh }, 6404 [CSR_HPMCOUNTER30H] = { "hpmcounter30h", ctr32, read_hpmcounterh }, 6405 [CSR_HPMCOUNTER31H] = { "hpmcounter31h", ctr32, read_hpmcounterh }, 6406 6407 [CSR_MHPMCOUNTER3H] = { "mhpmcounter3h", mctr32, read_hpmcounterh, 6408 write_mhpmcounterh }, 6409 [CSR_MHPMCOUNTER4H] = { "mhpmcounter4h", mctr32, read_hpmcounterh, 6410 write_mhpmcounterh }, 6411 [CSR_MHPMCOUNTER5H] = { "mhpmcounter5h", mctr32, read_hpmcounterh, 6412 write_mhpmcounterh }, 6413 [CSR_MHPMCOUNTER6H] = { "mhpmcounter6h", mctr32, read_hpmcounterh, 6414 write_mhpmcounterh }, 6415 [CSR_MHPMCOUNTER7H] = { "mhpmcounter7h", mctr32, read_hpmcounterh, 6416 write_mhpmcounterh }, 6417 [CSR_MHPMCOUNTER8H] = { "mhpmcounter8h", mctr32, read_hpmcounterh, 6418 write_mhpmcounterh }, 6419 [CSR_MHPMCOUNTER9H] = { "mhpmcounter9h", mctr32, read_hpmcounterh, 6420 write_mhpmcounterh }, 6421 [CSR_MHPMCOUNTER10H] = { "mhpmcounter10h", mctr32, read_hpmcounterh, 6422 write_mhpmcounterh }, 6423 [CSR_MHPMCOUNTER11H] = { "mhpmcounter11h", mctr32, read_hpmcounterh, 6424 write_mhpmcounterh }, 6425 [CSR_MHPMCOUNTER12H] = { "mhpmcounter12h", mctr32, read_hpmcounterh, 6426 write_mhpmcounterh }, 6427 [CSR_MHPMCOUNTER13H] = { "mhpmcounter13h", mctr32, read_hpmcounterh, 6428 write_mhpmcounterh }, 6429 [CSR_MHPMCOUNTER14H] = { "mhpmcounter14h", mctr32, read_hpmcounterh, 6430 write_mhpmcounterh }, 6431 [CSR_MHPMCOUNTER15H] = { "mhpmcounter15h", mctr32, read_hpmcounterh, 6432 write_mhpmcounterh }, 6433 [CSR_MHPMCOUNTER16H] = { "mhpmcounter16h", mctr32, read_hpmcounterh, 6434 write_mhpmcounterh }, 6435 [CSR_MHPMCOUNTER17H] = { "mhpmcounter17h", mctr32, read_hpmcounterh, 6436 write_mhpmcounterh }, 6437 [CSR_MHPMCOUNTER18H] = { "mhpmcounter18h", mctr32, read_hpmcounterh, 6438 write_mhpmcounterh }, 6439 [CSR_MHPMCOUNTER19H] = { "mhpmcounter19h", mctr32, read_hpmcounterh, 6440 write_mhpmcounterh }, 6441 [CSR_MHPMCOUNTER20H] = { "mhpmcounter20h", mctr32, read_hpmcounterh, 6442 write_mhpmcounterh }, 6443 [CSR_MHPMCOUNTER21H] = { "mhpmcounter21h", mctr32, read_hpmcounterh, 6444 write_mhpmcounterh }, 6445 [CSR_MHPMCOUNTER22H] = { "mhpmcounter22h", mctr32, read_hpmcounterh, 6446 write_mhpmcounterh }, 6447 [CSR_MHPMCOUNTER23H] = { "mhpmcounter23h", mctr32, read_hpmcounterh, 6448 write_mhpmcounterh }, 6449 [CSR_MHPMCOUNTER24H] = { "mhpmcounter24h", mctr32, read_hpmcounterh, 6450 write_mhpmcounterh }, 6451 [CSR_MHPMCOUNTER25H] = { "mhpmcounter25h", mctr32, read_hpmcounterh, 6452 write_mhpmcounterh }, 6453 [CSR_MHPMCOUNTER26H] = { "mhpmcounter26h", mctr32, read_hpmcounterh, 6454 write_mhpmcounterh }, 6455 [CSR_MHPMCOUNTER27H] = { "mhpmcounter27h", mctr32, read_hpmcounterh, 6456 write_mhpmcounterh }, 6457 [CSR_MHPMCOUNTER28H] = { "mhpmcounter28h", mctr32, read_hpmcounterh, 6458 write_mhpmcounterh }, 6459 [CSR_MHPMCOUNTER29H] = { "mhpmcounter29h", mctr32, read_hpmcounterh, 6460 write_mhpmcounterh }, 6461 [CSR_MHPMCOUNTER30H] = { "mhpmcounter30h", mctr32, read_hpmcounterh, 6462 write_mhpmcounterh }, 6463 [CSR_MHPMCOUNTER31H] = { "mhpmcounter31h", mctr32, read_hpmcounterh, 6464 write_mhpmcounterh }, 6465 [CSR_SCOUNTOVF] = { "scountovf", sscofpmf, read_scountovf, 6466 .min_priv_ver = PRIV_VERSION_1_12_0 }, 6467 6468 #endif /* !CONFIG_USER_ONLY */ 6469 }; 6470