1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "exec/exec-all.h" 4 #include "system/kvm.h" 5 #include "system/tcg.h" 6 #include "helper_regs.h" 7 #include "mmu-hash64.h" 8 #include "migration/cpu.h" 9 #include "qapi/error.h" 10 #include "kvm_ppc.h" 11 #include "power8-pmu.h" 12 #include "system/replay.h" 13 14 static void post_load_update_msr(CPUPPCState *env) 15 { 16 target_ulong msr = env->msr; 17 18 /* 19 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB 20 * before restoring. Note that this recomputes hflags. 21 */ 22 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); 23 ppc_store_msr(env, msr); 24 } 25 26 static int get_avr(QEMUFile *f, void *pv, size_t size, 27 const VMStateField *field) 28 { 29 ppc_avr_t *v = pv; 30 31 v->u64[0] = qemu_get_be64(f); 32 v->u64[1] = qemu_get_be64(f); 33 34 return 0; 35 } 36 37 static int put_avr(QEMUFile *f, void *pv, size_t size, 38 const VMStateField *field, JSONWriter *vmdesc) 39 { 40 ppc_avr_t *v = pv; 41 42 qemu_put_be64(f, v->u64[0]); 43 qemu_put_be64(f, v->u64[1]); 44 return 0; 45 } 46 47 static const VMStateInfo vmstate_info_avr = { 48 .name = "avr", 49 .get = get_avr, 50 .put = put_avr, 51 }; 52 53 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ 54 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) 55 56 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ 57 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) 58 59 static int get_fpr(QEMUFile *f, void *pv, size_t size, 60 const VMStateField *field) 61 { 62 ppc_vsr_t *v = pv; 63 64 v->VsrD(0) = qemu_get_be64(f); 65 66 return 0; 67 } 68 69 static int put_fpr(QEMUFile *f, void *pv, size_t size, 70 const VMStateField *field, JSONWriter *vmdesc) 71 { 72 ppc_vsr_t *v = pv; 73 74 qemu_put_be64(f, v->VsrD(0)); 75 return 0; 76 } 77 78 static const VMStateInfo vmstate_info_fpr = { 79 .name = "fpr", 80 .get = get_fpr, 81 .put = put_fpr, 82 }; 83 84 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ 85 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) 86 87 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ 88 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) 89 90 static int get_vsr(QEMUFile *f, void *pv, size_t size, 91 const VMStateField *field) 92 { 93 ppc_vsr_t *v = pv; 94 95 v->VsrD(1) = qemu_get_be64(f); 96 97 return 0; 98 } 99 100 static int put_vsr(QEMUFile *f, void *pv, size_t size, 101 const VMStateField *field, JSONWriter *vmdesc) 102 { 103 ppc_vsr_t *v = pv; 104 105 qemu_put_be64(f, v->VsrD(1)); 106 return 0; 107 } 108 109 static const VMStateInfo vmstate_info_vsr = { 110 .name = "vsr", 111 .get = get_vsr, 112 .put = put_vsr, 113 }; 114 115 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ 116 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) 117 118 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ 119 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) 120 121 static int cpu_pre_save(void *opaque) 122 { 123 PowerPCCPU *cpu = opaque; 124 CPUPPCState *env = &cpu->env; 125 int i; 126 127 env->spr[SPR_LR] = env->lr; 128 env->spr[SPR_CTR] = env->ctr; 129 env->spr[SPR_XER] = cpu_read_xer(env); 130 #if defined(TARGET_PPC64) 131 env->spr[SPR_CFAR] = env->cfar; 132 #endif 133 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; 134 135 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 136 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; 137 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; 138 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; 139 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; 140 } 141 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 142 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; 143 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; 144 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; 145 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; 146 } 147 148 /* Used to retain migration compatibility for pre 6.0 for 601 machines. */ 149 env->hflags_compat_nmsr = 0; 150 151 if (tcg_enabled()) { 152 /* 153 * TCG does not maintain the DECR spr (unlike KVM) so have to save 154 * it here. 155 */ 156 env->spr[SPR_DECR] = cpu_ppc_load_decr(env); 157 } 158 159 return 0; 160 } 161 162 /* 163 * Determine if a given PVR is a "close enough" match to the CPU 164 * object. For TCG and KVM PR it would probably be sufficient to 165 * require an exact PVR match. However for KVM HV the user is 166 * restricted to a PVR exactly matching the host CPU. The correct way 167 * to handle this is to put the guest into an architected 168 * compatibility mode. However, to allow a more forgiving transition 169 * and migration from before this was widely done, we allow migration 170 * between sufficiently similar PVRs, as determined by the CPU class's 171 * pvr_match() hook. 172 */ 173 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) 174 { 175 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 176 177 if (pvr == pcc->pvr) { 178 return true; 179 } 180 return pcc->pvr_match(pcc, pvr, true); 181 } 182 183 static int cpu_post_load(void *opaque, int version_id) 184 { 185 PowerPCCPU *cpu = opaque; 186 CPUPPCState *env = &cpu->env; 187 int i; 188 189 /* 190 * If we're operating in compat mode, we should be ok as long as 191 * the destination supports the same compatibility mode. 192 * 193 * Otherwise, however, we require that the destination has exactly 194 * the same CPU model as the source. 195 */ 196 197 #if defined(TARGET_PPC64) 198 if (cpu->compat_pvr) { 199 uint32_t compat_pvr = cpu->compat_pvr; 200 Error *local_err = NULL; 201 int ret; 202 203 cpu->compat_pvr = 0; 204 ret = ppc_set_compat(cpu, compat_pvr, &local_err); 205 if (ret < 0) { 206 error_report_err(local_err); 207 return ret; 208 } 209 } else 210 #endif 211 { 212 if (!pvr_match(cpu, env->spr[SPR_PVR])) { 213 return -EINVAL; 214 } 215 } 216 217 /* 218 * If we're running with KVM HV, there is a chance that the guest 219 * is running with KVM HV and its kernel does not have the 220 * capability of dealing with a different PVR other than this 221 * exact host PVR in KVM_SET_SREGS. If that happens, the 222 * guest freezes after migration. 223 * 224 * The function kvmppc_pvr_workaround_required does this verification 225 * by first checking if the kernel has the cap, returning true immediately 226 * if that is the case. Otherwise, it checks if we're running in KVM PR. 227 * If the guest kernel does not have the cap and we're not running KVM-PR 228 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will 229 * receive the PVR it expects as a workaround. 230 * 231 */ 232 if (kvmppc_pvr_workaround_required(cpu)) { 233 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; 234 } 235 236 env->lr = env->spr[SPR_LR]; 237 env->ctr = env->spr[SPR_CTR]; 238 cpu_write_xer(env, env->spr[SPR_XER]); 239 #if defined(TARGET_PPC64) 240 env->cfar = env->spr[SPR_CFAR]; 241 #endif 242 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; 243 244 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 245 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; 246 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; 247 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; 248 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; 249 } 250 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 251 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; 252 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; 253 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; 254 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; 255 } 256 257 if (!cpu->vhyp) { 258 ppc_store_sdr1(env, env->spr[SPR_SDR1]); 259 } 260 261 post_load_update_msr(env); 262 263 if (tcg_enabled()) { 264 /* Re-set breaks based on regs */ 265 #if defined(TARGET_PPC64) 266 ppc_update_ciabr(env); 267 ppc_update_daw(env, 0); 268 ppc_update_daw(env, 1); 269 #endif 270 /* 271 * TCG needs to re-start the decrementer timer and/or raise the 272 * interrupt. This works for level-triggered decrementer. Edge 273 * triggered types (including HDEC) would need to carry more state. 274 */ 275 cpu_ppc_store_decr(env, env->spr[SPR_DECR]); 276 pmu_mmcr01a_updated(env); 277 } 278 279 return 0; 280 } 281 282 static bool fpu_needed(void *opaque) 283 { 284 PowerPCCPU *cpu = opaque; 285 286 return cpu->env.insns_flags & PPC_FLOAT; 287 } 288 289 static const VMStateDescription vmstate_fpu = { 290 .name = "cpu/fpu", 291 .version_id = 1, 292 .minimum_version_id = 1, 293 .needed = fpu_needed, 294 .fields = (const VMStateField[]) { 295 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), 296 VMSTATE_UINTTL(env.fpscr, PowerPCCPU), 297 VMSTATE_END_OF_LIST() 298 }, 299 }; 300 301 static bool altivec_needed(void *opaque) 302 { 303 PowerPCCPU *cpu = opaque; 304 305 return cpu->env.insns_flags & PPC_ALTIVEC; 306 } 307 308 static int get_vscr(QEMUFile *f, void *opaque, size_t size, 309 const VMStateField *field) 310 { 311 PowerPCCPU *cpu = opaque; 312 ppc_store_vscr(&cpu->env, qemu_get_be32(f)); 313 return 0; 314 } 315 316 static int put_vscr(QEMUFile *f, void *opaque, size_t size, 317 const VMStateField *field, JSONWriter *vmdesc) 318 { 319 PowerPCCPU *cpu = opaque; 320 qemu_put_be32(f, ppc_get_vscr(&cpu->env)); 321 return 0; 322 } 323 324 static const VMStateInfo vmstate_vscr = { 325 .name = "cpu/altivec/vscr", 326 .get = get_vscr, 327 .put = put_vscr, 328 }; 329 330 static const VMStateDescription vmstate_altivec = { 331 .name = "cpu/altivec", 332 .version_id = 1, 333 .minimum_version_id = 1, 334 .needed = altivec_needed, 335 .fields = (const VMStateField[]) { 336 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), 337 /* 338 * Save the architecture value of the vscr, not the internally 339 * expanded version. Since this architecture value does not 340 * exist in memory to be stored, this requires a but of hoop 341 * jumping. We want OFFSET=0 so that we effectively pass CPU 342 * to the helper functions. 343 */ 344 { 345 .name = "vscr", 346 .version_id = 0, 347 .size = sizeof(uint32_t), 348 .info = &vmstate_vscr, 349 .flags = VMS_SINGLE, 350 .offset = 0 351 }, 352 VMSTATE_END_OF_LIST() 353 }, 354 }; 355 356 static bool vsx_needed(void *opaque) 357 { 358 PowerPCCPU *cpu = opaque; 359 360 return cpu->env.insns_flags2 & PPC2_VSX; 361 } 362 363 static const VMStateDescription vmstate_vsx = { 364 .name = "cpu/vsx", 365 .version_id = 1, 366 .minimum_version_id = 1, 367 .needed = vsx_needed, 368 .fields = (const VMStateField[]) { 369 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), 370 VMSTATE_END_OF_LIST() 371 }, 372 }; 373 374 #ifdef TARGET_PPC64 375 /* Transactional memory state */ 376 static bool tm_needed(void *opaque) 377 { 378 PowerPCCPU *cpu = opaque; 379 CPUPPCState *env = &cpu->env; 380 return FIELD_EX64(env->msr, MSR, TS); 381 } 382 383 static const VMStateDescription vmstate_tm = { 384 .name = "cpu/tm", 385 .version_id = 1, 386 .minimum_version_id = 1, 387 .needed = tm_needed, 388 .fields = (const VMStateField []) { 389 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), 390 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), 391 VMSTATE_UINT64(env.tm_cr, PowerPCCPU), 392 VMSTATE_UINT64(env.tm_lr, PowerPCCPU), 393 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), 394 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), 395 VMSTATE_UINT64(env.tm_amr, PowerPCCPU), 396 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), 397 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), 398 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), 399 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), 400 VMSTATE_UINT64(env.tm_tar, PowerPCCPU), 401 VMSTATE_END_OF_LIST() 402 }, 403 }; 404 #endif 405 406 static bool sr_needed(void *opaque) 407 { 408 #ifdef TARGET_PPC64 409 PowerPCCPU *cpu = opaque; 410 411 return !mmu_is_64bit(cpu->env.mmu_model); 412 #else 413 return true; 414 #endif 415 } 416 417 static const VMStateDescription vmstate_sr = { 418 .name = "cpu/sr", 419 .version_id = 1, 420 .minimum_version_id = 1, 421 .needed = sr_needed, 422 .fields = (const VMStateField[]) { 423 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), 424 VMSTATE_END_OF_LIST() 425 }, 426 }; 427 428 #ifdef TARGET_PPC64 429 static int get_slbe(QEMUFile *f, void *pv, size_t size, 430 const VMStateField *field) 431 { 432 ppc_slb_t *v = pv; 433 434 v->esid = qemu_get_be64(f); 435 v->vsid = qemu_get_be64(f); 436 437 return 0; 438 } 439 440 static int put_slbe(QEMUFile *f, void *pv, size_t size, 441 const VMStateField *field, JSONWriter *vmdesc) 442 { 443 ppc_slb_t *v = pv; 444 445 qemu_put_be64(f, v->esid); 446 qemu_put_be64(f, v->vsid); 447 return 0; 448 } 449 450 static const VMStateInfo vmstate_info_slbe = { 451 .name = "slbe", 452 .get = get_slbe, 453 .put = put_slbe, 454 }; 455 456 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ 457 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) 458 459 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ 460 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) 461 462 static bool slb_needed(void *opaque) 463 { 464 PowerPCCPU *cpu = opaque; 465 466 /* We don't support any of the old segment table based 64-bit CPUs */ 467 return mmu_is_64bit(cpu->env.mmu_model); 468 } 469 470 static int slb_post_load(void *opaque, int version_id) 471 { 472 PowerPCCPU *cpu = opaque; 473 CPUPPCState *env = &cpu->env; 474 int i; 475 476 /* 477 * We've pulled in the raw esid and vsid values from the migration 478 * stream, but we need to recompute the page size pointers 479 */ 480 for (i = 0; i < cpu->hash64_opts->slb_size; i++) { 481 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { 482 /* Migration source had bad values in its SLB */ 483 return -1; 484 } 485 } 486 487 return 0; 488 } 489 490 static const VMStateDescription vmstate_slb = { 491 .name = "cpu/slb", 492 .version_id = 2, 493 .minimum_version_id = 1, 494 .needed = slb_needed, 495 .post_load = slb_post_load, 496 .fields = (const VMStateField[]) { 497 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), 498 VMSTATE_END_OF_LIST() 499 } 500 }; 501 #endif /* TARGET_PPC64 */ 502 503 static const VMStateDescription vmstate_tlb6xx_entry = { 504 .name = "cpu/tlb6xx_entry", 505 .version_id = 1, 506 .minimum_version_id = 1, 507 .fields = (const VMStateField[]) { 508 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), 509 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), 510 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), 511 VMSTATE_END_OF_LIST() 512 }, 513 }; 514 515 static bool tlb6xx_needed(void *opaque) 516 { 517 PowerPCCPU *cpu = opaque; 518 CPUPPCState *env = &cpu->env; 519 520 return env->nb_tlb && (env->tlb_type == TLB_6XX); 521 } 522 523 static const VMStateDescription vmstate_tlb6xx = { 524 .name = "cpu/tlb6xx", 525 .version_id = 1, 526 .minimum_version_id = 1, 527 .needed = tlb6xx_needed, 528 .fields = (const VMStateField[]) { 529 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 530 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, 531 env.nb_tlb, 532 vmstate_tlb6xx_entry, 533 ppc6xx_tlb_t), 534 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), 535 VMSTATE_END_OF_LIST() 536 } 537 }; 538 539 static const VMStateDescription vmstate_tlbemb_entry = { 540 .name = "cpu/tlbemb_entry", 541 .version_id = 1, 542 .minimum_version_id = 1, 543 .fields = (const VMStateField[]) { 544 VMSTATE_UINT64(RPN, ppcemb_tlb_t), 545 VMSTATE_UINTTL(EPN, ppcemb_tlb_t), 546 VMSTATE_UINTTL(PID, ppcemb_tlb_t), 547 VMSTATE_UINTTL(size, ppcemb_tlb_t), 548 VMSTATE_UINT32(prot, ppcemb_tlb_t), 549 VMSTATE_UINT32(attr, ppcemb_tlb_t), 550 VMSTATE_END_OF_LIST() 551 }, 552 }; 553 554 static bool tlbemb_needed(void *opaque) 555 { 556 PowerPCCPU *cpu = opaque; 557 CPUPPCState *env = &cpu->env; 558 559 return env->nb_tlb && (env->tlb_type == TLB_EMB); 560 } 561 562 static const VMStateDescription vmstate_tlbemb = { 563 .name = "cpu/tlbemb", 564 .version_id = 1, 565 .minimum_version_id = 1, 566 .needed = tlbemb_needed, 567 .fields = (const VMStateField[]) { 568 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 569 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, 570 env.nb_tlb, 571 vmstate_tlbemb_entry, 572 ppcemb_tlb_t), 573 VMSTATE_END_OF_LIST() 574 }, 575 }; 576 577 static const VMStateDescription vmstate_tlbmas_entry = { 578 .name = "cpu/tlbmas_entry", 579 .version_id = 1, 580 .minimum_version_id = 1, 581 .fields = (const VMStateField[]) { 582 VMSTATE_UINT32(mas8, ppcmas_tlb_t), 583 VMSTATE_UINT32(mas1, ppcmas_tlb_t), 584 VMSTATE_UINT64(mas2, ppcmas_tlb_t), 585 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), 586 VMSTATE_END_OF_LIST() 587 }, 588 }; 589 590 static bool tlbmas_needed(void *opaque) 591 { 592 PowerPCCPU *cpu = opaque; 593 CPUPPCState *env = &cpu->env; 594 595 return env->nb_tlb && (env->tlb_type == TLB_MAS); 596 } 597 598 static const VMStateDescription vmstate_tlbmas = { 599 .name = "cpu/tlbmas", 600 .version_id = 1, 601 .minimum_version_id = 1, 602 .needed = tlbmas_needed, 603 .fields = (const VMStateField[]) { 604 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 605 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, 606 env.nb_tlb, 607 vmstate_tlbmas_entry, 608 ppcmas_tlb_t), 609 VMSTATE_END_OF_LIST() 610 } 611 }; 612 613 static bool compat_needed(void *opaque) 614 { 615 PowerPCCPU *cpu = opaque; 616 617 assert(!(cpu->compat_pvr && !cpu->vhyp)); 618 return cpu->compat_pvr != 0; 619 } 620 621 static const VMStateDescription vmstate_compat = { 622 .name = "cpu/compat", 623 .version_id = 1, 624 .minimum_version_id = 1, 625 .needed = compat_needed, 626 .fields = (const VMStateField[]) { 627 VMSTATE_UINT32(compat_pvr, PowerPCCPU), 628 VMSTATE_END_OF_LIST() 629 } 630 }; 631 632 static bool reservation_needed(void *opaque) 633 { 634 return (replay_mode != REPLAY_MODE_NONE); 635 } 636 637 static const VMStateDescription vmstate_reservation = { 638 .name = "cpu/reservation", 639 .version_id = 1, 640 .minimum_version_id = 1, 641 .needed = reservation_needed, 642 .fields = (const VMStateField[]) { 643 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), 644 VMSTATE_UINTTL(env.reserve_length, PowerPCCPU), 645 VMSTATE_UINTTL(env.reserve_val, PowerPCCPU), 646 #if defined(TARGET_PPC64) 647 VMSTATE_UINTTL(env.reserve_val2, PowerPCCPU), 648 #endif 649 VMSTATE_END_OF_LIST() 650 } 651 }; 652 653 #ifdef TARGET_PPC64 654 static bool bhrb_needed(void *opaque) 655 { 656 PowerPCCPU *cpu = opaque; 657 return (cpu->env.flags & POWERPC_FLAG_BHRB) != 0; 658 } 659 660 static const VMStateDescription vmstate_bhrb = { 661 .name = "cpu/bhrb", 662 .version_id = 1, 663 .minimum_version_id = 1, 664 .needed = bhrb_needed, 665 .fields = (VMStateField[]) { 666 VMSTATE_UINTTL(env.bhrb_offset, PowerPCCPU), 667 VMSTATE_UINT64_ARRAY(env.bhrb, PowerPCCPU, BHRB_MAX_NUM_ENTRIES), 668 VMSTATE_END_OF_LIST() 669 } 670 }; 671 #endif 672 673 const VMStateDescription vmstate_ppc_cpu = { 674 .name = "cpu", 675 .version_id = 5, 676 .minimum_version_id = 5, 677 .pre_save = cpu_pre_save, 678 .post_load = cpu_post_load, 679 .fields = (const VMStateField[]) { 680 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ 681 682 /* User mode architected state */ 683 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), 684 #if !defined(TARGET_PPC64) 685 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), 686 #endif 687 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), 688 VMSTATE_UINTTL(env.nip, PowerPCCPU), 689 690 /* SPRs */ 691 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), 692 VMSTATE_UINT64(env.spe_acc, PowerPCCPU), 693 694 VMSTATE_UNUSED(sizeof(target_ulong)), /* was env.reserve_addr */ 695 696 /* Supervisor mode architected state */ 697 VMSTATE_UINTTL(env.msr, PowerPCCPU), 698 699 /* Backward compatible internal state */ 700 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU), 701 702 VMSTATE_END_OF_LIST() 703 }, 704 .subsections = (const VMStateDescription * const []) { 705 &vmstate_fpu, 706 &vmstate_altivec, 707 &vmstate_vsx, 708 &vmstate_sr, 709 #ifdef TARGET_PPC64 710 &vmstate_tm, 711 &vmstate_slb, 712 &vmstate_bhrb, 713 #endif /* TARGET_PPC64 */ 714 &vmstate_tlb6xx, 715 &vmstate_tlbemb, 716 &vmstate_tlbmas, 717 &vmstate_compat, 718 &vmstate_reservation, 719 NULL 720 } 721 }; 722