1 #include "qemu/osdep.h" 2 #include "cpu.h" 3 #include "system/kvm.h" 4 #include "system/tcg.h" 5 #include "helper_regs.h" 6 #include "mmu-hash64.h" 7 #include "migration/cpu.h" 8 #include "qapi/error.h" 9 #include "kvm_ppc.h" 10 #include "power8-pmu.h" 11 #include "system/replay.h" 12 13 static void post_load_update_msr(CPUPPCState *env) 14 { 15 target_ulong msr = env->msr; 16 17 /* 18 * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB 19 * before restoring. Note that this recomputes hflags. 20 */ 21 env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB); 22 ppc_store_msr(env, msr); 23 } 24 25 static int get_avr(QEMUFile *f, void *pv, size_t size, 26 const VMStateField *field) 27 { 28 ppc_avr_t *v = pv; 29 30 v->u64[0] = qemu_get_be64(f); 31 v->u64[1] = qemu_get_be64(f); 32 33 return 0; 34 } 35 36 static int put_avr(QEMUFile *f, void *pv, size_t size, 37 const VMStateField *field, JSONWriter *vmdesc) 38 { 39 ppc_avr_t *v = pv; 40 41 qemu_put_be64(f, v->u64[0]); 42 qemu_put_be64(f, v->u64[1]); 43 return 0; 44 } 45 46 static const VMStateInfo vmstate_info_avr = { 47 .name = "avr", 48 .get = get_avr, 49 .put = put_avr, 50 }; 51 52 #define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \ 53 VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t) 54 55 #define VMSTATE_AVR_ARRAY(_f, _s, _n) \ 56 VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0) 57 58 static int get_fpr(QEMUFile *f, void *pv, size_t size, 59 const VMStateField *field) 60 { 61 ppc_vsr_t *v = pv; 62 63 v->VsrD(0) = qemu_get_be64(f); 64 65 return 0; 66 } 67 68 static int put_fpr(QEMUFile *f, void *pv, size_t size, 69 const VMStateField *field, JSONWriter *vmdesc) 70 { 71 ppc_vsr_t *v = pv; 72 73 qemu_put_be64(f, v->VsrD(0)); 74 return 0; 75 } 76 77 static const VMStateInfo vmstate_info_fpr = { 78 .name = "fpr", 79 .get = get_fpr, 80 .put = put_fpr, 81 }; 82 83 #define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \ 84 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t) 85 86 #define VMSTATE_FPR_ARRAY(_f, _s, _n) \ 87 VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0) 88 89 static int get_vsr(QEMUFile *f, void *pv, size_t size, 90 const VMStateField *field) 91 { 92 ppc_vsr_t *v = pv; 93 94 v->VsrD(1) = qemu_get_be64(f); 95 96 return 0; 97 } 98 99 static int put_vsr(QEMUFile *f, void *pv, size_t size, 100 const VMStateField *field, JSONWriter *vmdesc) 101 { 102 ppc_vsr_t *v = pv; 103 104 qemu_put_be64(f, v->VsrD(1)); 105 return 0; 106 } 107 108 static const VMStateInfo vmstate_info_vsr = { 109 .name = "vsr", 110 .get = get_vsr, 111 .put = put_vsr, 112 }; 113 114 #define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \ 115 VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t) 116 117 #define VMSTATE_VSR_ARRAY(_f, _s, _n) \ 118 VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0) 119 120 static int cpu_pre_save(void *opaque) 121 { 122 PowerPCCPU *cpu = opaque; 123 CPUPPCState *env = &cpu->env; 124 int i; 125 126 env->spr[SPR_LR] = env->lr; 127 env->spr[SPR_CTR] = env->ctr; 128 env->spr[SPR_XER] = cpu_read_xer(env); 129 #if defined(TARGET_PPC64) 130 env->spr[SPR_CFAR] = env->cfar; 131 #endif 132 env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr; 133 134 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 135 env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i]; 136 env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i]; 137 env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i]; 138 env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i]; 139 } 140 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 141 env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4]; 142 env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4]; 143 env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4]; 144 env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4]; 145 } 146 147 /* Used to retain migration compatibility for pre 6.0 for 601 machines. */ 148 env->hflags_compat_nmsr = 0; 149 150 if (tcg_enabled()) { 151 /* 152 * TCG does not maintain the DECR spr (unlike KVM) so have to save 153 * it here. 154 */ 155 env->spr[SPR_DECR] = cpu_ppc_load_decr(env); 156 } 157 158 return 0; 159 } 160 161 /* 162 * Determine if a given PVR is a "close enough" match to the CPU 163 * object. For TCG and KVM PR it would probably be sufficient to 164 * require an exact PVR match. However for KVM HV the user is 165 * restricted to a PVR exactly matching the host CPU. The correct way 166 * to handle this is to put the guest into an architected 167 * compatibility mode. However, to allow a more forgiving transition 168 * and migration from before this was widely done, we allow migration 169 * between sufficiently similar PVRs, as determined by the CPU class's 170 * pvr_match() hook. 171 */ 172 static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr) 173 { 174 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 175 176 if (pvr == pcc->pvr) { 177 return true; 178 } 179 return pcc->pvr_match(pcc, pvr, true); 180 } 181 182 static int cpu_post_load(void *opaque, int version_id) 183 { 184 PowerPCCPU *cpu = opaque; 185 CPUPPCState *env = &cpu->env; 186 int i; 187 188 /* 189 * If we're operating in compat mode, we should be ok as long as 190 * the destination supports the same compatibility mode. 191 * 192 * Otherwise, however, we require that the destination has exactly 193 * the same CPU model as the source. 194 */ 195 196 #if defined(TARGET_PPC64) 197 if (cpu->compat_pvr) { 198 uint32_t compat_pvr = cpu->compat_pvr; 199 Error *local_err = NULL; 200 int ret; 201 202 cpu->compat_pvr = 0; 203 ret = ppc_set_compat(cpu, compat_pvr, &local_err); 204 if (ret < 0) { 205 error_report_err(local_err); 206 return ret; 207 } 208 } else 209 #endif 210 { 211 if (!pvr_match(cpu, env->spr[SPR_PVR])) { 212 return -EINVAL; 213 } 214 } 215 216 /* 217 * If we're running with KVM HV, there is a chance that the guest 218 * is running with KVM HV and its kernel does not have the 219 * capability of dealing with a different PVR other than this 220 * exact host PVR in KVM_SET_SREGS. If that happens, the 221 * guest freezes after migration. 222 * 223 * The function kvmppc_pvr_workaround_required does this verification 224 * by first checking if the kernel has the cap, returning true immediately 225 * if that is the case. Otherwise, it checks if we're running in KVM PR. 226 * If the guest kernel does not have the cap and we're not running KVM-PR 227 * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will 228 * receive the PVR it expects as a workaround. 229 * 230 */ 231 if (kvmppc_pvr_workaround_required(cpu)) { 232 env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value; 233 } 234 235 env->lr = env->spr[SPR_LR]; 236 env->ctr = env->spr[SPR_CTR]; 237 cpu_write_xer(env, env->spr[SPR_XER]); 238 #if defined(TARGET_PPC64) 239 env->cfar = env->spr[SPR_CFAR]; 240 #endif 241 env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR]; 242 243 for (i = 0; (i < 4) && (i < env->nb_BATs); i++) { 244 env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i]; 245 env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1]; 246 env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i]; 247 env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1]; 248 } 249 for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) { 250 env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i]; 251 env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1]; 252 env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i]; 253 env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1]; 254 } 255 256 if (!cpu->vhyp) { 257 ppc_store_sdr1(env, env->spr[SPR_SDR1]); 258 } 259 260 post_load_update_msr(env); 261 262 if (tcg_enabled()) { 263 /* Re-set breaks based on regs */ 264 #if defined(TARGET_PPC64) 265 ppc_update_ciabr(env); 266 ppc_update_daw(env, 0); 267 ppc_update_daw(env, 1); 268 #endif 269 /* 270 * TCG needs to re-start the decrementer timer and/or raise the 271 * interrupt. This works for level-triggered decrementer. Edge 272 * triggered types (including HDEC) would need to carry more state. 273 */ 274 cpu_ppc_store_decr(env, env->spr[SPR_DECR]); 275 pmu_mmcr01a_updated(env); 276 } 277 278 return 0; 279 } 280 281 static bool fpu_needed(void *opaque) 282 { 283 PowerPCCPU *cpu = opaque; 284 285 return cpu->env.insns_flags & PPC_FLOAT; 286 } 287 288 static const VMStateDescription vmstate_fpu = { 289 .name = "cpu/fpu", 290 .version_id = 1, 291 .minimum_version_id = 1, 292 .needed = fpu_needed, 293 .fields = (const VMStateField[]) { 294 VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32), 295 VMSTATE_UINTTL(env.fpscr, PowerPCCPU), 296 VMSTATE_END_OF_LIST() 297 }, 298 }; 299 300 static bool altivec_needed(void *opaque) 301 { 302 PowerPCCPU *cpu = opaque; 303 304 return cpu->env.insns_flags & PPC_ALTIVEC; 305 } 306 307 static int get_vscr(QEMUFile *f, void *opaque, size_t size, 308 const VMStateField *field) 309 { 310 PowerPCCPU *cpu = opaque; 311 ppc_store_vscr(&cpu->env, qemu_get_be32(f)); 312 return 0; 313 } 314 315 static int put_vscr(QEMUFile *f, void *opaque, size_t size, 316 const VMStateField *field, JSONWriter *vmdesc) 317 { 318 PowerPCCPU *cpu = opaque; 319 qemu_put_be32(f, ppc_get_vscr(&cpu->env)); 320 return 0; 321 } 322 323 static const VMStateInfo vmstate_vscr = { 324 .name = "cpu/altivec/vscr", 325 .get = get_vscr, 326 .put = put_vscr, 327 }; 328 329 static const VMStateDescription vmstate_altivec = { 330 .name = "cpu/altivec", 331 .version_id = 1, 332 .minimum_version_id = 1, 333 .needed = altivec_needed, 334 .fields = (const VMStateField[]) { 335 VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32), 336 /* 337 * Save the architecture value of the vscr, not the internally 338 * expanded version. Since this architecture value does not 339 * exist in memory to be stored, this requires a but of hoop 340 * jumping. We want OFFSET=0 so that we effectively pass CPU 341 * to the helper functions. 342 */ 343 { 344 .name = "vscr", 345 .version_id = 0, 346 .size = sizeof(uint32_t), 347 .info = &vmstate_vscr, 348 .flags = VMS_SINGLE, 349 .offset = 0 350 }, 351 VMSTATE_END_OF_LIST() 352 }, 353 }; 354 355 static bool vsx_needed(void *opaque) 356 { 357 PowerPCCPU *cpu = opaque; 358 359 return cpu->env.insns_flags2 & PPC2_VSX; 360 } 361 362 static const VMStateDescription vmstate_vsx = { 363 .name = "cpu/vsx", 364 .version_id = 1, 365 .minimum_version_id = 1, 366 .needed = vsx_needed, 367 .fields = (const VMStateField[]) { 368 VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32), 369 VMSTATE_END_OF_LIST() 370 }, 371 }; 372 373 #ifdef TARGET_PPC64 374 /* Transactional memory state */ 375 static bool tm_needed(void *opaque) 376 { 377 PowerPCCPU *cpu = opaque; 378 CPUPPCState *env = &cpu->env; 379 return FIELD_EX64(env->msr, MSR, TS); 380 } 381 382 static const VMStateDescription vmstate_tm = { 383 .name = "cpu/tm", 384 .version_id = 1, 385 .minimum_version_id = 1, 386 .needed = tm_needed, 387 .fields = (const VMStateField []) { 388 VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32), 389 VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64), 390 VMSTATE_UINT64(env.tm_cr, PowerPCCPU), 391 VMSTATE_UINT64(env.tm_lr, PowerPCCPU), 392 VMSTATE_UINT64(env.tm_ctr, PowerPCCPU), 393 VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU), 394 VMSTATE_UINT64(env.tm_amr, PowerPCCPU), 395 VMSTATE_UINT64(env.tm_ppr, PowerPCCPU), 396 VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU), 397 VMSTATE_UINT32(env.tm_vscr, PowerPCCPU), 398 VMSTATE_UINT64(env.tm_dscr, PowerPCCPU), 399 VMSTATE_UINT64(env.tm_tar, PowerPCCPU), 400 VMSTATE_END_OF_LIST() 401 }, 402 }; 403 #endif 404 405 static bool sr_needed(void *opaque) 406 { 407 #ifdef TARGET_PPC64 408 PowerPCCPU *cpu = opaque; 409 410 return !mmu_is_64bit(cpu->env.mmu_model); 411 #else 412 return true; 413 #endif 414 } 415 416 static const VMStateDescription vmstate_sr = { 417 .name = "cpu/sr", 418 .version_id = 1, 419 .minimum_version_id = 1, 420 .needed = sr_needed, 421 .fields = (const VMStateField[]) { 422 VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32), 423 VMSTATE_END_OF_LIST() 424 }, 425 }; 426 427 #ifdef TARGET_PPC64 428 static int get_slbe(QEMUFile *f, void *pv, size_t size, 429 const VMStateField *field) 430 { 431 ppc_slb_t *v = pv; 432 433 v->esid = qemu_get_be64(f); 434 v->vsid = qemu_get_be64(f); 435 436 return 0; 437 } 438 439 static int put_slbe(QEMUFile *f, void *pv, size_t size, 440 const VMStateField *field, JSONWriter *vmdesc) 441 { 442 ppc_slb_t *v = pv; 443 444 qemu_put_be64(f, v->esid); 445 qemu_put_be64(f, v->vsid); 446 return 0; 447 } 448 449 static const VMStateInfo vmstate_info_slbe = { 450 .name = "slbe", 451 .get = get_slbe, 452 .put = put_slbe, 453 }; 454 455 #define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \ 456 VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t) 457 458 #define VMSTATE_SLB_ARRAY(_f, _s, _n) \ 459 VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0) 460 461 static bool slb_needed(void *opaque) 462 { 463 PowerPCCPU *cpu = opaque; 464 465 /* We don't support any of the old segment table based 64-bit CPUs */ 466 return mmu_is_64bit(cpu->env.mmu_model); 467 } 468 469 static int slb_post_load(void *opaque, int version_id) 470 { 471 PowerPCCPU *cpu = opaque; 472 CPUPPCState *env = &cpu->env; 473 int i; 474 475 /* 476 * We've pulled in the raw esid and vsid values from the migration 477 * stream, but we need to recompute the page size pointers 478 */ 479 for (i = 0; i < cpu->hash64_opts->slb_size; i++) { 480 if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) { 481 /* Migration source had bad values in its SLB */ 482 return -1; 483 } 484 } 485 486 return 0; 487 } 488 489 static const VMStateDescription vmstate_slb = { 490 .name = "cpu/slb", 491 .version_id = 2, 492 .minimum_version_id = 1, 493 .needed = slb_needed, 494 .post_load = slb_post_load, 495 .fields = (const VMStateField[]) { 496 VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES), 497 VMSTATE_END_OF_LIST() 498 } 499 }; 500 #endif /* TARGET_PPC64 */ 501 502 static const VMStateDescription vmstate_tlb6xx_entry = { 503 .name = "cpu/tlb6xx_entry", 504 .version_id = 1, 505 .minimum_version_id = 1, 506 .fields = (const VMStateField[]) { 507 VMSTATE_UINTTL(pte0, ppc6xx_tlb_t), 508 VMSTATE_UINTTL(pte1, ppc6xx_tlb_t), 509 VMSTATE_UINTTL(EPN, ppc6xx_tlb_t), 510 VMSTATE_END_OF_LIST() 511 }, 512 }; 513 514 static bool tlb6xx_needed(void *opaque) 515 { 516 PowerPCCPU *cpu = opaque; 517 CPUPPCState *env = &cpu->env; 518 519 return env->nb_tlb && (env->tlb_type == TLB_6XX); 520 } 521 522 static const VMStateDescription vmstate_tlb6xx = { 523 .name = "cpu/tlb6xx", 524 .version_id = 1, 525 .minimum_version_id = 1, 526 .needed = tlb6xx_needed, 527 .fields = (const VMStateField[]) { 528 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 529 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU, 530 env.nb_tlb, 531 vmstate_tlb6xx_entry, 532 ppc6xx_tlb_t), 533 VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4), 534 VMSTATE_END_OF_LIST() 535 } 536 }; 537 538 static const VMStateDescription vmstate_tlbemb_entry = { 539 .name = "cpu/tlbemb_entry", 540 .version_id = 1, 541 .minimum_version_id = 1, 542 .fields = (const VMStateField[]) { 543 VMSTATE_UINT64(RPN, ppcemb_tlb_t), 544 VMSTATE_UINTTL(EPN, ppcemb_tlb_t), 545 VMSTATE_UINTTL(PID, ppcemb_tlb_t), 546 VMSTATE_UINTTL(size, ppcemb_tlb_t), 547 VMSTATE_UINT32(prot, ppcemb_tlb_t), 548 VMSTATE_UINT32(attr, ppcemb_tlb_t), 549 VMSTATE_END_OF_LIST() 550 }, 551 }; 552 553 static bool tlbemb_needed(void *opaque) 554 { 555 PowerPCCPU *cpu = opaque; 556 CPUPPCState *env = &cpu->env; 557 558 return env->nb_tlb && (env->tlb_type == TLB_EMB); 559 } 560 561 static const VMStateDescription vmstate_tlbemb = { 562 .name = "cpu/tlbemb", 563 .version_id = 1, 564 .minimum_version_id = 1, 565 .needed = tlbemb_needed, 566 .fields = (const VMStateField[]) { 567 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 568 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU, 569 env.nb_tlb, 570 vmstate_tlbemb_entry, 571 ppcemb_tlb_t), 572 VMSTATE_END_OF_LIST() 573 }, 574 }; 575 576 static const VMStateDescription vmstate_tlbmas_entry = { 577 .name = "cpu/tlbmas_entry", 578 .version_id = 1, 579 .minimum_version_id = 1, 580 .fields = (const VMStateField[]) { 581 VMSTATE_UINT32(mas8, ppcmas_tlb_t), 582 VMSTATE_UINT32(mas1, ppcmas_tlb_t), 583 VMSTATE_UINT64(mas2, ppcmas_tlb_t), 584 VMSTATE_UINT64(mas7_3, ppcmas_tlb_t), 585 VMSTATE_END_OF_LIST() 586 }, 587 }; 588 589 static bool tlbmas_needed(void *opaque) 590 { 591 PowerPCCPU *cpu = opaque; 592 CPUPPCState *env = &cpu->env; 593 594 return env->nb_tlb && (env->tlb_type == TLB_MAS); 595 } 596 597 static const VMStateDescription vmstate_tlbmas = { 598 .name = "cpu/tlbmas", 599 .version_id = 1, 600 .minimum_version_id = 1, 601 .needed = tlbmas_needed, 602 .fields = (const VMStateField[]) { 603 VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL), 604 VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU, 605 env.nb_tlb, 606 vmstate_tlbmas_entry, 607 ppcmas_tlb_t), 608 VMSTATE_END_OF_LIST() 609 } 610 }; 611 612 static bool compat_needed(void *opaque) 613 { 614 PowerPCCPU *cpu = opaque; 615 616 assert(!(cpu->compat_pvr && !cpu->vhyp)); 617 return cpu->compat_pvr != 0; 618 } 619 620 static const VMStateDescription vmstate_compat = { 621 .name = "cpu/compat", 622 .version_id = 1, 623 .minimum_version_id = 1, 624 .needed = compat_needed, 625 .fields = (const VMStateField[]) { 626 VMSTATE_UINT32(compat_pvr, PowerPCCPU), 627 VMSTATE_END_OF_LIST() 628 } 629 }; 630 631 static bool reservation_needed(void *opaque) 632 { 633 return (replay_mode != REPLAY_MODE_NONE); 634 } 635 636 static const VMStateDescription vmstate_reservation = { 637 .name = "cpu/reservation", 638 .version_id = 1, 639 .minimum_version_id = 1, 640 .needed = reservation_needed, 641 .fields = (const VMStateField[]) { 642 VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU), 643 VMSTATE_UINTTL(env.reserve_length, PowerPCCPU), 644 VMSTATE_UINTTL(env.reserve_val, PowerPCCPU), 645 #if defined(TARGET_PPC64) 646 VMSTATE_UINTTL(env.reserve_val2, PowerPCCPU), 647 #endif 648 VMSTATE_END_OF_LIST() 649 } 650 }; 651 652 #ifdef TARGET_PPC64 653 static bool bhrb_needed(void *opaque) 654 { 655 PowerPCCPU *cpu = opaque; 656 return (cpu->env.flags & POWERPC_FLAG_BHRB) != 0; 657 } 658 659 static const VMStateDescription vmstate_bhrb = { 660 .name = "cpu/bhrb", 661 .version_id = 1, 662 .minimum_version_id = 1, 663 .needed = bhrb_needed, 664 .fields = (VMStateField[]) { 665 VMSTATE_UINTTL(env.bhrb_offset, PowerPCCPU), 666 VMSTATE_UINT64_ARRAY(env.bhrb, PowerPCCPU, BHRB_MAX_NUM_ENTRIES), 667 VMSTATE_END_OF_LIST() 668 } 669 }; 670 #endif 671 672 const VMStateDescription vmstate_ppc_cpu = { 673 .name = "cpu", 674 .version_id = 5, 675 .minimum_version_id = 5, 676 .pre_save = cpu_pre_save, 677 .post_load = cpu_post_load, 678 .fields = (const VMStateField[]) { 679 VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */ 680 681 /* User mode architected state */ 682 VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32), 683 #if !defined(TARGET_PPC64) 684 VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32), 685 #endif 686 VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8), 687 VMSTATE_UINTTL(env.nip, PowerPCCPU), 688 689 /* SPRs */ 690 VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024), 691 VMSTATE_UINT64(env.spe_acc, PowerPCCPU), 692 693 VMSTATE_UNUSED(sizeof(target_ulong)), /* was env.reserve_addr */ 694 695 /* Supervisor mode architected state */ 696 VMSTATE_UINTTL(env.msr, PowerPCCPU), 697 698 /* Backward compatible internal state */ 699 VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU), 700 701 VMSTATE_END_OF_LIST() 702 }, 703 .subsections = (const VMStateDescription * const []) { 704 &vmstate_fpu, 705 &vmstate_altivec, 706 &vmstate_vsx, 707 &vmstate_sr, 708 #ifdef TARGET_PPC64 709 &vmstate_tm, 710 &vmstate_slb, 711 &vmstate_bhrb, 712 #endif /* TARGET_PPC64 */ 713 &vmstate_tlb6xx, 714 &vmstate_tlbemb, 715 &vmstate_tlbmas, 716 &vmstate_compat, 717 &vmstate_reservation, 718 NULL 719 } 720 }; 721