1 /* 2 * PowerPC Decimal Floating Point (DPF) emulation helpers for QEMU. 3 * 4 * Copyright (c) 2014 IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "cpu.h" 22 #include "exec/helper-proto.h" 23 24 #define DECNUMDIGITS 34 25 #include "libdecnumber/decContext.h" 26 #include "libdecnumber/decNumber.h" 27 #include "libdecnumber/dpd/decimal32.h" 28 #include "libdecnumber/dpd/decimal64.h" 29 #include "libdecnumber/dpd/decimal128.h" 30 31 #if defined(HOST_WORDS_BIGENDIAN) 32 #define HI_IDX 0 33 #define LO_IDX 1 34 #else 35 #define HI_IDX 1 36 #define LO_IDX 0 37 #endif 38 39 static void get_dfp64(uint64_t *dst, ppc_fprp_t *dfp) 40 { 41 dst[0] = dfp->VsrD(0); 42 } 43 44 static void get_dfp128(uint64_t *dst, ppc_fprp_t *dfp) 45 { 46 dst[HI_IDX] = dfp[0].VsrD(0); 47 dst[LO_IDX] = dfp[1].VsrD(0); 48 } 49 50 static void set_dfp64(ppc_fprp_t *dfp, uint64_t *src) 51 { 52 dfp->VsrD(0) = src[0]; 53 } 54 55 static void set_dfp128(ppc_fprp_t *dfp, uint64_t *src) 56 { 57 dfp[0].VsrD(0) = src[HI_IDX]; 58 dfp[1].VsrD(0) = src[LO_IDX]; 59 } 60 61 struct PPC_DFP { 62 CPUPPCState *env; 63 uint64_t t64[2], a64[2], b64[2]; 64 decNumber t, a, b; 65 decContext context; 66 uint8_t crbf; 67 }; 68 69 static void dfp_prepare_rounding_mode(decContext *context, uint64_t fpscr) 70 { 71 enum rounding rnd; 72 73 switch ((fpscr & FP_DRN) >> FPSCR_DRN0) { 74 case 0: 75 rnd = DEC_ROUND_HALF_EVEN; 76 break; 77 case 1: 78 rnd = DEC_ROUND_DOWN; 79 break; 80 case 2: 81 rnd = DEC_ROUND_CEILING; 82 break; 83 case 3: 84 rnd = DEC_ROUND_FLOOR; 85 break; 86 case 4: 87 rnd = DEC_ROUND_HALF_UP; 88 break; 89 case 5: 90 rnd = DEC_ROUND_HALF_DOWN; 91 break; 92 case 6: 93 rnd = DEC_ROUND_UP; 94 break; 95 case 7: 96 rnd = DEC_ROUND_05UP; 97 break; 98 default: 99 g_assert_not_reached(); 100 } 101 102 decContextSetRounding(context, rnd); 103 } 104 105 static void dfp_set_round_mode_from_immediate(uint8_t r, uint8_t rmc, 106 struct PPC_DFP *dfp) 107 { 108 enum rounding rnd; 109 if (r == 0) { 110 switch (rmc & 3) { 111 case 0: 112 rnd = DEC_ROUND_HALF_EVEN; 113 break; 114 case 1: 115 rnd = DEC_ROUND_DOWN; 116 break; 117 case 2: 118 rnd = DEC_ROUND_HALF_UP; 119 break; 120 case 3: /* use FPSCR rounding mode */ 121 return; 122 default: 123 assert(0); /* cannot get here */ 124 } 125 } else { /* r == 1 */ 126 switch (rmc & 3) { 127 case 0: 128 rnd = DEC_ROUND_CEILING; 129 break; 130 case 1: 131 rnd = DEC_ROUND_FLOOR; 132 break; 133 case 2: 134 rnd = DEC_ROUND_UP; 135 break; 136 case 3: 137 rnd = DEC_ROUND_HALF_DOWN; 138 break; 139 default: 140 assert(0); /* cannot get here */ 141 } 142 } 143 decContextSetRounding(&dfp->context, rnd); 144 } 145 146 static void dfp_prepare_decimal64(struct PPC_DFP *dfp, ppc_fprp_t *a, 147 ppc_fprp_t *b, CPUPPCState *env) 148 { 149 decContextDefault(&dfp->context, DEC_INIT_DECIMAL64); 150 dfp_prepare_rounding_mode(&dfp->context, env->fpscr); 151 dfp->env = env; 152 153 if (a) { 154 get_dfp64(dfp->a64, a); 155 decimal64ToNumber((decimal64 *)dfp->a64, &dfp->a); 156 } else { 157 dfp->a64[0] = 0; 158 decNumberZero(&dfp->a); 159 } 160 161 if (b) { 162 get_dfp64(dfp->b64, b); 163 decimal64ToNumber((decimal64 *)dfp->b64, &dfp->b); 164 } else { 165 dfp->b64[0] = 0; 166 decNumberZero(&dfp->b); 167 } 168 } 169 170 static void dfp_prepare_decimal128(struct PPC_DFP *dfp, ppc_fprp_t *a, 171 ppc_fprp_t *b, CPUPPCState *env) 172 { 173 decContextDefault(&dfp->context, DEC_INIT_DECIMAL128); 174 dfp_prepare_rounding_mode(&dfp->context, env->fpscr); 175 dfp->env = env; 176 177 if (a) { 178 get_dfp128(dfp->a64, a); 179 decimal128ToNumber((decimal128 *)dfp->a64, &dfp->a); 180 } else { 181 dfp->a64[0] = dfp->a64[1] = 0; 182 decNumberZero(&dfp->a); 183 } 184 185 if (b) { 186 get_dfp128(dfp->b64, b); 187 decimal128ToNumber((decimal128 *)dfp->b64, &dfp->b); 188 } else { 189 dfp->b64[0] = dfp->b64[1] = 0; 190 decNumberZero(&dfp->b); 191 } 192 } 193 194 static void dfp_finalize_decimal64(struct PPC_DFP *dfp) 195 { 196 decimal64FromNumber((decimal64 *)&dfp->t64, &dfp->t, &dfp->context); 197 } 198 199 static void dfp_finalize_decimal128(struct PPC_DFP *dfp) 200 { 201 decimal128FromNumber((decimal128 *)&dfp->t64, &dfp->t, &dfp->context); 202 } 203 204 static void dfp_set_FPSCR_flag(struct PPC_DFP *dfp, uint64_t flag, 205 uint64_t enabled) 206 { 207 dfp->env->fpscr |= (flag | FP_FX); 208 if (dfp->env->fpscr & enabled) { 209 dfp->env->fpscr |= FP_FEX; 210 } 211 } 212 213 static void dfp_set_FPRF_from_FRT_with_context(struct PPC_DFP *dfp, 214 decContext *context) 215 { 216 uint64_t fprf = 0; 217 218 /* construct FPRF */ 219 switch (decNumberClass(&dfp->t, context)) { 220 case DEC_CLASS_SNAN: 221 fprf = 0x01; 222 break; 223 case DEC_CLASS_QNAN: 224 fprf = 0x11; 225 break; 226 case DEC_CLASS_NEG_INF: 227 fprf = 0x09; 228 break; 229 case DEC_CLASS_NEG_NORMAL: 230 fprf = 0x08; 231 break; 232 case DEC_CLASS_NEG_SUBNORMAL: 233 fprf = 0x18; 234 break; 235 case DEC_CLASS_NEG_ZERO: 236 fprf = 0x12; 237 break; 238 case DEC_CLASS_POS_ZERO: 239 fprf = 0x02; 240 break; 241 case DEC_CLASS_POS_SUBNORMAL: 242 fprf = 0x14; 243 break; 244 case DEC_CLASS_POS_NORMAL: 245 fprf = 0x04; 246 break; 247 case DEC_CLASS_POS_INF: 248 fprf = 0x05; 249 break; 250 default: 251 assert(0); /* should never get here */ 252 } 253 dfp->env->fpscr &= ~FP_FPRF; 254 dfp->env->fpscr |= (fprf << FPSCR_FPRF); 255 } 256 257 static void dfp_set_FPRF_from_FRT(struct PPC_DFP *dfp) 258 { 259 dfp_set_FPRF_from_FRT_with_context(dfp, &dfp->context); 260 } 261 262 static void dfp_set_FPRF_from_FRT_short(struct PPC_DFP *dfp) 263 { 264 decContext shortContext; 265 decContextDefault(&shortContext, DEC_INIT_DECIMAL32); 266 dfp_set_FPRF_from_FRT_with_context(dfp, &shortContext); 267 } 268 269 static void dfp_set_FPRF_from_FRT_long(struct PPC_DFP *dfp) 270 { 271 decContext longContext; 272 decContextDefault(&longContext, DEC_INIT_DECIMAL64); 273 dfp_set_FPRF_from_FRT_with_context(dfp, &longContext); 274 } 275 276 static void dfp_check_for_OX(struct PPC_DFP *dfp) 277 { 278 if (dfp->context.status & DEC_Overflow) { 279 dfp_set_FPSCR_flag(dfp, FP_OX, FP_OE); 280 } 281 } 282 283 static void dfp_check_for_UX(struct PPC_DFP *dfp) 284 { 285 if (dfp->context.status & DEC_Underflow) { 286 dfp_set_FPSCR_flag(dfp, FP_UX, FP_UE); 287 } 288 } 289 290 static void dfp_check_for_XX(struct PPC_DFP *dfp) 291 { 292 if (dfp->context.status & DEC_Inexact) { 293 dfp_set_FPSCR_flag(dfp, FP_XX | FP_FI, FP_XE); 294 } 295 } 296 297 static void dfp_check_for_ZX(struct PPC_DFP *dfp) 298 { 299 if (dfp->context.status & DEC_Division_by_zero) { 300 dfp_set_FPSCR_flag(dfp, FP_ZX, FP_ZE); 301 } 302 } 303 304 static void dfp_check_for_VXSNAN(struct PPC_DFP *dfp) 305 { 306 if (dfp->context.status & DEC_Invalid_operation) { 307 if (decNumberIsSNaN(&dfp->a) || decNumberIsSNaN(&dfp->b)) { 308 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXSNAN, FP_VE); 309 } 310 } 311 } 312 313 static void dfp_check_for_VXSNAN_and_convert_to_QNaN(struct PPC_DFP *dfp) 314 { 315 if (decNumberIsSNaN(&dfp->t)) { 316 dfp->t.bits &= ~DECSNAN; 317 dfp->t.bits |= DECNAN; 318 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXSNAN, FP_VE); 319 } 320 } 321 322 static void dfp_check_for_VXISI(struct PPC_DFP *dfp, int testForSameSign) 323 { 324 if (dfp->context.status & DEC_Invalid_operation) { 325 if (decNumberIsInfinite(&dfp->a) && decNumberIsInfinite(&dfp->b)) { 326 int same = decNumberClass(&dfp->a, &dfp->context) == 327 decNumberClass(&dfp->b, &dfp->context); 328 if ((same && testForSameSign) || (!same && !testForSameSign)) { 329 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXISI, FP_VE); 330 } 331 } 332 } 333 } 334 335 static void dfp_check_for_VXISI_add(struct PPC_DFP *dfp) 336 { 337 dfp_check_for_VXISI(dfp, 0); 338 } 339 340 static void dfp_check_for_VXISI_subtract(struct PPC_DFP *dfp) 341 { 342 dfp_check_for_VXISI(dfp, 1); 343 } 344 345 static void dfp_check_for_VXIMZ(struct PPC_DFP *dfp) 346 { 347 if (dfp->context.status & DEC_Invalid_operation) { 348 if ((decNumberIsInfinite(&dfp->a) && decNumberIsZero(&dfp->b)) || 349 (decNumberIsInfinite(&dfp->b) && decNumberIsZero(&dfp->a))) { 350 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXIMZ, FP_VE); 351 } 352 } 353 } 354 355 static void dfp_check_for_VXZDZ(struct PPC_DFP *dfp) 356 { 357 if (dfp->context.status & DEC_Division_undefined) { 358 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXZDZ, FP_VE); 359 } 360 } 361 362 static void dfp_check_for_VXIDI(struct PPC_DFP *dfp) 363 { 364 if (dfp->context.status & DEC_Invalid_operation) { 365 if (decNumberIsInfinite(&dfp->a) && decNumberIsInfinite(&dfp->b)) { 366 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXIDI, FP_VE); 367 } 368 } 369 } 370 371 static void dfp_check_for_VXVC(struct PPC_DFP *dfp) 372 { 373 if (decNumberIsNaN(&dfp->a) || decNumberIsNaN(&dfp->b)) { 374 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXVC, FP_VE); 375 } 376 } 377 378 static void dfp_check_for_VXCVI(struct PPC_DFP *dfp) 379 { 380 if ((dfp->context.status & DEC_Invalid_operation) && 381 (!decNumberIsSNaN(&dfp->a)) && 382 (!decNumberIsSNaN(&dfp->b))) { 383 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXCVI, FP_VE); 384 } 385 } 386 387 static void dfp_set_CRBF_from_T(struct PPC_DFP *dfp) 388 { 389 if (decNumberIsNaN(&dfp->t)) { 390 dfp->crbf = 1; 391 } else if (decNumberIsZero(&dfp->t)) { 392 dfp->crbf = 2; 393 } else if (decNumberIsNegative(&dfp->t)) { 394 dfp->crbf = 8; 395 } else { 396 dfp->crbf = 4; 397 } 398 } 399 400 static void dfp_set_FPCC_from_CRBF(struct PPC_DFP *dfp) 401 { 402 dfp->env->fpscr &= ~FP_FPCC; 403 dfp->env->fpscr |= (dfp->crbf << FPSCR_FPCC); 404 } 405 406 static inline void dfp_makeQNaN(decNumber *dn) 407 { 408 dn->bits &= ~DECSPECIAL; 409 dn->bits |= DECNAN; 410 } 411 412 static inline int dfp_get_digit(decNumber *dn, int n) 413 { 414 assert(DECDPUN == 3); 415 int unit = n / DECDPUN; 416 int dig = n % DECDPUN; 417 switch (dig) { 418 case 0: 419 return dn->lsu[unit] % 10; 420 case 1: 421 return (dn->lsu[unit] / 10) % 10; 422 case 2: 423 return dn->lsu[unit] / 100; 424 } 425 g_assert_not_reached(); 426 } 427 428 #define DFP_HELPER_TAB(op, dnop, postprocs, size) \ 429 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *a, \ 430 ppc_fprp_t *b) \ 431 { \ 432 struct PPC_DFP dfp; \ 433 dfp_prepare_decimal##size(&dfp, a, b, env); \ 434 dnop(&dfp.t, &dfp.a, &dfp.b, &dfp.context); \ 435 dfp_finalize_decimal##size(&dfp); \ 436 postprocs(&dfp); \ 437 if (size == 64) { \ 438 set_dfp64(t, dfp.t64); \ 439 } else if (size == 128) { \ 440 set_dfp128(t, dfp.t64); \ 441 } \ 442 } 443 444 static void ADD_PPs(struct PPC_DFP *dfp) 445 { 446 dfp_set_FPRF_from_FRT(dfp); 447 dfp_check_for_OX(dfp); 448 dfp_check_for_UX(dfp); 449 dfp_check_for_XX(dfp); 450 dfp_check_for_VXSNAN(dfp); 451 dfp_check_for_VXISI_add(dfp); 452 } 453 454 DFP_HELPER_TAB(dadd, decNumberAdd, ADD_PPs, 64) 455 DFP_HELPER_TAB(daddq, decNumberAdd, ADD_PPs, 128) 456 457 static void SUB_PPs(struct PPC_DFP *dfp) 458 { 459 dfp_set_FPRF_from_FRT(dfp); 460 dfp_check_for_OX(dfp); 461 dfp_check_for_UX(dfp); 462 dfp_check_for_XX(dfp); 463 dfp_check_for_VXSNAN(dfp); 464 dfp_check_for_VXISI_subtract(dfp); 465 } 466 467 DFP_HELPER_TAB(dsub, decNumberSubtract, SUB_PPs, 64) 468 DFP_HELPER_TAB(dsubq, decNumberSubtract, SUB_PPs, 128) 469 470 static void MUL_PPs(struct PPC_DFP *dfp) 471 { 472 dfp_set_FPRF_from_FRT(dfp); 473 dfp_check_for_OX(dfp); 474 dfp_check_for_UX(dfp); 475 dfp_check_for_XX(dfp); 476 dfp_check_for_VXSNAN(dfp); 477 dfp_check_for_VXIMZ(dfp); 478 } 479 480 DFP_HELPER_TAB(dmul, decNumberMultiply, MUL_PPs, 64) 481 DFP_HELPER_TAB(dmulq, decNumberMultiply, MUL_PPs, 128) 482 483 static void DIV_PPs(struct PPC_DFP *dfp) 484 { 485 dfp_set_FPRF_from_FRT(dfp); 486 dfp_check_for_OX(dfp); 487 dfp_check_for_UX(dfp); 488 dfp_check_for_ZX(dfp); 489 dfp_check_for_XX(dfp); 490 dfp_check_for_VXSNAN(dfp); 491 dfp_check_for_VXZDZ(dfp); 492 dfp_check_for_VXIDI(dfp); 493 } 494 495 DFP_HELPER_TAB(ddiv, decNumberDivide, DIV_PPs, 64) 496 DFP_HELPER_TAB(ddivq, decNumberDivide, DIV_PPs, 128) 497 498 #define DFP_HELPER_BF_AB(op, dnop, postprocs, size) \ 499 uint32_t helper_##op(CPUPPCState *env, ppc_fprp_t *a, ppc_fprp_t *b) \ 500 { \ 501 struct PPC_DFP dfp; \ 502 dfp_prepare_decimal##size(&dfp, a, b, env); \ 503 dnop(&dfp.t, &dfp.a, &dfp.b, &dfp.context); \ 504 dfp_finalize_decimal##size(&dfp); \ 505 postprocs(&dfp); \ 506 return dfp.crbf; \ 507 } 508 509 static void CMPU_PPs(struct PPC_DFP *dfp) 510 { 511 dfp_set_CRBF_from_T(dfp); 512 dfp_set_FPCC_from_CRBF(dfp); 513 dfp_check_for_VXSNAN(dfp); 514 } 515 516 DFP_HELPER_BF_AB(dcmpu, decNumberCompare, CMPU_PPs, 64) 517 DFP_HELPER_BF_AB(dcmpuq, decNumberCompare, CMPU_PPs, 128) 518 519 static void CMPO_PPs(struct PPC_DFP *dfp) 520 { 521 dfp_set_CRBF_from_T(dfp); 522 dfp_set_FPCC_from_CRBF(dfp); 523 dfp_check_for_VXSNAN(dfp); 524 dfp_check_for_VXVC(dfp); 525 } 526 527 DFP_HELPER_BF_AB(dcmpo, decNumberCompare, CMPO_PPs, 64) 528 DFP_HELPER_BF_AB(dcmpoq, decNumberCompare, CMPO_PPs, 128) 529 530 #define DFP_HELPER_TSTDC(op, size) \ 531 uint32_t helper_##op(CPUPPCState *env, ppc_fprp_t *a, uint32_t dcm) \ 532 { \ 533 struct PPC_DFP dfp; \ 534 int match = 0; \ 535 \ 536 dfp_prepare_decimal##size(&dfp, a, 0, env); \ 537 \ 538 match |= (dcm & 0x20) && decNumberIsZero(&dfp.a); \ 539 match |= (dcm & 0x10) && decNumberIsSubnormal(&dfp.a, &dfp.context); \ 540 match |= (dcm & 0x08) && decNumberIsNormal(&dfp.a, &dfp.context); \ 541 match |= (dcm & 0x04) && decNumberIsInfinite(&dfp.a); \ 542 match |= (dcm & 0x02) && decNumberIsQNaN(&dfp.a); \ 543 match |= (dcm & 0x01) && decNumberIsSNaN(&dfp.a); \ 544 \ 545 if (decNumberIsNegative(&dfp.a)) { \ 546 dfp.crbf = match ? 0xA : 0x8; \ 547 } else { \ 548 dfp.crbf = match ? 0x2 : 0x0; \ 549 } \ 550 \ 551 dfp_set_FPCC_from_CRBF(&dfp); \ 552 return dfp.crbf; \ 553 } 554 555 DFP_HELPER_TSTDC(dtstdc, 64) 556 DFP_HELPER_TSTDC(dtstdcq, 128) 557 558 #define DFP_HELPER_TSTDG(op, size) \ 559 uint32_t helper_##op(CPUPPCState *env, ppc_fprp_t *a, uint32_t dcm) \ 560 { \ 561 struct PPC_DFP dfp; \ 562 int minexp, maxexp, nzero_digits, nzero_idx, is_negative, is_zero, \ 563 is_extreme_exp, is_subnormal, is_normal, leftmost_is_nonzero, \ 564 match; \ 565 \ 566 dfp_prepare_decimal##size(&dfp, a, 0, env); \ 567 \ 568 if ((size) == 64) { \ 569 minexp = -398; \ 570 maxexp = 369; \ 571 nzero_digits = 16; \ 572 nzero_idx = 5; \ 573 } else if ((size) == 128) { \ 574 minexp = -6176; \ 575 maxexp = 6111; \ 576 nzero_digits = 34; \ 577 nzero_idx = 11; \ 578 } \ 579 \ 580 is_negative = decNumberIsNegative(&dfp.a); \ 581 is_zero = decNumberIsZero(&dfp.a); \ 582 is_extreme_exp = (dfp.a.exponent == maxexp) || \ 583 (dfp.a.exponent == minexp); \ 584 is_subnormal = decNumberIsSubnormal(&dfp.a, &dfp.context); \ 585 is_normal = decNumberIsNormal(&dfp.a, &dfp.context); \ 586 leftmost_is_nonzero = (dfp.a.digits == nzero_digits) && \ 587 (dfp.a.lsu[nzero_idx] != 0); \ 588 match = 0; \ 589 \ 590 match |= (dcm & 0x20) && is_zero && !is_extreme_exp; \ 591 match |= (dcm & 0x10) && is_zero && is_extreme_exp; \ 592 match |= (dcm & 0x08) && \ 593 (is_subnormal || (is_normal && is_extreme_exp)); \ 594 match |= (dcm & 0x04) && is_normal && !is_extreme_exp && \ 595 !leftmost_is_nonzero; \ 596 match |= (dcm & 0x02) && is_normal && !is_extreme_exp && \ 597 leftmost_is_nonzero; \ 598 match |= (dcm & 0x01) && decNumberIsSpecial(&dfp.a); \ 599 \ 600 if (is_negative) { \ 601 dfp.crbf = match ? 0xA : 0x8; \ 602 } else { \ 603 dfp.crbf = match ? 0x2 : 0x0; \ 604 } \ 605 \ 606 dfp_set_FPCC_from_CRBF(&dfp); \ 607 return dfp.crbf; \ 608 } 609 610 DFP_HELPER_TSTDG(dtstdg, 64) 611 DFP_HELPER_TSTDG(dtstdgq, 128) 612 613 #define DFP_HELPER_TSTEX(op, size) \ 614 uint32_t helper_##op(CPUPPCState *env, ppc_fprp_t *a, ppc_fprp_t *b) \ 615 { \ 616 struct PPC_DFP dfp; \ 617 int expa, expb, a_is_special, b_is_special; \ 618 \ 619 dfp_prepare_decimal##size(&dfp, a, b, env); \ 620 \ 621 expa = dfp.a.exponent; \ 622 expb = dfp.b.exponent; \ 623 a_is_special = decNumberIsSpecial(&dfp.a); \ 624 b_is_special = decNumberIsSpecial(&dfp.b); \ 625 \ 626 if (a_is_special || b_is_special) { \ 627 int atype = a_is_special ? (decNumberIsNaN(&dfp.a) ? 4 : 2) : 1; \ 628 int btype = b_is_special ? (decNumberIsNaN(&dfp.b) ? 4 : 2) : 1; \ 629 dfp.crbf = (atype ^ btype) ? 0x1 : 0x2; \ 630 } else if (expa < expb) { \ 631 dfp.crbf = 0x8; \ 632 } else if (expa > expb) { \ 633 dfp.crbf = 0x4; \ 634 } else { \ 635 dfp.crbf = 0x2; \ 636 } \ 637 \ 638 dfp_set_FPCC_from_CRBF(&dfp); \ 639 return dfp.crbf; \ 640 } 641 642 DFP_HELPER_TSTEX(dtstex, 64) 643 DFP_HELPER_TSTEX(dtstexq, 128) 644 645 #define DFP_HELPER_TSTSF(op, size) \ 646 uint32_t helper_##op(CPUPPCState *env, ppc_fprp_t *a, ppc_fprp_t *b) \ 647 { \ 648 struct PPC_DFP dfp; \ 649 unsigned k; \ 650 uint64_t a64; \ 651 \ 652 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 653 \ 654 get_dfp64(&a64, a); \ 655 k = a64 & 0x3F; \ 656 \ 657 if (unlikely(decNumberIsSpecial(&dfp.b))) { \ 658 dfp.crbf = 1; \ 659 } else if (k == 0) { \ 660 dfp.crbf = 4; \ 661 } else if (unlikely(decNumberIsZero(&dfp.b))) { \ 662 /* Zero has no sig digits */ \ 663 dfp.crbf = 4; \ 664 } else { \ 665 unsigned nsd = dfp.b.digits; \ 666 if (k < nsd) { \ 667 dfp.crbf = 8; \ 668 } else if (k > nsd) { \ 669 dfp.crbf = 4; \ 670 } else { \ 671 dfp.crbf = 2; \ 672 } \ 673 } \ 674 \ 675 dfp_set_FPCC_from_CRBF(&dfp); \ 676 return dfp.crbf; \ 677 } 678 679 DFP_HELPER_TSTSF(dtstsf, 64) 680 DFP_HELPER_TSTSF(dtstsfq, 128) 681 682 #define DFP_HELPER_TSTSFI(op, size) \ 683 uint32_t helper_##op(CPUPPCState *env, uint32_t a, ppc_fprp_t *b) \ 684 { \ 685 struct PPC_DFP dfp; \ 686 unsigned uim; \ 687 \ 688 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 689 \ 690 uim = a & 0x3F; \ 691 \ 692 if (unlikely(decNumberIsSpecial(&dfp.b))) { \ 693 dfp.crbf = 1; \ 694 } else if (uim == 0) { \ 695 dfp.crbf = 4; \ 696 } else if (unlikely(decNumberIsZero(&dfp.b))) { \ 697 /* Zero has no sig digits */ \ 698 dfp.crbf = 4; \ 699 } else { \ 700 unsigned nsd = dfp.b.digits; \ 701 if (uim < nsd) { \ 702 dfp.crbf = 8; \ 703 } else if (uim > nsd) { \ 704 dfp.crbf = 4; \ 705 } else { \ 706 dfp.crbf = 2; \ 707 } \ 708 } \ 709 \ 710 dfp_set_FPCC_from_CRBF(&dfp); \ 711 return dfp.crbf; \ 712 } 713 714 DFP_HELPER_TSTSFI(dtstsfi, 64) 715 DFP_HELPER_TSTSFI(dtstsfiq, 128) 716 717 static void QUA_PPs(struct PPC_DFP *dfp) 718 { 719 dfp_set_FPRF_from_FRT(dfp); 720 dfp_check_for_XX(dfp); 721 dfp_check_for_VXSNAN(dfp); 722 dfp_check_for_VXCVI(dfp); 723 } 724 725 static void dfp_quantize(uint8_t rmc, struct PPC_DFP *dfp) 726 { 727 dfp_set_round_mode_from_immediate(0, rmc, dfp); 728 decNumberQuantize(&dfp->t, &dfp->b, &dfp->a, &dfp->context); 729 if (decNumberIsSNaN(&dfp->a)) { 730 dfp->t = dfp->a; 731 dfp_makeQNaN(&dfp->t); 732 } else if (decNumberIsSNaN(&dfp->b)) { 733 dfp->t = dfp->b; 734 dfp_makeQNaN(&dfp->t); 735 } else if (decNumberIsQNaN(&dfp->a)) { 736 dfp->t = dfp->a; 737 } else if (decNumberIsQNaN(&dfp->b)) { 738 dfp->t = dfp->b; 739 } 740 } 741 742 #define DFP_HELPER_QUAI(op, size) \ 743 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b, \ 744 uint32_t te, uint32_t rmc) \ 745 { \ 746 struct PPC_DFP dfp; \ 747 \ 748 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 749 \ 750 decNumberFromUInt32(&dfp.a, 1); \ 751 dfp.a.exponent = (int32_t)((int8_t)(te << 3) >> 3); \ 752 \ 753 dfp_quantize(rmc, &dfp); \ 754 dfp_finalize_decimal##size(&dfp); \ 755 QUA_PPs(&dfp); \ 756 \ 757 if (size == 64) { \ 758 set_dfp64(t, dfp.t64); \ 759 } else if (size == 128) { \ 760 set_dfp128(t, dfp.t64); \ 761 } \ 762 } 763 764 DFP_HELPER_QUAI(dquai, 64) 765 DFP_HELPER_QUAI(dquaiq, 128) 766 767 #define DFP_HELPER_QUA(op, size) \ 768 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *a, \ 769 ppc_fprp_t *b, uint32_t rmc) \ 770 { \ 771 struct PPC_DFP dfp; \ 772 \ 773 dfp_prepare_decimal##size(&dfp, a, b, env); \ 774 \ 775 dfp_quantize(rmc, &dfp); \ 776 dfp_finalize_decimal##size(&dfp); \ 777 QUA_PPs(&dfp); \ 778 \ 779 if (size == 64) { \ 780 set_dfp64(t, dfp.t64); \ 781 } else if (size == 128) { \ 782 set_dfp128(t, dfp.t64); \ 783 } \ 784 } 785 786 DFP_HELPER_QUA(dqua, 64) 787 DFP_HELPER_QUA(dquaq, 128) 788 789 static void _dfp_reround(uint8_t rmc, int32_t ref_sig, int32_t xmax, 790 struct PPC_DFP *dfp) 791 { 792 int msd_orig, msd_rslt; 793 794 if (unlikely((ref_sig == 0) || (dfp->b.digits <= ref_sig))) { 795 dfp->t = dfp->b; 796 if (decNumberIsSNaN(&dfp->b)) { 797 dfp_makeQNaN(&dfp->t); 798 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXSNAN, FPSCR_VE); 799 } 800 return; 801 } 802 803 /* Reround is equivalent to quantizing b with 1**E(n) where */ 804 /* n = exp(b) + numDigits(b) - reference_significance. */ 805 806 decNumberFromUInt32(&dfp->a, 1); 807 dfp->a.exponent = dfp->b.exponent + dfp->b.digits - ref_sig; 808 809 if (unlikely(dfp->a.exponent > xmax)) { 810 dfp->t.digits = 0; 811 dfp->t.bits &= ~DECNEG; 812 dfp_makeQNaN(&dfp->t); 813 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXCVI, FPSCR_VE); 814 return; 815 } 816 817 dfp_quantize(rmc, dfp); 818 819 msd_orig = dfp_get_digit(&dfp->b, dfp->b.digits-1); 820 msd_rslt = dfp_get_digit(&dfp->t, dfp->t.digits-1); 821 822 /* If the quantization resulted in rounding up to the next magnitude, */ 823 /* then we need to shift the significand and adjust the exponent. */ 824 825 if (unlikely((msd_orig == 9) && (msd_rslt == 1))) { 826 827 decNumber negone; 828 829 decNumberFromInt32(&negone, -1); 830 decNumberShift(&dfp->t, &dfp->t, &negone, &dfp->context); 831 dfp->t.exponent++; 832 833 if (unlikely(dfp->t.exponent > xmax)) { 834 dfp_makeQNaN(&dfp->t); 835 dfp->t.digits = 0; 836 dfp_set_FPSCR_flag(dfp, FP_VX | FP_VXCVI, FP_VE); 837 /* Inhibit XX in this case */ 838 decContextClearStatus(&dfp->context, DEC_Inexact); 839 } 840 } 841 } 842 843 #define DFP_HELPER_RRND(op, size) \ 844 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *a, \ 845 ppc_fprp_t *b, uint32_t rmc) \ 846 { \ 847 struct PPC_DFP dfp; \ 848 uint64_t a64; \ 849 int32_t ref_sig; \ 850 int32_t xmax = ((size) == 64) ? 369 : 6111; \ 851 \ 852 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 853 \ 854 get_dfp64(&a64, a); \ 855 ref_sig = a64 & 0x3f; \ 856 \ 857 _dfp_reround(rmc, ref_sig, xmax, &dfp); \ 858 dfp_finalize_decimal##size(&dfp); \ 859 QUA_PPs(&dfp); \ 860 \ 861 if (size == 64) { \ 862 set_dfp64(t, dfp.t64); \ 863 } else if (size == 128) { \ 864 set_dfp128(t, dfp.t64); \ 865 } \ 866 } 867 868 DFP_HELPER_RRND(drrnd, 64) 869 DFP_HELPER_RRND(drrndq, 128) 870 871 #define DFP_HELPER_RINT(op, postprocs, size) \ 872 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b, \ 873 uint32_t r, uint32_t rmc) \ 874 { \ 875 struct PPC_DFP dfp; \ 876 \ 877 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 878 \ 879 dfp_set_round_mode_from_immediate(r, rmc, &dfp); \ 880 decNumberToIntegralExact(&dfp.t, &dfp.b, &dfp.context); \ 881 dfp_finalize_decimal##size(&dfp); \ 882 postprocs(&dfp); \ 883 \ 884 if (size == 64) { \ 885 set_dfp64(t, dfp.t64); \ 886 } else if (size == 128) { \ 887 set_dfp128(t, dfp.t64); \ 888 } \ 889 } 890 891 static void RINTX_PPs(struct PPC_DFP *dfp) 892 { 893 dfp_set_FPRF_from_FRT(dfp); 894 dfp_check_for_XX(dfp); 895 dfp_check_for_VXSNAN(dfp); 896 } 897 898 DFP_HELPER_RINT(drintx, RINTX_PPs, 64) 899 DFP_HELPER_RINT(drintxq, RINTX_PPs, 128) 900 901 static void RINTN_PPs(struct PPC_DFP *dfp) 902 { 903 dfp_set_FPRF_from_FRT(dfp); 904 dfp_check_for_VXSNAN(dfp); 905 } 906 907 DFP_HELPER_RINT(drintn, RINTN_PPs, 64) 908 DFP_HELPER_RINT(drintnq, RINTN_PPs, 128) 909 910 void helper_dctdp(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b) 911 { 912 struct PPC_DFP dfp; 913 uint64_t b64; 914 uint32_t b_short; 915 916 get_dfp64(&b64, b); 917 b_short = (uint32_t)b64; 918 919 dfp_prepare_decimal64(&dfp, 0, 0, env); 920 decimal32ToNumber((decimal32 *)&b_short, &dfp.t); 921 dfp_finalize_decimal64(&dfp); 922 set_dfp64(t, dfp.t64); 923 dfp_set_FPRF_from_FRT(&dfp); 924 } 925 926 void helper_dctqpq(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b) 927 { 928 struct PPC_DFP dfp; 929 uint64_t b64; 930 dfp_prepare_decimal128(&dfp, 0, 0, env); 931 get_dfp64(&b64, b); 932 decimal64ToNumber((decimal64 *)&b64, &dfp.t); 933 934 dfp_check_for_VXSNAN_and_convert_to_QNaN(&dfp); 935 dfp_set_FPRF_from_FRT(&dfp); 936 937 dfp_finalize_decimal128(&dfp); 938 set_dfp128(t, dfp.t64); 939 } 940 941 void helper_drsp(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b) 942 { 943 struct PPC_DFP dfp; 944 uint32_t t_short = 0; 945 uint64_t t64; 946 dfp_prepare_decimal64(&dfp, 0, b, env); 947 decimal32FromNumber((decimal32 *)&t_short, &dfp.b, &dfp.context); 948 decimal32ToNumber((decimal32 *)&t_short, &dfp.t); 949 950 dfp_set_FPRF_from_FRT_short(&dfp); 951 dfp_check_for_OX(&dfp); 952 dfp_check_for_UX(&dfp); 953 dfp_check_for_XX(&dfp); 954 955 t64 = (uint64_t)t_short; 956 set_dfp64(t, &t64); 957 } 958 959 void helper_drdpq(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b) 960 { 961 struct PPC_DFP dfp; 962 dfp_prepare_decimal128(&dfp, 0, b, env); 963 decimal64FromNumber((decimal64 *)&dfp.t64, &dfp.b, &dfp.context); 964 decimal64ToNumber((decimal64 *)&dfp.t64, &dfp.t); 965 966 dfp_check_for_VXSNAN_and_convert_to_QNaN(&dfp); 967 dfp_set_FPRF_from_FRT_long(&dfp); 968 dfp_check_for_OX(&dfp); 969 dfp_check_for_UX(&dfp); 970 dfp_check_for_XX(&dfp); 971 972 dfp.t64[0] = dfp.t64[1] = 0; 973 dfp_finalize_decimal64(&dfp); 974 set_dfp128(t, dfp.t64); 975 } 976 977 #define DFP_HELPER_CFFIX(op, size) \ 978 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b) \ 979 { \ 980 struct PPC_DFP dfp; \ 981 uint64_t b64; \ 982 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 983 get_dfp64(&b64, b); \ 984 decNumberFromInt64(&dfp.t, (int64_t)b64); \ 985 dfp_finalize_decimal##size(&dfp); \ 986 CFFIX_PPs(&dfp); \ 987 \ 988 if (size == 64) { \ 989 set_dfp64(t, dfp.t64); \ 990 } else if (size == 128) { \ 991 set_dfp128(t, dfp.t64); \ 992 } \ 993 } 994 995 static void CFFIX_PPs(struct PPC_DFP *dfp) 996 { 997 dfp_set_FPRF_from_FRT(dfp); 998 dfp_check_for_XX(dfp); 999 } 1000 1001 DFP_HELPER_CFFIX(dcffix, 64) 1002 DFP_HELPER_CFFIX(dcffixq, 128) 1003 1004 #define DFP_HELPER_CTFIX(op, size) \ 1005 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b) \ 1006 { \ 1007 struct PPC_DFP dfp; \ 1008 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 1009 \ 1010 if (unlikely(decNumberIsSpecial(&dfp.b))) { \ 1011 uint64_t invalid_flags = FP_VX | FP_VXCVI; \ 1012 if (decNumberIsInfinite(&dfp.b)) { \ 1013 dfp.t64[0] = decNumberIsNegative(&dfp.b) ? INT64_MIN : INT64_MAX; \ 1014 } else { /* NaN */ \ 1015 dfp.t64[0] = INT64_MIN; \ 1016 if (decNumberIsSNaN(&dfp.b)) { \ 1017 invalid_flags |= FP_VXSNAN; \ 1018 } \ 1019 } \ 1020 dfp_set_FPSCR_flag(&dfp, invalid_flags, FP_VE); \ 1021 } else if (unlikely(decNumberIsZero(&dfp.b))) { \ 1022 dfp.t64[0] = 0; \ 1023 } else { \ 1024 decNumberToIntegralExact(&dfp.b, &dfp.b, &dfp.context); \ 1025 dfp.t64[0] = decNumberIntegralToInt64(&dfp.b, &dfp.context); \ 1026 if (decContextTestStatus(&dfp.context, DEC_Invalid_operation)) { \ 1027 dfp.t64[0] = decNumberIsNegative(&dfp.b) ? INT64_MIN : INT64_MAX; \ 1028 dfp_set_FPSCR_flag(&dfp, FP_VX | FP_VXCVI, FP_VE); \ 1029 } else { \ 1030 dfp_check_for_XX(&dfp); \ 1031 } \ 1032 } \ 1033 \ 1034 set_dfp64(t, dfp.t64); \ 1035 } 1036 1037 DFP_HELPER_CTFIX(dctfix, 64) 1038 DFP_HELPER_CTFIX(dctfixq, 128) 1039 1040 static inline void dfp_set_bcd_digit_64(uint64_t *t, uint8_t digit, 1041 unsigned n) 1042 { 1043 *t |= ((uint64_t)(digit & 0xF) << (n << 2)); 1044 } 1045 1046 static inline void dfp_set_bcd_digit_128(uint64_t *t, uint8_t digit, 1047 unsigned n) 1048 { 1049 t[(n & 0x10) ? HI_IDX : LO_IDX] |= 1050 ((uint64_t)(digit & 0xF) << ((n & 15) << 2)); 1051 } 1052 1053 static inline void dfp_set_sign_64(uint64_t *t, uint8_t sgn) 1054 { 1055 *t <<= 4; 1056 *t |= (sgn & 0xF); 1057 } 1058 1059 static inline void dfp_set_sign_128(uint64_t *t, uint8_t sgn) 1060 { 1061 t[HI_IDX] <<= 4; 1062 t[HI_IDX] |= (t[LO_IDX] >> 60); 1063 t[LO_IDX] <<= 4; 1064 t[LO_IDX] |= (sgn & 0xF); 1065 } 1066 1067 #define DFP_HELPER_DEDPD(op, size) \ 1068 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b, \ 1069 uint32_t sp) \ 1070 { \ 1071 struct PPC_DFP dfp; \ 1072 uint8_t digits[34]; \ 1073 int i, N; \ 1074 \ 1075 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 1076 \ 1077 decNumberGetBCD(&dfp.b, digits); \ 1078 dfp.t64[0] = dfp.t64[1] = 0; \ 1079 N = dfp.b.digits; \ 1080 \ 1081 for (i = 0; (i < N) && (i < (size)/4); i++) { \ 1082 dfp_set_bcd_digit_##size(dfp.t64, digits[N-i-1], i); \ 1083 } \ 1084 \ 1085 if (sp & 2) { \ 1086 uint8_t sgn; \ 1087 \ 1088 if (decNumberIsNegative(&dfp.b)) { \ 1089 sgn = 0xD; \ 1090 } else { \ 1091 sgn = ((sp & 1) ? 0xF : 0xC); \ 1092 } \ 1093 dfp_set_sign_##size(dfp.t64, sgn); \ 1094 } \ 1095 \ 1096 if (size == 64) { \ 1097 set_dfp64(t, dfp.t64); \ 1098 } else if (size == 128) { \ 1099 set_dfp128(t, dfp.t64); \ 1100 } \ 1101 } 1102 1103 DFP_HELPER_DEDPD(ddedpd, 64) 1104 DFP_HELPER_DEDPD(ddedpdq, 128) 1105 1106 static inline uint8_t dfp_get_bcd_digit_64(uint64_t *t, unsigned n) 1107 { 1108 return *t >> ((n << 2) & 63) & 15; 1109 } 1110 1111 static inline uint8_t dfp_get_bcd_digit_128(uint64_t *t, unsigned n) 1112 { 1113 return t[(n & 0x10) ? HI_IDX : LO_IDX] >> ((n << 2) & 63) & 15; 1114 } 1115 1116 #define DFP_HELPER_ENBCD(op, size) \ 1117 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b, \ 1118 uint32_t s) \ 1119 { \ 1120 struct PPC_DFP dfp; \ 1121 uint8_t digits[32]; \ 1122 int n = 0, offset = 0, sgn = 0, nonzero = 0; \ 1123 \ 1124 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 1125 \ 1126 decNumberZero(&dfp.t); \ 1127 \ 1128 if (s) { \ 1129 uint8_t sgnNibble = dfp_get_bcd_digit_##size(dfp.b64, offset++); \ 1130 switch (sgnNibble) { \ 1131 case 0xD: \ 1132 case 0xB: \ 1133 sgn = 1; \ 1134 break; \ 1135 case 0xC: \ 1136 case 0xF: \ 1137 case 0xA: \ 1138 case 0xE: \ 1139 sgn = 0; \ 1140 break; \ 1141 default: \ 1142 dfp_set_FPSCR_flag(&dfp, FP_VX | FP_VXCVI, FPSCR_VE); \ 1143 return; \ 1144 } \ 1145 } \ 1146 \ 1147 while (offset < (size) / 4) { \ 1148 n++; \ 1149 digits[(size) / 4 - n] = dfp_get_bcd_digit_##size(dfp.b64, offset++); \ 1150 if (digits[(size) / 4 - n] > 10) { \ 1151 dfp_set_FPSCR_flag(&dfp, FP_VX | FP_VXCVI, FPSCR_VE); \ 1152 return; \ 1153 } else { \ 1154 nonzero |= (digits[(size) / 4 - n] > 0); \ 1155 } \ 1156 } \ 1157 \ 1158 if (nonzero) { \ 1159 decNumberSetBCD(&dfp.t, digits + ((size) / 4) - n, n); \ 1160 } \ 1161 \ 1162 if (s && sgn) { \ 1163 dfp.t.bits |= DECNEG; \ 1164 } \ 1165 dfp_finalize_decimal##size(&dfp); \ 1166 dfp_set_FPRF_from_FRT(&dfp); \ 1167 if ((size) == 64) { \ 1168 set_dfp64(t, dfp.t64); \ 1169 } else if ((size) == 128) { \ 1170 set_dfp128(t, dfp.t64); \ 1171 } \ 1172 } 1173 1174 DFP_HELPER_ENBCD(denbcd, 64) 1175 DFP_HELPER_ENBCD(denbcdq, 128) 1176 1177 #define DFP_HELPER_XEX(op, size) \ 1178 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *b) \ 1179 { \ 1180 struct PPC_DFP dfp; \ 1181 uint64_t t64; \ 1182 \ 1183 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 1184 \ 1185 if (unlikely(decNumberIsSpecial(&dfp.b))) { \ 1186 if (decNumberIsInfinite(&dfp.b)) { \ 1187 t64 = -1; \ 1188 } else if (decNumberIsSNaN(&dfp.b)) { \ 1189 t64 = -3; \ 1190 } else if (decNumberIsQNaN(&dfp.b)) { \ 1191 t64 = -2; \ 1192 } else { \ 1193 assert(0); \ 1194 } \ 1195 set_dfp64(t, &t64); \ 1196 } else { \ 1197 if ((size) == 64) { \ 1198 t64 = dfp.b.exponent + 398; \ 1199 } else if ((size) == 128) { \ 1200 t64 = dfp.b.exponent + 6176; \ 1201 } else { \ 1202 assert(0); \ 1203 } \ 1204 set_dfp64(t, &t64); \ 1205 } \ 1206 } 1207 1208 DFP_HELPER_XEX(dxex, 64) 1209 DFP_HELPER_XEX(dxexq, 128) 1210 1211 static void dfp_set_raw_exp_64(uint64_t *t, uint64_t raw) 1212 { 1213 *t &= 0x8003ffffffffffffULL; 1214 *t |= (raw << (63 - 13)); 1215 } 1216 1217 static void dfp_set_raw_exp_128(uint64_t *t, uint64_t raw) 1218 { 1219 t[HI_IDX] &= 0x80003fffffffffffULL; 1220 t[HI_IDX] |= (raw << (63 - 17)); 1221 } 1222 1223 #define DFP_HELPER_IEX(op, size) \ 1224 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *a, \ 1225 ppc_fprp_t *b) \ 1226 { \ 1227 struct PPC_DFP dfp; \ 1228 uint64_t raw_qnan, raw_snan, raw_inf, max_exp, a64; \ 1229 int bias; \ 1230 int64_t exp; \ 1231 \ 1232 get_dfp64(&a64, a); \ 1233 exp = (int64_t)a64; \ 1234 dfp_prepare_decimal##size(&dfp, 0, b, env); \ 1235 \ 1236 if ((size) == 64) { \ 1237 max_exp = 767; \ 1238 raw_qnan = 0x1F00; \ 1239 raw_snan = 0x1F80; \ 1240 raw_inf = 0x1E00; \ 1241 bias = 398; \ 1242 } else if ((size) == 128) { \ 1243 max_exp = 12287; \ 1244 raw_qnan = 0x1f000; \ 1245 raw_snan = 0x1f800; \ 1246 raw_inf = 0x1e000; \ 1247 bias = 6176; \ 1248 } else { \ 1249 assert(0); \ 1250 } \ 1251 \ 1252 if (unlikely((exp < 0) || (exp > max_exp))) { \ 1253 dfp.t64[0] = dfp.b64[0]; \ 1254 dfp.t64[1] = dfp.b64[1]; \ 1255 if (exp == -1) { \ 1256 dfp_set_raw_exp_##size(dfp.t64, raw_inf); \ 1257 } else if (exp == -3) { \ 1258 dfp_set_raw_exp_##size(dfp.t64, raw_snan); \ 1259 } else { \ 1260 dfp_set_raw_exp_##size(dfp.t64, raw_qnan); \ 1261 } \ 1262 } else { \ 1263 dfp.t = dfp.b; \ 1264 if (unlikely(decNumberIsSpecial(&dfp.t))) { \ 1265 dfp.t.bits &= ~DECSPECIAL; \ 1266 } \ 1267 dfp.t.exponent = exp - bias; \ 1268 dfp_finalize_decimal##size(&dfp); \ 1269 } \ 1270 if (size == 64) { \ 1271 set_dfp64(t, dfp.t64); \ 1272 } else if (size == 128) { \ 1273 set_dfp128(t, dfp.t64); \ 1274 } \ 1275 } 1276 1277 DFP_HELPER_IEX(diex, 64) 1278 DFP_HELPER_IEX(diexq, 128) 1279 1280 static void dfp_clear_lmd_from_g5msb(uint64_t *t) 1281 { 1282 1283 /* The most significant 5 bits of the PowerPC DFP format combine bits */ 1284 /* from the left-most decimal digit (LMD) and the biased exponent. */ 1285 /* This routine clears the LMD bits while preserving the exponent */ 1286 /* bits. See "Figure 80: Encoding of bits 0:4 of the G field for */ 1287 /* Finite Numbers" in the Power ISA for additional details. */ 1288 1289 uint64_t g5msb = (*t >> 58) & 0x1F; 1290 1291 if ((g5msb >> 3) < 3) { /* LMD in [0-7] ? */ 1292 *t &= ~(7ULL << 58); 1293 } else { 1294 switch (g5msb & 7) { 1295 case 0: 1296 case 1: 1297 g5msb = 0; 1298 break; 1299 case 2: 1300 case 3: 1301 g5msb = 0x8; 1302 break; 1303 case 4: 1304 case 5: 1305 g5msb = 0x10; 1306 break; 1307 case 6: 1308 g5msb = 0x1E; 1309 break; 1310 case 7: 1311 g5msb = 0x1F; 1312 break; 1313 } 1314 1315 *t &= ~(0x1fULL << 58); 1316 *t |= (g5msb << 58); 1317 } 1318 } 1319 1320 #define DFP_HELPER_SHIFT(op, size, shift_left) \ 1321 void helper_##op(CPUPPCState *env, ppc_fprp_t *t, ppc_fprp_t *a, \ 1322 uint32_t sh) \ 1323 { \ 1324 struct PPC_DFP dfp; \ 1325 unsigned max_digits = ((size) == 64) ? 16 : 34; \ 1326 \ 1327 dfp_prepare_decimal##size(&dfp, a, 0, env); \ 1328 \ 1329 if (sh <= max_digits) { \ 1330 \ 1331 decNumber shd; \ 1332 unsigned special = dfp.a.bits & DECSPECIAL; \ 1333 \ 1334 if (shift_left) { \ 1335 decNumberFromUInt32(&shd, sh); \ 1336 } else { \ 1337 decNumberFromInt32(&shd, -((int32_t)sh)); \ 1338 } \ 1339 \ 1340 dfp.a.bits &= ~DECSPECIAL; \ 1341 decNumberShift(&dfp.t, &dfp.a, &shd, &dfp.context); \ 1342 \ 1343 dfp.t.bits |= special; \ 1344 if (special && (dfp.t.digits >= max_digits)) { \ 1345 dfp.t.digits = max_digits - 1; \ 1346 } \ 1347 \ 1348 dfp_finalize_decimal##size(&dfp); \ 1349 } else { \ 1350 if ((size) == 64) { \ 1351 dfp.t64[0] = dfp.a64[0] & 0xFFFC000000000000ULL; \ 1352 dfp_clear_lmd_from_g5msb(dfp.t64); \ 1353 } else { \ 1354 dfp.t64[HI_IDX] = dfp.a64[HI_IDX] & \ 1355 0xFFFFC00000000000ULL; \ 1356 dfp_clear_lmd_from_g5msb(dfp.t64 + HI_IDX); \ 1357 dfp.t64[LO_IDX] = 0; \ 1358 } \ 1359 } \ 1360 \ 1361 if ((size) == 64) { \ 1362 set_dfp64(t, dfp.t64); \ 1363 } else { \ 1364 set_dfp128(t, dfp.t64); \ 1365 } \ 1366 } 1367 1368 DFP_HELPER_SHIFT(dscli, 64, 1) 1369 DFP_HELPER_SHIFT(dscliq, 128, 1) 1370 DFP_HELPER_SHIFT(dscri, 64, 0) 1371 DFP_HELPER_SHIFT(dscriq, 128, 0) 1372