1 /* 2 * RISC-V CPU helpers for qemu. 3 * 4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 5 * Copyright (c) 2017-2018 SiFive, Inc. 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2 or later, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/log.h" 22 #include "qemu/main-loop.h" 23 #include "cpu.h" 24 #include "internals.h" 25 #include "pmu.h" 26 #include "exec/exec-all.h" 27 #include "exec/page-protection.h" 28 #include "instmap.h" 29 #include "tcg/tcg-op.h" 30 #include "hw/core/tcg-cpu-ops.h" 31 #include "trace.h" 32 #include "semihosting/common-semi.h" 33 #include "system/cpu-timers.h" 34 #include "cpu_bits.h" 35 #include "debug.h" 36 #include "pmp.h" 37 38 int riscv_env_mmu_index(CPURISCVState *env, bool ifetch) 39 { 40 #ifdef CONFIG_USER_ONLY 41 return 0; 42 #else 43 bool virt = env->virt_enabled; 44 int mode = env->priv; 45 46 /* All priv -> mmu_idx mapping are here */ 47 if (!ifetch) { 48 uint64_t status = env->mstatus; 49 50 if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) { 51 mode = get_field(env->mstatus, MSTATUS_MPP); 52 virt = get_field(env->mstatus, MSTATUS_MPV) && 53 (mode != PRV_M); 54 if (virt) { 55 status = env->vsstatus; 56 } 57 } 58 if (mode == PRV_S && get_field(status, MSTATUS_SUM)) { 59 mode = MMUIdx_S_SUM; 60 } 61 } 62 63 return mode | (virt ? MMU_2STAGE_BIT : 0); 64 #endif 65 } 66 67 bool cpu_get_fcfien(CPURISCVState *env) 68 { 69 /* no cfi extension, return false */ 70 if (!env_archcpu(env)->cfg.ext_zicfilp) { 71 return false; 72 } 73 74 switch (env->priv) { 75 case PRV_U: 76 if (riscv_has_ext(env, RVS)) { 77 return env->senvcfg & SENVCFG_LPE; 78 } 79 return env->menvcfg & MENVCFG_LPE; 80 #ifndef CONFIG_USER_ONLY 81 case PRV_S: 82 if (env->virt_enabled) { 83 return env->henvcfg & HENVCFG_LPE; 84 } 85 return env->menvcfg & MENVCFG_LPE; 86 case PRV_M: 87 return env->mseccfg & MSECCFG_MLPE; 88 #endif 89 default: 90 g_assert_not_reached(); 91 } 92 } 93 94 bool cpu_get_bcfien(CPURISCVState *env) 95 { 96 /* no cfi extension, return false */ 97 if (!env_archcpu(env)->cfg.ext_zicfiss) { 98 return false; 99 } 100 101 switch (env->priv) { 102 case PRV_U: 103 /* 104 * If S is not implemented then shadow stack for U can't be turned on 105 * It is checked in `riscv_cpu_validate_set_extensions`, so no need to 106 * check here or assert here 107 */ 108 return env->senvcfg & SENVCFG_SSE; 109 #ifndef CONFIG_USER_ONLY 110 case PRV_S: 111 if (env->virt_enabled) { 112 return env->henvcfg & HENVCFG_SSE; 113 } 114 return env->menvcfg & MENVCFG_SSE; 115 case PRV_M: /* M-mode shadow stack is always off */ 116 return false; 117 #endif 118 default: 119 g_assert_not_reached(); 120 } 121 } 122 123 bool riscv_env_smode_dbltrp_enabled(CPURISCVState *env, bool virt) 124 { 125 #ifdef CONFIG_USER_ONLY 126 return false; 127 #else 128 if (virt) { 129 return (env->henvcfg & HENVCFG_DTE) != 0; 130 } else { 131 return (env->menvcfg & MENVCFG_DTE) != 0; 132 } 133 #endif 134 } 135 136 void cpu_get_tb_cpu_state(CPURISCVState *env, vaddr *pc, 137 uint64_t *cs_base, uint32_t *pflags) 138 { 139 RISCVCPU *cpu = env_archcpu(env); 140 RISCVExtStatus fs, vs; 141 uint32_t flags = 0; 142 bool pm_signext = riscv_cpu_virt_mem_enabled(env); 143 144 *pc = env->xl == MXL_RV32 ? env->pc & UINT32_MAX : env->pc; 145 *cs_base = 0; 146 147 if (cpu->cfg.ext_zve32x) { 148 /* 149 * If env->vl equals to VLMAX, we can use generic vector operation 150 * expanders (GVEC) to accerlate the vector operations. 151 * However, as LMUL could be a fractional number. The maximum 152 * vector size can be operated might be less than 8 bytes, 153 * which is not supported by GVEC. So we set vl_eq_vlmax flag to true 154 * only when maxsz >= 8 bytes. 155 */ 156 157 /* lmul encoded as in DisasContext::lmul */ 158 int8_t lmul = sextract32(FIELD_EX64(env->vtype, VTYPE, VLMUL), 0, 3); 159 uint32_t vsew = FIELD_EX64(env->vtype, VTYPE, VSEW); 160 uint32_t vlmax = vext_get_vlmax(cpu->cfg.vlenb, vsew, lmul); 161 uint32_t maxsz = vlmax << vsew; 162 bool vl_eq_vlmax = (env->vstart == 0) && (vlmax == env->vl) && 163 (maxsz >= 8); 164 flags = FIELD_DP32(flags, TB_FLAGS, VILL, env->vill); 165 flags = FIELD_DP32(flags, TB_FLAGS, SEW, vsew); 166 flags = FIELD_DP32(flags, TB_FLAGS, LMUL, 167 FIELD_EX64(env->vtype, VTYPE, VLMUL)); 168 flags = FIELD_DP32(flags, TB_FLAGS, VL_EQ_VLMAX, vl_eq_vlmax); 169 flags = FIELD_DP32(flags, TB_FLAGS, VTA, 170 FIELD_EX64(env->vtype, VTYPE, VTA)); 171 flags = FIELD_DP32(flags, TB_FLAGS, VMA, 172 FIELD_EX64(env->vtype, VTYPE, VMA)); 173 flags = FIELD_DP32(flags, TB_FLAGS, VSTART_EQ_ZERO, env->vstart == 0); 174 } else { 175 flags = FIELD_DP32(flags, TB_FLAGS, VILL, 1); 176 } 177 178 if (cpu_get_fcfien(env)) { 179 /* 180 * For Forward CFI, only the expectation of a lpad at 181 * the start of the block is tracked via env->elp. env->elp 182 * is turned on during jalr translation. 183 */ 184 flags = FIELD_DP32(flags, TB_FLAGS, FCFI_LP_EXPECTED, env->elp); 185 flags = FIELD_DP32(flags, TB_FLAGS, FCFI_ENABLED, 1); 186 } 187 188 if (cpu_get_bcfien(env)) { 189 flags = FIELD_DP32(flags, TB_FLAGS, BCFI_ENABLED, 1); 190 } 191 192 #ifdef CONFIG_USER_ONLY 193 fs = EXT_STATUS_DIRTY; 194 vs = EXT_STATUS_DIRTY; 195 #else 196 flags = FIELD_DP32(flags, TB_FLAGS, PRIV, env->priv); 197 198 flags |= riscv_env_mmu_index(env, 0); 199 fs = get_field(env->mstatus, MSTATUS_FS); 200 vs = get_field(env->mstatus, MSTATUS_VS); 201 202 if (env->virt_enabled) { 203 flags = FIELD_DP32(flags, TB_FLAGS, VIRT_ENABLED, 1); 204 /* 205 * Merge DISABLED and !DIRTY states using MIN. 206 * We will set both fields when dirtying. 207 */ 208 fs = MIN(fs, get_field(env->mstatus_hs, MSTATUS_FS)); 209 vs = MIN(vs, get_field(env->mstatus_hs, MSTATUS_VS)); 210 } 211 212 /* With Zfinx, floating point is enabled/disabled by Smstateen. */ 213 if (!riscv_has_ext(env, RVF)) { 214 fs = (smstateen_acc_ok(env, 0, SMSTATEEN0_FCSR) == RISCV_EXCP_NONE) 215 ? EXT_STATUS_DIRTY : EXT_STATUS_DISABLED; 216 } 217 218 if (cpu->cfg.debug && !icount_enabled()) { 219 flags = FIELD_DP32(flags, TB_FLAGS, ITRIGGER, env->itrigger_enabled); 220 } 221 #endif 222 223 flags = FIELD_DP32(flags, TB_FLAGS, FS, fs); 224 flags = FIELD_DP32(flags, TB_FLAGS, VS, vs); 225 flags = FIELD_DP32(flags, TB_FLAGS, XL, env->xl); 226 flags = FIELD_DP32(flags, TB_FLAGS, AXL, cpu_address_xl(env)); 227 flags = FIELD_DP32(flags, TB_FLAGS, PM_PMM, riscv_pm_get_pmm(env)); 228 flags = FIELD_DP32(flags, TB_FLAGS, PM_SIGNEXTEND, pm_signext); 229 230 *pflags = flags; 231 } 232 233 RISCVPmPmm riscv_pm_get_pmm(CPURISCVState *env) 234 { 235 #ifndef CONFIG_USER_ONLY 236 int priv_mode = cpu_address_mode(env); 237 238 if (get_field(env->mstatus, MSTATUS_MPRV) && 239 get_field(env->mstatus, MSTATUS_MXR)) { 240 return PMM_FIELD_DISABLED; 241 } 242 243 /* Get current PMM field */ 244 switch (priv_mode) { 245 case PRV_M: 246 if (riscv_cpu_cfg(env)->ext_smmpm) { 247 return get_field(env->mseccfg, MSECCFG_PMM); 248 } 249 break; 250 case PRV_S: 251 if (riscv_cpu_cfg(env)->ext_smnpm) { 252 if (get_field(env->mstatus, MSTATUS_MPV)) { 253 return get_field(env->henvcfg, HENVCFG_PMM); 254 } else { 255 return get_field(env->menvcfg, MENVCFG_PMM); 256 } 257 } 258 break; 259 case PRV_U: 260 if (riscv_has_ext(env, RVS)) { 261 if (riscv_cpu_cfg(env)->ext_ssnpm) { 262 return get_field(env->senvcfg, SENVCFG_PMM); 263 } 264 } else { 265 if (riscv_cpu_cfg(env)->ext_smnpm) { 266 return get_field(env->menvcfg, MENVCFG_PMM); 267 } 268 } 269 break; 270 default: 271 g_assert_not_reached(); 272 } 273 return PMM_FIELD_DISABLED; 274 #else 275 return PMM_FIELD_DISABLED; 276 #endif 277 } 278 279 RISCVPmPmm riscv_pm_get_virt_pmm(CPURISCVState *env) 280 { 281 #ifndef CONFIG_USER_ONLY 282 int priv_mode = cpu_address_mode(env); 283 284 if (priv_mode == PRV_U) { 285 return get_field(env->hstatus, HSTATUS_HUPMM); 286 } else { 287 if (get_field(env->hstatus, HSTATUS_SPVP)) { 288 return get_field(env->henvcfg, HENVCFG_PMM); 289 } else { 290 return get_field(env->senvcfg, SENVCFG_PMM); 291 } 292 } 293 #else 294 return PMM_FIELD_DISABLED; 295 #endif 296 } 297 298 bool riscv_cpu_virt_mem_enabled(CPURISCVState *env) 299 { 300 #ifndef CONFIG_USER_ONLY 301 int satp_mode = 0; 302 int priv_mode = cpu_address_mode(env); 303 304 if (riscv_cpu_mxl(env) == MXL_RV32) { 305 satp_mode = get_field(env->satp, SATP32_MODE); 306 } else { 307 satp_mode = get_field(env->satp, SATP64_MODE); 308 } 309 310 return ((satp_mode != VM_1_10_MBARE) && (priv_mode != PRV_M)); 311 #else 312 return false; 313 #endif 314 } 315 316 uint32_t riscv_pm_get_pmlen(RISCVPmPmm pmm) 317 { 318 switch (pmm) { 319 case PMM_FIELD_DISABLED: 320 return 0; 321 case PMM_FIELD_PMLEN7: 322 return 7; 323 case PMM_FIELD_PMLEN16: 324 return 16; 325 default: 326 g_assert_not_reached(); 327 } 328 } 329 330 #ifndef CONFIG_USER_ONLY 331 332 /* 333 * The HS-mode is allowed to configure priority only for the 334 * following VS-mode local interrupts: 335 * 336 * 0 (Reserved interrupt, reads as zero) 337 * 1 Supervisor software interrupt 338 * 4 (Reserved interrupt, reads as zero) 339 * 5 Supervisor timer interrupt 340 * 8 (Reserved interrupt, reads as zero) 341 * 13 (Reserved interrupt) 342 * 14 " 343 * 15 " 344 * 16 " 345 * 17 " 346 * 18 " 347 * 19 " 348 * 20 " 349 * 21 " 350 * 22 " 351 * 23 " 352 */ 353 354 static const int hviprio_index2irq[] = { 355 0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 }; 356 static const int hviprio_index2rdzero[] = { 357 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 358 359 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero) 360 { 361 if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) { 362 return -EINVAL; 363 } 364 365 if (out_irq) { 366 *out_irq = hviprio_index2irq[index]; 367 } 368 369 if (out_rdzero) { 370 *out_rdzero = hviprio_index2rdzero[index]; 371 } 372 373 return 0; 374 } 375 376 /* 377 * Default priorities of local interrupts are defined in the 378 * RISC-V Advanced Interrupt Architecture specification. 379 * 380 * ---------------------------------------------------------------- 381 * Default | 382 * Priority | Major Interrupt Numbers 383 * ---------------------------------------------------------------- 384 * Highest | 47, 23, 46, 45, 22, 44, 385 * | 43, 21, 42, 41, 20, 40 386 * | 387 * | 11 (0b), 3 (03), 7 (07) 388 * | 9 (09), 1 (01), 5 (05) 389 * | 12 (0c) 390 * | 10 (0a), 2 (02), 6 (06) 391 * | 392 * | 39, 19, 38, 37, 18, 36, 393 * Lowest | 35, 17, 34, 33, 16, 32 394 * ---------------------------------------------------------------- 395 */ 396 static const uint8_t default_iprio[64] = { 397 /* Custom interrupts 48 to 63 */ 398 [63] = IPRIO_MMAXIPRIO, 399 [62] = IPRIO_MMAXIPRIO, 400 [61] = IPRIO_MMAXIPRIO, 401 [60] = IPRIO_MMAXIPRIO, 402 [59] = IPRIO_MMAXIPRIO, 403 [58] = IPRIO_MMAXIPRIO, 404 [57] = IPRIO_MMAXIPRIO, 405 [56] = IPRIO_MMAXIPRIO, 406 [55] = IPRIO_MMAXIPRIO, 407 [54] = IPRIO_MMAXIPRIO, 408 [53] = IPRIO_MMAXIPRIO, 409 [52] = IPRIO_MMAXIPRIO, 410 [51] = IPRIO_MMAXIPRIO, 411 [50] = IPRIO_MMAXIPRIO, 412 [49] = IPRIO_MMAXIPRIO, 413 [48] = IPRIO_MMAXIPRIO, 414 415 /* Custom interrupts 24 to 31 */ 416 [31] = IPRIO_MMAXIPRIO, 417 [30] = IPRIO_MMAXIPRIO, 418 [29] = IPRIO_MMAXIPRIO, 419 [28] = IPRIO_MMAXIPRIO, 420 [27] = IPRIO_MMAXIPRIO, 421 [26] = IPRIO_MMAXIPRIO, 422 [25] = IPRIO_MMAXIPRIO, 423 [24] = IPRIO_MMAXIPRIO, 424 425 [47] = IPRIO_DEFAULT_UPPER, 426 [23] = IPRIO_DEFAULT_UPPER + 1, 427 [46] = IPRIO_DEFAULT_UPPER + 2, 428 [45] = IPRIO_DEFAULT_UPPER + 3, 429 [22] = IPRIO_DEFAULT_UPPER + 4, 430 [44] = IPRIO_DEFAULT_UPPER + 5, 431 432 [43] = IPRIO_DEFAULT_UPPER + 6, 433 [21] = IPRIO_DEFAULT_UPPER + 7, 434 [42] = IPRIO_DEFAULT_UPPER + 8, 435 [41] = IPRIO_DEFAULT_UPPER + 9, 436 [20] = IPRIO_DEFAULT_UPPER + 10, 437 [40] = IPRIO_DEFAULT_UPPER + 11, 438 439 [11] = IPRIO_DEFAULT_M, 440 [3] = IPRIO_DEFAULT_M + 1, 441 [7] = IPRIO_DEFAULT_M + 2, 442 443 [9] = IPRIO_DEFAULT_S, 444 [1] = IPRIO_DEFAULT_S + 1, 445 [5] = IPRIO_DEFAULT_S + 2, 446 447 [12] = IPRIO_DEFAULT_SGEXT, 448 449 [10] = IPRIO_DEFAULT_VS, 450 [2] = IPRIO_DEFAULT_VS + 1, 451 [6] = IPRIO_DEFAULT_VS + 2, 452 453 [39] = IPRIO_DEFAULT_LOWER, 454 [19] = IPRIO_DEFAULT_LOWER + 1, 455 [38] = IPRIO_DEFAULT_LOWER + 2, 456 [37] = IPRIO_DEFAULT_LOWER + 3, 457 [18] = IPRIO_DEFAULT_LOWER + 4, 458 [36] = IPRIO_DEFAULT_LOWER + 5, 459 460 [35] = IPRIO_DEFAULT_LOWER + 6, 461 [17] = IPRIO_DEFAULT_LOWER + 7, 462 [34] = IPRIO_DEFAULT_LOWER + 8, 463 [33] = IPRIO_DEFAULT_LOWER + 9, 464 [16] = IPRIO_DEFAULT_LOWER + 10, 465 [32] = IPRIO_DEFAULT_LOWER + 11, 466 }; 467 468 uint8_t riscv_cpu_default_priority(int irq) 469 { 470 if (irq < 0 || irq > 63) { 471 return IPRIO_MMAXIPRIO; 472 } 473 474 return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO; 475 }; 476 477 static int riscv_cpu_pending_to_irq(CPURISCVState *env, 478 int extirq, unsigned int extirq_def_prio, 479 uint64_t pending, uint8_t *iprio) 480 { 481 int irq, best_irq = RISCV_EXCP_NONE; 482 unsigned int prio, best_prio = UINT_MAX; 483 484 if (!pending) { 485 return RISCV_EXCP_NONE; 486 } 487 488 irq = ctz64(pending); 489 if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia : 490 riscv_cpu_cfg(env)->ext_ssaia)) { 491 return irq; 492 } 493 494 pending = pending >> irq; 495 while (pending) { 496 prio = iprio[irq]; 497 if (!prio) { 498 if (irq == extirq) { 499 prio = extirq_def_prio; 500 } else { 501 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ? 502 1 : IPRIO_MMAXIPRIO; 503 } 504 } 505 if ((pending & 0x1) && (prio <= best_prio)) { 506 best_irq = irq; 507 best_prio = prio; 508 } 509 irq++; 510 pending = pending >> 1; 511 } 512 513 return best_irq; 514 } 515 516 /* 517 * Doesn't report interrupts inserted using mvip from M-mode firmware or 518 * using hvip bits 13:63 from HS-mode. Those are returned in 519 * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending(). 520 */ 521 uint64_t riscv_cpu_all_pending(CPURISCVState *env) 522 { 523 uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN); 524 uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 525 uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0; 526 527 return (env->mip | vsgein | vstip) & env->mie; 528 } 529 530 int riscv_cpu_mirq_pending(CPURISCVState *env) 531 { 532 uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg & 533 ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 534 535 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 536 irqs, env->miprio); 537 } 538 539 int riscv_cpu_sirq_pending(CPURISCVState *env) 540 { 541 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & 542 ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP); 543 uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie; 544 545 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 546 irqs | irqs_f, env->siprio); 547 } 548 549 int riscv_cpu_vsirq_pending(CPURISCVState *env) 550 { 551 uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg; 552 uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 553 uint64_t vsbits; 554 555 /* Bring VS-level bits to correct position */ 556 vsbits = irqs & VS_MODE_INTERRUPTS; 557 irqs &= ~VS_MODE_INTERRUPTS; 558 irqs |= vsbits >> 1; 559 560 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 561 (irqs | irqs_f_vs), env->hviprio); 562 } 563 564 static int riscv_cpu_local_irq_pending(CPURISCVState *env) 565 { 566 uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs; 567 uint64_t vsbits, irq_delegated; 568 int virq; 569 570 /* Priority: RNMI > Other interrupt. */ 571 if (riscv_cpu_cfg(env)->ext_smrnmi) { 572 /* If mnstatus.NMIE == 0, all interrupts are disabled. */ 573 if (!get_field(env->mnstatus, MNSTATUS_NMIE)) { 574 return RISCV_EXCP_NONE; 575 } 576 577 if (env->rnmip) { 578 return ctz64(env->rnmip); /* since non-zero */ 579 } 580 } 581 582 /* Determine interrupt enable state of all privilege modes */ 583 if (env->virt_enabled) { 584 mie = 1; 585 hsie = 1; 586 vsie = (env->priv < PRV_S) || 587 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 588 } else { 589 mie = (env->priv < PRV_M) || 590 (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE)); 591 hsie = (env->priv < PRV_S) || 592 (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE)); 593 vsie = 0; 594 } 595 596 /* Determine all pending interrupts */ 597 pending = riscv_cpu_all_pending(env); 598 599 /* Check M-mode interrupts */ 600 irqs = pending & ~env->mideleg & -mie; 601 if (irqs) { 602 return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M, 603 irqs, env->miprio); 604 } 605 606 /* Check for virtual S-mode interrupts. */ 607 irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie; 608 609 /* Check HS-mode interrupts */ 610 irqs = ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie; 611 if (irqs) { 612 return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 613 irqs, env->siprio); 614 } 615 616 /* Check for virtual VS-mode interrupts. */ 617 irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie; 618 619 /* Check VS-mode interrupts */ 620 irq_delegated = pending & env->mideleg & env->hideleg; 621 622 /* Bring VS-level bits to correct position */ 623 vsbits = irq_delegated & VS_MODE_INTERRUPTS; 624 irq_delegated &= ~VS_MODE_INTERRUPTS; 625 irq_delegated |= vsbits >> 1; 626 627 irqs = (irq_delegated | irqs_f_vs) & -vsie; 628 if (irqs) { 629 virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S, 630 irqs, env->hviprio); 631 if (virq <= 0 || (virq > 12 && virq <= 63)) { 632 return virq; 633 } else { 634 return virq + 1; 635 } 636 } 637 638 /* Indicate no pending interrupt */ 639 return RISCV_EXCP_NONE; 640 } 641 642 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request) 643 { 644 uint32_t mask = CPU_INTERRUPT_HARD | CPU_INTERRUPT_RNMI; 645 646 if (interrupt_request & mask) { 647 RISCVCPU *cpu = RISCV_CPU(cs); 648 CPURISCVState *env = &cpu->env; 649 int interruptno = riscv_cpu_local_irq_pending(env); 650 if (interruptno >= 0) { 651 cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno; 652 riscv_cpu_do_interrupt(cs); 653 return true; 654 } 655 } 656 return false; 657 } 658 659 /* Return true is floating point support is currently enabled */ 660 bool riscv_cpu_fp_enabled(CPURISCVState *env) 661 { 662 if (env->mstatus & MSTATUS_FS) { 663 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) { 664 return false; 665 } 666 return true; 667 } 668 669 return false; 670 } 671 672 /* Return true is vector support is currently enabled */ 673 bool riscv_cpu_vector_enabled(CPURISCVState *env) 674 { 675 if (env->mstatus & MSTATUS_VS) { 676 if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) { 677 return false; 678 } 679 return true; 680 } 681 682 return false; 683 } 684 685 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env) 686 { 687 uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM | 688 MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE | 689 MSTATUS64_UXL | MSTATUS_VS; 690 691 if (riscv_has_ext(env, RVF)) { 692 mstatus_mask |= MSTATUS_FS; 693 } 694 bool current_virt = env->virt_enabled; 695 696 /* 697 * If zicfilp extension available and henvcfg.LPE = 1, 698 * then apply SPELP mask on mstatus 699 */ 700 if (env_archcpu(env)->cfg.ext_zicfilp && 701 get_field(env->henvcfg, HENVCFG_LPE)) { 702 mstatus_mask |= SSTATUS_SPELP; 703 } 704 705 g_assert(riscv_has_ext(env, RVH)); 706 707 if (riscv_env_smode_dbltrp_enabled(env, current_virt)) { 708 mstatus_mask |= MSTATUS_SDT; 709 } 710 711 if (current_virt) { 712 /* Current V=1 and we are about to change to V=0 */ 713 env->vsstatus = env->mstatus & mstatus_mask; 714 env->mstatus &= ~mstatus_mask; 715 env->mstatus |= env->mstatus_hs; 716 717 env->vstvec = env->stvec; 718 env->stvec = env->stvec_hs; 719 720 env->vsscratch = env->sscratch; 721 env->sscratch = env->sscratch_hs; 722 723 env->vsepc = env->sepc; 724 env->sepc = env->sepc_hs; 725 726 env->vscause = env->scause; 727 env->scause = env->scause_hs; 728 729 env->vstval = env->stval; 730 env->stval = env->stval_hs; 731 732 env->vsatp = env->satp; 733 env->satp = env->satp_hs; 734 } else { 735 /* Current V=0 and we are about to change to V=1 */ 736 env->mstatus_hs = env->mstatus & mstatus_mask; 737 env->mstatus &= ~mstatus_mask; 738 env->mstatus |= env->vsstatus; 739 740 env->stvec_hs = env->stvec; 741 env->stvec = env->vstvec; 742 743 env->sscratch_hs = env->sscratch; 744 env->sscratch = env->vsscratch; 745 746 env->sepc_hs = env->sepc; 747 env->sepc = env->vsepc; 748 749 env->scause_hs = env->scause; 750 env->scause = env->vscause; 751 752 env->stval_hs = env->stval; 753 env->stval = env->vstval; 754 755 env->satp_hs = env->satp; 756 env->satp = env->vsatp; 757 } 758 } 759 760 target_ulong riscv_cpu_get_geilen(CPURISCVState *env) 761 { 762 if (!riscv_has_ext(env, RVH)) { 763 return 0; 764 } 765 766 return env->geilen; 767 } 768 769 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen) 770 { 771 if (!riscv_has_ext(env, RVH)) { 772 return; 773 } 774 775 if (geilen > (TARGET_LONG_BITS - 1)) { 776 return; 777 } 778 779 env->geilen = geilen; 780 } 781 782 void riscv_cpu_set_rnmi(RISCVCPU *cpu, uint32_t irq, bool level) 783 { 784 CPURISCVState *env = &cpu->env; 785 CPUState *cs = CPU(cpu); 786 bool release_lock = false; 787 788 if (!bql_locked()) { 789 release_lock = true; 790 bql_lock(); 791 } 792 793 if (level) { 794 env->rnmip |= 1 << irq; 795 cpu_interrupt(cs, CPU_INTERRUPT_RNMI); 796 } else { 797 env->rnmip &= ~(1 << irq); 798 cpu_reset_interrupt(cs, CPU_INTERRUPT_RNMI); 799 } 800 801 if (release_lock) { 802 bql_unlock(); 803 } 804 } 805 806 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts) 807 { 808 CPURISCVState *env = &cpu->env; 809 if (env->miclaim & interrupts) { 810 return -1; 811 } else { 812 env->miclaim |= interrupts; 813 return 0; 814 } 815 } 816 817 void riscv_cpu_interrupt(CPURISCVState *env) 818 { 819 uint64_t gein, vsgein = 0, vstip = 0, irqf = 0; 820 CPUState *cs = env_cpu(env); 821 822 BQL_LOCK_GUARD(); 823 824 if (env->virt_enabled) { 825 gein = get_field(env->hstatus, HSTATUS_VGEIN); 826 vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0; 827 irqf = env->hvien & env->hvip & env->vsie; 828 } else { 829 irqf = env->mvien & env->mvip & env->sie; 830 } 831 832 vstip = env->vstime_irq ? MIP_VSTIP : 0; 833 834 if (env->mip | vsgein | vstip | irqf) { 835 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 836 } else { 837 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 838 } 839 } 840 841 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value) 842 { 843 uint64_t old = env->mip; 844 845 /* No need to update mip for VSTIP */ 846 mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask; 847 848 BQL_LOCK_GUARD(); 849 850 env->mip = (env->mip & ~mask) | (value & mask); 851 852 riscv_cpu_interrupt(env); 853 854 return old; 855 } 856 857 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *), 858 void *arg) 859 { 860 env->rdtime_fn = fn; 861 env->rdtime_fn_arg = arg; 862 } 863 864 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv, 865 int (*rmw_fn)(void *arg, 866 target_ulong reg, 867 target_ulong *val, 868 target_ulong new_val, 869 target_ulong write_mask), 870 void *rmw_fn_arg) 871 { 872 if (priv <= PRV_M) { 873 env->aia_ireg_rmw_fn[priv] = rmw_fn; 874 env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg; 875 } 876 } 877 878 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv, bool virt_en) 879 { 880 g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED); 881 882 if (newpriv != env->priv || env->virt_enabled != virt_en) { 883 if (icount_enabled()) { 884 riscv_itrigger_update_priv(env); 885 } 886 887 riscv_pmu_update_fixed_ctrs(env, newpriv, virt_en); 888 } 889 890 /* tlb_flush is unnecessary as mode is contained in mmu_idx */ 891 env->priv = newpriv; 892 env->xl = cpu_recompute_xl(env); 893 894 /* 895 * Clear the load reservation - otherwise a reservation placed in one 896 * context/process can be used by another, resulting in an SC succeeding 897 * incorrectly. Version 2.2 of the ISA specification explicitly requires 898 * this behaviour, while later revisions say that the kernel "should" use 899 * an SC instruction to force the yielding of a load reservation on a 900 * preemptive context switch. As a result, do both. 901 */ 902 env->load_res = -1; 903 904 if (riscv_has_ext(env, RVH)) { 905 /* Flush the TLB on all virt mode changes. */ 906 if (env->virt_enabled != virt_en) { 907 tlb_flush(env_cpu(env)); 908 } 909 910 env->virt_enabled = virt_en; 911 if (virt_en) { 912 /* 913 * The guest external interrupts from an interrupt controller are 914 * delivered only when the Guest/VM is running (i.e. V=1). This 915 * means any guest external interrupt which is triggered while the 916 * Guest/VM is not running (i.e. V=0) will be missed on QEMU 917 * resulting in guest with sluggish response to serial console 918 * input and other I/O events. 919 * 920 * To solve this, we check and inject interrupt after setting V=1. 921 */ 922 riscv_cpu_update_mip(env, 0, 0); 923 } 924 } 925 } 926 927 /* 928 * get_physical_address_pmp - check PMP permission for this physical address 929 * 930 * Match the PMP region and check permission for this physical address and it's 931 * TLB page. Returns 0 if the permission checking was successful 932 * 933 * @env: CPURISCVState 934 * @prot: The returned protection attributes 935 * @addr: The physical address to be checked permission 936 * @access_type: The type of MMU access 937 * @mode: Indicates current privilege level. 938 */ 939 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr, 940 int size, MMUAccessType access_type, 941 int mode) 942 { 943 pmp_priv_t pmp_priv; 944 bool pmp_has_privs; 945 946 if (!riscv_cpu_cfg(env)->pmp) { 947 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 948 return TRANSLATE_SUCCESS; 949 } 950 951 pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type, 952 &pmp_priv, mode); 953 if (!pmp_has_privs) { 954 *prot = 0; 955 return TRANSLATE_PMP_FAIL; 956 } 957 958 *prot = pmp_priv_to_page_prot(pmp_priv); 959 960 return TRANSLATE_SUCCESS; 961 } 962 963 /* Returns 'true' if a svukte address check is needed */ 964 static bool do_svukte_check(CPURISCVState *env, bool first_stage, 965 int mode, bool virt) 966 { 967 /* Svukte extension depends on Sv39. */ 968 if (!(env_archcpu(env)->cfg.ext_svukte || 969 !first_stage || 970 VM_1_10_SV39 != get_field(env->satp, SATP64_MODE))) { 971 return false; 972 } 973 974 /* 975 * Check hstatus.HUKTE if the effective mode is switched to VU-mode by 976 * executing HLV/HLVX/HSV in U-mode. 977 * For other cases, check senvcfg.UKTE. 978 */ 979 if (env->priv == PRV_U && !env->virt_enabled && virt) { 980 if (!get_field(env->hstatus, HSTATUS_HUKTE)) { 981 return false; 982 } 983 } else if (!get_field(env->senvcfg, SENVCFG_UKTE)) { 984 return false; 985 } 986 987 /* 988 * Svukte extension is qualified only in U or VU-mode. 989 * 990 * Effective mode can be switched to U or VU-mode by: 991 * - M-mode + mstatus.MPRV=1 + mstatus.MPP=U-mode. 992 * - Execute HLV/HLVX/HSV from HS-mode + hstatus.SPVP=0. 993 * - U-mode. 994 * - VU-mode. 995 * - Execute HLV/HLVX/HSV from U-mode + hstatus.HU=1. 996 */ 997 if (mode != PRV_U) { 998 return false; 999 } 1000 1001 return true; 1002 } 1003 1004 static bool check_svukte_addr(CPURISCVState *env, vaddr addr) 1005 { 1006 /* svukte extension excludes RV32 */ 1007 uint32_t sxlen = 32 * riscv_cpu_sxl(env); 1008 uint64_t high_bit = addr & (1UL << (sxlen - 1)); 1009 return !high_bit; 1010 } 1011 1012 /* 1013 * get_physical_address - get the physical address for this virtual address 1014 * 1015 * Do a page table walk to obtain the physical address corresponding to a 1016 * virtual address. Returns 0 if the translation was successful 1017 * 1018 * Adapted from Spike's mmu_t::translate and mmu_t::walk 1019 * 1020 * @env: CPURISCVState 1021 * @physical: This will be set to the calculated physical address 1022 * @prot: The returned protection attributes 1023 * @addr: The virtual address or guest physical address to be translated 1024 * @fault_pte_addr: If not NULL, this will be set to fault pte address 1025 * when a error occurs on pte address translation. 1026 * This will already be shifted to match htval. 1027 * @access_type: The type of MMU access 1028 * @mmu_idx: Indicates current privilege level 1029 * @first_stage: Are we in first stage translation? 1030 * Second stage is used for hypervisor guest translation 1031 * @two_stage: Are we going to perform two stage translation 1032 * @is_debug: Is this access from a debugger or the monitor? 1033 */ 1034 static int get_physical_address(CPURISCVState *env, hwaddr *physical, 1035 int *ret_prot, vaddr addr, 1036 target_ulong *fault_pte_addr, 1037 int access_type, int mmu_idx, 1038 bool first_stage, bool two_stage, 1039 bool is_debug, bool is_probe) 1040 { 1041 /* 1042 * NOTE: the env->pc value visible here will not be 1043 * correct, but the value visible to the exception handler 1044 * (riscv_cpu_do_interrupt) is correct 1045 */ 1046 MemTxResult res; 1047 MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED; 1048 int mode = mmuidx_priv(mmu_idx); 1049 bool virt = mmuidx_2stage(mmu_idx); 1050 bool use_background = false; 1051 hwaddr ppn; 1052 int napot_bits = 0; 1053 target_ulong napot_mask; 1054 bool is_sstack_idx = ((mmu_idx & MMU_IDX_SS_WRITE) == MMU_IDX_SS_WRITE); 1055 bool sstack_page = false; 1056 1057 if (do_svukte_check(env, first_stage, mode, virt) && 1058 !check_svukte_addr(env, addr)) { 1059 return TRANSLATE_FAIL; 1060 } 1061 1062 /* 1063 * Check if we should use the background registers for the two 1064 * stage translation. We don't need to check if we actually need 1065 * two stage translation as that happened before this function 1066 * was called. Background registers will be used if the guest has 1067 * forced a two stage translation to be on (in HS or M mode). 1068 */ 1069 if (!env->virt_enabled && two_stage) { 1070 use_background = true; 1071 } 1072 1073 if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) { 1074 *physical = addr; 1075 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1076 return TRANSLATE_SUCCESS; 1077 } 1078 1079 *ret_prot = 0; 1080 1081 hwaddr base; 1082 int levels, ptidxbits, ptesize, vm, widened; 1083 1084 if (first_stage == true) { 1085 if (use_background) { 1086 if (riscv_cpu_mxl(env) == MXL_RV32) { 1087 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT; 1088 vm = get_field(env->vsatp, SATP32_MODE); 1089 } else { 1090 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT; 1091 vm = get_field(env->vsatp, SATP64_MODE); 1092 } 1093 } else { 1094 if (riscv_cpu_mxl(env) == MXL_RV32) { 1095 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT; 1096 vm = get_field(env->satp, SATP32_MODE); 1097 } else { 1098 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT; 1099 vm = get_field(env->satp, SATP64_MODE); 1100 } 1101 } 1102 widened = 0; 1103 } else { 1104 if (riscv_cpu_mxl(env) == MXL_RV32) { 1105 base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT; 1106 vm = get_field(env->hgatp, SATP32_MODE); 1107 } else { 1108 base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT; 1109 vm = get_field(env->hgatp, SATP64_MODE); 1110 } 1111 widened = 2; 1112 } 1113 1114 switch (vm) { 1115 case VM_1_10_SV32: 1116 levels = 2; ptidxbits = 10; ptesize = 4; break; 1117 case VM_1_10_SV39: 1118 levels = 3; ptidxbits = 9; ptesize = 8; break; 1119 case VM_1_10_SV48: 1120 levels = 4; ptidxbits = 9; ptesize = 8; break; 1121 case VM_1_10_SV57: 1122 levels = 5; ptidxbits = 9; ptesize = 8; break; 1123 case VM_1_10_MBARE: 1124 *physical = addr; 1125 *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 1126 return TRANSLATE_SUCCESS; 1127 default: 1128 g_assert_not_reached(); 1129 } 1130 1131 CPUState *cs = env_cpu(env); 1132 int va_bits = PGSHIFT + levels * ptidxbits + widened; 1133 int sxlen = 16 << riscv_cpu_sxl(env); 1134 int sxlen_bytes = sxlen / 8; 1135 1136 if (first_stage == true) { 1137 target_ulong mask, masked_msbs; 1138 1139 if (sxlen > (va_bits - 1)) { 1140 mask = (1L << (sxlen - (va_bits - 1))) - 1; 1141 } else { 1142 mask = 0; 1143 } 1144 masked_msbs = (addr >> (va_bits - 1)) & mask; 1145 1146 if (masked_msbs != 0 && masked_msbs != mask) { 1147 return TRANSLATE_FAIL; 1148 } 1149 } else { 1150 if (vm != VM_1_10_SV32 && addr >> va_bits != 0) { 1151 return TRANSLATE_FAIL; 1152 } 1153 } 1154 1155 bool pbmte = env->menvcfg & MENVCFG_PBMTE; 1156 bool svade = riscv_cpu_cfg(env)->ext_svade; 1157 bool svadu = riscv_cpu_cfg(env)->ext_svadu; 1158 bool adue = svadu ? env->menvcfg & MENVCFG_ADUE : !svade; 1159 1160 if (first_stage && two_stage && env->virt_enabled) { 1161 pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE); 1162 adue = adue && (env->henvcfg & HENVCFG_ADUE); 1163 } 1164 1165 int ptshift = (levels - 1) * ptidxbits; 1166 target_ulong pte; 1167 hwaddr pte_addr; 1168 int i; 1169 1170 restart: 1171 for (i = 0; i < levels; i++, ptshift -= ptidxbits) { 1172 target_ulong idx; 1173 if (i == 0) { 1174 idx = (addr >> (PGSHIFT + ptshift)) & 1175 ((1 << (ptidxbits + widened)) - 1); 1176 } else { 1177 idx = (addr >> (PGSHIFT + ptshift)) & 1178 ((1 << ptidxbits) - 1); 1179 } 1180 1181 /* check that physical address of PTE is legal */ 1182 1183 if (two_stage && first_stage) { 1184 int vbase_prot; 1185 hwaddr vbase; 1186 1187 /* Do the second stage translation on the base PTE address. */ 1188 int vbase_ret = get_physical_address(env, &vbase, &vbase_prot, 1189 base, NULL, MMU_DATA_LOAD, 1190 MMUIdx_U, false, true, 1191 is_debug, false); 1192 1193 if (vbase_ret != TRANSLATE_SUCCESS) { 1194 if (fault_pte_addr) { 1195 *fault_pte_addr = (base + idx * ptesize) >> 2; 1196 } 1197 return TRANSLATE_G_STAGE_FAIL; 1198 } 1199 1200 pte_addr = vbase + idx * ptesize; 1201 } else { 1202 pte_addr = base + idx * ptesize; 1203 } 1204 1205 int pmp_prot; 1206 int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr, 1207 sxlen_bytes, 1208 MMU_DATA_LOAD, PRV_S); 1209 if (pmp_ret != TRANSLATE_SUCCESS) { 1210 return TRANSLATE_PMP_FAIL; 1211 } 1212 1213 if (riscv_cpu_mxl(env) == MXL_RV32) { 1214 pte = address_space_ldl(cs->as, pte_addr, attrs, &res); 1215 } else { 1216 pte = address_space_ldq(cs->as, pte_addr, attrs, &res); 1217 } 1218 1219 if (res != MEMTX_OK) { 1220 return TRANSLATE_FAIL; 1221 } 1222 1223 if (riscv_cpu_sxl(env) == MXL_RV32) { 1224 ppn = pte >> PTE_PPN_SHIFT; 1225 } else { 1226 if (pte & PTE_RESERVED) { 1227 return TRANSLATE_FAIL; 1228 } 1229 1230 if (!pbmte && (pte & PTE_PBMT)) { 1231 return TRANSLATE_FAIL; 1232 } 1233 1234 if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 1235 return TRANSLATE_FAIL; 1236 } 1237 1238 ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT; 1239 } 1240 1241 if (!(pte & PTE_V)) { 1242 /* Invalid PTE */ 1243 return TRANSLATE_FAIL; 1244 } 1245 if (pte & (PTE_R | PTE_W | PTE_X)) { 1246 goto leaf; 1247 } 1248 1249 /* Inner PTE, continue walking */ 1250 if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) { 1251 return TRANSLATE_FAIL; 1252 } 1253 base = ppn << PGSHIFT; 1254 } 1255 1256 /* No leaf pte at any translation level. */ 1257 return TRANSLATE_FAIL; 1258 1259 leaf: 1260 if (ppn & ((1ULL << ptshift) - 1)) { 1261 /* Misaligned PPN */ 1262 return TRANSLATE_FAIL; 1263 } 1264 if (!pbmte && (pte & PTE_PBMT)) { 1265 /* Reserved without Svpbmt. */ 1266 return TRANSLATE_FAIL; 1267 } 1268 1269 target_ulong rwx = pte & (PTE_R | PTE_W | PTE_X); 1270 /* Check for reserved combinations of RWX flags. */ 1271 switch (rwx) { 1272 case PTE_W | PTE_X: 1273 return TRANSLATE_FAIL; 1274 case PTE_W: 1275 /* if bcfi enabled, PTE_W is not reserved and shadow stack page */ 1276 if (cpu_get_bcfien(env) && first_stage) { 1277 sstack_page = true; 1278 /* 1279 * if ss index, read and write allowed. else if not a probe 1280 * then only read allowed 1281 */ 1282 rwx = is_sstack_idx ? (PTE_R | PTE_W) : (is_probe ? 0 : PTE_R); 1283 break; 1284 } 1285 return TRANSLATE_FAIL; 1286 case PTE_R: 1287 /* 1288 * no matter what's the `access_type`, shadow stack access to readonly 1289 * memory are always store page faults. During unwind, loads will be 1290 * promoted as store fault. 1291 */ 1292 if (is_sstack_idx) { 1293 return TRANSLATE_FAIL; 1294 } 1295 break; 1296 } 1297 1298 int prot = 0; 1299 if (rwx & PTE_R) { 1300 prot |= PAGE_READ; 1301 } 1302 if (rwx & PTE_W) { 1303 prot |= PAGE_WRITE; 1304 } 1305 if (rwx & PTE_X) { 1306 bool mxr = false; 1307 1308 /* 1309 * Use mstatus for first stage or for the second stage without 1310 * virt_enabled (MPRV+MPV) 1311 */ 1312 if (first_stage || !env->virt_enabled) { 1313 mxr = get_field(env->mstatus, MSTATUS_MXR); 1314 } 1315 1316 /* MPRV+MPV case, check VSSTATUS */ 1317 if (first_stage && two_stage && !env->virt_enabled) { 1318 mxr |= get_field(env->vsstatus, MSTATUS_MXR); 1319 } 1320 1321 /* 1322 * Setting MXR at HS-level overrides both VS-stage and G-stage 1323 * execute-only permissions 1324 */ 1325 if (env->virt_enabled) { 1326 mxr |= get_field(env->mstatus_hs, MSTATUS_MXR); 1327 } 1328 1329 if (mxr) { 1330 prot |= PAGE_READ; 1331 } 1332 prot |= PAGE_EXEC; 1333 } 1334 1335 if (pte & PTE_U) { 1336 if (mode != PRV_U) { 1337 if (!mmuidx_sum(mmu_idx)) { 1338 return TRANSLATE_FAIL; 1339 } 1340 /* SUM allows only read+write, not execute. */ 1341 prot &= PAGE_READ | PAGE_WRITE; 1342 } 1343 } else if (mode != PRV_S) { 1344 /* Supervisor PTE flags when not S mode */ 1345 return TRANSLATE_FAIL; 1346 } 1347 1348 if (!((prot >> access_type) & 1)) { 1349 /* 1350 * Access check failed, access check failures for shadow stack are 1351 * access faults. 1352 */ 1353 return sstack_page ? TRANSLATE_PMP_FAIL : TRANSLATE_FAIL; 1354 } 1355 1356 target_ulong updated_pte = pte; 1357 1358 /* 1359 * If ADUE is enabled, set accessed and dirty bits. 1360 * Otherwise raise an exception if necessary. 1361 */ 1362 if (adue) { 1363 updated_pte |= PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0); 1364 } else if (!(pte & PTE_A) || 1365 (access_type == MMU_DATA_STORE && !(pte & PTE_D))) { 1366 return TRANSLATE_FAIL; 1367 } 1368 1369 /* Page table updates need to be atomic with MTTCG enabled */ 1370 if (updated_pte != pte && !is_debug) { 1371 if (!adue) { 1372 return TRANSLATE_FAIL; 1373 } 1374 1375 /* 1376 * - if accessed or dirty bits need updating, and the PTE is 1377 * in RAM, then we do so atomically with a compare and swap. 1378 * - if the PTE is in IO space or ROM, then it can't be updated 1379 * and we return TRANSLATE_FAIL. 1380 * - if the PTE changed by the time we went to update it, then 1381 * it is no longer valid and we must re-walk the page table. 1382 */ 1383 MemoryRegion *mr; 1384 hwaddr l = sxlen_bytes, addr1; 1385 mr = address_space_translate(cs->as, pte_addr, &addr1, &l, 1386 false, MEMTXATTRS_UNSPECIFIED); 1387 if (memory_region_is_ram(mr)) { 1388 target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1); 1389 target_ulong old_pte; 1390 if (riscv_cpu_sxl(env) == MXL_RV32) { 1391 old_pte = qatomic_cmpxchg((uint32_t *)pte_pa, pte, updated_pte); 1392 } else { 1393 old_pte = qatomic_cmpxchg(pte_pa, pte, updated_pte); 1394 } 1395 if (old_pte != pte) { 1396 goto restart; 1397 } 1398 pte = updated_pte; 1399 } else { 1400 /* 1401 * Misconfigured PTE in ROM (AD bits are not preset) or 1402 * PTE is in IO space and can't be updated atomically. 1403 */ 1404 return TRANSLATE_FAIL; 1405 } 1406 } 1407 1408 /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */ 1409 target_ulong vpn = addr >> PGSHIFT; 1410 1411 if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) { 1412 napot_bits = ctzl(ppn) + 1; 1413 if ((i != (levels - 1)) || (napot_bits != 4)) { 1414 return TRANSLATE_FAIL; 1415 } 1416 } 1417 1418 napot_mask = (1 << napot_bits) - 1; 1419 *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) | 1420 (vpn & (((target_ulong)1 << ptshift) - 1)) 1421 ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK); 1422 1423 /* 1424 * Remove write permission unless this is a store, or the page is 1425 * already dirty, so that we TLB miss on later writes to update 1426 * the dirty bit. 1427 */ 1428 if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) { 1429 prot &= ~PAGE_WRITE; 1430 } 1431 *ret_prot = prot; 1432 1433 return TRANSLATE_SUCCESS; 1434 } 1435 1436 static void raise_mmu_exception(CPURISCVState *env, target_ulong address, 1437 MMUAccessType access_type, bool pmp_violation, 1438 bool first_stage, bool two_stage, 1439 bool two_stage_indirect) 1440 { 1441 CPUState *cs = env_cpu(env); 1442 1443 switch (access_type) { 1444 case MMU_INST_FETCH: 1445 if (pmp_violation) { 1446 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1447 } else if (env->virt_enabled && !first_stage) { 1448 cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT; 1449 } else { 1450 cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT; 1451 } 1452 break; 1453 case MMU_DATA_LOAD: 1454 if (pmp_violation) { 1455 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1456 } else if (two_stage && !first_stage) { 1457 cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT; 1458 } else { 1459 cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT; 1460 } 1461 break; 1462 case MMU_DATA_STORE: 1463 if (pmp_violation) { 1464 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1465 } else if (two_stage && !first_stage) { 1466 cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1467 } else { 1468 cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT; 1469 } 1470 break; 1471 default: 1472 g_assert_not_reached(); 1473 } 1474 env->badaddr = address; 1475 env->two_stage_lookup = two_stage; 1476 env->two_stage_indirect_lookup = two_stage_indirect; 1477 } 1478 1479 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) 1480 { 1481 RISCVCPU *cpu = RISCV_CPU(cs); 1482 CPURISCVState *env = &cpu->env; 1483 hwaddr phys_addr; 1484 int prot; 1485 int mmu_idx = riscv_env_mmu_index(&cpu->env, false); 1486 1487 if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx, 1488 true, env->virt_enabled, true, false)) { 1489 return -1; 1490 } 1491 1492 if (env->virt_enabled) { 1493 if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL, 1494 0, MMUIdx_U, false, true, true, false)) { 1495 return -1; 1496 } 1497 } 1498 1499 return phys_addr & TARGET_PAGE_MASK; 1500 } 1501 1502 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, 1503 vaddr addr, unsigned size, 1504 MMUAccessType access_type, 1505 int mmu_idx, MemTxAttrs attrs, 1506 MemTxResult response, uintptr_t retaddr) 1507 { 1508 RISCVCPU *cpu = RISCV_CPU(cs); 1509 CPURISCVState *env = &cpu->env; 1510 1511 if (access_type == MMU_DATA_STORE) { 1512 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1513 } else if (access_type == MMU_DATA_LOAD) { 1514 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1515 } else { 1516 cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT; 1517 } 1518 1519 env->badaddr = addr; 1520 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1521 env->two_stage_indirect_lookup = false; 1522 cpu_loop_exit_restore(cs, retaddr); 1523 } 1524 1525 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr, 1526 MMUAccessType access_type, int mmu_idx, 1527 uintptr_t retaddr) 1528 { 1529 RISCVCPU *cpu = RISCV_CPU(cs); 1530 CPURISCVState *env = &cpu->env; 1531 switch (access_type) { 1532 case MMU_INST_FETCH: 1533 cs->exception_index = RISCV_EXCP_INST_ADDR_MIS; 1534 break; 1535 case MMU_DATA_LOAD: 1536 cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS; 1537 /* shadow stack mis aligned accesses are access faults */ 1538 if (mmu_idx & MMU_IDX_SS_WRITE) { 1539 cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT; 1540 } 1541 break; 1542 case MMU_DATA_STORE: 1543 cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS; 1544 /* shadow stack mis aligned accesses are access faults */ 1545 if (mmu_idx & MMU_IDX_SS_WRITE) { 1546 cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1547 } 1548 break; 1549 default: 1550 g_assert_not_reached(); 1551 } 1552 env->badaddr = addr; 1553 env->two_stage_lookup = mmuidx_2stage(mmu_idx); 1554 env->two_stage_indirect_lookup = false; 1555 cpu_loop_exit_restore(cs, retaddr); 1556 } 1557 1558 1559 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type) 1560 { 1561 enum riscv_pmu_event_idx pmu_event_type; 1562 1563 switch (access_type) { 1564 case MMU_INST_FETCH: 1565 pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS; 1566 break; 1567 case MMU_DATA_LOAD: 1568 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS; 1569 break; 1570 case MMU_DATA_STORE: 1571 pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS; 1572 break; 1573 default: 1574 return; 1575 } 1576 1577 riscv_pmu_incr_ctr(cpu, pmu_event_type); 1578 } 1579 1580 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 1581 MMUAccessType access_type, int mmu_idx, 1582 bool probe, uintptr_t retaddr) 1583 { 1584 RISCVCPU *cpu = RISCV_CPU(cs); 1585 CPURISCVState *env = &cpu->env; 1586 vaddr im_address; 1587 hwaddr pa = 0; 1588 int prot, prot2, prot_pmp; 1589 bool pmp_violation = false; 1590 bool first_stage_error = true; 1591 bool two_stage_lookup = mmuidx_2stage(mmu_idx); 1592 bool two_stage_indirect_error = false; 1593 int ret = TRANSLATE_FAIL; 1594 int mode = mmuidx_priv(mmu_idx); 1595 /* default TLB page size */ 1596 hwaddr tlb_size = TARGET_PAGE_SIZE; 1597 1598 env->guest_phys_fault_addr = 0; 1599 1600 qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n", 1601 __func__, address, access_type, mmu_idx); 1602 1603 pmu_tlb_fill_incr_ctr(cpu, access_type); 1604 if (two_stage_lookup) { 1605 /* Two stage lookup */ 1606 ret = get_physical_address(env, &pa, &prot, address, 1607 &env->guest_phys_fault_addr, access_type, 1608 mmu_idx, true, true, false, probe); 1609 1610 /* 1611 * A G-stage exception may be triggered during two state lookup. 1612 * And the env->guest_phys_fault_addr has already been set in 1613 * get_physical_address(). 1614 */ 1615 if (ret == TRANSLATE_G_STAGE_FAIL) { 1616 first_stage_error = false; 1617 two_stage_indirect_error = true; 1618 } 1619 1620 qemu_log_mask(CPU_LOG_MMU, 1621 "%s 1st-stage address=%" VADDR_PRIx " ret %d physical " 1622 HWADDR_FMT_plx " prot %d\n", 1623 __func__, address, ret, pa, prot); 1624 1625 if (ret == TRANSLATE_SUCCESS) { 1626 /* Second stage lookup */ 1627 im_address = pa; 1628 1629 ret = get_physical_address(env, &pa, &prot2, im_address, NULL, 1630 access_type, MMUIdx_U, false, true, 1631 false, probe); 1632 1633 qemu_log_mask(CPU_LOG_MMU, 1634 "%s 2nd-stage address=%" VADDR_PRIx 1635 " ret %d physical " 1636 HWADDR_FMT_plx " prot %d\n", 1637 __func__, im_address, ret, pa, prot2); 1638 1639 prot &= prot2; 1640 1641 if (ret == TRANSLATE_SUCCESS) { 1642 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1643 size, access_type, mode); 1644 tlb_size = pmp_get_tlb_size(env, pa); 1645 1646 qemu_log_mask(CPU_LOG_MMU, 1647 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1648 " %d tlb_size %" HWADDR_PRIu "\n", 1649 __func__, pa, ret, prot_pmp, tlb_size); 1650 1651 prot &= prot_pmp; 1652 } else { 1653 /* 1654 * Guest physical address translation failed, this is a HS 1655 * level exception 1656 */ 1657 first_stage_error = false; 1658 if (ret != TRANSLATE_PMP_FAIL) { 1659 env->guest_phys_fault_addr = (im_address | 1660 (address & 1661 (TARGET_PAGE_SIZE - 1))) >> 2; 1662 } 1663 } 1664 } 1665 } else { 1666 /* Single stage lookup */ 1667 ret = get_physical_address(env, &pa, &prot, address, NULL, 1668 access_type, mmu_idx, true, false, false, 1669 probe); 1670 1671 qemu_log_mask(CPU_LOG_MMU, 1672 "%s address=%" VADDR_PRIx " ret %d physical " 1673 HWADDR_FMT_plx " prot %d\n", 1674 __func__, address, ret, pa, prot); 1675 1676 if (ret == TRANSLATE_SUCCESS) { 1677 ret = get_physical_address_pmp(env, &prot_pmp, pa, 1678 size, access_type, mode); 1679 tlb_size = pmp_get_tlb_size(env, pa); 1680 1681 qemu_log_mask(CPU_LOG_MMU, 1682 "%s PMP address=" HWADDR_FMT_plx " ret %d prot" 1683 " %d tlb_size %" HWADDR_PRIu "\n", 1684 __func__, pa, ret, prot_pmp, tlb_size); 1685 1686 prot &= prot_pmp; 1687 } 1688 } 1689 1690 if (ret == TRANSLATE_PMP_FAIL) { 1691 pmp_violation = true; 1692 } 1693 1694 if (ret == TRANSLATE_SUCCESS) { 1695 tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1), 1696 prot, mmu_idx, tlb_size); 1697 return true; 1698 } else if (probe) { 1699 return false; 1700 } else { 1701 int wp_access = 0; 1702 1703 if (access_type == MMU_DATA_LOAD) { 1704 wp_access |= BP_MEM_READ; 1705 } else if (access_type == MMU_DATA_STORE) { 1706 wp_access |= BP_MEM_WRITE; 1707 } 1708 1709 /* 1710 * If a watchpoint isn't found for 'addr' this will 1711 * be a no-op and we'll resume the mmu_exception path. 1712 * Otherwise we'll throw a debug exception and execution 1713 * will continue elsewhere. 1714 */ 1715 cpu_check_watchpoint(cs, address, size, MEMTXATTRS_UNSPECIFIED, 1716 wp_access, retaddr); 1717 1718 raise_mmu_exception(env, address, access_type, pmp_violation, 1719 first_stage_error, two_stage_lookup, 1720 two_stage_indirect_error); 1721 cpu_loop_exit_restore(cs, retaddr); 1722 } 1723 1724 return true; 1725 } 1726 1727 static target_ulong riscv_transformed_insn(CPURISCVState *env, 1728 target_ulong insn, 1729 target_ulong taddr) 1730 { 1731 target_ulong xinsn = 0; 1732 target_ulong access_rs1 = 0, access_imm = 0, access_size = 0; 1733 1734 /* 1735 * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to 1736 * be uncompressed. The Quadrant 1 of RVC instruction space need 1737 * not be transformed because these instructions won't generate 1738 * any load/store trap. 1739 */ 1740 1741 if ((insn & 0x3) != 0x3) { 1742 /* Transform 16bit instruction into 32bit instruction */ 1743 switch (GET_C_OP(insn)) { 1744 case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */ 1745 switch (GET_C_FUNC(insn)) { 1746 case OPC_RISC_C_FUNC_FLD_LQ: 1747 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */ 1748 xinsn = OPC_RISC_FLD; 1749 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1750 access_rs1 = GET_C_RS1S(insn); 1751 access_imm = GET_C_LD_IMM(insn); 1752 access_size = 8; 1753 } 1754 break; 1755 case OPC_RISC_C_FUNC_LW: /* C.LW */ 1756 xinsn = OPC_RISC_LW; 1757 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1758 access_rs1 = GET_C_RS1S(insn); 1759 access_imm = GET_C_LW_IMM(insn); 1760 access_size = 4; 1761 break; 1762 case OPC_RISC_C_FUNC_FLW_LD: 1763 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */ 1764 xinsn = OPC_RISC_FLW; 1765 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1766 access_rs1 = GET_C_RS1S(insn); 1767 access_imm = GET_C_LW_IMM(insn); 1768 access_size = 4; 1769 } else { /* C.LD (RV64/RV128) */ 1770 xinsn = OPC_RISC_LD; 1771 xinsn = SET_RD(xinsn, GET_C_RS2S(insn)); 1772 access_rs1 = GET_C_RS1S(insn); 1773 access_imm = GET_C_LD_IMM(insn); 1774 access_size = 8; 1775 } 1776 break; 1777 case OPC_RISC_C_FUNC_FSD_SQ: 1778 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */ 1779 xinsn = OPC_RISC_FSD; 1780 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1781 access_rs1 = GET_C_RS1S(insn); 1782 access_imm = GET_C_SD_IMM(insn); 1783 access_size = 8; 1784 } 1785 break; 1786 case OPC_RISC_C_FUNC_SW: /* C.SW */ 1787 xinsn = OPC_RISC_SW; 1788 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1789 access_rs1 = GET_C_RS1S(insn); 1790 access_imm = GET_C_SW_IMM(insn); 1791 access_size = 4; 1792 break; 1793 case OPC_RISC_C_FUNC_FSW_SD: 1794 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */ 1795 xinsn = OPC_RISC_FSW; 1796 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1797 access_rs1 = GET_C_RS1S(insn); 1798 access_imm = GET_C_SW_IMM(insn); 1799 access_size = 4; 1800 } else { /* C.SD (RV64/RV128) */ 1801 xinsn = OPC_RISC_SD; 1802 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn)); 1803 access_rs1 = GET_C_RS1S(insn); 1804 access_imm = GET_C_SD_IMM(insn); 1805 access_size = 8; 1806 } 1807 break; 1808 default: 1809 break; 1810 } 1811 break; 1812 case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */ 1813 switch (GET_C_FUNC(insn)) { 1814 case OPC_RISC_C_FUNC_FLDSP_LQSP: 1815 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */ 1816 xinsn = OPC_RISC_FLD; 1817 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1818 access_rs1 = 2; 1819 access_imm = GET_C_LDSP_IMM(insn); 1820 access_size = 8; 1821 } 1822 break; 1823 case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */ 1824 xinsn = OPC_RISC_LW; 1825 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1826 access_rs1 = 2; 1827 access_imm = GET_C_LWSP_IMM(insn); 1828 access_size = 4; 1829 break; 1830 case OPC_RISC_C_FUNC_FLWSP_LDSP: 1831 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */ 1832 xinsn = OPC_RISC_FLW; 1833 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1834 access_rs1 = 2; 1835 access_imm = GET_C_LWSP_IMM(insn); 1836 access_size = 4; 1837 } else { /* C.LDSP (RV64/RV128) */ 1838 xinsn = OPC_RISC_LD; 1839 xinsn = SET_RD(xinsn, GET_C_RD(insn)); 1840 access_rs1 = 2; 1841 access_imm = GET_C_LDSP_IMM(insn); 1842 access_size = 8; 1843 } 1844 break; 1845 case OPC_RISC_C_FUNC_FSDSP_SQSP: 1846 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */ 1847 xinsn = OPC_RISC_FSD; 1848 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1849 access_rs1 = 2; 1850 access_imm = GET_C_SDSP_IMM(insn); 1851 access_size = 8; 1852 } 1853 break; 1854 case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */ 1855 xinsn = OPC_RISC_SW; 1856 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1857 access_rs1 = 2; 1858 access_imm = GET_C_SWSP_IMM(insn); 1859 access_size = 4; 1860 break; 1861 case 7: 1862 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */ 1863 xinsn = OPC_RISC_FSW; 1864 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1865 access_rs1 = 2; 1866 access_imm = GET_C_SWSP_IMM(insn); 1867 access_size = 4; 1868 } else { /* C.SDSP (RV64/RV128) */ 1869 xinsn = OPC_RISC_SD; 1870 xinsn = SET_RS2(xinsn, GET_C_RS2(insn)); 1871 access_rs1 = 2; 1872 access_imm = GET_C_SDSP_IMM(insn); 1873 access_size = 8; 1874 } 1875 break; 1876 default: 1877 break; 1878 } 1879 break; 1880 default: 1881 break; 1882 } 1883 1884 /* 1885 * Clear Bit1 of transformed instruction to indicate that 1886 * original insruction was a 16bit instruction 1887 */ 1888 xinsn &= ~((target_ulong)0x2); 1889 } else { 1890 /* Transform 32bit (or wider) instructions */ 1891 switch (MASK_OP_MAJOR(insn)) { 1892 case OPC_RISC_ATOMIC: 1893 xinsn = insn; 1894 access_rs1 = GET_RS1(insn); 1895 access_size = 1 << GET_FUNCT3(insn); 1896 break; 1897 case OPC_RISC_LOAD: 1898 case OPC_RISC_FP_LOAD: 1899 xinsn = SET_I_IMM(insn, 0); 1900 access_rs1 = GET_RS1(insn); 1901 access_imm = GET_IMM(insn); 1902 access_size = 1 << GET_FUNCT3(insn); 1903 break; 1904 case OPC_RISC_STORE: 1905 case OPC_RISC_FP_STORE: 1906 xinsn = SET_S_IMM(insn, 0); 1907 access_rs1 = GET_RS1(insn); 1908 access_imm = GET_STORE_IMM(insn); 1909 access_size = 1 << GET_FUNCT3(insn); 1910 break; 1911 case OPC_RISC_SYSTEM: 1912 if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) { 1913 xinsn = insn; 1914 access_rs1 = GET_RS1(insn); 1915 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3); 1916 access_size = 1 << access_size; 1917 } 1918 break; 1919 default: 1920 break; 1921 } 1922 } 1923 1924 if (access_size) { 1925 xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) & 1926 (access_size - 1)); 1927 } 1928 1929 return xinsn; 1930 } 1931 1932 static target_ulong promote_load_fault(target_ulong orig_cause) 1933 { 1934 switch (orig_cause) { 1935 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 1936 return RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT; 1937 1938 case RISCV_EXCP_LOAD_ACCESS_FAULT: 1939 return RISCV_EXCP_STORE_AMO_ACCESS_FAULT; 1940 1941 case RISCV_EXCP_LOAD_PAGE_FAULT: 1942 return RISCV_EXCP_STORE_PAGE_FAULT; 1943 } 1944 1945 /* if no promotion, return original cause */ 1946 return orig_cause; 1947 } 1948 1949 static void riscv_do_nmi(CPURISCVState *env, target_ulong cause, bool virt) 1950 { 1951 env->mnstatus = set_field(env->mnstatus, MNSTATUS_NMIE, false); 1952 env->mnstatus = set_field(env->mnstatus, MNSTATUS_MNPV, virt); 1953 env->mnstatus = set_field(env->mnstatus, MNSTATUS_MNPP, env->priv); 1954 env->mncause = cause; 1955 env->mnepc = env->pc; 1956 env->pc = env->rnmi_irqvec; 1957 1958 if (cpu_get_fcfien(env)) { 1959 env->mnstatus = set_field(env->mnstatus, MNSTATUS_MNPELP, env->elp); 1960 } 1961 1962 /* Trapping to M mode, virt is disabled */ 1963 riscv_cpu_set_mode(env, PRV_M, false); 1964 } 1965 1966 /* 1967 * Handle Traps 1968 * 1969 * Adapted from Spike's processor_t::take_trap. 1970 * 1971 */ 1972 void riscv_cpu_do_interrupt(CPUState *cs) 1973 { 1974 RISCVCPU *cpu = RISCV_CPU(cs); 1975 CPURISCVState *env = &cpu->env; 1976 bool virt = env->virt_enabled; 1977 bool write_gva = false; 1978 bool always_storeamo = (env->excp_uw2 & RISCV_UW2_ALWAYS_STORE_AMO); 1979 bool vsmode_exc; 1980 uint64_t s; 1981 int mode; 1982 1983 /* 1984 * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide 1985 * so we mask off the MSB and separate into trap type and cause. 1986 */ 1987 bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG); 1988 target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK; 1989 uint64_t deleg = async ? env->mideleg : env->medeleg; 1990 bool s_injected = env->mvip & (1ULL << cause) & env->mvien && 1991 !(env->mip & (1ULL << cause)); 1992 bool vs_injected = env->hvip & (1ULL << cause) & env->hvien && 1993 !(env->mip & (1ULL << cause)); 1994 bool smode_double_trap = false; 1995 uint64_t hdeleg = async ? env->hideleg : env->hedeleg; 1996 target_ulong tval = 0; 1997 target_ulong tinst = 0; 1998 target_ulong htval = 0; 1999 target_ulong mtval2 = 0; 2000 int sxlen = 0; 2001 int mxlen = 16 << riscv_cpu_mxl(env); 2002 bool nnmi_excep = false; 2003 2004 if (cpu->cfg.ext_smrnmi && env->rnmip && async) { 2005 riscv_do_nmi(env, cause | ((target_ulong)1U << (mxlen - 1)), 2006 env->virt_enabled); 2007 return; 2008 } 2009 2010 if (!async) { 2011 /* set tval to badaddr for traps with address information */ 2012 switch (cause) { 2013 #ifdef CONFIG_TCG 2014 case RISCV_EXCP_SEMIHOST: 2015 do_common_semihosting(cs); 2016 env->pc += 4; 2017 return; 2018 #endif 2019 case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT: 2020 case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT: 2021 case RISCV_EXCP_LOAD_ADDR_MIS: 2022 case RISCV_EXCP_STORE_AMO_ADDR_MIS: 2023 case RISCV_EXCP_LOAD_ACCESS_FAULT: 2024 case RISCV_EXCP_STORE_AMO_ACCESS_FAULT: 2025 case RISCV_EXCP_LOAD_PAGE_FAULT: 2026 case RISCV_EXCP_STORE_PAGE_FAULT: 2027 if (always_storeamo) { 2028 cause = promote_load_fault(cause); 2029 } 2030 write_gva = env->two_stage_lookup; 2031 tval = env->badaddr; 2032 if (env->two_stage_indirect_lookup) { 2033 /* 2034 * special pseudoinstruction for G-stage fault taken while 2035 * doing VS-stage page table walk. 2036 */ 2037 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 2038 } else { 2039 /* 2040 * The "Addr. Offset" field in transformed instruction is 2041 * non-zero only for misaligned access. 2042 */ 2043 tinst = riscv_transformed_insn(env, env->bins, tval); 2044 } 2045 break; 2046 case RISCV_EXCP_INST_GUEST_PAGE_FAULT: 2047 case RISCV_EXCP_INST_ADDR_MIS: 2048 case RISCV_EXCP_INST_ACCESS_FAULT: 2049 case RISCV_EXCP_INST_PAGE_FAULT: 2050 write_gva = env->two_stage_lookup; 2051 tval = env->badaddr; 2052 if (env->two_stage_indirect_lookup) { 2053 /* 2054 * special pseudoinstruction for G-stage fault taken while 2055 * doing VS-stage page table walk. 2056 */ 2057 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000; 2058 } 2059 break; 2060 case RISCV_EXCP_ILLEGAL_INST: 2061 case RISCV_EXCP_VIRT_INSTRUCTION_FAULT: 2062 tval = env->bins; 2063 break; 2064 case RISCV_EXCP_BREAKPOINT: 2065 tval = env->badaddr; 2066 if (cs->watchpoint_hit) { 2067 tval = cs->watchpoint_hit->hitaddr; 2068 cs->watchpoint_hit = NULL; 2069 } 2070 break; 2071 case RISCV_EXCP_SW_CHECK: 2072 tval = env->sw_check_code; 2073 break; 2074 default: 2075 break; 2076 } 2077 /* ecall is dispatched as one cause so translate based on mode */ 2078 if (cause == RISCV_EXCP_U_ECALL) { 2079 assert(env->priv <= 3); 2080 2081 if (env->priv == PRV_M) { 2082 cause = RISCV_EXCP_M_ECALL; 2083 } else if (env->priv == PRV_S && env->virt_enabled) { 2084 cause = RISCV_EXCP_VS_ECALL; 2085 } else if (env->priv == PRV_S && !env->virt_enabled) { 2086 cause = RISCV_EXCP_S_ECALL; 2087 } else if (env->priv == PRV_U) { 2088 cause = RISCV_EXCP_U_ECALL; 2089 } 2090 } 2091 } 2092 2093 trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, 2094 riscv_cpu_get_trap_name(cause, async)); 2095 2096 qemu_log_mask(CPU_LOG_INT, 2097 "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", " 2098 "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n", 2099 __func__, env->mhartid, async, cause, env->pc, tval, 2100 riscv_cpu_get_trap_name(cause, async)); 2101 2102 mode = env->priv <= PRV_S && cause < 64 && 2103 (((deleg >> cause) & 1) || s_injected || vs_injected) ? PRV_S : PRV_M; 2104 2105 vsmode_exc = env->virt_enabled && cause < 64 && 2106 (((hdeleg >> cause) & 1) || vs_injected); 2107 2108 /* 2109 * Check double trap condition only if already in S-mode and targeting 2110 * S-mode 2111 */ 2112 if (cpu->cfg.ext_ssdbltrp && env->priv == PRV_S && mode == PRV_S) { 2113 bool dte = (env->menvcfg & MENVCFG_DTE) != 0; 2114 bool sdt = (env->mstatus & MSTATUS_SDT) != 0; 2115 /* In VS or HS */ 2116 if (riscv_has_ext(env, RVH)) { 2117 if (vsmode_exc) { 2118 /* VS -> VS, use henvcfg instead of menvcfg*/ 2119 dte = (env->henvcfg & HENVCFG_DTE) != 0; 2120 } else if (env->virt_enabled) { 2121 /* VS -> HS, use mstatus_hs */ 2122 sdt = (env->mstatus_hs & MSTATUS_SDT) != 0; 2123 } 2124 } 2125 smode_double_trap = dte && sdt; 2126 if (smode_double_trap) { 2127 mode = PRV_M; 2128 } 2129 } 2130 2131 if (mode == PRV_S) { 2132 /* handle the trap in S-mode */ 2133 /* save elp status */ 2134 if (cpu_get_fcfien(env)) { 2135 env->mstatus = set_field(env->mstatus, MSTATUS_SPELP, env->elp); 2136 } 2137 2138 if (riscv_has_ext(env, RVH)) { 2139 if (vsmode_exc) { 2140 /* Trap to VS mode */ 2141 /* 2142 * See if we need to adjust cause. Yes if its VS mode interrupt 2143 * no if hypervisor has delegated one of hs mode's interrupt 2144 */ 2145 if (async && (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT || 2146 cause == IRQ_VS_EXT)) { 2147 cause = cause - 1; 2148 } 2149 write_gva = false; 2150 } else if (env->virt_enabled) { 2151 /* Trap into HS mode, from virt */ 2152 riscv_cpu_swap_hypervisor_regs(env); 2153 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP, 2154 env->priv); 2155 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true); 2156 2157 htval = env->guest_phys_fault_addr; 2158 2159 virt = false; 2160 } else { 2161 /* Trap into HS mode */ 2162 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false); 2163 htval = env->guest_phys_fault_addr; 2164 } 2165 env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva); 2166 } 2167 2168 s = env->mstatus; 2169 s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE)); 2170 s = set_field(s, MSTATUS_SPP, env->priv); 2171 s = set_field(s, MSTATUS_SIE, 0); 2172 if (riscv_env_smode_dbltrp_enabled(env, virt)) { 2173 s = set_field(s, MSTATUS_SDT, 1); 2174 } 2175 env->mstatus = s; 2176 sxlen = 16 << riscv_cpu_sxl(env); 2177 env->scause = cause | ((target_ulong)async << (sxlen - 1)); 2178 env->sepc = env->pc; 2179 env->stval = tval; 2180 env->htval = htval; 2181 env->htinst = tinst; 2182 env->pc = (env->stvec >> 2 << 2) + 2183 ((async && (env->stvec & 3) == 1) ? cause * 4 : 0); 2184 riscv_cpu_set_mode(env, PRV_S, virt); 2185 } else { 2186 /* 2187 * If the hart encounters an exception while executing in M-mode 2188 * with the mnstatus.NMIE bit clear, the exception is an RNMI exception. 2189 */ 2190 nnmi_excep = cpu->cfg.ext_smrnmi && 2191 !get_field(env->mnstatus, MNSTATUS_NMIE) && 2192 !async; 2193 2194 /* handle the trap in M-mode */ 2195 /* save elp status */ 2196 if (cpu_get_fcfien(env)) { 2197 if (nnmi_excep) { 2198 env->mnstatus = set_field(env->mnstatus, MNSTATUS_MNPELP, 2199 env->elp); 2200 } else { 2201 env->mstatus = set_field(env->mstatus, MSTATUS_MPELP, env->elp); 2202 } 2203 } 2204 2205 if (riscv_has_ext(env, RVH)) { 2206 if (env->virt_enabled) { 2207 riscv_cpu_swap_hypervisor_regs(env); 2208 } 2209 env->mstatus = set_field(env->mstatus, MSTATUS_MPV, 2210 env->virt_enabled); 2211 if (env->virt_enabled && tval) { 2212 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1); 2213 } 2214 2215 mtval2 = env->guest_phys_fault_addr; 2216 2217 /* Trapping to M mode, virt is disabled */ 2218 virt = false; 2219 } 2220 /* 2221 * If the hart encounters an exception while executing in M-mode, 2222 * with the mnstatus.NMIE bit clear, the program counter is set to 2223 * the RNMI exception trap handler address. 2224 */ 2225 nnmi_excep = cpu->cfg.ext_smrnmi && 2226 !get_field(env->mnstatus, MNSTATUS_NMIE) && 2227 !async; 2228 2229 s = env->mstatus; 2230 s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE)); 2231 s = set_field(s, MSTATUS_MPP, env->priv); 2232 s = set_field(s, MSTATUS_MIE, 0); 2233 if (cpu->cfg.ext_smdbltrp) { 2234 if (env->mstatus & MSTATUS_MDT) { 2235 assert(env->priv == PRV_M); 2236 if (!cpu->cfg.ext_smrnmi || nnmi_excep) { 2237 cpu_abort(CPU(cpu), "M-mode double trap\n"); 2238 } else { 2239 riscv_do_nmi(env, cause, false); 2240 return; 2241 } 2242 } 2243 2244 s = set_field(s, MSTATUS_MDT, 1); 2245 } 2246 env->mstatus = s; 2247 env->mcause = cause | ((target_ulong)async << (mxlen - 1)); 2248 if (smode_double_trap) { 2249 env->mtval2 = env->mcause; 2250 env->mcause = RISCV_EXCP_DOUBLE_TRAP; 2251 } else { 2252 env->mtval2 = mtval2; 2253 } 2254 env->mepc = env->pc; 2255 env->mtval = tval; 2256 env->mtinst = tinst; 2257 2258 /* 2259 * For RNMI exception, program counter is set to the RNMI exception 2260 * trap handler address. 2261 */ 2262 if (nnmi_excep) { 2263 env->pc = env->rnmi_excpvec; 2264 } else { 2265 env->pc = (env->mtvec >> 2 << 2) + 2266 ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0); 2267 } 2268 riscv_cpu_set_mode(env, PRV_M, virt); 2269 } 2270 2271 /* 2272 * Interrupt/exception/trap delivery is asynchronous event and as per 2273 * zicfilp spec CPU should clear up the ELP state. No harm in clearing 2274 * unconditionally. 2275 */ 2276 env->elp = false; 2277 2278 /* 2279 * NOTE: it is not necessary to yield load reservations here. It is only 2280 * necessary for an SC from "another hart" to cause a load reservation 2281 * to be yielded. Refer to the memory consistency model section of the 2282 * RISC-V ISA Specification. 2283 */ 2284 2285 env->two_stage_lookup = false; 2286 env->two_stage_indirect_lookup = false; 2287 } 2288 2289 #endif /* !CONFIG_USER_ONLY */ 2290