1 /* 2 * Decode table flags, mostly based on Intel SDM. 3 * 4 * Copyright (c) 2022 Red Hat, Inc. 5 * 6 * Author: Paolo Bonzini <pbonzini@redhat.com> 7 * 8 * This library is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU Lesser General Public 10 * License as published by the Free Software Foundation; either 11 * version 2.1 of the License, or (at your option) any later version. 12 * 13 * This library is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * Lesser General Public License for more details. 17 * 18 * You should have received a copy of the GNU Lesser General Public 19 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 typedef enum X86OpType { 23 X86_TYPE_None, 24 25 X86_TYPE_A, /* Implicit */ 26 X86_TYPE_B, /* VEX.vvvv selects a GPR */ 27 X86_TYPE_C, /* REG in the modrm byte selects a control register */ 28 X86_TYPE_D, /* REG in the modrm byte selects a debug register */ 29 X86_TYPE_E, /* ALU modrm operand */ 30 X86_TYPE_F, /* EFLAGS/RFLAGS */ 31 X86_TYPE_G, /* REG in the modrm byte selects a GPR */ 32 X86_TYPE_H, /* For AVX, VEX.vvvv selects an XMM/YMM register */ 33 X86_TYPE_I, /* Immediate */ 34 X86_TYPE_J, /* Relative offset for a jump */ 35 X86_TYPE_L, /* The upper 4 bits of the immediate select a 128-bit register */ 36 X86_TYPE_M, /* modrm byte selects a memory operand */ 37 X86_TYPE_N, /* R/M in the modrm byte selects an MMX register */ 38 X86_TYPE_O, /* Absolute address encoded in the instruction */ 39 X86_TYPE_P, /* reg in the modrm byte selects an MMX register */ 40 X86_TYPE_Q, /* MMX modrm operand */ 41 X86_TYPE_R, /* R/M in the modrm byte selects a register */ 42 X86_TYPE_S, /* reg selects a segment register */ 43 X86_TYPE_U, /* R/M in the modrm byte selects an XMM/YMM register */ 44 X86_TYPE_V, /* reg in the modrm byte selects an XMM/YMM register */ 45 X86_TYPE_W, /* XMM/YMM modrm operand */ 46 X86_TYPE_X, /* string source */ 47 X86_TYPE_Y, /* string destination */ 48 49 /* Custom */ 50 X86_TYPE_2op, /* 2-operand RMW instruction */ 51 X86_TYPE_LoBits, /* encoded in bits 0-2 of the operand + REX.B */ 52 X86_TYPE_0, /* Hard-coded GPRs (RAX..RDI) */ 53 X86_TYPE_1, 54 X86_TYPE_2, 55 X86_TYPE_3, 56 X86_TYPE_4, 57 X86_TYPE_5, 58 X86_TYPE_6, 59 X86_TYPE_7, 60 X86_TYPE_ES, /* Hard-coded segment registers */ 61 X86_TYPE_CS, 62 X86_TYPE_SS, 63 X86_TYPE_DS, 64 X86_TYPE_FS, 65 X86_TYPE_GS, 66 } X86OpType; 67 68 typedef enum X86OpSize { 69 X86_SIZE_None, 70 71 X86_SIZE_a, /* BOUND operand */ 72 X86_SIZE_b, /* byte */ 73 X86_SIZE_d, /* 32-bit */ 74 X86_SIZE_dq, /* SSE/AVX 128-bit */ 75 X86_SIZE_p, /* Far pointer */ 76 X86_SIZE_pd, /* SSE/AVX packed double precision */ 77 X86_SIZE_pi, /* MMX */ 78 X86_SIZE_ps, /* SSE/AVX packed single precision */ 79 X86_SIZE_q, /* 64-bit */ 80 X86_SIZE_qq, /* AVX 256-bit */ 81 X86_SIZE_s, /* Descriptor */ 82 X86_SIZE_sd, /* SSE/AVX scalar double precision */ 83 X86_SIZE_ss, /* SSE/AVX scalar single precision */ 84 X86_SIZE_si, /* 32-bit GPR */ 85 X86_SIZE_v, /* 16/32/64-bit, based on operand size */ 86 X86_SIZE_w, /* 16-bit */ 87 X86_SIZE_x, /* 128/256-bit, based on operand size */ 88 X86_SIZE_y, /* 32/64-bit, based on operand size */ 89 X86_SIZE_z, /* 16-bit for 16-bit operand size, else 32-bit */ 90 91 /* Custom */ 92 X86_SIZE_d64, 93 X86_SIZE_f64, 94 } X86OpSize; 95 96 typedef enum X86CPUIDFeature { 97 X86_FEAT_None, 98 X86_FEAT_ADX, 99 X86_FEAT_AES, 100 X86_FEAT_AVX, 101 X86_FEAT_AVX2, 102 X86_FEAT_BMI1, 103 X86_FEAT_BMI2, 104 X86_FEAT_MOVBE, 105 X86_FEAT_PCLMULQDQ, 106 X86_FEAT_SSE, 107 X86_FEAT_SSE2, 108 X86_FEAT_SSE3, 109 X86_FEAT_SSSE3, 110 X86_FEAT_SSE41, 111 X86_FEAT_SSE42, 112 X86_FEAT_SSE4A, 113 } X86CPUIDFeature; 114 115 /* Execution flags */ 116 117 typedef enum X86OpUnit { 118 X86_OP_SKIP, /* not valid or managed by emission function */ 119 X86_OP_SEG, /* segment selector */ 120 X86_OP_CR, /* control register */ 121 X86_OP_DR, /* debug register */ 122 X86_OP_INT, /* loaded into/stored from s->T0/T1 */ 123 X86_OP_IMM, /* immediate */ 124 X86_OP_SSE, /* address in either s->ptrX or s->A0 depending on has_ea */ 125 X86_OP_MMX, /* address in either s->ptrX or s->A0 depending on has_ea */ 126 } X86OpUnit; 127 128 typedef enum X86InsnSpecial { 129 X86_SPECIAL_None, 130 131 /* Always locked if it has a memory operand (XCHG) */ 132 X86_SPECIAL_Locked, 133 134 /* Fault outside protected mode */ 135 X86_SPECIAL_ProtMode, 136 137 /* 138 * Register operand 0/2 is zero extended to 32 bits. Rd/Mb or Rd/Mw 139 * in the manual. 140 */ 141 X86_SPECIAL_ZExtOp0, 142 X86_SPECIAL_ZExtOp2, 143 144 /* 145 * MMX instruction exists with no prefix; if there is no prefix, V/H/W/U operands 146 * become P/P/Q/N, and size "x" becomes "q". 147 */ 148 X86_SPECIAL_MMX, 149 150 /* Illegal or exclusive to 64-bit mode */ 151 X86_SPECIAL_i64, 152 X86_SPECIAL_o64, 153 } X86InsnSpecial; 154 155 /* 156 * Special cases for instructions that operate on XMM/YMM registers. Intel 157 * retconned all of them to have VEX exception classes other than 0 and 13, so 158 * all these only matter for instructions that have a VEX exception class. 159 * Based on tables in the "AVX and SSE Instruction Exception Specification" 160 * section of the manual. 161 */ 162 typedef enum X86VEXSpecial { 163 /* Legacy SSE instructions that allow unaligned operands */ 164 X86_VEX_SSEUnaligned, 165 166 /* 167 * Used for instructions that distinguish the XMM operand type with an 168 * instruction prefix; legacy SSE encodings will allow unaligned operands 169 * for scalar operands only (identified by a REP prefix). In this case, 170 * the decoding table uses "x" for the vector operands instead of specifying 171 * pd/ps/sd/ss individually. 172 */ 173 X86_VEX_REPScalar, 174 175 /* 176 * VEX instructions that only support 256-bit operands with AVX2 (Table 2-17 177 * column 3). Columns 2 and 4 (instructions limited to 256- and 127-bit 178 * operands respectively) are implicit in the presence of dq and qq 179 * operands, and thus handled by decode_op_size. 180 */ 181 X86_VEX_AVX2_256, 182 } X86VEXSpecial; 183 184 185 typedef struct X86OpEntry X86OpEntry; 186 typedef struct X86DecodedInsn X86DecodedInsn; 187 188 /* Decode function for multibyte opcodes. */ 189 typedef void (*X86DecodeFunc)(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b); 190 191 /* Code generation function. */ 192 typedef void (*X86GenFunc)(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode); 193 194 struct X86OpEntry { 195 /* Based on the is_decode flags. */ 196 union { 197 X86GenFunc gen; 198 X86DecodeFunc decode; 199 }; 200 /* op0 is always written, op1 and op2 are always read. */ 201 X86OpType op0:8; 202 X86OpSize s0:8; 203 X86OpType op1:8; 204 X86OpSize s1:8; 205 X86OpType op2:8; 206 X86OpSize s2:8; 207 /* Must be I and b respectively if present. */ 208 X86OpType op3:8; 209 X86OpSize s3:8; 210 211 X86InsnSpecial special:8; 212 X86CPUIDFeature cpuid:8; 213 unsigned vex_class:8; 214 X86VEXSpecial vex_special:8; 215 bool is_decode:1; 216 }; 217 218 typedef struct X86DecodedOp { 219 int8_t n; 220 MemOp ot; /* For b/c/d/p/s/q/v/w/y/z */ 221 X86OpUnit unit; 222 bool has_ea; 223 int offset; /* For MMX and SSE */ 224 225 /* 226 * This field is used internally by macros OP0_PTR/OP1_PTR/OP2_PTR, 227 * do not access directly! 228 */ 229 TCGv_ptr v_ptr; 230 } X86DecodedOp; 231 232 struct X86DecodedInsn { 233 X86OpEntry e; 234 X86DecodedOp op[3]; 235 target_ulong immediate; 236 AddressParts mem; 237 238 uint8_t b; 239 }; 240 241