xref: /qemu/target/riscv/cpu_helper.c (revision e4a8e093dc74be049f4829831dce76e5edab0003)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/exec-all.h"
27 #include "exec/page-protection.h"
28 #include "instmap.h"
29 #include "tcg/tcg-op.h"
30 #include "trace.h"
31 #include "semihosting/common-semi.h"
32 #include "system/cpu-timers.h"
33 #include "cpu_bits.h"
34 #include "debug.h"
35 #include "tcg/oversized-guest.h"
36 #include "pmp.h"
37 
38 int riscv_env_mmu_index(CPURISCVState *env, bool ifetch)
39 {
40 #ifdef CONFIG_USER_ONLY
41     return 0;
42 #else
43     bool virt = env->virt_enabled;
44     int mode = env->priv;
45 
46     /* All priv -> mmu_idx mapping are here */
47     if (!ifetch) {
48         uint64_t status = env->mstatus;
49 
50         if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
51             mode = get_field(env->mstatus, MSTATUS_MPP);
52             virt = get_field(env->mstatus, MSTATUS_MPV) &&
53                    (mode != PRV_M);
54             if (virt) {
55                 status = env->vsstatus;
56             }
57         }
58         if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
59             mode = MMUIdx_S_SUM;
60         }
61     }
62 
63     return mode | (virt ? MMU_2STAGE_BIT : 0);
64 #endif
65 }
66 
67 bool cpu_get_fcfien(CPURISCVState *env)
68 {
69     /* no cfi extension, return false */
70     if (!env_archcpu(env)->cfg.ext_zicfilp) {
71         return false;
72     }
73 
74     switch (env->priv) {
75     case PRV_U:
76         if (riscv_has_ext(env, RVS)) {
77             return env->senvcfg & SENVCFG_LPE;
78         }
79         return env->menvcfg & MENVCFG_LPE;
80 #ifndef CONFIG_USER_ONLY
81     case PRV_S:
82         if (env->virt_enabled) {
83             return env->henvcfg & HENVCFG_LPE;
84         }
85         return env->menvcfg & MENVCFG_LPE;
86     case PRV_M:
87         return env->mseccfg & MSECCFG_MLPE;
88 #endif
89     default:
90         g_assert_not_reached();
91     }
92 }
93 
94 bool cpu_get_bcfien(CPURISCVState *env)
95 {
96     /* no cfi extension, return false */
97     if (!env_archcpu(env)->cfg.ext_zicfiss) {
98         return false;
99     }
100 
101     switch (env->priv) {
102     case PRV_U:
103         /*
104          * If S is not implemented then shadow stack for U can't be turned on
105          * It is checked in `riscv_cpu_validate_set_extensions`, so no need to
106          * check here or assert here
107          */
108         return env->senvcfg & SENVCFG_SSE;
109 #ifndef CONFIG_USER_ONLY
110     case PRV_S:
111         if (env->virt_enabled) {
112             return env->henvcfg & HENVCFG_SSE;
113         }
114         return env->menvcfg & MENVCFG_SSE;
115     case PRV_M: /* M-mode shadow stack is always off */
116         return false;
117 #endif
118     default:
119         g_assert_not_reached();
120     }
121 }
122 
123 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc,
124                           uint64_t *cs_base, uint32_t *pflags)
125 {
126     RISCVCPU *cpu = env_archcpu(env);
127     RISCVExtStatus fs, vs;
128     uint32_t flags = 0;
129 
130     *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc;
131     *cs_base = 0;
132 
133     if (cpu->cfg.ext_zve32x) {
134         /*
135          * If env->vl equals to VLMAX, we can use generic vector operation
136          * expanders (GVEC) to accerlate the vector operations.
137          * However, as LMUL could be a fractional number. The maximum
138          * vector size can be operated might be less than 8 bytes,
139          * which is not supported by GVEC. So we set vl_eq_vlmax flag to true
140          * only when maxsz >= 8 bytes.
141          */
142 
143         /* lmul encoded as in DisasContext::lmul */
144         int8_t lmul = sextract32(FIELD_EX64(env->vtype, VTYPE, VLMUL), 0, 3);
145         uint32_t vsew = FIELD_EX64(env->vtype, VTYPE, VSEW);
146         uint32_t vlmax = vext_get_vlmax(cpu->cfg.vlenb, vsew, lmul);
147         uint32_t maxsz = vlmax << vsew;
148         bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) &&
149                            (maxsz >= 8);
150         flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill);
151         flags = FIELD_DP32(flags, TB_FLAGS, SEW, vsew);
152         flags = FIELD_DP32(flags, TB_FLAGS, LMUL,
153                            FIELD_EX64(env->vtype, VTYPE, VLMUL));
154         flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax);
155         flags = FIELD_DP32(flags, TB_FLAGS, VTA,
156                            FIELD_EX64(env->vtype, VTYPE, VTA));
157         flags = FIELD_DP32(flags, TB_FLAGS, VMA,
158                            FIELD_EX64(env->vtype, VTYPE, VMA));
159         flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0);
160     } else {
161         flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1);
162     }
163 
164     if (cpu_get_fcfien(env)) {
165         /*
166          * For Forward CFI, only the expectation of a lpad at
167          * the start of the block is tracked via env->elp. env->elp
168          * is turned on during jalr translation.
169          */
170         flags = FIELD_DP32(flags, TB_FLAGS, FCFI_LP_EXPECTED, env->elp);
171         flags = FIELD_DP32(flags, TB_FLAGS, FCFI_ENABLED, 1);
172     }
173 
174     if (cpu_get_bcfien(env)) {
175         flags = FIELD_DP32(flags, TB_FLAGS, BCFI_ENABLED, 1);
176     }
177 
178 #ifdef CONFIG_USER_ONLY
179     fs = EXT_STATUS_DIRTY;
180     vs = EXT_STATUS_DIRTY;
181 #else
182     flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv);
183 
184     flags |= riscv_env_mmu_index(env, 0);
185     fs = get_field(env->mstatus, MSTATUS_FS);
186     vs = get_field(env->mstatus, MSTATUS_VS);
187 
188     if (env->virt_enabled) {
189         flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1);
190         /*
191          * Merge DISABLED and !DIRTY states using MIN.
192          * We will set both fields when dirtying.
193          */
194         fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS));
195         vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS));
196     }
197 
198     /* With Zfinx, floating point is enabled/disabled by Smstateen. */
199     if (!riscv_has_ext(env, RVF)) {
200         fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE)
201              ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED;
202     }
203 
204     if (cpu->cfg.debug && !icount_enabled()) {
205         flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled);
206     }
207 #endif
208 
209     flags = FIELD_DP32(flags, TB_FLAGS, FS, fs);
210     flags = FIELD_DP32(flags, TB_FLAGS, VS, vs);
211     flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl);
212     flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env));
213     if (env->cur_pmmask != 0) {
214         flags = FIELD_DP32(flags, TB_FLAGS, PM_MASK_ENABLED, 1);
215     }
216     if (env->cur_pmbase != 0) {
217         flags = FIELD_DP32(flags, TB_FLAGS, PM_BASE_ENABLED, 1);
218     }
219 
220     *pflags = flags;
221 }
222 
223 void riscv_cpu_update_mask(CPURISCVState *env)
224 {
225     target_ulong mask = 0, base = 0;
226     RISCVMXL xl = env->xl;
227     /*
228      * TODO: Current RVJ spec does not specify
229      * how the extension interacts with XLEN.
230      */
231 #ifndef CONFIG_USER_ONLY
232     int mode = cpu_address_mode(env);
233     xl = cpu_get_xl(env, mode);
234     if (riscv_has_ext(env, RVJ)) {
235         switch (mode) {
236         case PRV_M:
237             if (env->mmte & M_PM_ENABLE) {
238                 mask = env->mpmmask;
239                 base = env->mpmbase;
240             }
241             break;
242         case PRV_S:
243             if (env->mmte & S_PM_ENABLE) {
244                 mask = env->spmmask;
245                 base = env->spmbase;
246             }
247             break;
248         case PRV_U:
249             if (env->mmte & U_PM_ENABLE) {
250                 mask = env->upmmask;
251                 base = env->upmbase;
252             }
253             break;
254         default:
255             g_assert_not_reached();
256         }
257     }
258 #endif
259     if (xl == MXL_RV32) {
260         env->cur_pmmask = mask & UINT32_MAX;
261         env->cur_pmbase = base & UINT32_MAX;
262     } else {
263         env->cur_pmmask = mask;
264         env->cur_pmbase = base;
265     }
266 }
267 
268 #ifndef CONFIG_USER_ONLY
269 
270 /*
271  * The HS-mode is allowed to configure priority only for the
272  * following VS-mode local interrupts:
273  *
274  * 0  (Reserved interrupt, reads as zero)
275  * 1  Supervisor software interrupt
276  * 4  (Reserved interrupt, reads as zero)
277  * 5  Supervisor timer interrupt
278  * 8  (Reserved interrupt, reads as zero)
279  * 13 (Reserved interrupt)
280  * 14 "
281  * 15 "
282  * 16 "
283  * 17 "
284  * 18 "
285  * 19 "
286  * 20 "
287  * 21 "
288  * 22 "
289  * 23 "
290  */
291 
292 static const int hviprio_index2irq[] = {
293     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
294 static const int hviprio_index2rdzero[] = {
295     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
296 
297 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
298 {
299     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
300         return -EINVAL;
301     }
302 
303     if (out_irq) {
304         *out_irq = hviprio_index2irq[index];
305     }
306 
307     if (out_rdzero) {
308         *out_rdzero = hviprio_index2rdzero[index];
309     }
310 
311     return 0;
312 }
313 
314 /*
315  * Default priorities of local interrupts are defined in the
316  * RISC-V Advanced Interrupt Architecture specification.
317  *
318  * ----------------------------------------------------------------
319  *  Default  |
320  *  Priority | Major Interrupt Numbers
321  * ----------------------------------------------------------------
322  *  Highest  | 47, 23, 46, 45, 22, 44,
323  *           | 43, 21, 42, 41, 20, 40
324  *           |
325  *           | 11 (0b),  3 (03),  7 (07)
326  *           |  9 (09),  1 (01),  5 (05)
327  *           | 12 (0c)
328  *           | 10 (0a),  2 (02),  6 (06)
329  *           |
330  *           | 39, 19, 38, 37, 18, 36,
331  *  Lowest   | 35, 17, 34, 33, 16, 32
332  * ----------------------------------------------------------------
333  */
334 static const uint8_t default_iprio[64] = {
335     /* Custom interrupts 48 to 63 */
336     [63] = IPRIO_MMAXIPRIO,
337     [62] = IPRIO_MMAXIPRIO,
338     [61] = IPRIO_MMAXIPRIO,
339     [60] = IPRIO_MMAXIPRIO,
340     [59] = IPRIO_MMAXIPRIO,
341     [58] = IPRIO_MMAXIPRIO,
342     [57] = IPRIO_MMAXIPRIO,
343     [56] = IPRIO_MMAXIPRIO,
344     [55] = IPRIO_MMAXIPRIO,
345     [54] = IPRIO_MMAXIPRIO,
346     [53] = IPRIO_MMAXIPRIO,
347     [52] = IPRIO_MMAXIPRIO,
348     [51] = IPRIO_MMAXIPRIO,
349     [50] = IPRIO_MMAXIPRIO,
350     [49] = IPRIO_MMAXIPRIO,
351     [48] = IPRIO_MMAXIPRIO,
352 
353     /* Custom interrupts 24 to 31 */
354     [31] = IPRIO_MMAXIPRIO,
355     [30] = IPRIO_MMAXIPRIO,
356     [29] = IPRIO_MMAXIPRIO,
357     [28] = IPRIO_MMAXIPRIO,
358     [27] = IPRIO_MMAXIPRIO,
359     [26] = IPRIO_MMAXIPRIO,
360     [25] = IPRIO_MMAXIPRIO,
361     [24] = IPRIO_MMAXIPRIO,
362 
363     [47] = IPRIO_DEFAULT_UPPER,
364     [23] = IPRIO_DEFAULT_UPPER + 1,
365     [46] = IPRIO_DEFAULT_UPPER + 2,
366     [45] = IPRIO_DEFAULT_UPPER + 3,
367     [22] = IPRIO_DEFAULT_UPPER + 4,
368     [44] = IPRIO_DEFAULT_UPPER + 5,
369 
370     [43] = IPRIO_DEFAULT_UPPER + 6,
371     [21] = IPRIO_DEFAULT_UPPER + 7,
372     [42] = IPRIO_DEFAULT_UPPER + 8,
373     [41] = IPRIO_DEFAULT_UPPER + 9,
374     [20] = IPRIO_DEFAULT_UPPER + 10,
375     [40] = IPRIO_DEFAULT_UPPER + 11,
376 
377     [11] = IPRIO_DEFAULT_M,
378     [3]  = IPRIO_DEFAULT_M + 1,
379     [7]  = IPRIO_DEFAULT_M + 2,
380 
381     [9]  = IPRIO_DEFAULT_S,
382     [1]  = IPRIO_DEFAULT_S + 1,
383     [5]  = IPRIO_DEFAULT_S + 2,
384 
385     [12] = IPRIO_DEFAULT_SGEXT,
386 
387     [10] = IPRIO_DEFAULT_VS,
388     [2]  = IPRIO_DEFAULT_VS + 1,
389     [6]  = IPRIO_DEFAULT_VS + 2,
390 
391     [39] = IPRIO_DEFAULT_LOWER,
392     [19] = IPRIO_DEFAULT_LOWER + 1,
393     [38] = IPRIO_DEFAULT_LOWER + 2,
394     [37] = IPRIO_DEFAULT_LOWER + 3,
395     [18] = IPRIO_DEFAULT_LOWER + 4,
396     [36] = IPRIO_DEFAULT_LOWER + 5,
397 
398     [35] = IPRIO_DEFAULT_LOWER + 6,
399     [17] = IPRIO_DEFAULT_LOWER + 7,
400     [34] = IPRIO_DEFAULT_LOWER + 8,
401     [33] = IPRIO_DEFAULT_LOWER + 9,
402     [16] = IPRIO_DEFAULT_LOWER + 10,
403     [32] = IPRIO_DEFAULT_LOWER + 11,
404 };
405 
406 uint8_t riscv_cpu_default_priority(int irq)
407 {
408     if (irq < 0 || irq > 63) {
409         return IPRIO_MMAXIPRIO;
410     }
411 
412     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
413 };
414 
415 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
416                                     int extirq, unsigned int extirq_def_prio,
417                                     uint64_t pending, uint8_t *iprio)
418 {
419     int irq, best_irq = RISCV_EXCP_NONE;
420     unsigned int prio, best_prio = UINT_MAX;
421 
422     if (!pending) {
423         return RISCV_EXCP_NONE;
424     }
425 
426     irq = ctz64(pending);
427     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
428                                   riscv_cpu_cfg(env)->ext_ssaia)) {
429         return irq;
430     }
431 
432     pending = pending >> irq;
433     while (pending) {
434         prio = iprio[irq];
435         if (!prio) {
436             if (irq == extirq) {
437                 prio = extirq_def_prio;
438             } else {
439                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
440                        1 : IPRIO_MMAXIPRIO;
441             }
442         }
443         if ((pending & 0x1) && (prio <= best_prio)) {
444             best_irq = irq;
445             best_prio = prio;
446         }
447         irq++;
448         pending = pending >> 1;
449     }
450 
451     return best_irq;
452 }
453 
454 /*
455  * Doesn't report interrupts inserted using mvip from M-mode firmware or
456  * using hvip bits 13:63 from HS-mode. Those are returned in
457  * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending().
458  */
459 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
460 {
461     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
462     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
463     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
464 
465     return (env->mip | vsgein | vstip) & env->mie;
466 }
467 
468 int riscv_cpu_mirq_pending(CPURISCVState *env)
469 {
470     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
471                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
472 
473     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
474                                     irqs, env->miprio);
475 }
476 
477 int riscv_cpu_sirq_pending(CPURISCVState *env)
478 {
479     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
480                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
481     uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie;
482 
483     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
484                                     irqs | irqs_f, env->siprio);
485 }
486 
487 int riscv_cpu_vsirq_pending(CPURISCVState *env)
488 {
489     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg;
490     uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
491     uint64_t vsbits;
492 
493     /* Bring VS-level bits to correct position */
494     vsbits = irqs & VS_MODE_INTERRUPTS;
495     irqs &= ~VS_MODE_INTERRUPTS;
496     irqs |= vsbits >> 1;
497 
498     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
499                                     (irqs | irqs_f_vs), env->hviprio);
500 }
501 
502 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
503 {
504     uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs;
505     uint64_t vsbits, irq_delegated;
506     int virq;
507 
508     /* Determine interrupt enable state of all privilege modes */
509     if (env->virt_enabled) {
510         mie = 1;
511         hsie = 1;
512         vsie = (env->priv < PRV_S) ||
513                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
514     } else {
515         mie = (env->priv < PRV_M) ||
516               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
517         hsie = (env->priv < PRV_S) ||
518                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
519         vsie = 0;
520     }
521 
522     /* Determine all pending interrupts */
523     pending = riscv_cpu_all_pending(env);
524 
525     /* Check M-mode interrupts */
526     irqs = pending & ~env->mideleg & -mie;
527     if (irqs) {
528         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
529                                         irqs, env->miprio);
530     }
531 
532     /* Check for virtual S-mode interrupts. */
533     irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie;
534 
535     /* Check HS-mode interrupts */
536     irqs =  ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie;
537     if (irqs) {
538         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
539                                         irqs, env->siprio);
540     }
541 
542     /* Check for virtual VS-mode interrupts. */
543     irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
544 
545     /* Check VS-mode interrupts */
546     irq_delegated = pending & env->mideleg & env->hideleg;
547 
548     /* Bring VS-level bits to correct position */
549     vsbits = irq_delegated & VS_MODE_INTERRUPTS;
550     irq_delegated &= ~VS_MODE_INTERRUPTS;
551     irq_delegated |= vsbits >> 1;
552 
553     irqs = (irq_delegated | irqs_f_vs) & -vsie;
554     if (irqs) {
555         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
556                                         irqs, env->hviprio);
557         if (virq <= 0 || (virq > 12 && virq <= 63)) {
558             return virq;
559         } else {
560             return virq + 1;
561         }
562     }
563 
564     /* Indicate no pending interrupt */
565     return RISCV_EXCP_NONE;
566 }
567 
568 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
569 {
570     if (interrupt_request & CPU_INTERRUPT_HARD) {
571         RISCVCPU *cpu = RISCV_CPU(cs);
572         CPURISCVState *env = &cpu->env;
573         int interruptno = riscv_cpu_local_irq_pending(env);
574         if (interruptno >= 0) {
575             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
576             riscv_cpu_do_interrupt(cs);
577             return true;
578         }
579     }
580     return false;
581 }
582 
583 /* Return true is floating point support is currently enabled */
584 bool riscv_cpu_fp_enabled(CPURISCVState *env)
585 {
586     if (env->mstatus & MSTATUS_FS) {
587         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
588             return false;
589         }
590         return true;
591     }
592 
593     return false;
594 }
595 
596 /* Return true is vector support is currently enabled */
597 bool riscv_cpu_vector_enabled(CPURISCVState *env)
598 {
599     if (env->mstatus & MSTATUS_VS) {
600         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
601             return false;
602         }
603         return true;
604     }
605 
606     return false;
607 }
608 
609 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
610 {
611     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
612                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
613                             MSTATUS64_UXL | MSTATUS_VS;
614 
615     if (riscv_has_ext(env, RVF)) {
616         mstatus_mask |= MSTATUS_FS;
617     }
618     bool current_virt = env->virt_enabled;
619 
620     /*
621      * If zicfilp extension available and henvcfg.LPE = 1,
622      * then apply SPELP mask on mstatus
623      */
624     if (env_archcpu(env)->cfg.ext_zicfilp &&
625         get_field(env->henvcfg, HENVCFG_LPE)) {
626         mstatus_mask |= SSTATUS_SPELP;
627     }
628 
629     g_assert(riscv_has_ext(env, RVH));
630 
631     if (current_virt) {
632         /* Current V=1 and we are about to change to V=0 */
633         env->vsstatus = env->mstatus & mstatus_mask;
634         env->mstatus &= ~mstatus_mask;
635         env->mstatus |= env->mstatus_hs;
636 
637         env->vstvec = env->stvec;
638         env->stvec = env->stvec_hs;
639 
640         env->vsscratch = env->sscratch;
641         env->sscratch = env->sscratch_hs;
642 
643         env->vsepc = env->sepc;
644         env->sepc = env->sepc_hs;
645 
646         env->vscause = env->scause;
647         env->scause = env->scause_hs;
648 
649         env->vstval = env->stval;
650         env->stval = env->stval_hs;
651 
652         env->vsatp = env->satp;
653         env->satp = env->satp_hs;
654     } else {
655         /* Current V=0 and we are about to change to V=1 */
656         env->mstatus_hs = env->mstatus & mstatus_mask;
657         env->mstatus &= ~mstatus_mask;
658         env->mstatus |= env->vsstatus;
659 
660         env->stvec_hs = env->stvec;
661         env->stvec = env->vstvec;
662 
663         env->sscratch_hs = env->sscratch;
664         env->sscratch = env->vsscratch;
665 
666         env->sepc_hs = env->sepc;
667         env->sepc = env->vsepc;
668 
669         env->scause_hs = env->scause;
670         env->scause = env->vscause;
671 
672         env->stval_hs = env->stval;
673         env->stval = env->vstval;
674 
675         env->satp_hs = env->satp;
676         env->satp = env->vsatp;
677     }
678 }
679 
680 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
681 {
682     if (!riscv_has_ext(env, RVH)) {
683         return 0;
684     }
685 
686     return env->geilen;
687 }
688 
689 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
690 {
691     if (!riscv_has_ext(env, RVH)) {
692         return;
693     }
694 
695     if (geilen > (TARGET_LONG_BITS - 1)) {
696         return;
697     }
698 
699     env->geilen = geilen;
700 }
701 
702 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
703 {
704     CPURISCVState *env = &cpu->env;
705     if (env->miclaim & interrupts) {
706         return -1;
707     } else {
708         env->miclaim |= interrupts;
709         return 0;
710     }
711 }
712 
713 void riscv_cpu_interrupt(CPURISCVState *env)
714 {
715     uint64_t gein, vsgein = 0, vstip = 0, irqf = 0;
716     CPUState *cs = env_cpu(env);
717 
718     BQL_LOCK_GUARD();
719 
720     if (env->virt_enabled) {
721         gein = get_field(env->hstatus, HSTATUS_VGEIN);
722         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
723         irqf = env->hvien & env->hvip & env->vsie;
724     } else {
725         irqf = env->mvien & env->mvip & env->sie;
726     }
727 
728     vstip = env->vstime_irq ? MIP_VSTIP : 0;
729 
730     if (env->mip | vsgein | vstip | irqf) {
731         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
732     } else {
733         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
734     }
735 }
736 
737 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value)
738 {
739     uint64_t old = env->mip;
740 
741     /* No need to update mip for VSTIP */
742     mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
743 
744     BQL_LOCK_GUARD();
745 
746     env->mip = (env->mip & ~mask) | (value & mask);
747 
748     riscv_cpu_interrupt(env);
749 
750     return old;
751 }
752 
753 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
754                              void *arg)
755 {
756     env->rdtime_fn = fn;
757     env->rdtime_fn_arg = arg;
758 }
759 
760 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
761                                    int (*rmw_fn)(void *arg,
762                                                  target_ulong reg,
763                                                  target_ulong *val,
764                                                  target_ulong new_val,
765                                                  target_ulong write_mask),
766                                    void *rmw_fn_arg)
767 {
768     if (priv <= PRV_M) {
769         env->aia_ireg_rmw_fn[priv] = rmw_fn;
770         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
771     }
772 }
773 
774 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv, bool virt_en)
775 {
776     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
777 
778     if (newpriv != env->priv || env->virt_enabled != virt_en) {
779         if (icount_enabled()) {
780             riscv_itrigger_update_priv(env);
781         }
782 
783         riscv_pmu_update_fixed_ctrs(env, newpriv, virt_en);
784     }
785 
786     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
787     env->priv = newpriv;
788     env->xl = cpu_recompute_xl(env);
789     riscv_cpu_update_mask(env);
790 
791     /*
792      * Clear the load reservation - otherwise a reservation placed in one
793      * context/process can be used by another, resulting in an SC succeeding
794      * incorrectly. Version 2.2 of the ISA specification explicitly requires
795      * this behaviour, while later revisions say that the kernel "should" use
796      * an SC instruction to force the yielding of a load reservation on a
797      * preemptive context switch. As a result, do both.
798      */
799     env->load_res = -1;
800 
801     if (riscv_has_ext(env, RVH)) {
802         /* Flush the TLB on all virt mode changes. */
803         if (env->virt_enabled != virt_en) {
804             tlb_flush(env_cpu(env));
805         }
806 
807         env->virt_enabled = virt_en;
808         if (virt_en) {
809             /*
810              * The guest external interrupts from an interrupt controller are
811              * delivered only when the Guest/VM is running (i.e. V=1). This
812              * means any guest external interrupt which is triggered while the
813              * Guest/VM is not running (i.e. V=0) will be missed on QEMU
814              * resulting in guest with sluggish response to serial console
815              * input and other I/O events.
816              *
817              * To solve this, we check and inject interrupt after setting V=1.
818              */
819             riscv_cpu_update_mip(env, 0, 0);
820         }
821     }
822 }
823 
824 /*
825  * get_physical_address_pmp - check PMP permission for this physical address
826  *
827  * Match the PMP region and check permission for this physical address and it's
828  * TLB page. Returns 0 if the permission checking was successful
829  *
830  * @env: CPURISCVState
831  * @prot: The returned protection attributes
832  * @addr: The physical address to be checked permission
833  * @access_type: The type of MMU access
834  * @mode: Indicates current privilege level.
835  */
836 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
837                                     int size, MMUAccessType access_type,
838                                     int mode)
839 {
840     pmp_priv_t pmp_priv;
841     bool pmp_has_privs;
842 
843     if (!riscv_cpu_cfg(env)->pmp) {
844         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
845         return TRANSLATE_SUCCESS;
846     }
847 
848     pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
849                                        &pmp_priv, mode);
850     if (!pmp_has_privs) {
851         *prot = 0;
852         return TRANSLATE_PMP_FAIL;
853     }
854 
855     *prot = pmp_priv_to_page_prot(pmp_priv);
856 
857     return TRANSLATE_SUCCESS;
858 }
859 
860 /* Returns 'true' if a svukte address check is needed */
861 static bool do_svukte_check(CPURISCVState *env, bool first_stage,
862                              int mode, bool virt)
863 {
864     /* Svukte extension depends on Sv39. */
865     if (!(env_archcpu(env)->cfg.ext_svukte ||
866         !first_stage ||
867         VM_1_10_SV39 != get_field(env->satp, SATP64_MODE))) {
868         return false;
869     }
870 
871     /*
872      * Check hstatus.HUKTE if the effective mode is switched to VU-mode by
873      * executing HLV/HLVX/HSV in U-mode.
874      * For other cases, check senvcfg.UKTE.
875      */
876     if (env->priv == PRV_U && !env->virt_enabled && virt) {
877         if (!get_field(env->hstatus, HSTATUS_HUKTE)) {
878             return false;
879         }
880     } else if (!get_field(env->senvcfg, SENVCFG_UKTE)) {
881         return false;
882     }
883 
884     /*
885      * Svukte extension is qualified only in U or VU-mode.
886      *
887      * Effective mode can be switched to U or VU-mode by:
888      *   - M-mode + mstatus.MPRV=1 + mstatus.MPP=U-mode.
889      *   - Execute HLV/HLVX/HSV from HS-mode + hstatus.SPVP=0.
890      *   - U-mode.
891      *   - VU-mode.
892      *   - Execute HLV/HLVX/HSV from U-mode + hstatus.HU=1.
893      */
894     if (mode != PRV_U) {
895         return false;
896     }
897 
898     return true;
899 }
900 
901 static bool check_svukte_addr(CPURISCVState *env, vaddr addr)
902 {
903     /* svukte extension excludes RV32 */
904     uint32_t sxlen = 32 * riscv_cpu_sxl(env);
905     uint64_t high_bit = addr & (1UL << (sxlen - 1));
906     return !high_bit;
907 }
908 
909 /*
910  * get_physical_address - get the physical address for this virtual address
911  *
912  * Do a page table walk to obtain the physical address corresponding to a
913  * virtual address. Returns 0 if the translation was successful
914  *
915  * Adapted from Spike's mmu_t::translate and mmu_t::walk
916  *
917  * @env: CPURISCVState
918  * @physical: This will be set to the calculated physical address
919  * @prot: The returned protection attributes
920  * @addr: The virtual address or guest physical address to be translated
921  * @fault_pte_addr: If not NULL, this will be set to fault pte address
922  *                  when a error occurs on pte address translation.
923  *                  This will already be shifted to match htval.
924  * @access_type: The type of MMU access
925  * @mmu_idx: Indicates current privilege level
926  * @first_stage: Are we in first stage translation?
927  *               Second stage is used for hypervisor guest translation
928  * @two_stage: Are we going to perform two stage translation
929  * @is_debug: Is this access from a debugger or the monitor?
930  */
931 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
932                                 int *ret_prot, vaddr addr,
933                                 target_ulong *fault_pte_addr,
934                                 int access_type, int mmu_idx,
935                                 bool first_stage, bool two_stage,
936                                 bool is_debug, bool is_probe)
937 {
938     /*
939      * NOTE: the env->pc value visible here will not be
940      * correct, but the value visible to the exception handler
941      * (riscv_cpu_do_interrupt) is correct
942      */
943     MemTxResult res;
944     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
945     int mode = mmuidx_priv(mmu_idx);
946     bool virt = mmuidx_2stage(mmu_idx);
947     bool use_background = false;
948     hwaddr ppn;
949     int napot_bits = 0;
950     target_ulong napot_mask;
951     bool is_sstack_idx = ((mmu_idx & MMU_IDX_SS_WRITE) == MMU_IDX_SS_WRITE);
952     bool sstack_page = false;
953 
954     if (do_svukte_check(env, first_stage, mode, virt) &&
955         !check_svukte_addr(env, addr)) {
956         return TRANSLATE_FAIL;
957     }
958 
959     /*
960      * Check if we should use the background registers for the two
961      * stage translation. We don't need to check if we actually need
962      * two stage translation as that happened before this function
963      * was called. Background registers will be used if the guest has
964      * forced a two stage translation to be on (in HS or M mode).
965      */
966     if (!env->virt_enabled && two_stage) {
967         use_background = true;
968     }
969 
970     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
971         *physical = addr;
972         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
973         return TRANSLATE_SUCCESS;
974     }
975 
976     *ret_prot = 0;
977 
978     hwaddr base;
979     int levels, ptidxbits, ptesize, vm, widened;
980 
981     if (first_stage == true) {
982         if (use_background) {
983             if (riscv_cpu_mxl(env) == MXL_RV32) {
984                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
985                 vm = get_field(env->vsatp, SATP32_MODE);
986             } else {
987                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
988                 vm = get_field(env->vsatp, SATP64_MODE);
989             }
990         } else {
991             if (riscv_cpu_mxl(env) == MXL_RV32) {
992                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
993                 vm = get_field(env->satp, SATP32_MODE);
994             } else {
995                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
996                 vm = get_field(env->satp, SATP64_MODE);
997             }
998         }
999         widened = 0;
1000     } else {
1001         if (riscv_cpu_mxl(env) == MXL_RV32) {
1002             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
1003             vm = get_field(env->hgatp, SATP32_MODE);
1004         } else {
1005             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
1006             vm = get_field(env->hgatp, SATP64_MODE);
1007         }
1008         widened = 2;
1009     }
1010 
1011     switch (vm) {
1012     case VM_1_10_SV32:
1013       levels = 2; ptidxbits = 10; ptesize = 4; break;
1014     case VM_1_10_SV39:
1015       levels = 3; ptidxbits = 9; ptesize = 8; break;
1016     case VM_1_10_SV48:
1017       levels = 4; ptidxbits = 9; ptesize = 8; break;
1018     case VM_1_10_SV57:
1019       levels = 5; ptidxbits = 9; ptesize = 8; break;
1020     case VM_1_10_MBARE:
1021         *physical = addr;
1022         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1023         return TRANSLATE_SUCCESS;
1024     default:
1025       g_assert_not_reached();
1026     }
1027 
1028     CPUState *cs = env_cpu(env);
1029     int va_bits = PGSHIFT + levels * ptidxbits + widened;
1030     int sxlen = 16 << riscv_cpu_sxl(env);
1031     int sxlen_bytes = sxlen / 8;
1032 
1033     if (first_stage == true) {
1034         target_ulong mask, masked_msbs;
1035 
1036         if (sxlen > (va_bits - 1)) {
1037             mask = (1L << (sxlen - (va_bits - 1))) - 1;
1038         } else {
1039             mask = 0;
1040         }
1041         masked_msbs = (addr >> (va_bits - 1)) & mask;
1042 
1043         if (masked_msbs != 0 && masked_msbs != mask) {
1044             return TRANSLATE_FAIL;
1045         }
1046     } else {
1047         if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
1048             return TRANSLATE_FAIL;
1049         }
1050     }
1051 
1052     bool pbmte = env->menvcfg & MENVCFG_PBMTE;
1053     bool svade = riscv_cpu_cfg(env)->ext_svade;
1054     bool svadu = riscv_cpu_cfg(env)->ext_svadu;
1055     bool adue = svadu ? env->menvcfg & MENVCFG_ADUE : !svade;
1056 
1057     if (first_stage && two_stage && env->virt_enabled) {
1058         pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
1059         adue = adue && (env->henvcfg & HENVCFG_ADUE);
1060     }
1061 
1062     int ptshift = (levels - 1) * ptidxbits;
1063     target_ulong pte;
1064     hwaddr pte_addr;
1065     int i;
1066 
1067 #if !TCG_OVERSIZED_GUEST
1068 restart:
1069 #endif
1070     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
1071         target_ulong idx;
1072         if (i == 0) {
1073             idx = (addr >> (PGSHIFT + ptshift)) &
1074                            ((1 << (ptidxbits + widened)) - 1);
1075         } else {
1076             idx = (addr >> (PGSHIFT + ptshift)) &
1077                            ((1 << ptidxbits) - 1);
1078         }
1079 
1080         /* check that physical address of PTE is legal */
1081 
1082         if (two_stage && first_stage) {
1083             int vbase_prot;
1084             hwaddr vbase;
1085 
1086             /* Do the second stage translation on the base PTE address. */
1087             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
1088                                                  base, NULL, MMU_DATA_LOAD,
1089                                                  MMUIdx_U, false, true,
1090                                                  is_debug, false);
1091 
1092             if (vbase_ret != TRANSLATE_SUCCESS) {
1093                 if (fault_pte_addr) {
1094                     *fault_pte_addr = (base + idx * ptesize) >> 2;
1095                 }
1096                 return TRANSLATE_G_STAGE_FAIL;
1097             }
1098 
1099             pte_addr = vbase + idx * ptesize;
1100         } else {
1101             pte_addr = base + idx * ptesize;
1102         }
1103 
1104         int pmp_prot;
1105         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
1106                                                sxlen_bytes,
1107                                                MMU_DATA_LOAD, PRV_S);
1108         if (pmp_ret != TRANSLATE_SUCCESS) {
1109             return TRANSLATE_PMP_FAIL;
1110         }
1111 
1112         if (riscv_cpu_mxl(env) == MXL_RV32) {
1113             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
1114         } else {
1115             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
1116         }
1117 
1118         if (res != MEMTX_OK) {
1119             return TRANSLATE_FAIL;
1120         }
1121 
1122         if (riscv_cpu_sxl(env) == MXL_RV32) {
1123             ppn = pte >> PTE_PPN_SHIFT;
1124         } else {
1125             if (pte & PTE_RESERVED) {
1126                 return TRANSLATE_FAIL;
1127             }
1128 
1129             if (!pbmte && (pte & PTE_PBMT)) {
1130                 return TRANSLATE_FAIL;
1131             }
1132 
1133             if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1134                 return TRANSLATE_FAIL;
1135             }
1136 
1137             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
1138         }
1139 
1140         if (!(pte & PTE_V)) {
1141             /* Invalid PTE */
1142             return TRANSLATE_FAIL;
1143         }
1144         if (pte & (PTE_R | PTE_W | PTE_X)) {
1145             goto leaf;
1146         }
1147 
1148         /* Inner PTE, continue walking */
1149         if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
1150             return TRANSLATE_FAIL;
1151         }
1152         base = ppn << PGSHIFT;
1153     }
1154 
1155     /* No leaf pte at any translation level. */
1156     return TRANSLATE_FAIL;
1157 
1158  leaf:
1159     if (ppn & ((1ULL << ptshift) - 1)) {
1160         /* Misaligned PPN */
1161         return TRANSLATE_FAIL;
1162     }
1163     if (!pbmte && (pte & PTE_PBMT)) {
1164         /* Reserved without Svpbmt. */
1165         return TRANSLATE_FAIL;
1166     }
1167 
1168     target_ulong rwx = pte & (PTE_R | PTE_W | PTE_X);
1169     /* Check for reserved combinations of RWX flags. */
1170     switch (rwx) {
1171     case PTE_W | PTE_X:
1172         return TRANSLATE_FAIL;
1173     case PTE_W:
1174         /* if bcfi enabled, PTE_W is not reserved and shadow stack page */
1175         if (cpu_get_bcfien(env) && first_stage) {
1176             sstack_page = true;
1177             /*
1178              * if ss index, read and write allowed. else if not a probe
1179              * then only read allowed
1180              */
1181             rwx = is_sstack_idx ? (PTE_R | PTE_W) : (is_probe ? 0 :  PTE_R);
1182             break;
1183         }
1184         return TRANSLATE_FAIL;
1185     case PTE_R:
1186         /*
1187          * no matter what's the `access_type`, shadow stack access to readonly
1188          * memory are always store page faults. During unwind, loads will be
1189          * promoted as store fault.
1190          */
1191         if (is_sstack_idx) {
1192             return TRANSLATE_FAIL;
1193         }
1194         break;
1195     }
1196 
1197     int prot = 0;
1198     if (rwx & PTE_R) {
1199         prot |= PAGE_READ;
1200     }
1201     if (rwx & PTE_W) {
1202         prot |= PAGE_WRITE;
1203     }
1204     if (rwx & PTE_X) {
1205         bool mxr = false;
1206 
1207         /*
1208          * Use mstatus for first stage or for the second stage without
1209          * virt_enabled (MPRV+MPV)
1210          */
1211         if (first_stage || !env->virt_enabled) {
1212             mxr = get_field(env->mstatus, MSTATUS_MXR);
1213         }
1214 
1215         /* MPRV+MPV case, check VSSTATUS */
1216         if (first_stage && two_stage && !env->virt_enabled) {
1217             mxr |= get_field(env->vsstatus, MSTATUS_MXR);
1218         }
1219 
1220         /*
1221          * Setting MXR at HS-level overrides both VS-stage and G-stage
1222          * execute-only permissions
1223          */
1224         if (env->virt_enabled) {
1225             mxr |= get_field(env->mstatus_hs, MSTATUS_MXR);
1226         }
1227 
1228         if (mxr) {
1229             prot |= PAGE_READ;
1230         }
1231         prot |= PAGE_EXEC;
1232     }
1233 
1234     if (pte & PTE_U) {
1235         if (mode != PRV_U) {
1236             if (!mmuidx_sum(mmu_idx)) {
1237                 return TRANSLATE_FAIL;
1238             }
1239             /* SUM allows only read+write, not execute. */
1240             prot &= PAGE_READ | PAGE_WRITE;
1241         }
1242     } else if (mode != PRV_S) {
1243         /* Supervisor PTE flags when not S mode */
1244         return TRANSLATE_FAIL;
1245     }
1246 
1247     if (!((prot >> access_type) & 1)) {
1248         /*
1249          * Access check failed, access check failures for shadow stack are
1250          * access faults.
1251          */
1252         return sstack_page ? TRANSLATE_PMP_FAIL : TRANSLATE_FAIL;
1253     }
1254 
1255     target_ulong updated_pte = pte;
1256 
1257     /*
1258      * If ADUE is enabled, set accessed and dirty bits.
1259      * Otherwise raise an exception if necessary.
1260      */
1261     if (adue) {
1262         updated_pte |= PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0);
1263     } else if (!(pte & PTE_A) ||
1264                (access_type == MMU_DATA_STORE && !(pte & PTE_D))) {
1265         return TRANSLATE_FAIL;
1266     }
1267 
1268     /* Page table updates need to be atomic with MTTCG enabled */
1269     if (updated_pte != pte && !is_debug) {
1270         if (!adue) {
1271             return TRANSLATE_FAIL;
1272         }
1273 
1274         /*
1275          * - if accessed or dirty bits need updating, and the PTE is
1276          *   in RAM, then we do so atomically with a compare and swap.
1277          * - if the PTE is in IO space or ROM, then it can't be updated
1278          *   and we return TRANSLATE_FAIL.
1279          * - if the PTE changed by the time we went to update it, then
1280          *   it is no longer valid and we must re-walk the page table.
1281          */
1282         MemoryRegion *mr;
1283         hwaddr l = sxlen_bytes, addr1;
1284         mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1285                                      false, MEMTXATTRS_UNSPECIFIED);
1286         if (memory_region_is_ram(mr)) {
1287             target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1288 #if TCG_OVERSIZED_GUEST
1289             /*
1290              * MTTCG is not enabled on oversized TCG guests so
1291              * page table updates do not need to be atomic
1292              */
1293             *pte_pa = pte = updated_pte;
1294 #else
1295             target_ulong old_pte;
1296             if (riscv_cpu_sxl(env) == MXL_RV32) {
1297                 old_pte = qatomic_cmpxchg((uint32_t *)pte_pa, pte, updated_pte);
1298             } else {
1299                 old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte);
1300             }
1301             if (old_pte != pte) {
1302                 goto restart;
1303             }
1304             pte = updated_pte;
1305 #endif
1306         } else {
1307             /*
1308              * Misconfigured PTE in ROM (AD bits are not preset) or
1309              * PTE is in IO space and can't be updated atomically.
1310              */
1311             return TRANSLATE_FAIL;
1312         }
1313     }
1314 
1315     /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1316     target_ulong vpn = addr >> PGSHIFT;
1317 
1318     if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1319         napot_bits = ctzl(ppn) + 1;
1320         if ((i != (levels - 1)) || (napot_bits != 4)) {
1321             return TRANSLATE_FAIL;
1322         }
1323     }
1324 
1325     napot_mask = (1 << napot_bits) - 1;
1326     *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1327                   (vpn & (((target_ulong)1 << ptshift) - 1))
1328                  ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1329 
1330     /*
1331      * Remove write permission unless this is a store, or the page is
1332      * already dirty, so that we TLB miss on later writes to update
1333      * the dirty bit.
1334      */
1335     if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1336         prot &= ~PAGE_WRITE;
1337     }
1338     *ret_prot = prot;
1339 
1340     return TRANSLATE_SUCCESS;
1341 }
1342 
1343 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1344                                 MMUAccessType access_type, bool pmp_violation,
1345                                 bool first_stage, bool two_stage,
1346                                 bool two_stage_indirect)
1347 {
1348     CPUState *cs = env_cpu(env);
1349 
1350     switch (access_type) {
1351     case MMU_INST_FETCH:
1352         if (pmp_violation) {
1353             cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1354         } else if (env->virt_enabled && !first_stage) {
1355             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1356         } else {
1357             cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
1358         }
1359         break;
1360     case MMU_DATA_LOAD:
1361         if (pmp_violation) {
1362             cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1363         } else if (two_stage && !first_stage) {
1364             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1365         } else {
1366             cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
1367         }
1368         break;
1369     case MMU_DATA_STORE:
1370         if (pmp_violation) {
1371             cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1372         } else if (two_stage && !first_stage) {
1373             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1374         } else {
1375             cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
1376         }
1377         break;
1378     default:
1379         g_assert_not_reached();
1380     }
1381     env->badaddr = address;
1382     env->two_stage_lookup = two_stage;
1383     env->two_stage_indirect_lookup = two_stage_indirect;
1384 }
1385 
1386 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1387 {
1388     RISCVCPU *cpu = RISCV_CPU(cs);
1389     CPURISCVState *env = &cpu->env;
1390     hwaddr phys_addr;
1391     int prot;
1392     int mmu_idx = riscv_env_mmu_index(&cpu->env, false);
1393 
1394     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1395                              true, env->virt_enabled, true, false)) {
1396         return -1;
1397     }
1398 
1399     if (env->virt_enabled) {
1400         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1401                                  0, MMUIdx_U, false, true, true, false)) {
1402             return -1;
1403         }
1404     }
1405 
1406     return phys_addr & TARGET_PAGE_MASK;
1407 }
1408 
1409 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1410                                      vaddr addr, unsigned size,
1411                                      MMUAccessType access_type,
1412                                      int mmu_idx, MemTxAttrs attrs,
1413                                      MemTxResult response, uintptr_t retaddr)
1414 {
1415     RISCVCPU *cpu = RISCV_CPU(cs);
1416     CPURISCVState *env = &cpu->env;
1417 
1418     if (access_type == MMU_DATA_STORE) {
1419         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1420     } else if (access_type == MMU_DATA_LOAD) {
1421         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1422     } else {
1423         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1424     }
1425 
1426     env->badaddr = addr;
1427     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1428     env->two_stage_indirect_lookup = false;
1429     cpu_loop_exit_restore(cs, retaddr);
1430 }
1431 
1432 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1433                                    MMUAccessType access_type, int mmu_idx,
1434                                    uintptr_t retaddr)
1435 {
1436     RISCVCPU *cpu = RISCV_CPU(cs);
1437     CPURISCVState *env = &cpu->env;
1438     switch (access_type) {
1439     case MMU_INST_FETCH:
1440         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1441         break;
1442     case MMU_DATA_LOAD:
1443         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1444         /* shadow stack mis aligned accesses are access faults */
1445         if (mmu_idx & MMU_IDX_SS_WRITE) {
1446             cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1447         }
1448         break;
1449     case MMU_DATA_STORE:
1450         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1451         /* shadow stack mis aligned accesses are access faults */
1452         if (mmu_idx & MMU_IDX_SS_WRITE) {
1453             cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1454         }
1455         break;
1456     default:
1457         g_assert_not_reached();
1458     }
1459     env->badaddr = addr;
1460     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1461     env->two_stage_indirect_lookup = false;
1462     cpu_loop_exit_restore(cs, retaddr);
1463 }
1464 
1465 
1466 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1467 {
1468     enum riscv_pmu_event_idx pmu_event_type;
1469 
1470     switch (access_type) {
1471     case MMU_INST_FETCH:
1472         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1473         break;
1474     case MMU_DATA_LOAD:
1475         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1476         break;
1477     case MMU_DATA_STORE:
1478         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1479         break;
1480     default:
1481         return;
1482     }
1483 
1484     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1485 }
1486 
1487 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1488                         MMUAccessType access_type, int mmu_idx,
1489                         bool probe, uintptr_t retaddr)
1490 {
1491     RISCVCPU *cpu = RISCV_CPU(cs);
1492     CPURISCVState *env = &cpu->env;
1493     vaddr im_address;
1494     hwaddr pa = 0;
1495     int prot, prot2, prot_pmp;
1496     bool pmp_violation = false;
1497     bool first_stage_error = true;
1498     bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1499     bool two_stage_indirect_error = false;
1500     int ret = TRANSLATE_FAIL;
1501     int mode = mmuidx_priv(mmu_idx);
1502     /* default TLB page size */
1503     hwaddr tlb_size = TARGET_PAGE_SIZE;
1504 
1505     env->guest_phys_fault_addr = 0;
1506 
1507     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1508                   __func__, address, access_type, mmu_idx);
1509 
1510     pmu_tlb_fill_incr_ctr(cpu, access_type);
1511     if (two_stage_lookup) {
1512         /* Two stage lookup */
1513         ret = get_physical_address(env, &pa, &prot, address,
1514                                    &env->guest_phys_fault_addr, access_type,
1515                                    mmu_idx, true, true, false, probe);
1516 
1517         /*
1518          * A G-stage exception may be triggered during two state lookup.
1519          * And the env->guest_phys_fault_addr has already been set in
1520          * get_physical_address().
1521          */
1522         if (ret == TRANSLATE_G_STAGE_FAIL) {
1523             first_stage_error = false;
1524             two_stage_indirect_error = true;
1525         }
1526 
1527         qemu_log_mask(CPU_LOG_MMU,
1528                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1529                       HWADDR_FMT_plx " prot %d\n",
1530                       __func__, address, ret, pa, prot);
1531 
1532         if (ret == TRANSLATE_SUCCESS) {
1533             /* Second stage lookup */
1534             im_address = pa;
1535 
1536             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1537                                        access_type, MMUIdx_U, false, true,
1538                                        false, probe);
1539 
1540             qemu_log_mask(CPU_LOG_MMU,
1541                           "%s 2nd-stage address=%" VADDR_PRIx
1542                           " ret %d physical "
1543                           HWADDR_FMT_plx " prot %d\n",
1544                           __func__, im_address, ret, pa, prot2);
1545 
1546             prot &= prot2;
1547 
1548             if (ret == TRANSLATE_SUCCESS) {
1549                 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1550                                                size, access_type, mode);
1551                 tlb_size = pmp_get_tlb_size(env, pa);
1552 
1553                 qemu_log_mask(CPU_LOG_MMU,
1554                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1555                               " %d tlb_size %" HWADDR_PRIu "\n",
1556                               __func__, pa, ret, prot_pmp, tlb_size);
1557 
1558                 prot &= prot_pmp;
1559             } else {
1560                 /*
1561                  * Guest physical address translation failed, this is a HS
1562                  * level exception
1563                  */
1564                 first_stage_error = false;
1565                 if (ret != TRANSLATE_PMP_FAIL) {
1566                     env->guest_phys_fault_addr = (im_address |
1567                                                   (address &
1568                                                    (TARGET_PAGE_SIZE - 1))) >> 2;
1569                 }
1570             }
1571         }
1572     } else {
1573         /* Single stage lookup */
1574         ret = get_physical_address(env, &pa, &prot, address, NULL,
1575                                    access_type, mmu_idx, true, false, false,
1576                                    probe);
1577 
1578         qemu_log_mask(CPU_LOG_MMU,
1579                       "%s address=%" VADDR_PRIx " ret %d physical "
1580                       HWADDR_FMT_plx " prot %d\n",
1581                       __func__, address, ret, pa, prot);
1582 
1583         if (ret == TRANSLATE_SUCCESS) {
1584             ret = get_physical_address_pmp(env, &prot_pmp, pa,
1585                                            size, access_type, mode);
1586             tlb_size = pmp_get_tlb_size(env, pa);
1587 
1588             qemu_log_mask(CPU_LOG_MMU,
1589                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1590                           " %d tlb_size %" HWADDR_PRIu "\n",
1591                           __func__, pa, ret, prot_pmp, tlb_size);
1592 
1593             prot &= prot_pmp;
1594         }
1595     }
1596 
1597     if (ret == TRANSLATE_PMP_FAIL) {
1598         pmp_violation = true;
1599     }
1600 
1601     if (ret == TRANSLATE_SUCCESS) {
1602         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1603                      prot, mmu_idx, tlb_size);
1604         return true;
1605     } else if (probe) {
1606         return false;
1607     } else {
1608         raise_mmu_exception(env, address, access_type, pmp_violation,
1609                             first_stage_error, two_stage_lookup,
1610                             two_stage_indirect_error);
1611         cpu_loop_exit_restore(cs, retaddr);
1612     }
1613 
1614     return true;
1615 }
1616 
1617 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1618                                            target_ulong insn,
1619                                            target_ulong taddr)
1620 {
1621     target_ulong xinsn = 0;
1622     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1623 
1624     /*
1625      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1626      * be uncompressed. The Quadrant 1 of RVC instruction space need
1627      * not be transformed because these instructions won't generate
1628      * any load/store trap.
1629      */
1630 
1631     if ((insn & 0x3) != 0x3) {
1632         /* Transform 16bit instruction into 32bit instruction */
1633         switch (GET_C_OP(insn)) {
1634         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1635             switch (GET_C_FUNC(insn)) {
1636             case OPC_RISC_C_FUNC_FLD_LQ:
1637                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1638                     xinsn = OPC_RISC_FLD;
1639                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1640                     access_rs1 = GET_C_RS1S(insn);
1641                     access_imm = GET_C_LD_IMM(insn);
1642                     access_size = 8;
1643                 }
1644                 break;
1645             case OPC_RISC_C_FUNC_LW: /* C.LW */
1646                 xinsn = OPC_RISC_LW;
1647                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1648                 access_rs1 = GET_C_RS1S(insn);
1649                 access_imm = GET_C_LW_IMM(insn);
1650                 access_size = 4;
1651                 break;
1652             case OPC_RISC_C_FUNC_FLW_LD:
1653                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1654                     xinsn = OPC_RISC_FLW;
1655                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1656                     access_rs1 = GET_C_RS1S(insn);
1657                     access_imm = GET_C_LW_IMM(insn);
1658                     access_size = 4;
1659                 } else { /* C.LD (RV64/RV128) */
1660                     xinsn = OPC_RISC_LD;
1661                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1662                     access_rs1 = GET_C_RS1S(insn);
1663                     access_imm = GET_C_LD_IMM(insn);
1664                     access_size = 8;
1665                 }
1666                 break;
1667             case OPC_RISC_C_FUNC_FSD_SQ:
1668                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1669                     xinsn = OPC_RISC_FSD;
1670                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1671                     access_rs1 = GET_C_RS1S(insn);
1672                     access_imm = GET_C_SD_IMM(insn);
1673                     access_size = 8;
1674                 }
1675                 break;
1676             case OPC_RISC_C_FUNC_SW: /* C.SW */
1677                 xinsn = OPC_RISC_SW;
1678                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1679                 access_rs1 = GET_C_RS1S(insn);
1680                 access_imm = GET_C_SW_IMM(insn);
1681                 access_size = 4;
1682                 break;
1683             case OPC_RISC_C_FUNC_FSW_SD:
1684                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1685                     xinsn = OPC_RISC_FSW;
1686                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1687                     access_rs1 = GET_C_RS1S(insn);
1688                     access_imm = GET_C_SW_IMM(insn);
1689                     access_size = 4;
1690                 } else { /* C.SD (RV64/RV128) */
1691                     xinsn = OPC_RISC_SD;
1692                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1693                     access_rs1 = GET_C_RS1S(insn);
1694                     access_imm = GET_C_SD_IMM(insn);
1695                     access_size = 8;
1696                 }
1697                 break;
1698             default:
1699                 break;
1700             }
1701             break;
1702         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1703             switch (GET_C_FUNC(insn)) {
1704             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1705                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1706                     xinsn = OPC_RISC_FLD;
1707                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1708                     access_rs1 = 2;
1709                     access_imm = GET_C_LDSP_IMM(insn);
1710                     access_size = 8;
1711                 }
1712                 break;
1713             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
1714                 xinsn = OPC_RISC_LW;
1715                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
1716                 access_rs1 = 2;
1717                 access_imm = GET_C_LWSP_IMM(insn);
1718                 access_size = 4;
1719                 break;
1720             case OPC_RISC_C_FUNC_FLWSP_LDSP:
1721                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
1722                     xinsn = OPC_RISC_FLW;
1723                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1724                     access_rs1 = 2;
1725                     access_imm = GET_C_LWSP_IMM(insn);
1726                     access_size = 4;
1727                 } else { /* C.LDSP (RV64/RV128) */
1728                     xinsn = OPC_RISC_LD;
1729                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1730                     access_rs1 = 2;
1731                     access_imm = GET_C_LDSP_IMM(insn);
1732                     access_size = 8;
1733                 }
1734                 break;
1735             case OPC_RISC_C_FUNC_FSDSP_SQSP:
1736                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
1737                     xinsn = OPC_RISC_FSD;
1738                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1739                     access_rs1 = 2;
1740                     access_imm = GET_C_SDSP_IMM(insn);
1741                     access_size = 8;
1742                 }
1743                 break;
1744             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
1745                 xinsn = OPC_RISC_SW;
1746                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1747                 access_rs1 = 2;
1748                 access_imm = GET_C_SWSP_IMM(insn);
1749                 access_size = 4;
1750                 break;
1751             case 7:
1752                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
1753                     xinsn = OPC_RISC_FSW;
1754                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1755                     access_rs1 = 2;
1756                     access_imm = GET_C_SWSP_IMM(insn);
1757                     access_size = 4;
1758                 } else { /* C.SDSP (RV64/RV128) */
1759                     xinsn = OPC_RISC_SD;
1760                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
1761                     access_rs1 = 2;
1762                     access_imm = GET_C_SDSP_IMM(insn);
1763                     access_size = 8;
1764                 }
1765                 break;
1766             default:
1767                 break;
1768             }
1769             break;
1770         default:
1771             break;
1772         }
1773 
1774         /*
1775          * Clear Bit1 of transformed instruction to indicate that
1776          * original insruction was a 16bit instruction
1777          */
1778         xinsn &= ~((target_ulong)0x2);
1779     } else {
1780         /* Transform 32bit (or wider) instructions */
1781         switch (MASK_OP_MAJOR(insn)) {
1782         case OPC_RISC_ATOMIC:
1783             xinsn = insn;
1784             access_rs1 = GET_RS1(insn);
1785             access_size = 1 << GET_FUNCT3(insn);
1786             break;
1787         case OPC_RISC_LOAD:
1788         case OPC_RISC_FP_LOAD:
1789             xinsn = SET_I_IMM(insn, 0);
1790             access_rs1 = GET_RS1(insn);
1791             access_imm = GET_IMM(insn);
1792             access_size = 1 << GET_FUNCT3(insn);
1793             break;
1794         case OPC_RISC_STORE:
1795         case OPC_RISC_FP_STORE:
1796             xinsn = SET_S_IMM(insn, 0);
1797             access_rs1 = GET_RS1(insn);
1798             access_imm = GET_STORE_IMM(insn);
1799             access_size = 1 << GET_FUNCT3(insn);
1800             break;
1801         case OPC_RISC_SYSTEM:
1802             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
1803                 xinsn = insn;
1804                 access_rs1 = GET_RS1(insn);
1805                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
1806                 access_size = 1 << access_size;
1807             }
1808             break;
1809         default:
1810             break;
1811         }
1812     }
1813 
1814     if (access_size) {
1815         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
1816                                (access_size - 1));
1817     }
1818 
1819     return xinsn;
1820 }
1821 
1822 static target_ulong promote_load_fault(target_ulong orig_cause)
1823 {
1824     switch (orig_cause) {
1825     case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1826         return RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1827 
1828     case RISCV_EXCP_LOAD_ACCESS_FAULT:
1829         return RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1830 
1831     case RISCV_EXCP_LOAD_PAGE_FAULT:
1832         return RISCV_EXCP_STORE_PAGE_FAULT;
1833     }
1834 
1835     /* if no promotion, return original cause */
1836     return orig_cause;
1837 }
1838 /*
1839  * Handle Traps
1840  *
1841  * Adapted from Spike's processor_t::take_trap.
1842  *
1843  */
1844 void riscv_cpu_do_interrupt(CPUState *cs)
1845 {
1846     RISCVCPU *cpu = RISCV_CPU(cs);
1847     CPURISCVState *env = &cpu->env;
1848     bool virt = env->virt_enabled;
1849     bool write_gva = false;
1850     bool always_storeamo = (env->excp_uw2 & RISCV_UW2_ALWAYS_STORE_AMO);
1851     uint64_t s;
1852 
1853     /*
1854      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
1855      * so we mask off the MSB and separate into trap type and cause.
1856      */
1857     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
1858     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
1859     uint64_t deleg = async ? env->mideleg : env->medeleg;
1860     bool s_injected = env->mvip & (1ULL << cause) & env->mvien &&
1861         !(env->mip & (1ULL << cause));
1862     bool vs_injected = env->hvip & (1ULL << cause) & env->hvien &&
1863         !(env->mip & (1ULL << cause));
1864     target_ulong tval = 0;
1865     target_ulong tinst = 0;
1866     target_ulong htval = 0;
1867     target_ulong mtval2 = 0;
1868     int sxlen = 0;
1869     int mxlen = 0;
1870 
1871     if (!async) {
1872         /* set tval to badaddr for traps with address information */
1873         switch (cause) {
1874 #ifdef CONFIG_TCG
1875         case RISCV_EXCP_SEMIHOST:
1876             do_common_semihosting(cs);
1877             env->pc += 4;
1878             return;
1879 #endif
1880         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
1881         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
1882         case RISCV_EXCP_LOAD_ADDR_MIS:
1883         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
1884         case RISCV_EXCP_LOAD_ACCESS_FAULT:
1885         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
1886         case RISCV_EXCP_LOAD_PAGE_FAULT:
1887         case RISCV_EXCP_STORE_PAGE_FAULT:
1888             if (always_storeamo) {
1889                 cause = promote_load_fault(cause);
1890             }
1891             write_gva = env->two_stage_lookup;
1892             tval = env->badaddr;
1893             if (env->two_stage_indirect_lookup) {
1894                 /*
1895                  * special pseudoinstruction for G-stage fault taken while
1896                  * doing VS-stage page table walk.
1897                  */
1898                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1899             } else {
1900                 /*
1901                  * The "Addr. Offset" field in transformed instruction is
1902                  * non-zero only for misaligned access.
1903                  */
1904                 tinst = riscv_transformed_insn(env, env->bins, tval);
1905             }
1906             break;
1907         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
1908         case RISCV_EXCP_INST_ADDR_MIS:
1909         case RISCV_EXCP_INST_ACCESS_FAULT:
1910         case RISCV_EXCP_INST_PAGE_FAULT:
1911             write_gva = env->two_stage_lookup;
1912             tval = env->badaddr;
1913             if (env->two_stage_indirect_lookup) {
1914                 /*
1915                  * special pseudoinstruction for G-stage fault taken while
1916                  * doing VS-stage page table walk.
1917                  */
1918                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
1919             }
1920             break;
1921         case RISCV_EXCP_ILLEGAL_INST:
1922         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
1923             tval = env->bins;
1924             break;
1925         case RISCV_EXCP_BREAKPOINT:
1926             tval = env->badaddr;
1927             if (cs->watchpoint_hit) {
1928                 tval = cs->watchpoint_hit->hitaddr;
1929                 cs->watchpoint_hit = NULL;
1930             }
1931             break;
1932         case RISCV_EXCP_SW_CHECK:
1933             tval = env->sw_check_code;
1934             break;
1935         default:
1936             break;
1937         }
1938         /* ecall is dispatched as one cause so translate based on mode */
1939         if (cause == RISCV_EXCP_U_ECALL) {
1940             assert(env->priv <= 3);
1941 
1942             if (env->priv == PRV_M) {
1943                 cause = RISCV_EXCP_M_ECALL;
1944             } else if (env->priv == PRV_S && env->virt_enabled) {
1945                 cause = RISCV_EXCP_VS_ECALL;
1946             } else if (env->priv == PRV_S && !env->virt_enabled) {
1947                 cause = RISCV_EXCP_S_ECALL;
1948             } else if (env->priv == PRV_U) {
1949                 cause = RISCV_EXCP_U_ECALL;
1950             }
1951         }
1952     }
1953 
1954     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
1955                      riscv_cpu_get_trap_name(cause, async));
1956 
1957     qemu_log_mask(CPU_LOG_INT,
1958                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
1959                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
1960                   __func__, env->mhartid, async, cause, env->pc, tval,
1961                   riscv_cpu_get_trap_name(cause, async));
1962 
1963     if (env->priv <= PRV_S && cause < 64 &&
1964         (((deleg >> cause) & 1) || s_injected || vs_injected)) {
1965         /* handle the trap in S-mode */
1966         /* save elp status */
1967         if (cpu_get_fcfien(env)) {
1968             env->mstatus = set_field(env->mstatus, MSTATUS_SPELP, env->elp);
1969         }
1970 
1971         if (riscv_has_ext(env, RVH)) {
1972             uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
1973 
1974             if (env->virt_enabled &&
1975                 (((hdeleg >> cause) & 1) || vs_injected)) {
1976                 /* Trap to VS mode */
1977                 /*
1978                  * See if we need to adjust cause. Yes if its VS mode interrupt
1979                  * no if hypervisor has delegated one of hs mode's interrupt
1980                  */
1981                 if (async && (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
1982                               cause == IRQ_VS_EXT)) {
1983                     cause = cause - 1;
1984                 }
1985                 write_gva = false;
1986             } else if (env->virt_enabled) {
1987                 /* Trap into HS mode, from virt */
1988                 riscv_cpu_swap_hypervisor_regs(env);
1989                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
1990                                          env->priv);
1991                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
1992 
1993                 htval = env->guest_phys_fault_addr;
1994 
1995                 virt = false;
1996             } else {
1997                 /* Trap into HS mode */
1998                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
1999                 htval = env->guest_phys_fault_addr;
2000             }
2001             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
2002         }
2003 
2004         s = env->mstatus;
2005         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
2006         s = set_field(s, MSTATUS_SPP, env->priv);
2007         s = set_field(s, MSTATUS_SIE, 0);
2008         env->mstatus = s;
2009         sxlen = 16 << riscv_cpu_sxl(env);
2010         env->scause = cause | ((target_ulong)async << (sxlen - 1));
2011         env->sepc = env->pc;
2012         env->stval = tval;
2013         env->htval = htval;
2014         env->htinst = tinst;
2015         env->pc = (env->stvec >> 2 << 2) +
2016                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
2017         riscv_cpu_set_mode(env, PRV_S, virt);
2018     } else {
2019         /* handle the trap in M-mode */
2020         /* save elp status */
2021         if (cpu_get_fcfien(env)) {
2022             env->mstatus = set_field(env->mstatus, MSTATUS_MPELP, env->elp);
2023         }
2024 
2025         if (riscv_has_ext(env, RVH)) {
2026             if (env->virt_enabled) {
2027                 riscv_cpu_swap_hypervisor_regs(env);
2028             }
2029             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
2030                                      env->virt_enabled);
2031             if (env->virt_enabled && tval) {
2032                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
2033             }
2034 
2035             mtval2 = env->guest_phys_fault_addr;
2036 
2037             /* Trapping to M mode, virt is disabled */
2038             virt = false;
2039         }
2040 
2041         s = env->mstatus;
2042         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
2043         s = set_field(s, MSTATUS_MPP, env->priv);
2044         s = set_field(s, MSTATUS_MIE, 0);
2045         env->mstatus = s;
2046         mxlen = 16 << riscv_cpu_mxl(env);
2047         env->mcause = cause | ((target_ulong)async << (mxlen - 1));
2048         env->mepc = env->pc;
2049         env->mtval = tval;
2050         env->mtval2 = mtval2;
2051         env->mtinst = tinst;
2052         env->pc = (env->mtvec >> 2 << 2) +
2053                   ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
2054         riscv_cpu_set_mode(env, PRV_M, virt);
2055     }
2056 
2057     /*
2058      * Interrupt/exception/trap delivery is asynchronous event and as per
2059      * zicfilp spec CPU should clear up the ELP state. No harm in clearing
2060      * unconditionally.
2061      */
2062     env->elp = false;
2063 
2064     /*
2065      * NOTE: it is not necessary to yield load reservations here. It is only
2066      * necessary for an SC from "another hart" to cause a load reservation
2067      * to be yielded. Refer to the memory consistency model section of the
2068      * RISC-V ISA Specification.
2069      */
2070 
2071     env->two_stage_lookup = false;
2072     env->two_stage_indirect_lookup = false;
2073 }
2074 
2075 #endif /* !CONFIG_USER_ONLY */
2076