1 /* 2 * QEMU KVM support 3 * 4 * Copyright (C) 2006-2008 Qumranet Technologies 5 * Copyright IBM, Corp. 2008 6 * 7 * Authors: 8 * Anthony Liguori <aliguori@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 * 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qapi/qapi-events-run-state.h" 17 #include "qapi/error.h" 18 #include "qapi/visitor.h" 19 #include <math.h> 20 #include <sys/ioctl.h> 21 #include <sys/utsname.h> 22 #include <sys/syscall.h> 23 #include <sys/resource.h> 24 #include <sys/time.h> 25 26 #include <linux/kvm.h> 27 #include <linux/kvm_para.h> 28 #include "standard-headers/asm-x86/kvm_para.h" 29 #include "hw/xen/interface/arch-x86/cpuid.h" 30 31 #include "cpu.h" 32 #include "host-cpu.h" 33 #include "vmsr_energy.h" 34 #include "system/system.h" 35 #include "system/hw_accel.h" 36 #include "system/kvm_int.h" 37 #include "system/runstate.h" 38 #include "kvm_i386.h" 39 #include "../confidential-guest.h" 40 #include "sev.h" 41 #include "tdx.h" 42 #include "xen-emu.h" 43 #include "hyperv.h" 44 #include "hyperv-proto.h" 45 46 #include "gdbstub/enums.h" 47 #include "qemu/host-utils.h" 48 #include "qemu/main-loop.h" 49 #include "qemu/ratelimit.h" 50 #include "qemu/config-file.h" 51 #include "qemu/error-report.h" 52 #include "qemu/memalign.h" 53 #include "hw/i386/x86.h" 54 #include "hw/i386/kvm/xen_evtchn.h" 55 #include "hw/i386/pc.h" 56 #include "hw/i386/apic.h" 57 #include "hw/i386/apic_internal.h" 58 #include "hw/i386/apic-msidef.h" 59 #include "hw/i386/intel_iommu.h" 60 #include "hw/i386/topology.h" 61 #include "hw/i386/x86-iommu.h" 62 #include "hw/i386/e820_memory_layout.h" 63 64 #include "hw/xen/xen.h" 65 66 #include "hw/pci/pci.h" 67 #include "hw/pci/msi.h" 68 #include "hw/pci/msix.h" 69 #include "migration/blocker.h" 70 #include "exec/memattrs.h" 71 #include "exec/target_page.h" 72 #include "trace.h" 73 74 #include CONFIG_DEVICES 75 76 //#define DEBUG_KVM 77 78 #ifdef DEBUG_KVM 79 #define DPRINTF(fmt, ...) \ 80 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) 81 #else 82 #define DPRINTF(fmt, ...) \ 83 do { } while (0) 84 #endif 85 86 /* 87 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. 88 * In order to use vm86 mode, an EPT identity map and a TSS are needed. 89 * Since these must be part of guest physical memory, we need to allocate 90 * them, both by setting their start addresses in the kernel and by 91 * creating a corresponding e820 entry. We need 4 pages before the BIOS, 92 * so this value allows up to 16M BIOSes. 93 */ 94 #define KVM_IDENTITY_BASE 0xfeffc000 95 96 /* From arch/x86/kvm/lapic.h */ 97 #define KVM_APIC_BUS_CYCLE_NS 1 98 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS) 99 100 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus 101 * 255 kvm_msr_entry structs */ 102 #define MSR_BUF_SIZE 4096 103 104 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val); 105 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val); 106 typedef struct { 107 uint32_t msr; 108 QEMURDMSRHandler *rdmsr; 109 QEMUWRMSRHandler *wrmsr; 110 } KVMMSRHandlers; 111 112 static void kvm_init_msrs(X86CPU *cpu); 113 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 114 QEMUWRMSRHandler *wrmsr); 115 116 const KVMCapabilityInfo kvm_arch_required_capabilities[] = { 117 KVM_CAP_INFO(SET_TSS_ADDR), 118 KVM_CAP_INFO(EXT_CPUID), 119 KVM_CAP_INFO(MP_STATE), 120 KVM_CAP_INFO(SIGNAL_MSI), 121 KVM_CAP_INFO(IRQ_ROUTING), 122 KVM_CAP_INFO(DEBUGREGS), 123 KVM_CAP_INFO(XSAVE), 124 KVM_CAP_INFO(VCPU_EVENTS), 125 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP), 126 KVM_CAP_INFO(MCE), 127 KVM_CAP_INFO(ADJUST_CLOCK), 128 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR), 129 KVM_CAP_LAST_INFO 130 }; 131 132 static bool has_msr_star; 133 static bool has_msr_hsave_pa; 134 static bool has_msr_tsc_aux; 135 static bool has_msr_tsc_adjust; 136 static bool has_msr_tsc_deadline; 137 static bool has_msr_feature_control; 138 static bool has_msr_misc_enable; 139 static bool has_msr_smbase; 140 static bool has_msr_bndcfgs; 141 static int lm_capable_kernel; 142 static bool has_msr_hv_hypercall; 143 static bool has_msr_hv_crash; 144 static bool has_msr_hv_reset; 145 static bool has_msr_hv_vpindex; 146 static bool hv_vpindex_settable; 147 static bool has_msr_hv_runtime; 148 static bool has_msr_hv_synic; 149 static bool has_msr_hv_stimer; 150 static bool has_msr_hv_frequencies; 151 static bool has_msr_hv_reenlightenment; 152 static bool has_msr_hv_syndbg_options; 153 static bool has_msr_xss; 154 static bool has_msr_umwait; 155 static bool has_msr_spec_ctrl; 156 static bool has_tsc_scale_msr; 157 static bool has_msr_tsx_ctrl; 158 static bool has_msr_virt_ssbd; 159 static bool has_msr_smi_count; 160 static bool has_msr_arch_capabs; 161 static bool has_msr_core_capabs; 162 static bool has_msr_vmx_vmfunc; 163 static bool has_msr_ucode_rev; 164 static bool has_msr_vmx_procbased_ctls2; 165 static bool has_msr_perf_capabs; 166 static bool has_msr_pkrs; 167 static bool has_msr_hwcr; 168 169 static uint32_t has_architectural_pmu_version; 170 static uint32_t num_architectural_pmu_gp_counters; 171 static uint32_t num_architectural_pmu_fixed_counters; 172 173 static int has_xsave2; 174 static int has_xcrs; 175 static int has_sregs2; 176 static int has_exception_payload; 177 static int has_triple_fault_event; 178 179 static bool has_msr_mcg_ext_ctl; 180 181 static struct kvm_cpuid2 *cpuid_cache; 182 static struct kvm_cpuid2 *hv_cpuid_cache; 183 static struct kvm_msr_list *kvm_feature_msrs; 184 185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES]; 186 187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */ 188 static RateLimit bus_lock_ratelimit_ctrl; 189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value); 190 191 static const char *vm_type_name[] = { 192 [KVM_X86_DEFAULT_VM] = "default", 193 [KVM_X86_SEV_VM] = "SEV", 194 [KVM_X86_SEV_ES_VM] = "SEV-ES", 195 [KVM_X86_SNP_VM] = "SEV-SNP", 196 [KVM_X86_TDX_VM] = "TDX", 197 }; 198 199 bool kvm_is_vm_type_supported(int type) 200 { 201 uint32_t machine_types; 202 203 /* 204 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM 205 * is always supported 206 */ 207 if (type == KVM_X86_DEFAULT_VM) { 208 return true; 209 } 210 211 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator), 212 KVM_CAP_VM_TYPES); 213 return !!(machine_types & BIT(type)); 214 } 215 216 int kvm_get_vm_type(MachineState *ms) 217 { 218 int kvm_type = KVM_X86_DEFAULT_VM; 219 220 if (ms->cgs) { 221 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) { 222 error_report("configuration type %s not supported for x86 guests", 223 object_get_typename(OBJECT(ms->cgs))); 224 exit(1); 225 } 226 kvm_type = x86_confidential_guest_kvm_type( 227 X86_CONFIDENTIAL_GUEST(ms->cgs)); 228 } 229 230 if (!kvm_is_vm_type_supported(kvm_type)) { 231 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]); 232 exit(1); 233 } 234 235 return kvm_type; 236 } 237 238 bool kvm_enable_hypercall(uint64_t enable_mask) 239 { 240 KVMState *s = KVM_STATE(current_accel()); 241 242 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask); 243 } 244 245 bool kvm_has_smm(void) 246 { 247 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM); 248 } 249 250 bool kvm_has_adjust_clock_stable(void) 251 { 252 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); 253 254 return (ret & KVM_CLOCK_TSC_STABLE); 255 } 256 257 bool kvm_has_exception_payload(void) 258 { 259 return has_exception_payload; 260 } 261 262 static bool kvm_x2apic_api_set_flags(uint64_t flags) 263 { 264 KVMState *s = KVM_STATE(current_accel()); 265 266 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); 267 } 268 269 #define MEMORIZE(fn, _result) \ 270 ({ \ 271 static bool _memorized; \ 272 \ 273 if (_memorized) { \ 274 return _result; \ 275 } \ 276 _memorized = true; \ 277 _result = fn; \ 278 }) 279 280 static bool has_x2apic_api; 281 282 bool kvm_has_x2apic_api(void) 283 { 284 return has_x2apic_api; 285 } 286 287 bool kvm_enable_x2apic(void) 288 { 289 return MEMORIZE( 290 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | 291 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), 292 has_x2apic_api); 293 } 294 295 bool kvm_hv_vpindex_settable(void) 296 { 297 return hv_vpindex_settable; 298 } 299 300 static int kvm_get_tsc(CPUState *cs) 301 { 302 X86CPU *cpu = X86_CPU(cs); 303 CPUX86State *env = &cpu->env; 304 uint64_t value; 305 int ret; 306 307 if (env->tsc_valid) { 308 return 0; 309 } 310 311 env->tsc_valid = !runstate_is_running(); 312 313 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value); 314 if (ret < 0) { 315 return ret; 316 } 317 318 env->tsc = value; 319 return 0; 320 } 321 322 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) 323 { 324 kvm_get_tsc(cpu); 325 } 326 327 void kvm_synchronize_all_tsc(void) 328 { 329 CPUState *cpu; 330 331 if (kvm_enabled() && !is_tdx_vm()) { 332 CPU_FOREACH(cpu) { 333 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); 334 } 335 } 336 } 337 338 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) 339 { 340 struct kvm_cpuid2 *cpuid; 341 int r, size; 342 343 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 344 cpuid = g_malloc0(size); 345 cpuid->nent = max; 346 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); 347 if (r == 0 && cpuid->nent >= max) { 348 r = -E2BIG; 349 } 350 if (r < 0) { 351 if (r == -E2BIG) { 352 g_free(cpuid); 353 return NULL; 354 } else { 355 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", 356 strerror(-r)); 357 exit(1); 358 } 359 } 360 return cpuid; 361 } 362 363 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough 364 * for all entries. 365 */ 366 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) 367 { 368 struct kvm_cpuid2 *cpuid; 369 int max = 1; 370 371 if (cpuid_cache != NULL) { 372 return cpuid_cache; 373 } 374 while ((cpuid = try_get_cpuid(s, max)) == NULL) { 375 max *= 2; 376 } 377 cpuid_cache = cpuid; 378 return cpuid; 379 } 380 381 static bool host_tsx_broken(void) 382 { 383 int family, model, stepping;\ 384 char vendor[CPUID_VENDOR_SZ + 1]; 385 386 host_cpu_vendor_fms(vendor, &family, &model, &stepping); 387 388 /* Check if we are running on a Haswell host known to have broken TSX */ 389 return !strcmp(vendor, CPUID_VENDOR_INTEL) && 390 (family == 6) && 391 ((model == 63 && stepping < 4) || 392 model == 60 || model == 69 || model == 70); 393 } 394 395 /* Returns the value for a specific register on the cpuid entry 396 */ 397 uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) 398 { 399 uint32_t ret = 0; 400 switch (reg) { 401 case R_EAX: 402 ret = entry->eax; 403 break; 404 case R_EBX: 405 ret = entry->ebx; 406 break; 407 case R_ECX: 408 ret = entry->ecx; 409 break; 410 case R_EDX: 411 ret = entry->edx; 412 break; 413 } 414 return ret; 415 } 416 417 /* Find matching entry for function/index on kvm_cpuid2 struct 418 */ 419 struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, 420 uint32_t function, 421 uint32_t index) 422 { 423 int i; 424 for (i = 0; i < cpuid->nent; ++i) { 425 if (cpuid->entries[i].function == function && 426 cpuid->entries[i].index == index) { 427 return &cpuid->entries[i]; 428 } 429 } 430 /* not found: */ 431 return NULL; 432 } 433 434 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, 435 uint32_t index, int reg) 436 { 437 struct kvm_cpuid2 *cpuid; 438 uint32_t ret = 0; 439 uint32_t cpuid_1_edx, unused; 440 uint64_t bitmask; 441 442 cpuid = get_supported_cpuid(s); 443 444 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); 445 if (entry) { 446 ret = cpuid_entry_get_reg(entry, reg); 447 } 448 449 /* Fixups for the data returned by KVM, below */ 450 451 if (function == 1 && reg == R_EDX) { 452 /* KVM before 2.6.30 misreports the following features */ 453 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; 454 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */ 455 ret |= CPUID_HT; 456 } else if (function == 1 && reg == R_ECX) { 457 /* We can set the hypervisor flag, even if KVM does not return it on 458 * GET_SUPPORTED_CPUID 459 */ 460 ret |= CPUID_EXT_HYPERVISOR; 461 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it 462 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, 463 * and the irqchip is in the kernel. 464 */ 465 if (kvm_irqchip_in_kernel() && 466 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { 467 ret |= CPUID_EXT_TSC_DEADLINE_TIMER; 468 } 469 470 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled 471 * without the in-kernel irqchip 472 */ 473 if (!kvm_irqchip_in_kernel()) { 474 ret &= ~CPUID_EXT_X2APIC; 475 } 476 477 if (enable_cpu_pm) { 478 int disable_exits = kvm_check_extension(s, 479 KVM_CAP_X86_DISABLE_EXITS); 480 481 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) { 482 ret |= CPUID_EXT_MONITOR; 483 } 484 } 485 } else if (function == 6 && reg == R_EAX) { 486 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ 487 } else if (function == 7 && index == 0 && reg == R_EBX) { 488 /* Not new instructions, just an optimization. */ 489 uint32_t ebx; 490 host_cpuid(7, 0, &unused, &ebx, &unused, &unused); 491 ret |= ebx & CPUID_7_0_EBX_ERMS; 492 493 if (host_tsx_broken()) { 494 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); 495 } 496 } else if (function == 7 && index == 0 && reg == R_EDX) { 497 /* Not new instructions, just an optimization. */ 498 uint32_t edx; 499 host_cpuid(7, 0, &unused, &unused, &unused, &edx); 500 ret |= edx & CPUID_7_0_EDX_FSRM; 501 502 /* 503 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts. 504 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is 505 * returned by KVM_GET_MSR_INDEX_LIST. 506 */ 507 if (!has_msr_arch_capabs) { 508 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES; 509 } 510 } else if (function == 7 && index == 1 && reg == R_EAX) { 511 /* Not new instructions, just an optimization. */ 512 uint32_t eax; 513 host_cpuid(7, 1, &eax, &unused, &unused, &unused); 514 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC); 515 } else if (function == 7 && index == 2 && reg == R_EDX) { 516 uint32_t edx; 517 host_cpuid(7, 2, &unused, &unused, &unused, &edx); 518 ret |= edx & CPUID_7_2_EDX_MCDT_NO; 519 } else if (function == 0xd && index == 0 && 520 (reg == R_EAX || reg == R_EDX)) { 521 /* 522 * The value returned by KVM_GET_SUPPORTED_CPUID does not include 523 * features that still have to be enabled with the arch_prctl 524 * system call. QEMU needs the full value, which is retrieved 525 * with KVM_GET_DEVICE_ATTR. 526 */ 527 struct kvm_device_attr attr = { 528 .group = 0, 529 .attr = KVM_X86_XCOMP_GUEST_SUPP, 530 .addr = (unsigned long) &bitmask 531 }; 532 533 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES); 534 if (!sys_attr) { 535 return ret; 536 } 537 538 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr); 539 if (rc < 0) { 540 if (rc != -ENXIO) { 541 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) " 542 "error: %d", rc); 543 } 544 return ret; 545 } 546 ret = (reg == R_EAX) ? bitmask : bitmask >> 32; 547 } else if (function == 0x80000001 && reg == R_ECX) { 548 /* 549 * It's safe to enable TOPOEXT even if it's not returned by 550 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows 551 * us to keep CPU models including TOPOEXT runnable on older kernels. 552 */ 553 ret |= CPUID_EXT3_TOPOEXT; 554 } else if (function == 0x80000001 && reg == R_EDX) { 555 /* On Intel, kvm returns cpuid according to the Intel spec, 556 * so add missing bits according to the AMD spec: 557 */ 558 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); 559 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; 560 } else if (function == 0x80000007 && reg == R_EBX) { 561 ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR; 562 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { 563 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't 564 * be enabled without the in-kernel irqchip 565 */ 566 if (!kvm_irqchip_in_kernel()) { 567 ret &= ~CPUID_KVM_PV_UNHALT; 568 } 569 if (kvm_irqchip_is_split()) { 570 ret |= CPUID_KVM_MSI_EXT_DEST_ID; 571 } 572 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) { 573 ret |= CPUID_KVM_HINTS_REALTIME; 574 } 575 576 if (current_machine->cgs) { 577 ret = x86_confidential_guest_adjust_cpuid_features( 578 X86_CONFIDENTIAL_GUEST(current_machine->cgs), 579 function, index, reg, ret); 580 } 581 return ret; 582 } 583 584 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index) 585 { 586 struct { 587 struct kvm_msrs info; 588 struct kvm_msr_entry entries[1]; 589 } msr_data = {}; 590 uint64_t value; 591 uint32_t ret, can_be_one, must_be_one; 592 593 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */ 594 return 0; 595 } 596 597 /* Check if requested MSR is supported feature MSR */ 598 int i; 599 for (i = 0; i < kvm_feature_msrs->nmsrs; i++) 600 if (kvm_feature_msrs->indices[i] == index) { 601 break; 602 } 603 if (i == kvm_feature_msrs->nmsrs) { 604 return 0; /* if the feature MSR is not supported, simply return 0 */ 605 } 606 607 msr_data.info.nmsrs = 1; 608 msr_data.entries[0].index = index; 609 610 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data); 611 if (ret != 1) { 612 error_report("KVM get MSR (index=0x%x) feature failed, %s", 613 index, strerror(-ret)); 614 exit(1); 615 } 616 617 value = msr_data.entries[0].data; 618 switch (index) { 619 case MSR_IA32_VMX_PROCBASED_CTLS2: 620 if (!has_msr_vmx_procbased_ctls2) { 621 /* KVM forgot to add these bits for some time, do this ourselves. */ 622 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) & 623 CPUID_XSAVE_XSAVES) { 624 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32; 625 } 626 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) & 627 CPUID_EXT_RDRAND) { 628 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32; 629 } 630 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 631 CPUID_7_0_EBX_INVPCID) { 632 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32; 633 } 634 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) & 635 CPUID_7_0_EBX_RDSEED) { 636 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32; 637 } 638 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) & 639 CPUID_EXT2_RDTSCP) { 640 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32; 641 } 642 } 643 /* fall through */ 644 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 645 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 646 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 647 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 648 /* 649 * Return true for bits that can be one, but do not have to be one. 650 * The SDM tells us which bits could have a "must be one" setting, 651 * so we can do the opposite transformation in make_vmx_msr_value. 652 */ 653 must_be_one = (uint32_t)value; 654 can_be_one = (uint32_t)(value >> 32); 655 return can_be_one & ~must_be_one; 656 657 default: 658 return value; 659 } 660 } 661 662 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, 663 int *max_banks) 664 { 665 *max_banks = kvm_check_extension(s, KVM_CAP_MCE); 666 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); 667 } 668 669 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) 670 { 671 CPUState *cs = CPU(cpu); 672 CPUX86State *env = &cpu->env; 673 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV | 674 MCI_STATUS_ADDRV; 675 uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV; 676 int flags = 0; 677 678 if (!IS_AMD_CPU(env)) { 679 status |= MCI_STATUS_S | MCI_STATUS_UC; 680 if (code == BUS_MCEERR_AR) { 681 status |= MCI_STATUS_AR | 0x134; 682 mcg_status |= MCG_STATUS_EIPV; 683 } else { 684 status |= 0xc0; 685 } 686 } else { 687 if (code == BUS_MCEERR_AR) { 688 status |= MCI_STATUS_UC | MCI_STATUS_POISON; 689 mcg_status |= MCG_STATUS_EIPV; 690 } else { 691 /* Setting the POISON bit for deferred errors indicates to the 692 * guest kernel that the address provided by the MCE is valid 693 * and usable which will ensure that the guest kernel will send 694 * a SIGBUS_AO signal to the guest process. This allows for 695 * more desirable behavior in the case that the guest process 696 * with poisoned memory has set the MCE_KILL_EARLY prctl flag 697 * which indicates that the process would prefer to handle or 698 * shutdown due to the poisoned memory condition before the 699 * memory has been accessed. 700 * 701 * While the POISON bit would not be set in a deferred error 702 * sent from hardware, the bit is not meaningful for deferred 703 * errors and can be reused in this scenario. 704 */ 705 status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON; 706 } 707 } 708 709 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; 710 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the 711 * guest kernel back into env->mcg_ext_ctl. 712 */ 713 cpu_synchronize_state(cs); 714 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { 715 mcg_status |= MCG_STATUS_LMCE; 716 flags = 0; 717 } 718 719 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, 720 (MCM_ADDR_PHYS << 6) | 0xc, flags); 721 } 722 723 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar) 724 { 725 MemoryFailureFlags mff = {.action_required = ar, .recursive = false}; 726 727 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action, 728 &mff); 729 } 730 731 static void hardware_memory_error(void *host_addr) 732 { 733 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true); 734 error_report("QEMU got Hardware memory error at addr %p", host_addr); 735 exit(1); 736 } 737 738 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) 739 { 740 X86CPU *cpu = X86_CPU(c); 741 CPUX86State *env = &cpu->env; 742 ram_addr_t ram_addr; 743 hwaddr paddr; 744 745 /* If we get an action required MCE, it has been injected by KVM 746 * while the VM was running. An action optional MCE instead should 747 * be coming from the main thread, which qemu_init_sigbus identifies 748 * as the "early kill" thread. 749 */ 750 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); 751 752 if ((env->mcg_cap & MCG_SER_P) && addr) { 753 ram_addr = qemu_ram_addr_from_host(addr); 754 if (ram_addr != RAM_ADDR_INVALID && 755 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { 756 kvm_hwpoison_page_add(ram_addr); 757 kvm_mce_inject(cpu, paddr, code); 758 759 /* 760 * Use different logging severity based on error type. 761 * If there is additional MCE reporting on the hypervisor, QEMU VA 762 * could be another source to identify the PA and MCE details. 763 */ 764 if (code == BUS_MCEERR_AR) { 765 error_report("Guest MCE Memory Error at QEMU addr %p and " 766 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 767 addr, paddr, "BUS_MCEERR_AR"); 768 } else { 769 warn_report("Guest MCE Memory Error at QEMU addr %p and " 770 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected", 771 addr, paddr, "BUS_MCEERR_AO"); 772 } 773 774 return; 775 } 776 777 if (code == BUS_MCEERR_AO) { 778 warn_report("Hardware memory error at addr %p of type %s " 779 "for memory used by QEMU itself instead of guest system!", 780 addr, "BUS_MCEERR_AO"); 781 } 782 } 783 784 if (code == BUS_MCEERR_AR) { 785 hardware_memory_error(addr); 786 } 787 788 /* Hope we are lucky for AO MCE, just notify a event */ 789 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false); 790 } 791 792 static void kvm_queue_exception(CPUX86State *env, 793 int32_t exception_nr, 794 uint8_t exception_has_payload, 795 uint64_t exception_payload) 796 { 797 assert(env->exception_nr == -1); 798 assert(!env->exception_pending); 799 assert(!env->exception_injected); 800 assert(!env->exception_has_payload); 801 802 env->exception_nr = exception_nr; 803 804 if (has_exception_payload) { 805 env->exception_pending = 1; 806 807 env->exception_has_payload = exception_has_payload; 808 env->exception_payload = exception_payload; 809 } else { 810 env->exception_injected = 1; 811 812 if (exception_nr == EXCP01_DB) { 813 assert(exception_has_payload); 814 env->dr[6] = exception_payload; 815 } else if (exception_nr == EXCP0E_PAGE) { 816 assert(exception_has_payload); 817 env->cr[2] = exception_payload; 818 } else { 819 assert(!exception_has_payload); 820 } 821 } 822 } 823 824 static void cpu_update_state(void *opaque, bool running, RunState state) 825 { 826 CPUX86State *env = opaque; 827 828 if (running) { 829 env->tsc_valid = false; 830 } 831 } 832 833 unsigned long kvm_arch_vcpu_id(CPUState *cs) 834 { 835 X86CPU *cpu = X86_CPU(cs); 836 return cpu->apic_id; 837 } 838 839 #ifndef KVM_CPUID_SIGNATURE_NEXT 840 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 841 #endif 842 843 static bool hyperv_enabled(X86CPU *cpu) 844 { 845 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 && 846 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) || 847 cpu->hyperv_features || cpu->hyperv_passthrough); 848 } 849 850 /* 851 * Check whether target_freq is within conservative 852 * ntp correctable bounds (250ppm) of freq 853 */ 854 static inline bool freq_within_bounds(int freq, int target_freq) 855 { 856 int max_freq = freq + (freq * 250 / 1000000); 857 int min_freq = freq - (freq * 250 / 1000000); 858 859 if (target_freq >= min_freq && target_freq <= max_freq) { 860 return true; 861 } 862 863 return false; 864 } 865 866 static int kvm_arch_set_tsc_khz(CPUState *cs) 867 { 868 X86CPU *cpu = X86_CPU(cs); 869 CPUX86State *env = &cpu->env; 870 int r, cur_freq; 871 bool set_ioctl = false; 872 873 /* 874 * TSC of TD vcpu is immutable, it cannot be set/changed via vcpu scope 875 * VM_SET_TSC_KHZ, but only be initialized via VM scope VM_SET_TSC_KHZ 876 * before ioctl KVM_TDX_INIT_VM in tdx_pre_create_vcpu() 877 */ 878 if (is_tdx_vm()) { 879 return 0; 880 } 881 882 if (!env->tsc_khz) { 883 return 0; 884 } 885 886 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 887 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP; 888 889 /* 890 * If TSC scaling is supported, attempt to set TSC frequency. 891 */ 892 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) { 893 set_ioctl = true; 894 } 895 896 /* 897 * If desired TSC frequency is within bounds of NTP correction, 898 * attempt to set TSC frequency. 899 */ 900 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) { 901 set_ioctl = true; 902 } 903 904 r = set_ioctl ? 905 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : 906 -ENOTSUP; 907 908 if (r < 0) { 909 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current 910 * TSC frequency doesn't match the one we want. 911 */ 912 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 913 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 914 -ENOTSUP; 915 if (cur_freq <= 0 || cur_freq != env->tsc_khz) { 916 warn_report("TSC frequency mismatch between " 917 "VM (%" PRId64 " kHz) and host (%d kHz), " 918 "and TSC scaling unavailable", 919 env->tsc_khz, cur_freq); 920 return r; 921 } 922 } 923 924 return 0; 925 } 926 927 static bool tsc_is_stable_and_known(CPUX86State *env) 928 { 929 if (!env->tsc_khz) { 930 return false; 931 } 932 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) 933 || env->user_tsc_khz; 934 } 935 936 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1) 937 938 static struct { 939 const char *desc; 940 struct { 941 uint32_t func; 942 int reg; 943 uint32_t bits; 944 } flags[2]; 945 uint64_t dependencies; 946 bool skip_passthrough; 947 } kvm_hyperv_properties[] = { 948 [HYPERV_FEAT_RELAXED] = { 949 .desc = "relaxed timing (hv-relaxed)", 950 .flags = { 951 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 952 .bits = HV_RELAXED_TIMING_RECOMMENDED} 953 } 954 }, 955 [HYPERV_FEAT_VAPIC] = { 956 .desc = "virtual APIC (hv-vapic)", 957 .flags = { 958 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 959 .bits = HV_APIC_ACCESS_AVAILABLE} 960 } 961 }, 962 [HYPERV_FEAT_TIME] = { 963 .desc = "clocksources (hv-time)", 964 .flags = { 965 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 966 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE} 967 } 968 }, 969 [HYPERV_FEAT_CRASH] = { 970 .desc = "crash MSRs (hv-crash)", 971 .flags = { 972 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 973 .bits = HV_GUEST_CRASH_MSR_AVAILABLE} 974 } 975 }, 976 [HYPERV_FEAT_RESET] = { 977 .desc = "reset MSR (hv-reset)", 978 .flags = { 979 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 980 .bits = HV_RESET_AVAILABLE} 981 } 982 }, 983 [HYPERV_FEAT_VPINDEX] = { 984 .desc = "VP_INDEX MSR (hv-vpindex)", 985 .flags = { 986 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 987 .bits = HV_VP_INDEX_AVAILABLE} 988 } 989 }, 990 [HYPERV_FEAT_RUNTIME] = { 991 .desc = "VP_RUNTIME MSR (hv-runtime)", 992 .flags = { 993 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 994 .bits = HV_VP_RUNTIME_AVAILABLE} 995 } 996 }, 997 [HYPERV_FEAT_SYNIC] = { 998 .desc = "synthetic interrupt controller (hv-synic)", 999 .flags = { 1000 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1001 .bits = HV_SYNIC_AVAILABLE} 1002 } 1003 }, 1004 [HYPERV_FEAT_STIMER] = { 1005 .desc = "synthetic timers (hv-stimer)", 1006 .flags = { 1007 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1008 .bits = HV_SYNTIMERS_AVAILABLE} 1009 }, 1010 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME) 1011 }, 1012 [HYPERV_FEAT_FREQUENCIES] = { 1013 .desc = "frequency MSRs (hv-frequencies)", 1014 .flags = { 1015 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1016 .bits = HV_ACCESS_FREQUENCY_MSRS}, 1017 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1018 .bits = HV_FREQUENCY_MSRS_AVAILABLE} 1019 } 1020 }, 1021 [HYPERV_FEAT_REENLIGHTENMENT] = { 1022 .desc = "reenlightenment MSRs (hv-reenlightenment)", 1023 .flags = { 1024 {.func = HV_CPUID_FEATURES, .reg = R_EAX, 1025 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL} 1026 } 1027 }, 1028 [HYPERV_FEAT_TLBFLUSH] = { 1029 .desc = "paravirtualized TLB flush (hv-tlbflush)", 1030 .flags = { 1031 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1032 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED | 1033 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1034 }, 1035 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1036 }, 1037 [HYPERV_FEAT_EVMCS] = { 1038 .desc = "enlightened VMCS (hv-evmcs)", 1039 .flags = { 1040 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1041 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED} 1042 }, 1043 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1044 }, 1045 [HYPERV_FEAT_IPI] = { 1046 .desc = "paravirtualized IPI (hv-ipi)", 1047 .flags = { 1048 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1049 .bits = HV_CLUSTER_IPI_RECOMMENDED | 1050 HV_EX_PROCESSOR_MASKS_RECOMMENDED} 1051 }, 1052 .dependencies = BIT(HYPERV_FEAT_VPINDEX) 1053 }, 1054 [HYPERV_FEAT_STIMER_DIRECT] = { 1055 .desc = "direct mode synthetic timers (hv-stimer-direct)", 1056 .flags = { 1057 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1058 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE} 1059 }, 1060 .dependencies = BIT(HYPERV_FEAT_STIMER) 1061 }, 1062 [HYPERV_FEAT_AVIC] = { 1063 .desc = "AVIC/APICv support (hv-avic/hv-apicv)", 1064 .flags = { 1065 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX, 1066 .bits = HV_DEPRECATING_AEOI_RECOMMENDED} 1067 } 1068 }, 1069 [HYPERV_FEAT_SYNDBG] = { 1070 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)", 1071 .flags = { 1072 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1073 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE} 1074 }, 1075 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED), 1076 .skip_passthrough = true, 1077 }, 1078 [HYPERV_FEAT_MSR_BITMAP] = { 1079 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)", 1080 .flags = { 1081 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1082 .bits = HV_NESTED_MSR_BITMAP} 1083 } 1084 }, 1085 [HYPERV_FEAT_XMM_INPUT] = { 1086 .desc = "XMM fast hypercall input (hv-xmm-input)", 1087 .flags = { 1088 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1089 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE} 1090 } 1091 }, 1092 [HYPERV_FEAT_TLBFLUSH_EXT] = { 1093 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)", 1094 .flags = { 1095 {.func = HV_CPUID_FEATURES, .reg = R_EDX, 1096 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE} 1097 }, 1098 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH) 1099 }, 1100 [HYPERV_FEAT_TLBFLUSH_DIRECT] = { 1101 .desc = "direct TLB flush (hv-tlbflush-direct)", 1102 .flags = { 1103 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX, 1104 .bits = HV_NESTED_DIRECT_FLUSH} 1105 }, 1106 .dependencies = BIT(HYPERV_FEAT_VAPIC) 1107 }, 1108 }; 1109 1110 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max, 1111 bool do_sys_ioctl) 1112 { 1113 struct kvm_cpuid2 *cpuid; 1114 int r, size; 1115 1116 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); 1117 cpuid = g_malloc0(size); 1118 cpuid->nent = max; 1119 1120 if (do_sys_ioctl) { 1121 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1122 } else { 1123 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid); 1124 } 1125 if (r == 0 && cpuid->nent >= max) { 1126 r = -E2BIG; 1127 } 1128 if (r < 0) { 1129 if (r == -E2BIG) { 1130 g_free(cpuid); 1131 return NULL; 1132 } else { 1133 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n", 1134 strerror(-r)); 1135 exit(1); 1136 } 1137 } 1138 return cpuid; 1139 } 1140 1141 /* 1142 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough 1143 * for all entries. 1144 */ 1145 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs) 1146 { 1147 struct kvm_cpuid2 *cpuid; 1148 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */ 1149 int max = 11; 1150 int i; 1151 bool do_sys_ioctl; 1152 1153 do_sys_ioctl = 1154 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0; 1155 1156 /* 1157 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is 1158 * unsupported, kvm_hyperv_expand_features() checks for that. 1159 */ 1160 assert(do_sys_ioctl || cs->kvm_state); 1161 1162 /* 1163 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with 1164 * -E2BIG, however, it doesn't report back the right size. Keep increasing 1165 * it and re-trying until we succeed. 1166 */ 1167 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) { 1168 max++; 1169 } 1170 1171 /* 1172 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before 1173 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the 1174 * information early, just check for the capability and set the bit 1175 * manually. 1176 */ 1177 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state, 1178 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1179 for (i = 0; i < cpuid->nent; i++) { 1180 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) { 1181 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1182 } 1183 } 1184 } 1185 1186 return cpuid; 1187 } 1188 1189 /* 1190 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature 1191 * leaves from KVM_CAP_HYPERV* and present MSRs data. 1192 */ 1193 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs) 1194 { 1195 X86CPU *cpu = X86_CPU(cs); 1196 struct kvm_cpuid2 *cpuid; 1197 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm; 1198 1199 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */ 1200 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries)); 1201 cpuid->nent = 2; 1202 1203 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */ 1204 entry_feat = &cpuid->entries[0]; 1205 entry_feat->function = HV_CPUID_FEATURES; 1206 1207 entry_recomm = &cpuid->entries[1]; 1208 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO; 1209 entry_recomm->ebx = cpu->hyperv_spinlock_attempts; 1210 1211 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) { 1212 entry_feat->eax |= HV_HYPERCALL_AVAILABLE; 1213 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE; 1214 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1215 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED; 1216 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED; 1217 } 1218 1219 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) { 1220 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE; 1221 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE; 1222 } 1223 1224 if (has_msr_hv_frequencies) { 1225 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS; 1226 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE; 1227 } 1228 1229 if (has_msr_hv_crash) { 1230 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE; 1231 } 1232 1233 if (has_msr_hv_reenlightenment) { 1234 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL; 1235 } 1236 1237 if (has_msr_hv_reset) { 1238 entry_feat->eax |= HV_RESET_AVAILABLE; 1239 } 1240 1241 if (has_msr_hv_vpindex) { 1242 entry_feat->eax |= HV_VP_INDEX_AVAILABLE; 1243 } 1244 1245 if (has_msr_hv_runtime) { 1246 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE; 1247 } 1248 1249 if (has_msr_hv_synic) { 1250 unsigned int cap = cpu->hyperv_synic_kvm_only ? 1251 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1252 1253 if (kvm_check_extension(cs->kvm_state, cap) > 0) { 1254 entry_feat->eax |= HV_SYNIC_AVAILABLE; 1255 } 1256 } 1257 1258 if (has_msr_hv_stimer) { 1259 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE; 1260 } 1261 1262 if (has_msr_hv_syndbg_options) { 1263 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE; 1264 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE; 1265 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED; 1266 } 1267 1268 if (kvm_check_extension(cs->kvm_state, 1269 KVM_CAP_HYPERV_TLBFLUSH) > 0) { 1270 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED; 1271 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1272 } 1273 1274 if (kvm_check_extension(cs->kvm_state, 1275 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) { 1276 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED; 1277 } 1278 1279 if (kvm_check_extension(cs->kvm_state, 1280 KVM_CAP_HYPERV_SEND_IPI) > 0) { 1281 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED; 1282 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED; 1283 } 1284 1285 return cpuid; 1286 } 1287 1288 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg) 1289 { 1290 struct kvm_cpuid_entry2 *entry; 1291 struct kvm_cpuid2 *cpuid; 1292 1293 if (hv_cpuid_cache) { 1294 cpuid = hv_cpuid_cache; 1295 } else { 1296 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) { 1297 cpuid = get_supported_hv_cpuid(cs); 1298 } else { 1299 /* 1300 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded 1301 * before KVM context is created but this is only done when 1302 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies 1303 * KVM_CAP_HYPERV_CPUID. 1304 */ 1305 assert(cs->kvm_state); 1306 1307 cpuid = get_supported_hv_cpuid_legacy(cs); 1308 } 1309 hv_cpuid_cache = cpuid; 1310 } 1311 1312 if (!cpuid) { 1313 return 0; 1314 } 1315 1316 entry = cpuid_find_entry(cpuid, func, 0); 1317 if (!entry) { 1318 return 0; 1319 } 1320 1321 return cpuid_entry_get_reg(entry, reg); 1322 } 1323 1324 static bool hyperv_feature_supported(CPUState *cs, int feature) 1325 { 1326 uint32_t func, bits; 1327 int i, reg; 1328 1329 /* 1330 * kvm_hyperv_properties needs to define at least one CPUID flag which 1331 * must be used to detect the feature, it's hard to say whether it is 1332 * supported or not otherwise. 1333 */ 1334 assert(kvm_hyperv_properties[feature].flags[0].func); 1335 1336 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) { 1337 1338 func = kvm_hyperv_properties[feature].flags[i].func; 1339 reg = kvm_hyperv_properties[feature].flags[i].reg; 1340 bits = kvm_hyperv_properties[feature].flags[i].bits; 1341 1342 if (!func) { 1343 continue; 1344 } 1345 1346 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) { 1347 return false; 1348 } 1349 } 1350 1351 return true; 1352 } 1353 1354 /* Checks that all feature dependencies are enabled */ 1355 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp) 1356 { 1357 uint64_t deps; 1358 int dep_feat; 1359 1360 deps = kvm_hyperv_properties[feature].dependencies; 1361 while (deps) { 1362 dep_feat = ctz64(deps); 1363 if (!(hyperv_feat_enabled(cpu, dep_feat))) { 1364 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1365 kvm_hyperv_properties[feature].desc, 1366 kvm_hyperv_properties[dep_feat].desc); 1367 return false; 1368 } 1369 deps &= ~(1ull << dep_feat); 1370 } 1371 1372 return true; 1373 } 1374 1375 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg) 1376 { 1377 X86CPU *cpu = X86_CPU(cs); 1378 uint32_t r = 0; 1379 int i, j; 1380 1381 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) { 1382 if (!hyperv_feat_enabled(cpu, i)) { 1383 continue; 1384 } 1385 1386 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) { 1387 if (kvm_hyperv_properties[i].flags[j].func != func) { 1388 continue; 1389 } 1390 if (kvm_hyperv_properties[i].flags[j].reg != reg) { 1391 continue; 1392 } 1393 1394 r |= kvm_hyperv_properties[i].flags[j].bits; 1395 } 1396 } 1397 1398 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */ 1399 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) { 1400 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1401 r |= DEFAULT_EVMCS_VERSION; 1402 } 1403 } 1404 1405 return r; 1406 } 1407 1408 /* 1409 * Expand Hyper-V CPU features. In partucular, check that all the requested 1410 * features are supported by the host and the sanity of the configuration 1411 * (that all the required dependencies are included). Also, this takes care 1412 * of 'hv_passthrough' mode and fills the environment with all supported 1413 * Hyper-V features. 1414 */ 1415 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp) 1416 { 1417 CPUState *cs = CPU(cpu); 1418 Error *local_err = NULL; 1419 int feat; 1420 1421 if (!hyperv_enabled(cpu)) 1422 return true; 1423 1424 /* 1425 * When kvm_hyperv_expand_features is called at CPU feature expansion 1426 * time per-CPU kvm_state is not available yet so we can only proceed 1427 * when KVM_CAP_SYS_HYPERV_CPUID is supported. 1428 */ 1429 if (!cs->kvm_state && 1430 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID)) 1431 return true; 1432 1433 if (cpu->hyperv_passthrough) { 1434 cpu->hyperv_vendor_id[0] = 1435 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX); 1436 cpu->hyperv_vendor_id[1] = 1437 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX); 1438 cpu->hyperv_vendor_id[2] = 1439 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX); 1440 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor, 1441 sizeof(cpu->hyperv_vendor_id) + 1); 1442 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id, 1443 sizeof(cpu->hyperv_vendor_id)); 1444 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0; 1445 1446 cpu->hyperv_interface_id[0] = 1447 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX); 1448 cpu->hyperv_interface_id[1] = 1449 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX); 1450 cpu->hyperv_interface_id[2] = 1451 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX); 1452 cpu->hyperv_interface_id[3] = 1453 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX); 1454 1455 cpu->hyperv_ver_id_build = 1456 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX); 1457 cpu->hyperv_ver_id_major = 1458 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16; 1459 cpu->hyperv_ver_id_minor = 1460 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff; 1461 cpu->hyperv_ver_id_sp = 1462 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX); 1463 cpu->hyperv_ver_id_sb = 1464 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24; 1465 cpu->hyperv_ver_id_sn = 1466 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff; 1467 1468 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, 1469 R_EAX); 1470 cpu->hyperv_limits[0] = 1471 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX); 1472 cpu->hyperv_limits[1] = 1473 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX); 1474 cpu->hyperv_limits[2] = 1475 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX); 1476 1477 cpu->hyperv_spinlock_attempts = 1478 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX); 1479 1480 /* 1481 * Mark feature as enabled in 'cpu->hyperv_features' as 1482 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs. 1483 */ 1484 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1485 if (hyperv_feature_supported(cs, feat) && 1486 !kvm_hyperv_properties[feat].skip_passthrough) { 1487 cpu->hyperv_features |= BIT(feat); 1488 } 1489 } 1490 } else { 1491 /* Check features availability and dependencies */ 1492 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) { 1493 /* If the feature was not requested skip it. */ 1494 if (!hyperv_feat_enabled(cpu, feat)) { 1495 continue; 1496 } 1497 1498 /* Check if the feature is supported by KVM */ 1499 if (!hyperv_feature_supported(cs, feat)) { 1500 error_setg(errp, "Hyper-V %s is not supported by kernel", 1501 kvm_hyperv_properties[feat].desc); 1502 return false; 1503 } 1504 1505 /* Check dependencies */ 1506 if (!hv_feature_check_deps(cpu, feat, &local_err)) { 1507 error_propagate(errp, local_err); 1508 return false; 1509 } 1510 } 1511 } 1512 1513 /* Additional dependencies not covered by kvm_hyperv_properties[] */ 1514 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1515 !cpu->hyperv_synic_kvm_only && 1516 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) { 1517 error_setg(errp, "Hyper-V %s requires Hyper-V %s", 1518 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc, 1519 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc); 1520 return false; 1521 } 1522 1523 return true; 1524 } 1525 1526 /* 1527 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent. 1528 */ 1529 static int hyperv_fill_cpuids(CPUState *cs, 1530 struct kvm_cpuid_entry2 *cpuid_ent) 1531 { 1532 X86CPU *cpu = X86_CPU(cs); 1533 struct kvm_cpuid_entry2 *c; 1534 uint32_t signature[3]; 1535 uint32_t cpuid_i = 0, max_cpuid_leaf = 0; 1536 uint32_t nested_eax = 1537 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX); 1538 1539 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES : 1540 HV_CPUID_IMPLEMENT_LIMITS; 1541 1542 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1543 max_cpuid_leaf = 1544 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES); 1545 } 1546 1547 c = &cpuid_ent[cpuid_i++]; 1548 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS; 1549 c->eax = max_cpuid_leaf; 1550 c->ebx = cpu->hyperv_vendor_id[0]; 1551 c->ecx = cpu->hyperv_vendor_id[1]; 1552 c->edx = cpu->hyperv_vendor_id[2]; 1553 1554 c = &cpuid_ent[cpuid_i++]; 1555 c->function = HV_CPUID_INTERFACE; 1556 c->eax = cpu->hyperv_interface_id[0]; 1557 c->ebx = cpu->hyperv_interface_id[1]; 1558 c->ecx = cpu->hyperv_interface_id[2]; 1559 c->edx = cpu->hyperv_interface_id[3]; 1560 1561 c = &cpuid_ent[cpuid_i++]; 1562 c->function = HV_CPUID_VERSION; 1563 c->eax = cpu->hyperv_ver_id_build; 1564 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 | 1565 cpu->hyperv_ver_id_minor; 1566 c->ecx = cpu->hyperv_ver_id_sp; 1567 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 | 1568 (cpu->hyperv_ver_id_sn & 0xffffff); 1569 1570 c = &cpuid_ent[cpuid_i++]; 1571 c->function = HV_CPUID_FEATURES; 1572 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX); 1573 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX); 1574 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX); 1575 1576 /* Unconditionally required with any Hyper-V enlightenment */ 1577 c->eax |= HV_HYPERCALL_AVAILABLE; 1578 1579 /* SynIC and Vmbus devices require messages/signals hypercalls */ 1580 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) && 1581 !cpu->hyperv_synic_kvm_only) { 1582 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS; 1583 } 1584 1585 1586 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */ 1587 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE; 1588 1589 c = &cpuid_ent[cpuid_i++]; 1590 c->function = HV_CPUID_ENLIGHTMENT_INFO; 1591 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX); 1592 c->ebx = cpu->hyperv_spinlock_attempts; 1593 1594 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1595 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) { 1596 c->eax |= HV_APIC_ACCESS_RECOMMENDED; 1597 } 1598 1599 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) { 1600 c->eax |= HV_NO_NONARCH_CORESHARING; 1601 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) { 1602 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) & 1603 HV_NO_NONARCH_CORESHARING; 1604 } 1605 1606 c = &cpuid_ent[cpuid_i++]; 1607 c->function = HV_CPUID_IMPLEMENT_LIMITS; 1608 c->eax = cpu->hv_max_vps; 1609 c->ebx = cpu->hyperv_limits[0]; 1610 c->ecx = cpu->hyperv_limits[1]; 1611 c->edx = cpu->hyperv_limits[2]; 1612 1613 if (nested_eax) { 1614 uint32_t function; 1615 1616 /* Create zeroed 0x40000006..0x40000009 leaves */ 1617 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1; 1618 function < HV_CPUID_NESTED_FEATURES; function++) { 1619 c = &cpuid_ent[cpuid_i++]; 1620 c->function = function; 1621 } 1622 1623 c = &cpuid_ent[cpuid_i++]; 1624 c->function = HV_CPUID_NESTED_FEATURES; 1625 c->eax = nested_eax; 1626 } 1627 1628 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) { 1629 c = &cpuid_ent[cpuid_i++]; 1630 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS; 1631 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ? 1632 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS; 1633 memcpy(signature, "Microsoft VS", 12); 1634 c->eax = 0; 1635 c->ebx = signature[0]; 1636 c->ecx = signature[1]; 1637 c->edx = signature[2]; 1638 1639 c = &cpuid_ent[cpuid_i++]; 1640 c->function = HV_CPUID_SYNDBG_INTERFACE; 1641 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12); 1642 c->eax = signature[0]; 1643 c->ebx = 0; 1644 c->ecx = 0; 1645 c->edx = 0; 1646 1647 c = &cpuid_ent[cpuid_i++]; 1648 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES; 1649 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING; 1650 c->ebx = 0; 1651 c->ecx = 0; 1652 c->edx = 0; 1653 } 1654 1655 return cpuid_i; 1656 } 1657 1658 static Error *hv_passthrough_mig_blocker; 1659 static Error *hv_no_nonarch_cs_mig_blocker; 1660 1661 /* Checks that the exposed eVMCS version range is supported by KVM */ 1662 static bool evmcs_version_supported(uint16_t evmcs_version, 1663 uint16_t supported_evmcs_version) 1664 { 1665 uint8_t min_version = evmcs_version & 0xff; 1666 uint8_t max_version = evmcs_version >> 8; 1667 uint8_t min_supported_version = supported_evmcs_version & 0xff; 1668 uint8_t max_supported_version = supported_evmcs_version >> 8; 1669 1670 return (min_version >= min_supported_version) && 1671 (max_version <= max_supported_version); 1672 } 1673 1674 static int hyperv_init_vcpu(X86CPU *cpu) 1675 { 1676 CPUState *cs = CPU(cpu); 1677 Error *local_err = NULL; 1678 int ret; 1679 1680 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) { 1681 error_setg(&hv_passthrough_mig_blocker, 1682 "'hv-passthrough' CPU flag prevents migration, use explicit" 1683 " set of hv-* flags instead"); 1684 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err); 1685 if (ret < 0) { 1686 error_report_err(local_err); 1687 return ret; 1688 } 1689 } 1690 1691 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO && 1692 hv_no_nonarch_cs_mig_blocker == NULL) { 1693 error_setg(&hv_no_nonarch_cs_mig_blocker, 1694 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration" 1695 " use explicit 'hv-no-nonarch-coresharing=on' instead (but" 1696 " make sure SMT is disabled and/or that vCPUs are properly" 1697 " pinned)"); 1698 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err); 1699 if (ret < 0) { 1700 error_report_err(local_err); 1701 return ret; 1702 } 1703 } 1704 1705 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) { 1706 /* 1707 * the kernel doesn't support setting vp_index; assert that its value 1708 * is in sync 1709 */ 1710 uint64_t value; 1711 1712 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value); 1713 if (ret < 0) { 1714 return ret; 1715 } 1716 1717 if (value != hyperv_vp_index(CPU(cpu))) { 1718 error_report("kernel's vp_index != QEMU's vp_index"); 1719 return -ENXIO; 1720 } 1721 } 1722 1723 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 1724 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ? 1725 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2; 1726 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0); 1727 if (ret < 0) { 1728 error_report("failed to turn on HyperV SynIC in KVM: %s", 1729 strerror(-ret)); 1730 return ret; 1731 } 1732 1733 if (!cpu->hyperv_synic_kvm_only) { 1734 ret = hyperv_x86_synic_add(cpu); 1735 if (ret < 0) { 1736 error_report("failed to create HyperV SynIC: %s", 1737 strerror(-ret)); 1738 return ret; 1739 } 1740 } 1741 } 1742 1743 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) { 1744 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION; 1745 uint16_t supported_evmcs_version; 1746 1747 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0, 1748 (uintptr_t)&supported_evmcs_version); 1749 1750 /* 1751 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs' 1752 * option sets. Note: we hardcode the maximum supported eVMCS version 1753 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if) 1754 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have 1755 * to be added. 1756 */ 1757 if (ret < 0) { 1758 error_report("Hyper-V %s is not supported by kernel", 1759 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc); 1760 return ret; 1761 } 1762 1763 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) { 1764 error_report("eVMCS version range [%d..%d] is not supported by " 1765 "kernel (supported: [%d..%d])", evmcs_version & 0xff, 1766 evmcs_version >> 8, supported_evmcs_version & 0xff, 1767 supported_evmcs_version >> 8); 1768 return -ENOTSUP; 1769 } 1770 } 1771 1772 if (cpu->hyperv_enforce_cpuid) { 1773 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1); 1774 if (ret < 0) { 1775 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s", 1776 strerror(-ret)); 1777 return ret; 1778 } 1779 } 1780 1781 /* Skip SynIC and VP_INDEX since they are hard deps already */ 1782 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) && 1783 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) && 1784 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) { 1785 hyperv_x86_set_vmbus_recommended_features_enabled(); 1786 } 1787 1788 return 0; 1789 } 1790 1791 static Error *invtsc_mig_blocker; 1792 1793 static void kvm_init_xsave(CPUX86State *env) 1794 { 1795 if (has_xsave2) { 1796 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096); 1797 } else { 1798 env->xsave_buf_len = sizeof(struct kvm_xsave); 1799 } 1800 1801 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len); 1802 memset(env->xsave_buf, 0, env->xsave_buf_len); 1803 /* 1804 * The allocated storage must be large enough for all of the 1805 * possible XSAVE state components. 1806 */ 1807 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <= 1808 env->xsave_buf_len); 1809 } 1810 1811 static void kvm_init_nested_state(CPUX86State *env) 1812 { 1813 struct kvm_vmx_nested_state_hdr *vmx_hdr; 1814 uint32_t size; 1815 1816 if (!env->nested_state) { 1817 return; 1818 } 1819 1820 size = env->nested_state->size; 1821 1822 memset(env->nested_state, 0, size); 1823 env->nested_state->size = size; 1824 1825 if (cpu_has_vmx(env)) { 1826 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX; 1827 vmx_hdr = &env->nested_state->hdr.vmx; 1828 vmx_hdr->vmxon_pa = -1ull; 1829 vmx_hdr->vmcs12_pa = -1ull; 1830 } else if (cpu_has_svm(env)) { 1831 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM; 1832 } 1833 } 1834 1835 uint32_t kvm_x86_build_cpuid(CPUX86State *env, struct kvm_cpuid_entry2 *entries, 1836 uint32_t cpuid_i) 1837 { 1838 uint32_t limit, i, j; 1839 uint32_t unused; 1840 struct kvm_cpuid_entry2 *c; 1841 1842 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); 1843 1844 for (i = 0; i <= limit; i++) { 1845 j = 0; 1846 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1847 goto full; 1848 } 1849 c = &entries[cpuid_i++]; 1850 switch (i) { 1851 case 2: { 1852 /* Keep reading function 2 till all the input is received */ 1853 int times; 1854 1855 c->function = i; 1856 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1857 times = c->eax & 0xff; 1858 if (times > 1) { 1859 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | 1860 KVM_CPUID_FLAG_STATE_READ_NEXT; 1861 } 1862 1863 for (j = 1; j < times; ++j) { 1864 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1865 goto full; 1866 } 1867 c = &entries[cpuid_i++]; 1868 c->function = i; 1869 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; 1870 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1871 } 1872 break; 1873 } 1874 case 0x1f: 1875 if (!x86_has_cpuid_0x1f(env_archcpu(env))) { 1876 cpuid_i--; 1877 break; 1878 } 1879 /* fallthrough */ 1880 case 4: 1881 case 0xb: 1882 case 0xd: 1883 for (j = 0; ; j++) { 1884 c->function = i; 1885 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1886 c->index = j; 1887 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1888 1889 if (i == 4 && c->eax == 0) { 1890 break; 1891 } 1892 if (i == 0xb && !(c->ecx & 0xff00)) { 1893 break; 1894 } 1895 if (i == 0x1f && !(c->ecx & 0xff00)) { 1896 break; 1897 } 1898 if (i == 0xd && c->eax == 0) { 1899 if (j < 63) { 1900 continue; 1901 } else { 1902 cpuid_i--; 1903 break; 1904 } 1905 } 1906 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1907 goto full; 1908 } 1909 c = &entries[cpuid_i++]; 1910 } 1911 break; 1912 case 0x12: 1913 for (j = 0; ; j++) { 1914 c->function = i; 1915 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1916 c->index = j; 1917 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1918 1919 if (j > 1 && (c->eax & 0xf) != 1) { 1920 break; 1921 } 1922 1923 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1924 goto full; 1925 } 1926 c = &entries[cpuid_i++]; 1927 } 1928 break; 1929 case 0x7: 1930 case 0x14: 1931 case 0x1d: 1932 case 0x1e: 1933 case 0x24: { 1934 uint32_t times; 1935 1936 c->function = i; 1937 c->index = 0; 1938 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1939 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1940 times = c->eax; 1941 1942 for (j = 1; j <= times; ++j) { 1943 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 1944 goto full; 1945 } 1946 c = &entries[cpuid_i++]; 1947 c->function = i; 1948 c->index = j; 1949 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 1950 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 1951 } 1952 break; 1953 } 1954 default: 1955 c->function = i; 1956 c->flags = 0; 1957 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 1958 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 1959 /* 1960 * KVM already returns all zeroes if a CPUID entry is missing, 1961 * so we can omit it and avoid hitting KVM's 80-entry limit. 1962 */ 1963 cpuid_i--; 1964 } 1965 break; 1966 } 1967 } 1968 1969 if (limit >= 0x0a) { 1970 uint32_t eax, edx; 1971 1972 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx); 1973 1974 has_architectural_pmu_version = eax & 0xff; 1975 if (has_architectural_pmu_version > 0) { 1976 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8; 1977 1978 /* Shouldn't be more than 32, since that's the number of bits 1979 * available in EBX to tell us _which_ counters are available. 1980 * Play it safe. 1981 */ 1982 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) { 1983 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS; 1984 } 1985 1986 if (has_architectural_pmu_version > 1) { 1987 num_architectural_pmu_fixed_counters = edx & 0x1f; 1988 1989 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) { 1990 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS; 1991 } 1992 } 1993 } 1994 } 1995 1996 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); 1997 1998 for (i = 0x80000000; i <= limit; i++) { 1999 j = 0; 2000 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2001 goto full; 2002 } 2003 c = &entries[cpuid_i++]; 2004 2005 switch (i) { 2006 case 0x8000001d: 2007 /* Query for all AMD cache information leaves */ 2008 for (j = 0; ; j++) { 2009 c->function = i; 2010 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 2011 c->index = j; 2012 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); 2013 2014 if (c->eax == 0) { 2015 break; 2016 } 2017 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2018 goto full; 2019 } 2020 c = &entries[cpuid_i++]; 2021 } 2022 break; 2023 default: 2024 c->function = i; 2025 c->flags = 0; 2026 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2027 if (!c->eax && !c->ebx && !c->ecx && !c->edx) { 2028 /* 2029 * KVM already returns all zeroes if a CPUID entry is missing, 2030 * so we can omit it and avoid hitting KVM's 80-entry limit. 2031 */ 2032 cpuid_i--; 2033 } 2034 break; 2035 } 2036 } 2037 2038 /* Call Centaur's CPUID instructions they are supported. */ 2039 if (env->cpuid_xlevel2 > 0) { 2040 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); 2041 2042 for (i = 0xC0000000; i <= limit; i++) { 2043 j = 0; 2044 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { 2045 goto full; 2046 } 2047 c = &entries[cpuid_i++]; 2048 2049 c->function = i; 2050 c->flags = 0; 2051 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); 2052 } 2053 } 2054 2055 return cpuid_i; 2056 2057 full: 2058 fprintf(stderr, "cpuid_data is full, no space for " 2059 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); 2060 abort(); 2061 } 2062 2063 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp) 2064 { 2065 if (is_tdx_vm()) { 2066 return tdx_pre_create_vcpu(cpu, errp); 2067 } 2068 2069 return 0; 2070 } 2071 2072 int kvm_arch_init_vcpu(CPUState *cs) 2073 { 2074 struct { 2075 struct kvm_cpuid2 cpuid; 2076 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; 2077 } cpuid_data; 2078 /* 2079 * The kernel defines these structs with padding fields so there 2080 * should be no extra padding in our cpuid_data struct. 2081 */ 2082 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) != 2083 sizeof(struct kvm_cpuid2) + 2084 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES); 2085 2086 X86CPU *cpu = X86_CPU(cs); 2087 CPUX86State *env = &cpu->env; 2088 uint32_t cpuid_i; 2089 struct kvm_cpuid_entry2 *c; 2090 uint32_t signature[3]; 2091 int kvm_base = KVM_CPUID_SIGNATURE; 2092 int max_nested_state_len; 2093 int r; 2094 Error *local_err = NULL; 2095 2096 if (current_machine->cgs) { 2097 r = x86_confidential_guest_check_features( 2098 X86_CONFIDENTIAL_GUEST(current_machine->cgs), cs); 2099 if (r < 0) { 2100 return r; 2101 } 2102 } 2103 2104 memset(&cpuid_data, 0, sizeof(cpuid_data)); 2105 2106 cpuid_i = 0; 2107 2108 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2); 2109 2110 r = kvm_arch_set_tsc_khz(cs); 2111 if (r < 0) { 2112 return r; 2113 } 2114 2115 /* vcpu's TSC frequency is either specified by user, or following 2116 * the value used by KVM if the former is not present. In the 2117 * latter case, we query it from KVM and record in env->tsc_khz, 2118 * so that vcpu's TSC frequency can be migrated later via this field. 2119 */ 2120 if (!env->tsc_khz) { 2121 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? 2122 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : 2123 -ENOTSUP; 2124 if (r > 0) { 2125 env->tsc_khz = r; 2126 } 2127 } 2128 2129 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY; 2130 2131 /* 2132 * kvm_hyperv_expand_features() is called here for the second time in case 2133 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle 2134 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to 2135 * check which Hyper-V enlightenments are supported and which are not, we 2136 * can still proceed and check/expand Hyper-V enlightenments here so legacy 2137 * behavior is preserved. 2138 */ 2139 if (!kvm_hyperv_expand_features(cpu, &local_err)) { 2140 error_report_err(local_err); 2141 return -ENOSYS; 2142 } 2143 2144 if (hyperv_enabled(cpu)) { 2145 r = hyperv_init_vcpu(cpu); 2146 if (r) { 2147 return r; 2148 } 2149 2150 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries); 2151 kvm_base = KVM_CPUID_SIGNATURE_NEXT; 2152 has_msr_hv_hypercall = true; 2153 } 2154 2155 if (cs->kvm_state->xen_version) { 2156 #ifdef CONFIG_XEN_EMU 2157 struct kvm_cpuid_entry2 *xen_max_leaf; 2158 2159 memcpy(signature, "XenVMMXenVMM", 12); 2160 2161 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++]; 2162 c->function = kvm_base + XEN_CPUID_SIGNATURE; 2163 c->eax = kvm_base + XEN_CPUID_TIME; 2164 c->ebx = signature[0]; 2165 c->ecx = signature[1]; 2166 c->edx = signature[2]; 2167 2168 c = &cpuid_data.entries[cpuid_i++]; 2169 c->function = kvm_base + XEN_CPUID_VENDOR; 2170 c->eax = cs->kvm_state->xen_version; 2171 c->ebx = 0; 2172 c->ecx = 0; 2173 c->edx = 0; 2174 2175 c = &cpuid_data.entries[cpuid_i++]; 2176 c->function = kvm_base + XEN_CPUID_HVM_MSR; 2177 /* Number of hypercall-transfer pages */ 2178 c->eax = 1; 2179 /* Hypercall MSR base address */ 2180 if (hyperv_enabled(cpu)) { 2181 c->ebx = XEN_HYPERCALL_MSR_HYPERV; 2182 kvm_xen_init(cs->kvm_state, c->ebx); 2183 } else { 2184 c->ebx = XEN_HYPERCALL_MSR; 2185 } 2186 c->ecx = 0; 2187 c->edx = 0; 2188 2189 c = &cpuid_data.entries[cpuid_i++]; 2190 c->function = kvm_base + XEN_CPUID_TIME; 2191 c->eax = ((!!tsc_is_stable_and_known(env) << 1) | 2192 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2)); 2193 /* default=0 (emulate if necessary) */ 2194 c->ebx = 0; 2195 /* guest tsc frequency */ 2196 c->ecx = env->user_tsc_khz; 2197 /* guest tsc incarnation (migration count) */ 2198 c->edx = 0; 2199 2200 c = &cpuid_data.entries[cpuid_i++]; 2201 c->function = kvm_base + XEN_CPUID_HVM; 2202 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM; 2203 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) { 2204 c->function = kvm_base + XEN_CPUID_HVM; 2205 2206 if (cpu->xen_vapic) { 2207 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT; 2208 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT; 2209 } 2210 2211 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS; 2212 2213 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) { 2214 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT; 2215 c->ebx = cs->cpu_index; 2216 } 2217 2218 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) { 2219 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR; 2220 } 2221 } 2222 2223 r = kvm_xen_init_vcpu(cs); 2224 if (r) { 2225 return r; 2226 } 2227 2228 kvm_base += 0x100; 2229 #else /* CONFIG_XEN_EMU */ 2230 /* This should never happen as kvm_arch_init() would have died first. */ 2231 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n"); 2232 abort(); 2233 #endif 2234 } else if (cpu->expose_kvm) { 2235 memcpy(signature, "KVMKVMKVM\0\0\0", 12); 2236 c = &cpuid_data.entries[cpuid_i++]; 2237 c->function = KVM_CPUID_SIGNATURE | kvm_base; 2238 c->eax = KVM_CPUID_FEATURES | kvm_base; 2239 c->ebx = signature[0]; 2240 c->ecx = signature[1]; 2241 c->edx = signature[2]; 2242 2243 c = &cpuid_data.entries[cpuid_i++]; 2244 c->function = KVM_CPUID_FEATURES | kvm_base; 2245 c->eax = env->features[FEAT_KVM]; 2246 c->edx = env->features[FEAT_KVM_HINTS]; 2247 } 2248 2249 if (cpu->kvm_pv_enforce_cpuid) { 2250 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1); 2251 if (r < 0) { 2252 fprintf(stderr, 2253 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s", 2254 strerror(-r)); 2255 abort(); 2256 } 2257 } 2258 2259 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i); 2260 cpuid_data.cpuid.nent = cpuid_i; 2261 2262 if (((env->cpuid_version >> 8)&0xF) >= 6 2263 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == 2264 (CPUID_MCE | CPUID_MCA)) { 2265 uint64_t mcg_cap, unsupported_caps; 2266 int banks; 2267 int ret; 2268 2269 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); 2270 if (ret < 0) { 2271 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); 2272 return ret; 2273 } 2274 2275 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { 2276 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", 2277 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); 2278 return -ENOTSUP; 2279 } 2280 2281 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); 2282 if (unsupported_caps) { 2283 if (unsupported_caps & MCG_LMCE_P) { 2284 error_report("kvm: LMCE not supported"); 2285 return -ENOTSUP; 2286 } 2287 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64, 2288 unsupported_caps); 2289 } 2290 2291 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; 2292 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); 2293 if (ret < 0) { 2294 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); 2295 return ret; 2296 } 2297 } 2298 2299 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env); 2300 2301 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); 2302 if (c) { 2303 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || 2304 !!(c->ecx & CPUID_EXT_SMX); 2305 } 2306 2307 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0); 2308 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) { 2309 has_msr_feature_control = true; 2310 } 2311 2312 if (env->mcg_cap & MCG_LMCE_P) { 2313 has_msr_mcg_ext_ctl = has_msr_feature_control = true; 2314 } 2315 2316 if (!env->user_tsc_khz) { 2317 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && 2318 invtsc_mig_blocker == NULL) { 2319 error_setg(&invtsc_mig_blocker, 2320 "State blocked by non-migratable CPU device" 2321 " (invtsc flag)"); 2322 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err); 2323 if (r < 0) { 2324 error_report_err(local_err); 2325 return r; 2326 } 2327 } 2328 } 2329 2330 if (cpu->vmware_cpuid_freq 2331 /* Guests depend on 0x40000000 to detect this feature, so only expose 2332 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ 2333 && cpu->expose_kvm 2334 && kvm_base == KVM_CPUID_SIGNATURE 2335 /* TSC clock must be stable and known for this feature. */ 2336 && tsc_is_stable_and_known(env)) { 2337 2338 c = &cpuid_data.entries[cpuid_i++]; 2339 c->function = KVM_CPUID_SIGNATURE | 0x10; 2340 c->eax = env->tsc_khz; 2341 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */ 2342 c->ecx = c->edx = 0; 2343 2344 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); 2345 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); 2346 } 2347 2348 cpuid_data.cpuid.nent = cpuid_i; 2349 2350 cpuid_data.cpuid.padding = 0; 2351 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); 2352 if (r) { 2353 goto fail; 2354 } 2355 kvm_init_xsave(env); 2356 2357 max_nested_state_len = kvm_max_nested_state_length(); 2358 if (max_nested_state_len > 0) { 2359 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data)); 2360 2361 if (cpu_has_vmx(env) || cpu_has_svm(env)) { 2362 env->nested_state = g_malloc0(max_nested_state_len); 2363 env->nested_state->size = max_nested_state_len; 2364 2365 kvm_init_nested_state(env); 2366 } 2367 } 2368 2369 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); 2370 2371 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { 2372 has_msr_tsc_aux = false; 2373 } 2374 2375 kvm_init_msrs(cpu); 2376 2377 return 0; 2378 2379 fail: 2380 migrate_del_blocker(&invtsc_mig_blocker); 2381 2382 return r; 2383 } 2384 2385 int kvm_arch_destroy_vcpu(CPUState *cs) 2386 { 2387 X86CPU *cpu = X86_CPU(cs); 2388 CPUX86State *env = &cpu->env; 2389 2390 g_free(env->xsave_buf); 2391 2392 g_free(cpu->kvm_msr_buf); 2393 cpu->kvm_msr_buf = NULL; 2394 2395 g_free(env->nested_state); 2396 env->nested_state = NULL; 2397 2398 qemu_del_vm_change_state_handler(cpu->vmsentry); 2399 2400 return 0; 2401 } 2402 2403 void kvm_arch_reset_vcpu(X86CPU *cpu) 2404 { 2405 CPUX86State *env = &cpu->env; 2406 2407 env->xcr0 = 1; 2408 if (kvm_irqchip_in_kernel()) { 2409 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : 2410 KVM_MP_STATE_UNINITIALIZED; 2411 } else { 2412 env->mp_state = KVM_MP_STATE_RUNNABLE; 2413 } 2414 2415 /* enabled by default */ 2416 env->poll_control_msr = 1; 2417 2418 kvm_init_nested_state(env); 2419 2420 sev_es_set_reset_vector(CPU(cpu)); 2421 } 2422 2423 void kvm_arch_after_reset_vcpu(X86CPU *cpu) 2424 { 2425 CPUX86State *env = &cpu->env; 2426 int i; 2427 2428 /* 2429 * Reset SynIC after all other devices have been reset to let them remove 2430 * their SINT routes first. 2431 */ 2432 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 2433 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) { 2434 env->msr_hv_synic_sint[i] = HV_SINT_MASKED; 2435 } 2436 2437 hyperv_x86_synic_reset(cpu); 2438 } 2439 } 2440 2441 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd) 2442 { 2443 g_autofree struct kvm_msrs *msrs = NULL; 2444 2445 msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0])); 2446 msrs->entries[0].index = MSR_IA32_TSC; 2447 msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */ 2448 msrs->nmsrs++; 2449 2450 if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) { 2451 warn_report("parked vCPU %lu TSC reset failed: %d", 2452 vcpu_id, errno); 2453 } 2454 } 2455 2456 void kvm_arch_do_init_vcpu(X86CPU *cpu) 2457 { 2458 CPUX86State *env = &cpu->env; 2459 2460 /* APs get directly into wait-for-SIPI state. */ 2461 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { 2462 env->mp_state = KVM_MP_STATE_INIT_RECEIVED; 2463 } 2464 } 2465 2466 static int kvm_get_supported_feature_msrs(KVMState *s) 2467 { 2468 int ret = 0; 2469 2470 if (kvm_feature_msrs != NULL) { 2471 return 0; 2472 } 2473 2474 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) { 2475 return 0; 2476 } 2477 2478 struct kvm_msr_list msr_list; 2479 2480 msr_list.nmsrs = 0; 2481 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list); 2482 if (ret < 0 && ret != -E2BIG) { 2483 error_report("Fetch KVM feature MSR list failed: %s", 2484 strerror(-ret)); 2485 return ret; 2486 } 2487 2488 assert(msr_list.nmsrs > 0); 2489 kvm_feature_msrs = g_malloc0(sizeof(msr_list) + 2490 msr_list.nmsrs * sizeof(msr_list.indices[0])); 2491 2492 kvm_feature_msrs->nmsrs = msr_list.nmsrs; 2493 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs); 2494 2495 if (ret < 0) { 2496 error_report("Fetch KVM feature MSR list failed: %s", 2497 strerror(-ret)); 2498 g_free(kvm_feature_msrs); 2499 kvm_feature_msrs = NULL; 2500 return ret; 2501 } 2502 2503 return 0; 2504 } 2505 2506 static int kvm_get_supported_msrs(KVMState *s) 2507 { 2508 int ret = 0; 2509 struct kvm_msr_list msr_list, *kvm_msr_list; 2510 2511 /* 2512 * Obtain MSR list from KVM. These are the MSRs that we must 2513 * save/restore. 2514 */ 2515 msr_list.nmsrs = 0; 2516 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); 2517 if (ret < 0 && ret != -E2BIG) { 2518 return ret; 2519 } 2520 /* 2521 * Old kernel modules had a bug and could write beyond the provided 2522 * memory. Allocate at least a safe amount of 1K. 2523 */ 2524 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + 2525 msr_list.nmsrs * 2526 sizeof(msr_list.indices[0]))); 2527 2528 kvm_msr_list->nmsrs = msr_list.nmsrs; 2529 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); 2530 if (ret >= 0) { 2531 int i; 2532 2533 for (i = 0; i < kvm_msr_list->nmsrs; i++) { 2534 switch (kvm_msr_list->indices[i]) { 2535 case MSR_STAR: 2536 has_msr_star = true; 2537 break; 2538 case MSR_VM_HSAVE_PA: 2539 has_msr_hsave_pa = true; 2540 break; 2541 case MSR_TSC_AUX: 2542 has_msr_tsc_aux = true; 2543 break; 2544 case MSR_TSC_ADJUST: 2545 has_msr_tsc_adjust = true; 2546 break; 2547 case MSR_IA32_TSCDEADLINE: 2548 has_msr_tsc_deadline = true; 2549 break; 2550 case MSR_IA32_SMBASE: 2551 has_msr_smbase = true; 2552 break; 2553 case MSR_SMI_COUNT: 2554 has_msr_smi_count = true; 2555 break; 2556 case MSR_IA32_MISC_ENABLE: 2557 has_msr_misc_enable = true; 2558 break; 2559 case MSR_IA32_BNDCFGS: 2560 has_msr_bndcfgs = true; 2561 break; 2562 case MSR_IA32_XSS: 2563 has_msr_xss = true; 2564 break; 2565 case MSR_IA32_UMWAIT_CONTROL: 2566 has_msr_umwait = true; 2567 break; 2568 case HV_X64_MSR_CRASH_CTL: 2569 has_msr_hv_crash = true; 2570 break; 2571 case HV_X64_MSR_RESET: 2572 has_msr_hv_reset = true; 2573 break; 2574 case HV_X64_MSR_VP_INDEX: 2575 has_msr_hv_vpindex = true; 2576 break; 2577 case HV_X64_MSR_VP_RUNTIME: 2578 has_msr_hv_runtime = true; 2579 break; 2580 case HV_X64_MSR_SCONTROL: 2581 has_msr_hv_synic = true; 2582 break; 2583 case HV_X64_MSR_STIMER0_CONFIG: 2584 has_msr_hv_stimer = true; 2585 break; 2586 case HV_X64_MSR_TSC_FREQUENCY: 2587 has_msr_hv_frequencies = true; 2588 break; 2589 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 2590 has_msr_hv_reenlightenment = true; 2591 break; 2592 case HV_X64_MSR_SYNDBG_OPTIONS: 2593 has_msr_hv_syndbg_options = true; 2594 break; 2595 case MSR_IA32_SPEC_CTRL: 2596 has_msr_spec_ctrl = true; 2597 break; 2598 case MSR_AMD64_TSC_RATIO: 2599 has_tsc_scale_msr = true; 2600 break; 2601 case MSR_IA32_TSX_CTRL: 2602 has_msr_tsx_ctrl = true; 2603 break; 2604 case MSR_VIRT_SSBD: 2605 has_msr_virt_ssbd = true; 2606 break; 2607 case MSR_IA32_ARCH_CAPABILITIES: 2608 has_msr_arch_capabs = true; 2609 break; 2610 case MSR_IA32_CORE_CAPABILITY: 2611 has_msr_core_capabs = true; 2612 break; 2613 case MSR_IA32_PERF_CAPABILITIES: 2614 has_msr_perf_capabs = true; 2615 break; 2616 case MSR_IA32_VMX_VMFUNC: 2617 has_msr_vmx_vmfunc = true; 2618 break; 2619 case MSR_IA32_UCODE_REV: 2620 has_msr_ucode_rev = true; 2621 break; 2622 case MSR_IA32_VMX_PROCBASED_CTLS2: 2623 has_msr_vmx_procbased_ctls2 = true; 2624 break; 2625 case MSR_IA32_PKRS: 2626 has_msr_pkrs = true; 2627 break; 2628 case MSR_K7_HWCR: 2629 has_msr_hwcr = true; 2630 } 2631 } 2632 } 2633 2634 g_free(kvm_msr_list); 2635 2636 return ret; 2637 } 2638 2639 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu, 2640 uint32_t msr, 2641 uint64_t *val) 2642 { 2643 *val = cpu_x86_get_msr_core_thread_count(cpu); 2644 2645 return true; 2646 } 2647 2648 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu, 2649 uint32_t msr, 2650 uint64_t *val) 2651 { 2652 2653 CPUState *cs = CPU(cpu); 2654 2655 *val = cs->kvm_state->msr_energy.msr_unit; 2656 2657 return true; 2658 } 2659 2660 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu, 2661 uint32_t msr, 2662 uint64_t *val) 2663 { 2664 2665 CPUState *cs = CPU(cpu); 2666 2667 *val = cs->kvm_state->msr_energy.msr_limit; 2668 2669 return true; 2670 } 2671 2672 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu, 2673 uint32_t msr, 2674 uint64_t *val) 2675 { 2676 2677 CPUState *cs = CPU(cpu); 2678 2679 *val = cs->kvm_state->msr_energy.msr_info; 2680 2681 return true; 2682 } 2683 2684 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu, 2685 uint32_t msr, 2686 uint64_t *val) 2687 { 2688 2689 CPUState *cs = CPU(cpu); 2690 *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index]; 2691 2692 return true; 2693 } 2694 2695 static Notifier smram_machine_done; 2696 static KVMMemoryListener smram_listener; 2697 static AddressSpace smram_address_space; 2698 static MemoryRegion smram_as_root; 2699 static MemoryRegion smram_as_mem; 2700 2701 static void register_smram_listener(Notifier *n, void *unused) 2702 { 2703 MemoryRegion *smram = 2704 (MemoryRegion *) object_resolve_path("/machine/smram", NULL); 2705 2706 /* Outer container... */ 2707 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); 2708 memory_region_set_enabled(&smram_as_root, true); 2709 2710 /* ... with two regions inside: normal system memory with low 2711 * priority, and... 2712 */ 2713 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", 2714 get_system_memory(), 0, ~0ull); 2715 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); 2716 memory_region_set_enabled(&smram_as_mem, true); 2717 2718 if (smram) { 2719 /* ... SMRAM with higher priority */ 2720 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); 2721 memory_region_set_enabled(smram, true); 2722 } 2723 2724 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); 2725 kvm_memory_listener_register(kvm_state, &smram_listener, 2726 &smram_address_space, 1, "kvm-smram"); 2727 } 2728 2729 static void *kvm_msr_energy_thread(void *data) 2730 { 2731 KVMState *s = data; 2732 struct KVMMsrEnergy *vmsr = &s->msr_energy; 2733 2734 g_autofree vmsr_package_energy_stat *pkg_stat = NULL; 2735 g_autofree vmsr_thread_stat *thd_stat = NULL; 2736 g_autofree CPUState *cpu = NULL; 2737 g_autofree unsigned int *vpkgs_energy_stat = NULL; 2738 unsigned int num_threads = 0; 2739 2740 X86CPUTopoIDs topo_ids; 2741 2742 rcu_register_thread(); 2743 2744 /* Allocate memory for each package energy status */ 2745 pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs); 2746 2747 /* Allocate memory for thread stats */ 2748 thd_stat = g_new0(vmsr_thread_stat, 1); 2749 2750 /* Allocate memory for holding virtual package energy counter */ 2751 vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets); 2752 2753 /* Populate the max tick of each packages */ 2754 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2755 /* 2756 * Max numbers of ticks per package 2757 * Time in second * Number of ticks/second * Number of cores/package 2758 * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max 2759 */ 2760 vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000) 2761 * sysconf(_SC_CLK_TCK) 2762 * vmsr->host_topo.pkg_cpu_count[i]; 2763 } 2764 2765 while (true) { 2766 /* Get all qemu threads id */ 2767 g_autofree pid_t *thread_ids 2768 = vmsr_get_thread_ids(vmsr->pid, &num_threads); 2769 2770 if (thread_ids == NULL) { 2771 goto clean; 2772 } 2773 2774 thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads); 2775 /* Unlike g_new0, g_renew0 function doesn't exist yet... */ 2776 memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat)); 2777 2778 /* Populate all the thread stats */ 2779 for (int i = 0; i < num_threads; i++) { 2780 thd_stat[i].utime = g_new0(unsigned long long, 2); 2781 thd_stat[i].stime = g_new0(unsigned long long, 2); 2782 thd_stat[i].thread_id = thread_ids[i]; 2783 vmsr_read_thread_stat(vmsr->pid, 2784 thd_stat[i].thread_id, 2785 &thd_stat[i].utime[0], 2786 &thd_stat[i].stime[0], 2787 &thd_stat[i].cpu_id); 2788 thd_stat[i].pkg_id = 2789 vmsr_get_physical_package_id(thd_stat[i].cpu_id); 2790 } 2791 2792 /* Retrieve all packages power plane energy counter */ 2793 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2794 for (int j = 0; j < num_threads; j++) { 2795 /* 2796 * Use the first thread we found that ran on the CPU 2797 * of the package to read the packages energy counter 2798 */ 2799 if (thd_stat[j].pkg_id == i) { 2800 pkg_stat[i].e_start = 2801 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2802 thd_stat[j].cpu_id, 2803 thd_stat[j].thread_id, 2804 s->msr_energy.sioc); 2805 break; 2806 } 2807 } 2808 } 2809 2810 /* Sleep a short period while the other threads are working */ 2811 usleep(MSR_ENERGY_THREAD_SLEEP_US); 2812 2813 /* 2814 * Retrieve all packages power plane energy counter 2815 * Calculate the delta of all packages 2816 */ 2817 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2818 for (int j = 0; j < num_threads; j++) { 2819 /* 2820 * Use the first thread we found that ran on the CPU 2821 * of the package to read the packages energy counter 2822 */ 2823 if (thd_stat[j].pkg_id == i) { 2824 pkg_stat[i].e_end = 2825 vmsr_read_msr(MSR_PKG_ENERGY_STATUS, 2826 thd_stat[j].cpu_id, 2827 thd_stat[j].thread_id, 2828 s->msr_energy.sioc); 2829 /* 2830 * Prevent the case we have migrate the VM 2831 * during the sleep period or any other cases 2832 * were energy counter might be lower after 2833 * the sleep period. 2834 */ 2835 if (pkg_stat[i].e_end > pkg_stat[i].e_start) { 2836 pkg_stat[i].e_delta = 2837 pkg_stat[i].e_end - pkg_stat[i].e_start; 2838 } else { 2839 pkg_stat[i].e_delta = 0; 2840 } 2841 break; 2842 } 2843 } 2844 } 2845 2846 /* Delta of ticks spend by each thread between the sample */ 2847 for (int i = 0; i < num_threads; i++) { 2848 vmsr_read_thread_stat(vmsr->pid, 2849 thd_stat[i].thread_id, 2850 &thd_stat[i].utime[1], 2851 &thd_stat[i].stime[1], 2852 &thd_stat[i].cpu_id); 2853 2854 if (vmsr->pid < 0) { 2855 /* 2856 * We don't count the dead thread 2857 * i.e threads that existed before the sleep 2858 * and not anymore 2859 */ 2860 thd_stat[i].delta_ticks = 0; 2861 } else { 2862 vmsr_delta_ticks(thd_stat, i); 2863 } 2864 } 2865 2866 /* 2867 * Identify the vcpu threads 2868 * Calculate the number of vcpu per package 2869 */ 2870 CPU_FOREACH(cpu) { 2871 for (int i = 0; i < num_threads; i++) { 2872 if (cpu->thread_id == thd_stat[i].thread_id) { 2873 thd_stat[i].is_vcpu = true; 2874 thd_stat[i].vcpu_id = cpu->cpu_index; 2875 pkg_stat[thd_stat[i].pkg_id].nb_vcpu++; 2876 thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu); 2877 break; 2878 } 2879 } 2880 } 2881 2882 /* Retrieve the virtual package number of each vCPU */ 2883 for (int i = 0; i < vmsr->guest_cpu_list->len; i++) { 2884 for (int j = 0; j < num_threads; j++) { 2885 if ((thd_stat[j].acpi_id == 2886 vmsr->guest_cpu_list->cpus[i].arch_id) 2887 && (thd_stat[j].is_vcpu == true)) { 2888 x86_topo_ids_from_apicid(thd_stat[j].acpi_id, 2889 &vmsr->guest_topo_info, &topo_ids); 2890 thd_stat[j].vpkg_id = topo_ids.pkg_id; 2891 } 2892 } 2893 } 2894 2895 /* Calculate the total energy of all non-vCPU thread */ 2896 for (int i = 0; i < num_threads; i++) { 2897 if ((thd_stat[i].is_vcpu != true) && 2898 (thd_stat[i].delta_ticks > 0)) { 2899 double temp; 2900 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2901 thd_stat[i].delta_ticks, 2902 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2903 pkg_stat[thd_stat[i].pkg_id].e_ratio 2904 += (uint64_t)lround(temp); 2905 } 2906 } 2907 2908 /* Calculate the ratio per non-vCPU thread of each package */ 2909 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) { 2910 if (pkg_stat[i].nb_vcpu > 0) { 2911 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu; 2912 } 2913 } 2914 2915 /* 2916 * Calculate the energy for each Package: 2917 * Energy Package = sum of each vCPU energy that belongs to the package 2918 */ 2919 for (int i = 0; i < num_threads; i++) { 2920 if ((thd_stat[i].is_vcpu == true) && \ 2921 (thd_stat[i].delta_ticks > 0)) { 2922 double temp; 2923 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta, 2924 thd_stat[i].delta_ticks, 2925 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]); 2926 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2927 (uint64_t)lround(temp); 2928 vpkgs_energy_stat[thd_stat[i].vpkg_id] += 2929 pkg_stat[thd_stat[i].pkg_id].e_ratio; 2930 } 2931 } 2932 2933 /* 2934 * Finally populate the vmsr register of each vCPU with the total 2935 * package value to emulate the real hardware where each CPU return the 2936 * value of the package it belongs. 2937 */ 2938 for (int i = 0; i < num_threads; i++) { 2939 if ((thd_stat[i].is_vcpu == true) && \ 2940 (thd_stat[i].delta_ticks > 0)) { 2941 vmsr->msr_value[thd_stat[i].vcpu_id] = \ 2942 vpkgs_energy_stat[thd_stat[i].vpkg_id]; 2943 } 2944 } 2945 2946 /* Freeing memory before zeroing the pointer */ 2947 for (int i = 0; i < num_threads; i++) { 2948 g_free(thd_stat[i].utime); 2949 g_free(thd_stat[i].stime); 2950 } 2951 } 2952 2953 clean: 2954 rcu_unregister_thread(); 2955 return NULL; 2956 } 2957 2958 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms) 2959 { 2960 MachineClass *mc = MACHINE_GET_CLASS(ms); 2961 struct KVMMsrEnergy *r = &s->msr_energy; 2962 2963 /* 2964 * Sanity check 2965 * 1. Host cpu must be Intel cpu 2966 * 2. RAPL must be enabled on the Host 2967 */ 2968 if (!is_host_cpu_intel()) { 2969 error_report("The RAPL feature can only be enabled on hosts " 2970 "with Intel CPU models"); 2971 return -1; 2972 } 2973 2974 if (!is_rapl_enabled()) { 2975 return -1; 2976 } 2977 2978 /* Retrieve the virtual topology */ 2979 vmsr_init_topo_info(&r->guest_topo_info, ms); 2980 2981 /* Retrieve the number of vcpu */ 2982 r->guest_vcpus = ms->smp.cpus; 2983 2984 /* Retrieve the number of virtual sockets */ 2985 r->guest_vsockets = ms->smp.sockets; 2986 2987 /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */ 2988 r->msr_value = g_new0(uint64_t, r->guest_vcpus); 2989 2990 /* Retrieve the CPUArchIDlist */ 2991 r->guest_cpu_list = mc->possible_cpu_arch_ids(ms); 2992 2993 /* Max number of cpus on the Host */ 2994 r->host_topo.maxcpus = vmsr_get_maxcpus(); 2995 if (r->host_topo.maxcpus == 0) { 2996 error_report("host max cpus = 0"); 2997 return -1; 2998 } 2999 3000 /* Max number of packages on the host */ 3001 r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus); 3002 if (r->host_topo.maxpkgs == 0) { 3003 error_report("host max pkgs = 0"); 3004 return -1; 3005 } 3006 3007 /* Allocate memory for each package on the host */ 3008 r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs); 3009 r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs); 3010 3011 vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count, 3012 r->host_topo.maxpkgs); 3013 for (int i = 0; i < r->host_topo.maxpkgs; i++) { 3014 if (r->host_topo.pkg_cpu_count[i] == 0) { 3015 error_report("cpu per packages = 0 on package_%d", i); 3016 return -1; 3017 } 3018 } 3019 3020 /* Get QEMU PID*/ 3021 r->pid = getpid(); 3022 3023 /* Compute the socket path if necessary */ 3024 if (s->msr_energy.socket_path == NULL) { 3025 s->msr_energy.socket_path = vmsr_compute_default_paths(); 3026 } 3027 3028 /* Open socket with vmsr helper */ 3029 s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path); 3030 3031 if (s->msr_energy.sioc == NULL) { 3032 error_report("vmsr socket opening failed"); 3033 return -1; 3034 } 3035 3036 /* Those MSR values should not change */ 3037 r->msr_unit = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid, 3038 s->msr_energy.sioc); 3039 r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid, 3040 s->msr_energy.sioc); 3041 r->msr_info = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid, 3042 s->msr_energy.sioc); 3043 if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) { 3044 error_report("can't read any virtual msr"); 3045 return -1; 3046 } 3047 3048 qemu_thread_create(&r->msr_thr, "kvm-msr", 3049 kvm_msr_energy_thread, 3050 s, QEMU_THREAD_JOINABLE); 3051 return 0; 3052 } 3053 3054 int kvm_arch_get_default_type(MachineState *ms) 3055 { 3056 return 0; 3057 } 3058 3059 static int kvm_vm_enable_exception_payload(KVMState *s) 3060 { 3061 int ret = 0; 3062 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD); 3063 if (has_exception_payload) { 3064 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true); 3065 if (ret < 0) { 3066 error_report("kvm: Failed to enable exception payload cap: %s", 3067 strerror(-ret)); 3068 } 3069 } 3070 3071 return ret; 3072 } 3073 3074 static int kvm_vm_enable_triple_fault_event(KVMState *s) 3075 { 3076 int ret = 0; 3077 has_triple_fault_event = \ 3078 kvm_check_extension(s, 3079 KVM_CAP_X86_TRIPLE_FAULT_EVENT); 3080 if (has_triple_fault_event) { 3081 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true); 3082 if (ret < 0) { 3083 error_report("kvm: Failed to enable triple fault event cap: %s", 3084 strerror(-ret)); 3085 } 3086 } 3087 return ret; 3088 } 3089 3090 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base) 3091 { 3092 return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); 3093 } 3094 3095 static int kvm_vm_set_nr_mmu_pages(KVMState *s) 3096 { 3097 uint64_t shadow_mem; 3098 int ret = 0; 3099 shadow_mem = object_property_get_int(OBJECT(s), 3100 "kvm-shadow-mem", 3101 &error_abort); 3102 if (shadow_mem != -1) { 3103 shadow_mem /= 4096; 3104 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); 3105 } 3106 return ret; 3107 } 3108 3109 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base) 3110 { 3111 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base); 3112 } 3113 3114 static int kvm_vm_enable_disable_exits(KVMState *s) 3115 { 3116 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS); 3117 3118 if (disable_exits) { 3119 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT | 3120 KVM_X86_DISABLE_EXITS_HLT | 3121 KVM_X86_DISABLE_EXITS_PAUSE | 3122 KVM_X86_DISABLE_EXITS_CSTATE); 3123 } 3124 3125 return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0, 3126 disable_exits); 3127 } 3128 3129 static int kvm_vm_enable_bus_lock_exit(KVMState *s) 3130 { 3131 int ret = 0; 3132 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT); 3133 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) { 3134 error_report("kvm: bus lock detection unsupported"); 3135 return -ENOTSUP; 3136 } 3137 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0, 3138 KVM_BUS_LOCK_DETECTION_EXIT); 3139 if (ret < 0) { 3140 error_report("kvm: Failed to enable bus lock detection cap: %s", 3141 strerror(-ret)); 3142 } 3143 3144 return ret; 3145 } 3146 3147 static int kvm_vm_enable_notify_vmexit(KVMState *s) 3148 { 3149 int ret = 0; 3150 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) { 3151 uint64_t notify_window_flags = 3152 ((uint64_t)s->notify_window << 32) | 3153 KVM_X86_NOTIFY_VMEXIT_ENABLED | 3154 KVM_X86_NOTIFY_VMEXIT_USER; 3155 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0, 3156 notify_window_flags); 3157 if (ret < 0) { 3158 error_report("kvm: Failed to enable notify vmexit cap: %s", 3159 strerror(-ret)); 3160 } 3161 } 3162 return ret; 3163 } 3164 3165 static int kvm_vm_enable_userspace_msr(KVMState *s) 3166 { 3167 int ret; 3168 3169 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0, 3170 KVM_MSR_EXIT_REASON_FILTER); 3171 if (ret < 0) { 3172 error_report("Could not enable user space MSRs: %s", 3173 strerror(-ret)); 3174 exit(1); 3175 } 3176 3177 ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT, 3178 kvm_rdmsr_core_thread_count, NULL); 3179 if (ret < 0) { 3180 error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s", 3181 strerror(-ret)); 3182 exit(1); 3183 } 3184 3185 return 0; 3186 } 3187 3188 static int kvm_vm_enable_energy_msrs(KVMState *s) 3189 { 3190 int ret; 3191 3192 if (s->msr_energy.enable == true) { 3193 ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT, 3194 kvm_rdmsr_rapl_power_unit, NULL); 3195 if (ret < 0) { 3196 error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s", 3197 strerror(-ret)); 3198 return ret; 3199 } 3200 3201 ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT, 3202 kvm_rdmsr_pkg_power_limit, NULL); 3203 if (ret < 0) { 3204 error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s", 3205 strerror(-ret)); 3206 return ret; 3207 } 3208 3209 ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO, 3210 kvm_rdmsr_pkg_power_info, NULL); 3211 if (ret < 0) { 3212 error_report("Could not install MSR_PKG_POWER_INFO handler: %s", 3213 strerror(-ret)); 3214 return ret; 3215 } 3216 ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS, 3217 kvm_rdmsr_pkg_energy_status, NULL); 3218 if (ret < 0) { 3219 error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s", 3220 strerror(-ret)); 3221 return ret; 3222 } 3223 } 3224 return 0; 3225 } 3226 3227 int kvm_arch_init(MachineState *ms, KVMState *s) 3228 { 3229 int ret; 3230 struct utsname utsname; 3231 Error *local_err = NULL; 3232 3233 /* 3234 * Initialize confidential guest (SEV/TDX) context, if required 3235 */ 3236 if (ms->cgs) { 3237 ret = confidential_guest_kvm_init(ms->cgs, &local_err); 3238 if (ret < 0) { 3239 error_report_err(local_err); 3240 return ret; 3241 } 3242 } 3243 3244 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); 3245 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0; 3246 3247 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX); 3248 3249 ret = kvm_vm_enable_exception_payload(s); 3250 if (ret < 0) { 3251 return ret; 3252 } 3253 3254 ret = kvm_vm_enable_triple_fault_event(s); 3255 if (ret < 0) { 3256 return ret; 3257 } 3258 3259 if (s->xen_version) { 3260 #ifdef CONFIG_XEN_EMU 3261 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) { 3262 error_report("kvm: Xen support only available in PC machine"); 3263 return -ENOTSUP; 3264 } 3265 /* hyperv_enabled() doesn't work yet. */ 3266 uint32_t msr = XEN_HYPERCALL_MSR; 3267 ret = kvm_xen_init(s, msr); 3268 if (ret < 0) { 3269 return ret; 3270 } 3271 #else 3272 error_report("kvm: Xen support not enabled in qemu"); 3273 return -ENOTSUP; 3274 #endif 3275 } 3276 3277 ret = kvm_get_supported_msrs(s); 3278 if (ret < 0) { 3279 return ret; 3280 } 3281 3282 ret = kvm_get_supported_feature_msrs(s); 3283 if (ret < 0) { 3284 return ret; 3285 } 3286 3287 uname(&utsname); 3288 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; 3289 3290 ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE); 3291 if (ret < 0) { 3292 return ret; 3293 } 3294 3295 /* Set TSS base one page after EPT identity map. */ 3296 ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000); 3297 if (ret < 0) { 3298 return ret; 3299 } 3300 3301 /* Tell fw_cfg to notify the BIOS to reserve the range. */ 3302 e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED); 3303 3304 ret = kvm_vm_set_nr_mmu_pages(s); 3305 if (ret < 0) { 3306 return ret; 3307 } 3308 3309 if (kvm_check_extension(s, KVM_CAP_X86_SMM) && 3310 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) && 3311 x86_machine_is_smm_enabled(X86_MACHINE(ms))) { 3312 smram_machine_done.notify = register_smram_listener; 3313 qemu_add_machine_init_done_notifier(&smram_machine_done); 3314 } 3315 3316 if (enable_cpu_pm) { 3317 ret = kvm_vm_enable_disable_exits(s); 3318 if (ret < 0) { 3319 error_report("kvm: guest stopping CPU not supported: %s", 3320 strerror(-ret)); 3321 return ret; 3322 } 3323 } 3324 3325 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) { 3326 X86MachineState *x86ms = X86_MACHINE(ms); 3327 3328 if (x86ms->bus_lock_ratelimit > 0) { 3329 ret = kvm_vm_enable_bus_lock_exit(s); 3330 if (ret < 0) { 3331 return ret; 3332 } 3333 ratelimit_init(&bus_lock_ratelimit_ctrl); 3334 ratelimit_set_speed(&bus_lock_ratelimit_ctrl, 3335 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME); 3336 } 3337 } 3338 3339 if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) { 3340 ret = kvm_vm_enable_notify_vmexit(s); 3341 if (ret < 0) { 3342 return ret; 3343 } 3344 } 3345 3346 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) { 3347 ret = kvm_vm_enable_userspace_msr(s); 3348 if (ret < 0) { 3349 return ret; 3350 } 3351 3352 if (s->msr_energy.enable == true) { 3353 ret = kvm_vm_enable_energy_msrs(s); 3354 if (ret < 0) { 3355 return ret; 3356 } 3357 3358 ret = kvm_msr_energy_thread_init(s, ms); 3359 if (ret < 0) { 3360 error_report("kvm : error RAPL feature requirement not met"); 3361 return ret; 3362 } 3363 } 3364 } 3365 3366 return 0; 3367 } 3368 3369 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3370 { 3371 lhs->selector = rhs->selector; 3372 lhs->base = rhs->base; 3373 lhs->limit = rhs->limit; 3374 lhs->type = 3; 3375 lhs->present = 1; 3376 lhs->dpl = 3; 3377 lhs->db = 0; 3378 lhs->s = 1; 3379 lhs->l = 0; 3380 lhs->g = 0; 3381 lhs->avl = 0; 3382 lhs->unusable = 0; 3383 } 3384 3385 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) 3386 { 3387 unsigned flags = rhs->flags; 3388 lhs->selector = rhs->selector; 3389 lhs->base = rhs->base; 3390 lhs->limit = rhs->limit; 3391 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; 3392 lhs->present = (flags & DESC_P_MASK) != 0; 3393 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; 3394 lhs->db = (flags >> DESC_B_SHIFT) & 1; 3395 lhs->s = (flags & DESC_S_MASK) != 0; 3396 lhs->l = (flags >> DESC_L_SHIFT) & 1; 3397 lhs->g = (flags & DESC_G_MASK) != 0; 3398 lhs->avl = (flags & DESC_AVL_MASK) != 0; 3399 lhs->unusable = !lhs->present; 3400 lhs->padding = 0; 3401 } 3402 3403 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) 3404 { 3405 lhs->selector = rhs->selector; 3406 lhs->base = rhs->base; 3407 lhs->limit = rhs->limit; 3408 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | 3409 ((rhs->present && !rhs->unusable) * DESC_P_MASK) | 3410 (rhs->dpl << DESC_DPL_SHIFT) | 3411 (rhs->db << DESC_B_SHIFT) | 3412 (rhs->s * DESC_S_MASK) | 3413 (rhs->l << DESC_L_SHIFT) | 3414 (rhs->g * DESC_G_MASK) | 3415 (rhs->avl * DESC_AVL_MASK); 3416 } 3417 3418 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) 3419 { 3420 if (set) { 3421 *kvm_reg = *qemu_reg; 3422 } else { 3423 *qemu_reg = *kvm_reg; 3424 } 3425 } 3426 3427 static int kvm_getput_regs(X86CPU *cpu, int set) 3428 { 3429 CPUX86State *env = &cpu->env; 3430 struct kvm_regs regs; 3431 int ret = 0; 3432 3433 if (!set) { 3434 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); 3435 if (ret < 0) { 3436 return ret; 3437 } 3438 } 3439 3440 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); 3441 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); 3442 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); 3443 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); 3444 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); 3445 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); 3446 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); 3447 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); 3448 #ifdef TARGET_X86_64 3449 kvm_getput_reg(®s.r8, &env->regs[8], set); 3450 kvm_getput_reg(®s.r9, &env->regs[9], set); 3451 kvm_getput_reg(®s.r10, &env->regs[10], set); 3452 kvm_getput_reg(®s.r11, &env->regs[11], set); 3453 kvm_getput_reg(®s.r12, &env->regs[12], set); 3454 kvm_getput_reg(®s.r13, &env->regs[13], set); 3455 kvm_getput_reg(®s.r14, &env->regs[14], set); 3456 kvm_getput_reg(®s.r15, &env->regs[15], set); 3457 #endif 3458 3459 kvm_getput_reg(®s.rflags, &env->eflags, set); 3460 kvm_getput_reg(®s.rip, &env->eip, set); 3461 3462 if (set) { 3463 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); 3464 } 3465 3466 return ret; 3467 } 3468 3469 static int kvm_put_xsave(X86CPU *cpu) 3470 { 3471 CPUX86State *env = &cpu->env; 3472 void *xsave = env->xsave_buf; 3473 3474 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len); 3475 3476 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); 3477 } 3478 3479 static int kvm_put_xcrs(X86CPU *cpu) 3480 { 3481 CPUX86State *env = &cpu->env; 3482 struct kvm_xcrs xcrs = {}; 3483 3484 if (!has_xcrs) { 3485 return 0; 3486 } 3487 3488 xcrs.nr_xcrs = 1; 3489 xcrs.flags = 0; 3490 xcrs.xcrs[0].xcr = 0; 3491 xcrs.xcrs[0].value = env->xcr0; 3492 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); 3493 } 3494 3495 static int kvm_put_sregs(X86CPU *cpu) 3496 { 3497 CPUX86State *env = &cpu->env; 3498 struct kvm_sregs sregs; 3499 3500 /* 3501 * The interrupt_bitmap is ignored because KVM_SET_SREGS is 3502 * always followed by KVM_SET_VCPU_EVENTS. 3503 */ 3504 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); 3505 3506 if ((env->eflags & VM_MASK)) { 3507 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3508 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3509 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3510 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3511 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3512 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3513 } else { 3514 set_seg(&sregs.cs, &env->segs[R_CS]); 3515 set_seg(&sregs.ds, &env->segs[R_DS]); 3516 set_seg(&sregs.es, &env->segs[R_ES]); 3517 set_seg(&sregs.fs, &env->segs[R_FS]); 3518 set_seg(&sregs.gs, &env->segs[R_GS]); 3519 set_seg(&sregs.ss, &env->segs[R_SS]); 3520 } 3521 3522 set_seg(&sregs.tr, &env->tr); 3523 set_seg(&sregs.ldt, &env->ldt); 3524 3525 sregs.idt.limit = env->idt.limit; 3526 sregs.idt.base = env->idt.base; 3527 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3528 sregs.gdt.limit = env->gdt.limit; 3529 sregs.gdt.base = env->gdt.base; 3530 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3531 3532 sregs.cr0 = env->cr[0]; 3533 sregs.cr2 = env->cr[2]; 3534 sregs.cr3 = env->cr[3]; 3535 sregs.cr4 = env->cr[4]; 3536 3537 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3538 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3539 3540 sregs.efer = env->efer; 3541 3542 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); 3543 } 3544 3545 static int kvm_put_sregs2(X86CPU *cpu) 3546 { 3547 CPUX86State *env = &cpu->env; 3548 struct kvm_sregs2 sregs; 3549 int i; 3550 3551 sregs.flags = 0; 3552 3553 if ((env->eflags & VM_MASK)) { 3554 set_v8086_seg(&sregs.cs, &env->segs[R_CS]); 3555 set_v8086_seg(&sregs.ds, &env->segs[R_DS]); 3556 set_v8086_seg(&sregs.es, &env->segs[R_ES]); 3557 set_v8086_seg(&sregs.fs, &env->segs[R_FS]); 3558 set_v8086_seg(&sregs.gs, &env->segs[R_GS]); 3559 set_v8086_seg(&sregs.ss, &env->segs[R_SS]); 3560 } else { 3561 set_seg(&sregs.cs, &env->segs[R_CS]); 3562 set_seg(&sregs.ds, &env->segs[R_DS]); 3563 set_seg(&sregs.es, &env->segs[R_ES]); 3564 set_seg(&sregs.fs, &env->segs[R_FS]); 3565 set_seg(&sregs.gs, &env->segs[R_GS]); 3566 set_seg(&sregs.ss, &env->segs[R_SS]); 3567 } 3568 3569 set_seg(&sregs.tr, &env->tr); 3570 set_seg(&sregs.ldt, &env->ldt); 3571 3572 sregs.idt.limit = env->idt.limit; 3573 sregs.idt.base = env->idt.base; 3574 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); 3575 sregs.gdt.limit = env->gdt.limit; 3576 sregs.gdt.base = env->gdt.base; 3577 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); 3578 3579 sregs.cr0 = env->cr[0]; 3580 sregs.cr2 = env->cr[2]; 3581 sregs.cr3 = env->cr[3]; 3582 sregs.cr4 = env->cr[4]; 3583 3584 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); 3585 sregs.apic_base = cpu_get_apic_base(cpu->apic_state); 3586 3587 sregs.efer = env->efer; 3588 3589 if (env->pdptrs_valid) { 3590 for (i = 0; i < 4; i++) { 3591 sregs.pdptrs[i] = env->pdptrs[i]; 3592 } 3593 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 3594 } 3595 3596 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs); 3597 } 3598 3599 3600 static void kvm_msr_buf_reset(X86CPU *cpu) 3601 { 3602 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); 3603 } 3604 3605 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) 3606 { 3607 struct kvm_msrs *msrs = cpu->kvm_msr_buf; 3608 void *limit = ((void *)msrs) + MSR_BUF_SIZE; 3609 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; 3610 3611 assert((void *)(entry + 1) <= limit); 3612 3613 entry->index = index; 3614 entry->reserved = 0; 3615 entry->data = value; 3616 msrs->nmsrs++; 3617 } 3618 3619 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) 3620 { 3621 kvm_msr_buf_reset(cpu); 3622 kvm_msr_entry_add(cpu, index, value); 3623 3624 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3625 } 3626 3627 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value) 3628 { 3629 int ret; 3630 struct { 3631 struct kvm_msrs info; 3632 struct kvm_msr_entry entries[1]; 3633 } msr_data = { 3634 .info.nmsrs = 1, 3635 .entries[0].index = index, 3636 }; 3637 3638 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); 3639 if (ret < 0) { 3640 return ret; 3641 } 3642 assert(ret == 1); 3643 *value = msr_data.entries[0].data; 3644 return ret; 3645 } 3646 void kvm_put_apicbase(X86CPU *cpu, uint64_t value) 3647 { 3648 int ret; 3649 3650 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); 3651 assert(ret == 1); 3652 } 3653 3654 static int kvm_put_tscdeadline_msr(X86CPU *cpu) 3655 { 3656 CPUX86State *env = &cpu->env; 3657 int ret; 3658 3659 if (!has_msr_tsc_deadline) { 3660 return 0; 3661 } 3662 3663 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); 3664 if (ret < 0) { 3665 return ret; 3666 } 3667 3668 assert(ret == 1); 3669 return 0; 3670 } 3671 3672 /* 3673 * Provide a separate write service for the feature control MSR in order to 3674 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done 3675 * before writing any other state because forcibly leaving nested mode 3676 * invalidates the VCPU state. 3677 */ 3678 static int kvm_put_msr_feature_control(X86CPU *cpu) 3679 { 3680 int ret; 3681 3682 if (!has_msr_feature_control) { 3683 return 0; 3684 } 3685 3686 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, 3687 cpu->env.msr_ia32_feature_control); 3688 if (ret < 0) { 3689 return ret; 3690 } 3691 3692 assert(ret == 1); 3693 return 0; 3694 } 3695 3696 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features) 3697 { 3698 uint32_t default1, can_be_one, can_be_zero; 3699 uint32_t must_be_one; 3700 3701 switch (index) { 3702 case MSR_IA32_VMX_TRUE_PINBASED_CTLS: 3703 default1 = 0x00000016; 3704 break; 3705 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: 3706 default1 = 0x0401e172; 3707 break; 3708 case MSR_IA32_VMX_TRUE_ENTRY_CTLS: 3709 default1 = 0x000011ff; 3710 break; 3711 case MSR_IA32_VMX_TRUE_EXIT_CTLS: 3712 default1 = 0x00036dff; 3713 break; 3714 case MSR_IA32_VMX_PROCBASED_CTLS2: 3715 default1 = 0; 3716 break; 3717 default: 3718 abort(); 3719 } 3720 3721 /* If a feature bit is set, the control can be either set or clear. 3722 * Otherwise the value is limited to either 0 or 1 by default1. 3723 */ 3724 can_be_one = features | default1; 3725 can_be_zero = features | ~default1; 3726 must_be_one = ~can_be_zero; 3727 3728 /* 3729 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one). 3730 * Bit 32:63 -> 1 if the control bit can be one. 3731 */ 3732 return must_be_one | (((uint64_t)can_be_one) << 32); 3733 } 3734 3735 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f) 3736 { 3737 uint64_t kvm_vmx_basic = 3738 kvm_arch_get_supported_msr_feature(kvm_state, 3739 MSR_IA32_VMX_BASIC); 3740 3741 if (!kvm_vmx_basic) { 3742 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0), 3743 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail. 3744 */ 3745 return; 3746 } 3747 3748 uint64_t kvm_vmx_misc = 3749 kvm_arch_get_supported_msr_feature(kvm_state, 3750 MSR_IA32_VMX_MISC); 3751 uint64_t kvm_vmx_ept_vpid = 3752 kvm_arch_get_supported_msr_feature(kvm_state, 3753 MSR_IA32_VMX_EPT_VPID_CAP); 3754 3755 /* 3756 * If the guest is 64-bit, a value of 1 is allowed for the host address 3757 * space size vmexit control. 3758 */ 3759 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM 3760 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0; 3761 3762 /* 3763 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should 3764 * not change them for backwards compatibility. 3765 */ 3766 uint64_t fixed_vmx_basic = kvm_vmx_basic & 3767 (MSR_VMX_BASIC_VMCS_REVISION_MASK | 3768 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK | 3769 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK); 3770 3771 /* 3772 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can 3773 * change in the future but are always zero for now, clear them to be 3774 * future proof. Bits 32-63 in theory could change, though KVM does 3775 * not support dual-monitor treatment and probably never will; mask 3776 * them out as well. 3777 */ 3778 uint64_t fixed_vmx_misc = kvm_vmx_misc & 3779 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK | 3780 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK); 3781 3782 /* 3783 * EPT memory types should not change either, so we do not bother 3784 * adding features for them. 3785 */ 3786 uint64_t fixed_vmx_ept_mask = 3787 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ? 3788 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0); 3789 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask; 3790 3791 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3792 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 3793 f[FEAT_VMX_PROCBASED_CTLS])); 3794 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3795 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS, 3796 f[FEAT_VMX_PINBASED_CTLS])); 3797 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS, 3798 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS, 3799 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit); 3800 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3801 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS, 3802 f[FEAT_VMX_ENTRY_CTLS])); 3803 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2, 3804 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2, 3805 f[FEAT_VMX_SECONDARY_CTLS])); 3806 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP, 3807 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid); 3808 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC, 3809 f[FEAT_VMX_BASIC] | fixed_vmx_basic); 3810 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC, 3811 f[FEAT_VMX_MISC] | fixed_vmx_misc); 3812 if (has_msr_vmx_vmfunc) { 3813 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]); 3814 } 3815 3816 /* 3817 * Just to be safe, write these with constant values. The CRn_FIXED1 3818 * MSRs are generated by KVM based on the vCPU's CPUID. 3819 */ 3820 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0, 3821 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK); 3822 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0, 3823 CR4_VMXE_MASK); 3824 3825 if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3826 /* FRED injected-event data (0x2052). */ 3827 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52); 3828 } else if (f[FEAT_VMX_EXIT_CTLS] & 3829 VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) { 3830 /* Secondary VM-exit controls (0x2044). */ 3831 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44); 3832 } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) { 3833 /* TSC multiplier (0x2032). */ 3834 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32); 3835 } else { 3836 /* Preemption timer (0x482E). */ 3837 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E); 3838 } 3839 } 3840 3841 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f) 3842 { 3843 uint64_t kvm_perf_cap = 3844 kvm_arch_get_supported_msr_feature(kvm_state, 3845 MSR_IA32_PERF_CAPABILITIES); 3846 3847 if (kvm_perf_cap) { 3848 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES, 3849 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]); 3850 } 3851 } 3852 3853 static int kvm_buf_set_msrs(X86CPU *cpu) 3854 { 3855 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); 3856 if (ret < 0) { 3857 return ret; 3858 } 3859 3860 if (ret < cpu->kvm_msr_buf->nmsrs) { 3861 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 3862 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, 3863 (uint32_t)e->index, (uint64_t)e->data); 3864 } 3865 3866 assert(ret == cpu->kvm_msr_buf->nmsrs); 3867 return 0; 3868 } 3869 3870 static void kvm_init_msrs(X86CPU *cpu) 3871 { 3872 CPUX86State *env = &cpu->env; 3873 3874 kvm_msr_buf_reset(cpu); 3875 3876 if (!is_tdx_vm()) { 3877 if (has_msr_arch_capabs) { 3878 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES, 3879 env->features[FEAT_ARCH_CAPABILITIES]); 3880 } 3881 3882 if (has_msr_core_capabs) { 3883 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY, 3884 env->features[FEAT_CORE_CAPABILITY]); 3885 } 3886 3887 if (has_msr_perf_capabs && cpu->enable_pmu) { 3888 kvm_msr_entry_add_perf(cpu, env->features); 3889 } 3890 3891 /* 3892 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but 3893 * all kernels with MSR features should have them. 3894 */ 3895 if (kvm_feature_msrs && cpu_has_vmx(env)) { 3896 kvm_msr_entry_add_vmx(cpu, env->features); 3897 } 3898 } 3899 3900 if (has_msr_ucode_rev) { 3901 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev); 3902 } 3903 assert(kvm_buf_set_msrs(cpu) == 0); 3904 } 3905 3906 static int kvm_put_msrs(X86CPU *cpu, int level) 3907 { 3908 CPUX86State *env = &cpu->env; 3909 int i; 3910 3911 kvm_msr_buf_reset(cpu); 3912 3913 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); 3914 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); 3915 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); 3916 kvm_msr_entry_add(cpu, MSR_PAT, env->pat); 3917 if (has_msr_star) { 3918 kvm_msr_entry_add(cpu, MSR_STAR, env->star); 3919 } 3920 if (has_msr_hsave_pa) { 3921 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); 3922 } 3923 if (has_msr_tsc_aux) { 3924 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); 3925 } 3926 if (has_msr_tsc_adjust) { 3927 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); 3928 } 3929 if (has_msr_misc_enable) { 3930 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 3931 env->msr_ia32_misc_enable); 3932 } 3933 if (has_msr_smbase) { 3934 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); 3935 } 3936 if (has_msr_smi_count) { 3937 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count); 3938 } 3939 if (has_msr_pkrs) { 3940 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs); 3941 } 3942 if (has_msr_bndcfgs) { 3943 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); 3944 } 3945 if (has_msr_xss) { 3946 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); 3947 } 3948 if (has_msr_umwait) { 3949 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait); 3950 } 3951 if (has_msr_spec_ctrl) { 3952 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl); 3953 } 3954 if (has_tsc_scale_msr) { 3955 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr); 3956 } 3957 3958 if (has_msr_tsx_ctrl) { 3959 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl); 3960 } 3961 if (has_msr_virt_ssbd) { 3962 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd); 3963 } 3964 if (has_msr_hwcr) { 3965 kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr); 3966 } 3967 3968 #ifdef TARGET_X86_64 3969 if (lm_capable_kernel) { 3970 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); 3971 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); 3972 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); 3973 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); 3974 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 3975 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0); 3976 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1); 3977 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2); 3978 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3); 3979 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls); 3980 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1); 3981 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2); 3982 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3); 3983 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config); 3984 } 3985 } 3986 #endif 3987 3988 /* 3989 * The following MSRs have side effects on the guest or are too heavy 3990 * for normal writeback. Limit them to reset or full state updates. 3991 */ 3992 if (level >= KVM_PUT_RESET_STATE) { 3993 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); 3994 if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) { 3995 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); 3996 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); 3997 } 3998 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) { 3999 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr); 4000 } 4001 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) { 4002 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); 4003 } 4004 if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) { 4005 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); 4006 } 4007 if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) { 4008 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); 4009 } 4010 4011 if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) { 4012 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr); 4013 } 4014 4015 if (has_architectural_pmu_version > 0) { 4016 if (has_architectural_pmu_version > 1) { 4017 /* Stop the counter. */ 4018 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4019 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4020 } 4021 4022 /* Set the counter values. */ 4023 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4024 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 4025 env->msr_fixed_counters[i]); 4026 } 4027 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4028 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 4029 env->msr_gp_counters[i]); 4030 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 4031 env->msr_gp_evtsel[i]); 4032 } 4033 if (has_architectural_pmu_version > 1) { 4034 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 4035 env->msr_global_status); 4036 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 4037 env->msr_global_ovf_ctrl); 4038 4039 /* Now start the PMU. */ 4040 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 4041 env->msr_fixed_ctr_ctrl); 4042 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 4043 env->msr_global_ctrl); 4044 } 4045 } 4046 /* 4047 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add, 4048 * only sync them to KVM on the first cpu 4049 */ 4050 if (current_cpu == first_cpu) { 4051 if (has_msr_hv_hypercall) { 4052 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 4053 env->msr_hv_guest_os_id); 4054 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 4055 env->msr_hv_hypercall); 4056 } 4057 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4058 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 4059 env->msr_hv_tsc); 4060 } 4061 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4062 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 4063 env->msr_hv_reenlightenment_control); 4064 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 4065 env->msr_hv_tsc_emulation_control); 4066 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 4067 env->msr_hv_tsc_emulation_status); 4068 } 4069 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) && 4070 has_msr_hv_syndbg_options) { 4071 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 4072 hyperv_syndbg_query_options()); 4073 } 4074 } 4075 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4076 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 4077 env->msr_hv_vapic); 4078 } 4079 if (has_msr_hv_crash) { 4080 int j; 4081 4082 for (j = 0; j < HV_CRASH_PARAMS; j++) 4083 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 4084 env->msr_hv_crash_params[j]); 4085 4086 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY); 4087 } 4088 if (has_msr_hv_runtime) { 4089 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); 4090 } 4091 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) 4092 && hv_vpindex_settable) { 4093 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, 4094 hyperv_vp_index(CPU(cpu))); 4095 } 4096 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4097 int j; 4098 4099 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION); 4100 4101 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 4102 env->msr_hv_synic_control); 4103 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 4104 env->msr_hv_synic_evt_page); 4105 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 4106 env->msr_hv_synic_msg_page); 4107 4108 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { 4109 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, 4110 env->msr_hv_synic_sint[j]); 4111 } 4112 } 4113 if (has_msr_hv_stimer) { 4114 int j; 4115 4116 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { 4117 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, 4118 env->msr_hv_stimer_config[j]); 4119 } 4120 4121 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { 4122 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, 4123 env->msr_hv_stimer_count[j]); 4124 } 4125 } 4126 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4127 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); 4128 4129 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); 4130 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); 4131 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); 4132 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); 4133 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); 4134 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); 4135 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); 4136 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); 4137 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); 4138 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); 4139 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); 4140 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); 4141 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4142 /* The CPU GPs if we write to a bit above the physical limit of 4143 * the host CPU (and KVM emulates that) 4144 */ 4145 uint64_t mask = env->mtrr_var[i].mask; 4146 mask &= phys_mask; 4147 4148 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 4149 env->mtrr_var[i].base); 4150 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); 4151 } 4152 } 4153 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4154 int addr_num = kvm_arch_get_supported_cpuid(kvm_state, 4155 0x14, 1, R_EAX) & 0x7; 4156 4157 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 4158 env->msr_rtit_ctrl); 4159 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 4160 env->msr_rtit_status); 4161 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 4162 env->msr_rtit_output_base); 4163 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 4164 env->msr_rtit_output_mask); 4165 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 4166 env->msr_rtit_cr3_match); 4167 for (i = 0; i < addr_num; i++) { 4168 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 4169 env->msr_rtit_addrs[i]); 4170 } 4171 } 4172 4173 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4174 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 4175 env->msr_ia32_sgxlepubkeyhash[0]); 4176 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 4177 env->msr_ia32_sgxlepubkeyhash[1]); 4178 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 4179 env->msr_ia32_sgxlepubkeyhash[2]); 4180 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 4181 env->msr_ia32_sgxlepubkeyhash[3]); 4182 } 4183 4184 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4185 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 4186 env->msr_xfd); 4187 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 4188 env->msr_xfd_err); 4189 } 4190 4191 if (kvm_enabled() && cpu->enable_pmu && 4192 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4193 uint64_t depth; 4194 int ret; 4195 4196 /* 4197 * Only migrate Arch LBR states when the host Arch LBR depth 4198 * equals that of source guest's, this is to avoid mismatch 4199 * of guest/host config for the msr hence avoid unexpected 4200 * misbehavior. 4201 */ 4202 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4203 4204 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) { 4205 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl); 4206 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth); 4207 4208 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4209 if (!env->lbr_records[i].from) { 4210 continue; 4211 } 4212 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 4213 env->lbr_records[i].from); 4214 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 4215 env->lbr_records[i].to); 4216 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 4217 env->lbr_records[i].info); 4218 } 4219 } 4220 } 4221 4222 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see 4223 * kvm_put_msr_feature_control. */ 4224 } 4225 4226 if (env->mcg_cap) { 4227 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); 4228 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); 4229 if (has_msr_mcg_ext_ctl) { 4230 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); 4231 } 4232 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4233 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); 4234 } 4235 } 4236 4237 return kvm_buf_set_msrs(cpu); 4238 } 4239 4240 4241 static int kvm_get_xsave(X86CPU *cpu) 4242 { 4243 CPUX86State *env = &cpu->env; 4244 void *xsave = env->xsave_buf; 4245 unsigned long type; 4246 int ret; 4247 4248 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE; 4249 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave); 4250 if (ret < 0) { 4251 return ret; 4252 } 4253 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len); 4254 4255 return 0; 4256 } 4257 4258 static int kvm_get_xcrs(X86CPU *cpu) 4259 { 4260 CPUX86State *env = &cpu->env; 4261 int i, ret; 4262 struct kvm_xcrs xcrs; 4263 4264 if (!has_xcrs) { 4265 return 0; 4266 } 4267 4268 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); 4269 if (ret < 0) { 4270 return ret; 4271 } 4272 4273 for (i = 0; i < xcrs.nr_xcrs; i++) { 4274 /* Only support xcr0 now */ 4275 if (xcrs.xcrs[i].xcr == 0) { 4276 env->xcr0 = xcrs.xcrs[i].value; 4277 break; 4278 } 4279 } 4280 return 0; 4281 } 4282 4283 static int kvm_get_sregs(X86CPU *cpu) 4284 { 4285 CPUX86State *env = &cpu->env; 4286 struct kvm_sregs sregs; 4287 int ret; 4288 4289 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); 4290 if (ret < 0) { 4291 return ret; 4292 } 4293 4294 /* 4295 * The interrupt_bitmap is ignored because KVM_GET_SREGS is 4296 * always preceded by KVM_GET_VCPU_EVENTS. 4297 */ 4298 4299 get_seg(&env->segs[R_CS], &sregs.cs); 4300 get_seg(&env->segs[R_DS], &sregs.ds); 4301 get_seg(&env->segs[R_ES], &sregs.es); 4302 get_seg(&env->segs[R_FS], &sregs.fs); 4303 get_seg(&env->segs[R_GS], &sregs.gs); 4304 get_seg(&env->segs[R_SS], &sregs.ss); 4305 4306 get_seg(&env->tr, &sregs.tr); 4307 get_seg(&env->ldt, &sregs.ldt); 4308 4309 env->idt.limit = sregs.idt.limit; 4310 env->idt.base = sregs.idt.base; 4311 env->gdt.limit = sregs.gdt.limit; 4312 env->gdt.base = sregs.gdt.base; 4313 4314 env->cr[0] = sregs.cr0; 4315 env->cr[2] = sregs.cr2; 4316 env->cr[3] = sregs.cr3; 4317 env->cr[4] = sregs.cr4; 4318 4319 env->efer = sregs.efer; 4320 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4321 env->cr[0] & CR0_PG_MASK) { 4322 env->efer |= MSR_EFER_LMA; 4323 } 4324 4325 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4326 x86_update_hflags(env); 4327 4328 return 0; 4329 } 4330 4331 static int kvm_get_sregs2(X86CPU *cpu) 4332 { 4333 CPUX86State *env = &cpu->env; 4334 struct kvm_sregs2 sregs; 4335 int i, ret; 4336 4337 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs); 4338 if (ret < 0) { 4339 return ret; 4340 } 4341 4342 get_seg(&env->segs[R_CS], &sregs.cs); 4343 get_seg(&env->segs[R_DS], &sregs.ds); 4344 get_seg(&env->segs[R_ES], &sregs.es); 4345 get_seg(&env->segs[R_FS], &sregs.fs); 4346 get_seg(&env->segs[R_GS], &sregs.gs); 4347 get_seg(&env->segs[R_SS], &sregs.ss); 4348 4349 get_seg(&env->tr, &sregs.tr); 4350 get_seg(&env->ldt, &sregs.ldt); 4351 4352 env->idt.limit = sregs.idt.limit; 4353 env->idt.base = sregs.idt.base; 4354 env->gdt.limit = sregs.gdt.limit; 4355 env->gdt.base = sregs.gdt.base; 4356 4357 env->cr[0] = sregs.cr0; 4358 env->cr[2] = sregs.cr2; 4359 env->cr[3] = sregs.cr3; 4360 env->cr[4] = sregs.cr4; 4361 4362 env->efer = sregs.efer; 4363 if (sev_es_enabled() && env->efer & MSR_EFER_LME && 4364 env->cr[0] & CR0_PG_MASK) { 4365 env->efer |= MSR_EFER_LMA; 4366 } 4367 4368 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 4369 4370 if (env->pdptrs_valid) { 4371 for (i = 0; i < 4; i++) { 4372 env->pdptrs[i] = sregs.pdptrs[i]; 4373 } 4374 } 4375 4376 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ 4377 x86_update_hflags(env); 4378 4379 return 0; 4380 } 4381 4382 static int kvm_get_msrs(X86CPU *cpu) 4383 { 4384 CPUX86State *env = &cpu->env; 4385 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; 4386 int ret, i; 4387 uint64_t mtrr_top_bits; 4388 4389 kvm_msr_buf_reset(cpu); 4390 4391 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); 4392 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); 4393 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); 4394 kvm_msr_entry_add(cpu, MSR_PAT, 0); 4395 if (has_msr_star) { 4396 kvm_msr_entry_add(cpu, MSR_STAR, 0); 4397 } 4398 if (has_msr_hsave_pa) { 4399 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); 4400 } 4401 if (has_msr_tsc_aux) { 4402 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); 4403 } 4404 if (has_msr_tsc_adjust) { 4405 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); 4406 } 4407 if (has_msr_tsc_deadline) { 4408 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); 4409 } 4410 if (has_msr_misc_enable) { 4411 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); 4412 } 4413 if (has_msr_smbase) { 4414 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); 4415 } 4416 if (has_msr_smi_count) { 4417 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0); 4418 } 4419 if (has_msr_feature_control) { 4420 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); 4421 } 4422 if (has_msr_pkrs) { 4423 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0); 4424 } 4425 if (has_msr_bndcfgs) { 4426 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); 4427 } 4428 if (has_msr_xss) { 4429 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); 4430 } 4431 if (has_msr_umwait) { 4432 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0); 4433 } 4434 if (has_msr_spec_ctrl) { 4435 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0); 4436 } 4437 if (has_tsc_scale_msr) { 4438 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0); 4439 } 4440 4441 if (has_msr_tsx_ctrl) { 4442 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0); 4443 } 4444 if (has_msr_virt_ssbd) { 4445 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0); 4446 } 4447 if (!env->tsc_valid) { 4448 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); 4449 env->tsc_valid = !runstate_is_running(); 4450 } 4451 if (has_msr_hwcr) { 4452 kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0); 4453 } 4454 4455 #ifdef TARGET_X86_64 4456 if (lm_capable_kernel) { 4457 kvm_msr_entry_add(cpu, MSR_CSTAR, 0); 4458 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); 4459 kvm_msr_entry_add(cpu, MSR_FMASK, 0); 4460 kvm_msr_entry_add(cpu, MSR_LSTAR, 0); 4461 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) { 4462 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0); 4463 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0); 4464 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0); 4465 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0); 4466 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0); 4467 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0); 4468 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0); 4469 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0); 4470 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0); 4471 } 4472 } 4473 #endif 4474 if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) { 4475 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); 4476 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); 4477 } 4478 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) { 4479 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0); 4480 } 4481 if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) { 4482 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); 4483 } 4484 if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) { 4485 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); 4486 } 4487 if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) { 4488 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); 4489 } 4490 if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) { 4491 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1); 4492 } 4493 if (has_architectural_pmu_version > 0) { 4494 if (has_architectural_pmu_version > 1) { 4495 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); 4496 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); 4497 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); 4498 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); 4499 } 4500 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) { 4501 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); 4502 } 4503 for (i = 0; i < num_architectural_pmu_gp_counters; i++) { 4504 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); 4505 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); 4506 } 4507 } 4508 4509 if (env->mcg_cap) { 4510 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); 4511 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); 4512 if (has_msr_mcg_ext_ctl) { 4513 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); 4514 } 4515 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { 4516 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); 4517 } 4518 } 4519 4520 if (has_msr_hv_hypercall) { 4521 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); 4522 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); 4523 } 4524 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) { 4525 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); 4526 } 4527 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) { 4528 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); 4529 } 4530 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) { 4531 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0); 4532 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0); 4533 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0); 4534 } 4535 if (has_msr_hv_syndbg_options) { 4536 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0); 4537 } 4538 if (has_msr_hv_crash) { 4539 int j; 4540 4541 for (j = 0; j < HV_CRASH_PARAMS; j++) { 4542 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); 4543 } 4544 } 4545 if (has_msr_hv_runtime) { 4546 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); 4547 } 4548 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) { 4549 uint32_t msr; 4550 4551 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); 4552 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); 4553 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); 4554 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { 4555 kvm_msr_entry_add(cpu, msr, 0); 4556 } 4557 } 4558 if (has_msr_hv_stimer) { 4559 uint32_t msr; 4560 4561 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; 4562 msr++) { 4563 kvm_msr_entry_add(cpu, msr, 0); 4564 } 4565 } 4566 if (env->features[FEAT_1_EDX] & CPUID_MTRR) { 4567 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); 4568 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); 4569 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); 4570 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); 4571 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); 4572 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); 4573 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); 4574 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); 4575 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); 4576 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); 4577 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); 4578 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); 4579 for (i = 0; i < MSR_MTRRcap_VCNT; i++) { 4580 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); 4581 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); 4582 } 4583 } 4584 4585 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) { 4586 int addr_num = 4587 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7; 4588 4589 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0); 4590 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0); 4591 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0); 4592 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0); 4593 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0); 4594 for (i = 0; i < addr_num; i++) { 4595 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0); 4596 } 4597 } 4598 4599 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) { 4600 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0); 4601 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0); 4602 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0); 4603 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0); 4604 } 4605 4606 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) { 4607 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0); 4608 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0); 4609 } 4610 4611 if (kvm_enabled() && cpu->enable_pmu && 4612 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) { 4613 uint64_t depth; 4614 4615 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth); 4616 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) { 4617 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0); 4618 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0); 4619 4620 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) { 4621 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0); 4622 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0); 4623 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0); 4624 } 4625 } 4626 } 4627 4628 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); 4629 if (ret < 0) { 4630 return ret; 4631 } 4632 4633 if (ret < cpu->kvm_msr_buf->nmsrs) { 4634 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; 4635 error_report("error: failed to get MSR 0x%" PRIx32, 4636 (uint32_t)e->index); 4637 } 4638 4639 assert(ret == cpu->kvm_msr_buf->nmsrs); 4640 /* 4641 * MTRR masks: Each mask consists of 5 parts 4642 * a 10..0: must be zero 4643 * b 11 : valid bit 4644 * c n-1.12: actual mask bits 4645 * d 51..n: reserved must be zero 4646 * e 63.52: reserved must be zero 4647 * 4648 * 'n' is the number of physical bits supported by the CPU and is 4649 * apparently always <= 52. We know our 'n' but don't know what 4650 * the destinations 'n' is; it might be smaller, in which case 4651 * it masks (c) on loading. It might be larger, in which case 4652 * we fill 'd' so that d..c is consistent irrespetive of the 'n' 4653 * we're migrating to. 4654 */ 4655 4656 if (cpu->fill_mtrr_mask) { 4657 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); 4658 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); 4659 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); 4660 } else { 4661 mtrr_top_bits = 0; 4662 } 4663 4664 for (i = 0; i < ret; i++) { 4665 uint32_t index = msrs[i].index; 4666 switch (index) { 4667 case MSR_IA32_SYSENTER_CS: 4668 env->sysenter_cs = msrs[i].data; 4669 break; 4670 case MSR_IA32_SYSENTER_ESP: 4671 env->sysenter_esp = msrs[i].data; 4672 break; 4673 case MSR_IA32_SYSENTER_EIP: 4674 env->sysenter_eip = msrs[i].data; 4675 break; 4676 case MSR_PAT: 4677 env->pat = msrs[i].data; 4678 break; 4679 case MSR_STAR: 4680 env->star = msrs[i].data; 4681 break; 4682 #ifdef TARGET_X86_64 4683 case MSR_CSTAR: 4684 env->cstar = msrs[i].data; 4685 break; 4686 case MSR_KERNELGSBASE: 4687 env->kernelgsbase = msrs[i].data; 4688 break; 4689 case MSR_FMASK: 4690 env->fmask = msrs[i].data; 4691 break; 4692 case MSR_LSTAR: 4693 env->lstar = msrs[i].data; 4694 break; 4695 case MSR_IA32_FRED_RSP0: 4696 env->fred_rsp0 = msrs[i].data; 4697 break; 4698 case MSR_IA32_FRED_RSP1: 4699 env->fred_rsp1 = msrs[i].data; 4700 break; 4701 case MSR_IA32_FRED_RSP2: 4702 env->fred_rsp2 = msrs[i].data; 4703 break; 4704 case MSR_IA32_FRED_RSP3: 4705 env->fred_rsp3 = msrs[i].data; 4706 break; 4707 case MSR_IA32_FRED_STKLVLS: 4708 env->fred_stklvls = msrs[i].data; 4709 break; 4710 case MSR_IA32_FRED_SSP1: 4711 env->fred_ssp1 = msrs[i].data; 4712 break; 4713 case MSR_IA32_FRED_SSP2: 4714 env->fred_ssp2 = msrs[i].data; 4715 break; 4716 case MSR_IA32_FRED_SSP3: 4717 env->fred_ssp3 = msrs[i].data; 4718 break; 4719 case MSR_IA32_FRED_CONFIG: 4720 env->fred_config = msrs[i].data; 4721 break; 4722 #endif 4723 case MSR_IA32_TSC: 4724 env->tsc = msrs[i].data; 4725 break; 4726 case MSR_TSC_AUX: 4727 env->tsc_aux = msrs[i].data; 4728 break; 4729 case MSR_TSC_ADJUST: 4730 env->tsc_adjust = msrs[i].data; 4731 break; 4732 case MSR_IA32_TSCDEADLINE: 4733 env->tsc_deadline = msrs[i].data; 4734 break; 4735 case MSR_VM_HSAVE_PA: 4736 env->vm_hsave = msrs[i].data; 4737 break; 4738 case MSR_KVM_SYSTEM_TIME: 4739 env->system_time_msr = msrs[i].data; 4740 break; 4741 case MSR_KVM_WALL_CLOCK: 4742 env->wall_clock_msr = msrs[i].data; 4743 break; 4744 case MSR_MCG_STATUS: 4745 env->mcg_status = msrs[i].data; 4746 break; 4747 case MSR_MCG_CTL: 4748 env->mcg_ctl = msrs[i].data; 4749 break; 4750 case MSR_MCG_EXT_CTL: 4751 env->mcg_ext_ctl = msrs[i].data; 4752 break; 4753 case MSR_IA32_MISC_ENABLE: 4754 env->msr_ia32_misc_enable = msrs[i].data; 4755 break; 4756 case MSR_IA32_SMBASE: 4757 env->smbase = msrs[i].data; 4758 break; 4759 case MSR_SMI_COUNT: 4760 env->msr_smi_count = msrs[i].data; 4761 break; 4762 case MSR_IA32_FEATURE_CONTROL: 4763 env->msr_ia32_feature_control = msrs[i].data; 4764 break; 4765 case MSR_IA32_BNDCFGS: 4766 env->msr_bndcfgs = msrs[i].data; 4767 break; 4768 case MSR_IA32_XSS: 4769 env->xss = msrs[i].data; 4770 break; 4771 case MSR_IA32_UMWAIT_CONTROL: 4772 env->umwait = msrs[i].data; 4773 break; 4774 case MSR_IA32_PKRS: 4775 env->pkrs = msrs[i].data; 4776 break; 4777 default: 4778 if (msrs[i].index >= MSR_MC0_CTL && 4779 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { 4780 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; 4781 } 4782 break; 4783 case MSR_KVM_ASYNC_PF_EN: 4784 env->async_pf_en_msr = msrs[i].data; 4785 break; 4786 case MSR_KVM_ASYNC_PF_INT: 4787 env->async_pf_int_msr = msrs[i].data; 4788 break; 4789 case MSR_KVM_PV_EOI_EN: 4790 env->pv_eoi_en_msr = msrs[i].data; 4791 break; 4792 case MSR_KVM_STEAL_TIME: 4793 env->steal_time_msr = msrs[i].data; 4794 break; 4795 case MSR_KVM_POLL_CONTROL: { 4796 env->poll_control_msr = msrs[i].data; 4797 break; 4798 } 4799 case MSR_CORE_PERF_FIXED_CTR_CTRL: 4800 env->msr_fixed_ctr_ctrl = msrs[i].data; 4801 break; 4802 case MSR_CORE_PERF_GLOBAL_CTRL: 4803 env->msr_global_ctrl = msrs[i].data; 4804 break; 4805 case MSR_CORE_PERF_GLOBAL_STATUS: 4806 env->msr_global_status = msrs[i].data; 4807 break; 4808 case MSR_CORE_PERF_GLOBAL_OVF_CTRL: 4809 env->msr_global_ovf_ctrl = msrs[i].data; 4810 break; 4811 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: 4812 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; 4813 break; 4814 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: 4815 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; 4816 break; 4817 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: 4818 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; 4819 break; 4820 case HV_X64_MSR_HYPERCALL: 4821 env->msr_hv_hypercall = msrs[i].data; 4822 break; 4823 case HV_X64_MSR_GUEST_OS_ID: 4824 env->msr_hv_guest_os_id = msrs[i].data; 4825 break; 4826 case HV_X64_MSR_APIC_ASSIST_PAGE: 4827 env->msr_hv_vapic = msrs[i].data; 4828 break; 4829 case HV_X64_MSR_REFERENCE_TSC: 4830 env->msr_hv_tsc = msrs[i].data; 4831 break; 4832 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4833 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; 4834 break; 4835 case HV_X64_MSR_VP_RUNTIME: 4836 env->msr_hv_runtime = msrs[i].data; 4837 break; 4838 case HV_X64_MSR_SCONTROL: 4839 env->msr_hv_synic_control = msrs[i].data; 4840 break; 4841 case HV_X64_MSR_SIEFP: 4842 env->msr_hv_synic_evt_page = msrs[i].data; 4843 break; 4844 case HV_X64_MSR_SIMP: 4845 env->msr_hv_synic_msg_page = msrs[i].data; 4846 break; 4847 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: 4848 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; 4849 break; 4850 case HV_X64_MSR_STIMER0_CONFIG: 4851 case HV_X64_MSR_STIMER1_CONFIG: 4852 case HV_X64_MSR_STIMER2_CONFIG: 4853 case HV_X64_MSR_STIMER3_CONFIG: 4854 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = 4855 msrs[i].data; 4856 break; 4857 case HV_X64_MSR_STIMER0_COUNT: 4858 case HV_X64_MSR_STIMER1_COUNT: 4859 case HV_X64_MSR_STIMER2_COUNT: 4860 case HV_X64_MSR_STIMER3_COUNT: 4861 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = 4862 msrs[i].data; 4863 break; 4864 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4865 env->msr_hv_reenlightenment_control = msrs[i].data; 4866 break; 4867 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4868 env->msr_hv_tsc_emulation_control = msrs[i].data; 4869 break; 4870 case HV_X64_MSR_TSC_EMULATION_STATUS: 4871 env->msr_hv_tsc_emulation_status = msrs[i].data; 4872 break; 4873 case HV_X64_MSR_SYNDBG_OPTIONS: 4874 env->msr_hv_syndbg_options = msrs[i].data; 4875 break; 4876 case MSR_MTRRdefType: 4877 env->mtrr_deftype = msrs[i].data; 4878 break; 4879 case MSR_MTRRfix64K_00000: 4880 env->mtrr_fixed[0] = msrs[i].data; 4881 break; 4882 case MSR_MTRRfix16K_80000: 4883 env->mtrr_fixed[1] = msrs[i].data; 4884 break; 4885 case MSR_MTRRfix16K_A0000: 4886 env->mtrr_fixed[2] = msrs[i].data; 4887 break; 4888 case MSR_MTRRfix4K_C0000: 4889 env->mtrr_fixed[3] = msrs[i].data; 4890 break; 4891 case MSR_MTRRfix4K_C8000: 4892 env->mtrr_fixed[4] = msrs[i].data; 4893 break; 4894 case MSR_MTRRfix4K_D0000: 4895 env->mtrr_fixed[5] = msrs[i].data; 4896 break; 4897 case MSR_MTRRfix4K_D8000: 4898 env->mtrr_fixed[6] = msrs[i].data; 4899 break; 4900 case MSR_MTRRfix4K_E0000: 4901 env->mtrr_fixed[7] = msrs[i].data; 4902 break; 4903 case MSR_MTRRfix4K_E8000: 4904 env->mtrr_fixed[8] = msrs[i].data; 4905 break; 4906 case MSR_MTRRfix4K_F0000: 4907 env->mtrr_fixed[9] = msrs[i].data; 4908 break; 4909 case MSR_MTRRfix4K_F8000: 4910 env->mtrr_fixed[10] = msrs[i].data; 4911 break; 4912 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): 4913 if (index & 1) { 4914 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | 4915 mtrr_top_bits; 4916 } else { 4917 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; 4918 } 4919 break; 4920 case MSR_IA32_SPEC_CTRL: 4921 env->spec_ctrl = msrs[i].data; 4922 break; 4923 case MSR_AMD64_TSC_RATIO: 4924 env->amd_tsc_scale_msr = msrs[i].data; 4925 break; 4926 case MSR_IA32_TSX_CTRL: 4927 env->tsx_ctrl = msrs[i].data; 4928 break; 4929 case MSR_VIRT_SSBD: 4930 env->virt_ssbd = msrs[i].data; 4931 break; 4932 case MSR_IA32_RTIT_CTL: 4933 env->msr_rtit_ctrl = msrs[i].data; 4934 break; 4935 case MSR_IA32_RTIT_STATUS: 4936 env->msr_rtit_status = msrs[i].data; 4937 break; 4938 case MSR_IA32_RTIT_OUTPUT_BASE: 4939 env->msr_rtit_output_base = msrs[i].data; 4940 break; 4941 case MSR_IA32_RTIT_OUTPUT_MASK: 4942 env->msr_rtit_output_mask = msrs[i].data; 4943 break; 4944 case MSR_IA32_RTIT_CR3_MATCH: 4945 env->msr_rtit_cr3_match = msrs[i].data; 4946 break; 4947 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 4948 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data; 4949 break; 4950 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 4951 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] = 4952 msrs[i].data; 4953 break; 4954 case MSR_IA32_XFD: 4955 env->msr_xfd = msrs[i].data; 4956 break; 4957 case MSR_IA32_XFD_ERR: 4958 env->msr_xfd_err = msrs[i].data; 4959 break; 4960 case MSR_ARCH_LBR_CTL: 4961 env->msr_lbr_ctl = msrs[i].data; 4962 break; 4963 case MSR_ARCH_LBR_DEPTH: 4964 env->msr_lbr_depth = msrs[i].data; 4965 break; 4966 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31: 4967 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data; 4968 break; 4969 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31: 4970 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data; 4971 break; 4972 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31: 4973 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data; 4974 break; 4975 case MSR_K7_HWCR: 4976 env->msr_hwcr = msrs[i].data; 4977 break; 4978 } 4979 } 4980 4981 return 0; 4982 } 4983 4984 static int kvm_put_mp_state(X86CPU *cpu) 4985 { 4986 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; 4987 4988 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); 4989 } 4990 4991 static int kvm_get_mp_state(X86CPU *cpu) 4992 { 4993 CPUState *cs = CPU(cpu); 4994 CPUX86State *env = &cpu->env; 4995 struct kvm_mp_state mp_state; 4996 int ret; 4997 4998 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); 4999 if (ret < 0) { 5000 return ret; 5001 } 5002 env->mp_state = mp_state.mp_state; 5003 if (kvm_irqchip_in_kernel()) { 5004 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); 5005 } 5006 return 0; 5007 } 5008 5009 static int kvm_get_apic(X86CPU *cpu) 5010 { 5011 DeviceState *apic = cpu->apic_state; 5012 struct kvm_lapic_state kapic; 5013 int ret; 5014 5015 if (apic && kvm_irqchip_in_kernel()) { 5016 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); 5017 if (ret < 0) { 5018 return ret; 5019 } 5020 5021 kvm_get_apic_state(apic, &kapic); 5022 } 5023 return 0; 5024 } 5025 5026 static int kvm_put_vcpu_events(X86CPU *cpu, int level) 5027 { 5028 CPUState *cs = CPU(cpu); 5029 CPUX86State *env = &cpu->env; 5030 struct kvm_vcpu_events events = {}; 5031 5032 events.flags = 0; 5033 5034 if (has_exception_payload) { 5035 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 5036 events.exception.pending = env->exception_pending; 5037 events.exception_has_payload = env->exception_has_payload; 5038 events.exception_payload = env->exception_payload; 5039 } 5040 events.exception.nr = env->exception_nr; 5041 events.exception.injected = env->exception_injected; 5042 events.exception.has_error_code = env->has_error_code; 5043 events.exception.error_code = env->error_code; 5044 5045 events.interrupt.injected = (env->interrupt_injected >= 0); 5046 events.interrupt.nr = env->interrupt_injected; 5047 events.interrupt.soft = env->soft_interrupt; 5048 5049 events.nmi.injected = env->nmi_injected; 5050 events.nmi.pending = env->nmi_pending; 5051 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); 5052 5053 events.sipi_vector = env->sipi_vector; 5054 5055 if (has_msr_smbase) { 5056 events.flags |= KVM_VCPUEVENT_VALID_SMM; 5057 events.smi.smm = !!(env->hflags & HF_SMM_MASK); 5058 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); 5059 if (kvm_irqchip_in_kernel()) { 5060 /* As soon as these are moved to the kernel, remove them 5061 * from cs->interrupt_request. 5062 */ 5063 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; 5064 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; 5065 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); 5066 } else { 5067 /* Keep these in cs->interrupt_request. */ 5068 events.smi.pending = 0; 5069 events.smi.latched_init = 0; 5070 } 5071 } 5072 5073 if (level >= KVM_PUT_RESET_STATE) { 5074 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING; 5075 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 5076 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR; 5077 } 5078 } 5079 5080 if (has_triple_fault_event) { 5081 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; 5082 events.triple_fault.pending = env->triple_fault_pending; 5083 } 5084 5085 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); 5086 } 5087 5088 static int kvm_get_vcpu_events(X86CPU *cpu) 5089 { 5090 CPUX86State *env = &cpu->env; 5091 struct kvm_vcpu_events events; 5092 int ret; 5093 5094 memset(&events, 0, sizeof(events)); 5095 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); 5096 if (ret < 0) { 5097 return ret; 5098 } 5099 5100 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 5101 env->exception_pending = events.exception.pending; 5102 env->exception_has_payload = events.exception_has_payload; 5103 env->exception_payload = events.exception_payload; 5104 } else { 5105 env->exception_pending = 0; 5106 env->exception_has_payload = false; 5107 } 5108 env->exception_injected = events.exception.injected; 5109 env->exception_nr = 5110 (env->exception_pending || env->exception_injected) ? 5111 events.exception.nr : -1; 5112 env->has_error_code = events.exception.has_error_code; 5113 env->error_code = events.exception.error_code; 5114 5115 env->interrupt_injected = 5116 events.interrupt.injected ? events.interrupt.nr : -1; 5117 env->soft_interrupt = events.interrupt.soft; 5118 5119 env->nmi_injected = events.nmi.injected; 5120 env->nmi_pending = events.nmi.pending; 5121 if (events.nmi.masked) { 5122 env->hflags2 |= HF2_NMI_MASK; 5123 } else { 5124 env->hflags2 &= ~HF2_NMI_MASK; 5125 } 5126 5127 if (events.flags & KVM_VCPUEVENT_VALID_SMM) { 5128 if (events.smi.smm) { 5129 env->hflags |= HF_SMM_MASK; 5130 } else { 5131 env->hflags &= ~HF_SMM_MASK; 5132 } 5133 if (events.smi.pending) { 5134 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5135 } else { 5136 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 5137 } 5138 if (events.smi.smm_inside_nmi) { 5139 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; 5140 } else { 5141 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; 5142 } 5143 if (events.smi.latched_init) { 5144 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5145 } else { 5146 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); 5147 } 5148 } 5149 5150 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { 5151 env->triple_fault_pending = events.triple_fault.pending; 5152 } 5153 5154 env->sipi_vector = events.sipi_vector; 5155 5156 return 0; 5157 } 5158 5159 static int kvm_put_debugregs(X86CPU *cpu) 5160 { 5161 CPUX86State *env = &cpu->env; 5162 struct kvm_debugregs dbgregs; 5163 int i; 5164 5165 memset(&dbgregs, 0, sizeof(dbgregs)); 5166 for (i = 0; i < 4; i++) { 5167 dbgregs.db[i] = env->dr[i]; 5168 } 5169 dbgregs.dr6 = env->dr[6]; 5170 dbgregs.dr7 = env->dr[7]; 5171 dbgregs.flags = 0; 5172 5173 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); 5174 } 5175 5176 static int kvm_get_debugregs(X86CPU *cpu) 5177 { 5178 CPUX86State *env = &cpu->env; 5179 struct kvm_debugregs dbgregs; 5180 int i, ret; 5181 5182 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); 5183 if (ret < 0) { 5184 return ret; 5185 } 5186 for (i = 0; i < 4; i++) { 5187 env->dr[i] = dbgregs.db[i]; 5188 } 5189 env->dr[4] = env->dr[6] = dbgregs.dr6; 5190 env->dr[5] = env->dr[7] = dbgregs.dr7; 5191 5192 return 0; 5193 } 5194 5195 static int kvm_put_nested_state(X86CPU *cpu) 5196 { 5197 CPUX86State *env = &cpu->env; 5198 int max_nested_state_len = kvm_max_nested_state_length(); 5199 5200 if (!env->nested_state) { 5201 return 0; 5202 } 5203 5204 /* 5205 * Copy flags that are affected by reset from env->hflags and env->hflags2. 5206 */ 5207 if (env->hflags & HF_GUEST_MASK) { 5208 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE; 5209 } else { 5210 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE; 5211 } 5212 5213 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */ 5214 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) { 5215 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET; 5216 } else { 5217 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET; 5218 } 5219 5220 assert(env->nested_state->size <= max_nested_state_len); 5221 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state); 5222 } 5223 5224 static int kvm_get_nested_state(X86CPU *cpu) 5225 { 5226 CPUX86State *env = &cpu->env; 5227 int max_nested_state_len = kvm_max_nested_state_length(); 5228 int ret; 5229 5230 if (!env->nested_state) { 5231 return 0; 5232 } 5233 5234 /* 5235 * It is possible that migration restored a smaller size into 5236 * nested_state->hdr.size than what our kernel support. 5237 * We preserve migration origin nested_state->hdr.size for 5238 * call to KVM_SET_NESTED_STATE but wish that our next call 5239 * to KVM_GET_NESTED_STATE will use max size our kernel support. 5240 */ 5241 env->nested_state->size = max_nested_state_len; 5242 5243 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state); 5244 if (ret < 0) { 5245 return ret; 5246 } 5247 5248 /* 5249 * Copy flags that are affected by reset to env->hflags and env->hflags2. 5250 */ 5251 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) { 5252 env->hflags |= HF_GUEST_MASK; 5253 } else { 5254 env->hflags &= ~HF_GUEST_MASK; 5255 } 5256 5257 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */ 5258 if (cpu_has_svm(env)) { 5259 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) { 5260 env->hflags2 |= HF2_GIF_MASK; 5261 } else { 5262 env->hflags2 &= ~HF2_GIF_MASK; 5263 } 5264 } 5265 5266 return ret; 5267 } 5268 5269 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp) 5270 { 5271 X86CPU *x86_cpu = X86_CPU(cpu); 5272 int ret; 5273 5274 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); 5275 5276 /* 5277 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX 5278 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also 5279 * precede kvm_put_nested_state() when 'real' nested state is set. 5280 */ 5281 if (level >= KVM_PUT_RESET_STATE) { 5282 ret = kvm_put_msr_feature_control(x86_cpu); 5283 if (ret < 0) { 5284 error_setg_errno(errp, -ret, "Failed to set feature control MSR"); 5285 return ret; 5286 } 5287 } 5288 5289 /* must be before kvm_put_nested_state so that EFER.SVME is set */ 5290 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu); 5291 if (ret < 0) { 5292 error_setg_errno(errp, -ret, "Failed to set special registers"); 5293 return ret; 5294 } 5295 5296 if (level >= KVM_PUT_RESET_STATE) { 5297 ret = kvm_put_nested_state(x86_cpu); 5298 if (ret < 0) { 5299 error_setg_errno(errp, -ret, "Failed to set nested state"); 5300 return ret; 5301 } 5302 } 5303 5304 if (level == KVM_PUT_FULL_STATE) { 5305 /* We don't check for kvm_arch_set_tsc_khz() errors here, 5306 * because TSC frequency mismatch shouldn't abort migration, 5307 * unless the user explicitly asked for a more strict TSC 5308 * setting (e.g. using an explicit "tsc-freq" option). 5309 */ 5310 kvm_arch_set_tsc_khz(cpu); 5311 } 5312 5313 #ifdef CONFIG_XEN_EMU 5314 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) { 5315 ret = kvm_put_xen_state(cpu); 5316 if (ret < 0) { 5317 error_setg_errno(errp, -ret, "Failed to set Xen state"); 5318 return ret; 5319 } 5320 } 5321 #endif 5322 5323 ret = kvm_getput_regs(x86_cpu, 1); 5324 if (ret < 0) { 5325 error_setg_errno(errp, -ret, "Failed to set general purpose registers"); 5326 return ret; 5327 } 5328 ret = kvm_put_xsave(x86_cpu); 5329 if (ret < 0) { 5330 error_setg_errno(errp, -ret, "Failed to set XSAVE"); 5331 return ret; 5332 } 5333 ret = kvm_put_xcrs(x86_cpu); 5334 if (ret < 0) { 5335 error_setg_errno(errp, -ret, "Failed to set XCRs"); 5336 return ret; 5337 } 5338 ret = kvm_put_msrs(x86_cpu, level); 5339 if (ret < 0) { 5340 error_setg_errno(errp, -ret, "Failed to set MSRs"); 5341 return ret; 5342 } 5343 ret = kvm_put_vcpu_events(x86_cpu, level); 5344 if (ret < 0) { 5345 error_setg_errno(errp, -ret, "Failed to set vCPU events"); 5346 return ret; 5347 } 5348 if (level >= KVM_PUT_RESET_STATE) { 5349 ret = kvm_put_mp_state(x86_cpu); 5350 if (ret < 0) { 5351 error_setg_errno(errp, -ret, "Failed to set MP state"); 5352 return ret; 5353 } 5354 } 5355 5356 ret = kvm_put_tscdeadline_msr(x86_cpu); 5357 if (ret < 0) { 5358 error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR"); 5359 return ret; 5360 } 5361 ret = kvm_put_debugregs(x86_cpu); 5362 if (ret < 0) { 5363 error_setg_errno(errp, -ret, "Failed to set debug registers"); 5364 return ret; 5365 } 5366 return 0; 5367 } 5368 5369 int kvm_arch_get_registers(CPUState *cs, Error **errp) 5370 { 5371 X86CPU *cpu = X86_CPU(cs); 5372 int ret; 5373 5374 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); 5375 5376 ret = kvm_get_vcpu_events(cpu); 5377 if (ret < 0) { 5378 error_setg_errno(errp, -ret, "Failed to get vCPU events"); 5379 goto out; 5380 } 5381 /* 5382 * KVM_GET_MPSTATE can modify CS and RIP, call it before 5383 * KVM_GET_REGS and KVM_GET_SREGS. 5384 */ 5385 ret = kvm_get_mp_state(cpu); 5386 if (ret < 0) { 5387 error_setg_errno(errp, -ret, "Failed to get MP state"); 5388 goto out; 5389 } 5390 ret = kvm_getput_regs(cpu, 0); 5391 if (ret < 0) { 5392 error_setg_errno(errp, -ret, "Failed to get general purpose registers"); 5393 goto out; 5394 } 5395 ret = kvm_get_xsave(cpu); 5396 if (ret < 0) { 5397 error_setg_errno(errp, -ret, "Failed to get XSAVE"); 5398 goto out; 5399 } 5400 ret = kvm_get_xcrs(cpu); 5401 if (ret < 0) { 5402 error_setg_errno(errp, -ret, "Failed to get XCRs"); 5403 goto out; 5404 } 5405 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu); 5406 if (ret < 0) { 5407 error_setg_errno(errp, -ret, "Failed to get special registers"); 5408 goto out; 5409 } 5410 ret = kvm_get_msrs(cpu); 5411 if (ret < 0) { 5412 error_setg_errno(errp, -ret, "Failed to get MSRs"); 5413 goto out; 5414 } 5415 ret = kvm_get_apic(cpu); 5416 if (ret < 0) { 5417 error_setg_errno(errp, -ret, "Failed to get APIC"); 5418 goto out; 5419 } 5420 ret = kvm_get_debugregs(cpu); 5421 if (ret < 0) { 5422 error_setg_errno(errp, -ret, "Failed to get debug registers"); 5423 goto out; 5424 } 5425 ret = kvm_get_nested_state(cpu); 5426 if (ret < 0) { 5427 error_setg_errno(errp, -ret, "Failed to get nested state"); 5428 goto out; 5429 } 5430 #ifdef CONFIG_XEN_EMU 5431 if (xen_mode == XEN_EMULATE) { 5432 ret = kvm_get_xen_state(cs); 5433 if (ret < 0) { 5434 error_setg_errno(errp, -ret, "Failed to get Xen state"); 5435 goto out; 5436 } 5437 } 5438 #endif 5439 ret = 0; 5440 out: 5441 cpu_sync_bndcs_hflags(&cpu->env); 5442 return ret; 5443 } 5444 5445 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) 5446 { 5447 X86CPU *x86_cpu = X86_CPU(cpu); 5448 CPUX86State *env = &x86_cpu->env; 5449 int ret; 5450 5451 /* Inject NMI */ 5452 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { 5453 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { 5454 bql_lock(); 5455 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; 5456 bql_unlock(); 5457 DPRINTF("injected NMI\n"); 5458 ret = kvm_vcpu_ioctl(cpu, KVM_NMI); 5459 if (ret < 0) { 5460 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", 5461 strerror(-ret)); 5462 } 5463 } 5464 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { 5465 bql_lock(); 5466 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; 5467 bql_unlock(); 5468 DPRINTF("injected SMI\n"); 5469 ret = kvm_vcpu_ioctl(cpu, KVM_SMI); 5470 if (ret < 0) { 5471 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", 5472 strerror(-ret)); 5473 } 5474 } 5475 } 5476 5477 if (!kvm_pic_in_kernel()) { 5478 bql_lock(); 5479 } 5480 5481 /* Force the VCPU out of its inner loop to process any INIT requests 5482 * or (for userspace APIC, but it is cheap to combine the checks here) 5483 * pending TPR access reports. 5484 */ 5485 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { 5486 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && 5487 !(env->hflags & HF_SMM_MASK)) { 5488 cpu->exit_request = 1; 5489 } 5490 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { 5491 cpu->exit_request = 1; 5492 } 5493 } 5494 5495 if (!kvm_pic_in_kernel()) { 5496 /* Try to inject an interrupt if the guest can accept it */ 5497 if (run->ready_for_interrupt_injection && 5498 (cpu->interrupt_request & CPU_INTERRUPT_HARD) && 5499 (env->eflags & IF_MASK)) { 5500 int irq; 5501 5502 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; 5503 irq = cpu_get_pic_interrupt(env); 5504 if (irq >= 0) { 5505 struct kvm_interrupt intr; 5506 5507 intr.irq = irq; 5508 DPRINTF("injected interrupt %d\n", irq); 5509 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); 5510 if (ret < 0) { 5511 fprintf(stderr, 5512 "KVM: injection failed, interrupt lost (%s)\n", 5513 strerror(-ret)); 5514 } 5515 } 5516 } 5517 5518 /* If we have an interrupt but the guest is not ready to receive an 5519 * interrupt, request an interrupt window exit. This will 5520 * cause a return to userspace as soon as the guest is ready to 5521 * receive interrupts. */ 5522 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { 5523 run->request_interrupt_window = 1; 5524 } else { 5525 run->request_interrupt_window = 0; 5526 } 5527 5528 DPRINTF("setting tpr\n"); 5529 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); 5530 5531 bql_unlock(); 5532 } 5533 } 5534 5535 static void kvm_rate_limit_on_bus_lock(void) 5536 { 5537 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1); 5538 5539 if (delay_ns) { 5540 g_usleep(delay_ns / SCALE_US); 5541 } 5542 } 5543 5544 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) 5545 { 5546 X86CPU *x86_cpu = X86_CPU(cpu); 5547 CPUX86State *env = &x86_cpu->env; 5548 5549 if (run->flags & KVM_RUN_X86_SMM) { 5550 env->hflags |= HF_SMM_MASK; 5551 } else { 5552 env->hflags &= ~HF_SMM_MASK; 5553 } 5554 if (run->if_flag) { 5555 env->eflags |= IF_MASK; 5556 } else { 5557 env->eflags &= ~IF_MASK; 5558 } 5559 if (run->flags & KVM_RUN_X86_BUS_LOCK) { 5560 kvm_rate_limit_on_bus_lock(); 5561 } 5562 5563 #ifdef CONFIG_XEN_EMU 5564 /* 5565 * If the callback is asserted as a GSI (or PCI INTx) then check if 5566 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert 5567 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC 5568 * EOI and only resample then, exactly how the VFIO eventfd pairs 5569 * are designed to work for level triggered interrupts. 5570 */ 5571 if (x86_cpu->env.xen_callback_asserted) { 5572 kvm_xen_maybe_deassert_callback(cpu); 5573 } 5574 #endif 5575 5576 /* We need to protect the apic state against concurrent accesses from 5577 * different threads in case the userspace irqchip is used. */ 5578 if (!kvm_irqchip_in_kernel()) { 5579 bql_lock(); 5580 } 5581 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); 5582 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); 5583 if (!kvm_irqchip_in_kernel()) { 5584 bql_unlock(); 5585 } 5586 return cpu_get_mem_attrs(env); 5587 } 5588 5589 int kvm_arch_process_async_events(CPUState *cs) 5590 { 5591 X86CPU *cpu = X86_CPU(cs); 5592 CPUX86State *env = &cpu->env; 5593 5594 if (cs->interrupt_request & CPU_INTERRUPT_MCE) { 5595 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ 5596 assert(env->mcg_cap); 5597 5598 cs->interrupt_request &= ~CPU_INTERRUPT_MCE; 5599 5600 kvm_cpu_synchronize_state(cs); 5601 5602 if (env->exception_nr == EXCP08_DBLE) { 5603 /* this means triple fault */ 5604 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 5605 cs->exit_request = 1; 5606 return 0; 5607 } 5608 kvm_queue_exception(env, EXCP12_MCHK, 0, 0); 5609 env->has_error_code = 0; 5610 5611 cs->halted = 0; 5612 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { 5613 env->mp_state = KVM_MP_STATE_RUNNABLE; 5614 } 5615 } 5616 5617 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && 5618 !(env->hflags & HF_SMM_MASK)) { 5619 kvm_cpu_synchronize_state(cs); 5620 do_cpu_init(cpu); 5621 } 5622 5623 if (kvm_irqchip_in_kernel()) { 5624 return 0; 5625 } 5626 5627 if (cs->interrupt_request & CPU_INTERRUPT_POLL) { 5628 cs->interrupt_request &= ~CPU_INTERRUPT_POLL; 5629 apic_poll_irq(cpu->apic_state); 5630 } 5631 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5632 (env->eflags & IF_MASK)) || 5633 (cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5634 cs->halted = 0; 5635 } 5636 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { 5637 kvm_cpu_synchronize_state(cs); 5638 do_cpu_sipi(cpu); 5639 } 5640 if (cs->interrupt_request & CPU_INTERRUPT_TPR) { 5641 cs->interrupt_request &= ~CPU_INTERRUPT_TPR; 5642 kvm_cpu_synchronize_state(cs); 5643 apic_handle_tpr_access_report(cpu->apic_state, env->eip, 5644 env->tpr_access_type); 5645 } 5646 5647 return cs->halted; 5648 } 5649 5650 static int kvm_handle_halt(X86CPU *cpu) 5651 { 5652 CPUState *cs = CPU(cpu); 5653 CPUX86State *env = &cpu->env; 5654 5655 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && 5656 (env->eflags & IF_MASK)) && 5657 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { 5658 cs->halted = 1; 5659 return EXCP_HLT; 5660 } 5661 5662 return 0; 5663 } 5664 5665 static int kvm_handle_tpr_access(X86CPU *cpu) 5666 { 5667 CPUState *cs = CPU(cpu); 5668 struct kvm_run *run = cs->kvm_run; 5669 5670 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, 5671 run->tpr_access.is_write ? TPR_ACCESS_WRITE 5672 : TPR_ACCESS_READ); 5673 return 1; 5674 } 5675 5676 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5677 { 5678 static const uint8_t int3 = 0xcc; 5679 5680 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || 5681 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { 5682 return -EINVAL; 5683 } 5684 return 0; 5685 } 5686 5687 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) 5688 { 5689 uint8_t int3; 5690 5691 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) { 5692 return -EINVAL; 5693 } 5694 if (int3 != 0xcc) { 5695 return 0; 5696 } 5697 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { 5698 return -EINVAL; 5699 } 5700 return 0; 5701 } 5702 5703 static struct { 5704 target_ulong addr; 5705 int len; 5706 int type; 5707 } hw_breakpoint[4]; 5708 5709 static int nb_hw_breakpoint; 5710 5711 static int find_hw_breakpoint(target_ulong addr, int len, int type) 5712 { 5713 int n; 5714 5715 for (n = 0; n < nb_hw_breakpoint; n++) { 5716 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && 5717 (hw_breakpoint[n].len == len || len == -1)) { 5718 return n; 5719 } 5720 } 5721 return -1; 5722 } 5723 5724 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) 5725 { 5726 switch (type) { 5727 case GDB_BREAKPOINT_HW: 5728 len = 1; 5729 break; 5730 case GDB_WATCHPOINT_WRITE: 5731 case GDB_WATCHPOINT_ACCESS: 5732 switch (len) { 5733 case 1: 5734 break; 5735 case 2: 5736 case 4: 5737 case 8: 5738 if (addr & (len - 1)) { 5739 return -EINVAL; 5740 } 5741 break; 5742 default: 5743 return -EINVAL; 5744 } 5745 break; 5746 default: 5747 return -ENOSYS; 5748 } 5749 5750 if (nb_hw_breakpoint == 4) { 5751 return -ENOBUFS; 5752 } 5753 if (find_hw_breakpoint(addr, len, type) >= 0) { 5754 return -EEXIST; 5755 } 5756 hw_breakpoint[nb_hw_breakpoint].addr = addr; 5757 hw_breakpoint[nb_hw_breakpoint].len = len; 5758 hw_breakpoint[nb_hw_breakpoint].type = type; 5759 nb_hw_breakpoint++; 5760 5761 return 0; 5762 } 5763 5764 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) 5765 { 5766 int n; 5767 5768 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); 5769 if (n < 0) { 5770 return -ENOENT; 5771 } 5772 nb_hw_breakpoint--; 5773 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; 5774 5775 return 0; 5776 } 5777 5778 void kvm_arch_remove_all_hw_breakpoints(void) 5779 { 5780 nb_hw_breakpoint = 0; 5781 } 5782 5783 static CPUWatchpoint hw_watchpoint; 5784 5785 static int kvm_handle_debug(X86CPU *cpu, 5786 struct kvm_debug_exit_arch *arch_info) 5787 { 5788 CPUState *cs = CPU(cpu); 5789 CPUX86State *env = &cpu->env; 5790 int ret = 0; 5791 int n; 5792 5793 if (arch_info->exception == EXCP01_DB) { 5794 if (arch_info->dr6 & DR6_BS) { 5795 if (cs->singlestep_enabled) { 5796 ret = EXCP_DEBUG; 5797 } 5798 } else { 5799 for (n = 0; n < 4; n++) { 5800 if (arch_info->dr6 & (1 << n)) { 5801 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { 5802 case 0x0: 5803 ret = EXCP_DEBUG; 5804 break; 5805 case 0x1: 5806 ret = EXCP_DEBUG; 5807 cs->watchpoint_hit = &hw_watchpoint; 5808 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5809 hw_watchpoint.flags = BP_MEM_WRITE; 5810 break; 5811 case 0x3: 5812 ret = EXCP_DEBUG; 5813 cs->watchpoint_hit = &hw_watchpoint; 5814 hw_watchpoint.vaddr = hw_breakpoint[n].addr; 5815 hw_watchpoint.flags = BP_MEM_ACCESS; 5816 break; 5817 } 5818 } 5819 } 5820 } 5821 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { 5822 ret = EXCP_DEBUG; 5823 } 5824 if (ret == 0) { 5825 cpu_synchronize_state(cs); 5826 assert(env->exception_nr == -1); 5827 5828 /* pass to guest */ 5829 kvm_queue_exception(env, arch_info->exception, 5830 arch_info->exception == EXCP01_DB, 5831 arch_info->dr6); 5832 env->has_error_code = 0; 5833 } 5834 5835 return ret; 5836 } 5837 5838 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) 5839 { 5840 const uint8_t type_code[] = { 5841 [GDB_BREAKPOINT_HW] = 0x0, 5842 [GDB_WATCHPOINT_WRITE] = 0x1, 5843 [GDB_WATCHPOINT_ACCESS] = 0x3 5844 }; 5845 const uint8_t len_code[] = { 5846 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 5847 }; 5848 int n; 5849 5850 if (kvm_sw_breakpoints_active(cpu)) { 5851 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; 5852 } 5853 if (nb_hw_breakpoint > 0) { 5854 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; 5855 dbg->arch.debugreg[7] = 0x0600; 5856 for (n = 0; n < nb_hw_breakpoint; n++) { 5857 dbg->arch.debugreg[n] = hw_breakpoint[n].addr; 5858 dbg->arch.debugreg[7] |= (2 << (n * 2)) | 5859 (type_code[hw_breakpoint[n].type] << (16 + n*4)) | 5860 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); 5861 } 5862 } 5863 } 5864 5865 static int kvm_install_msr_filters(KVMState *s) 5866 { 5867 uint64_t zero = 0; 5868 struct kvm_msr_filter filter = { 5869 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW, 5870 }; 5871 int i, j = 0; 5872 5873 QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges)); 5874 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5875 KVMMSRHandlers *handler = &msr_handlers[i]; 5876 if (handler->msr) { 5877 struct kvm_msr_filter_range *range = &filter.ranges[j++]; 5878 5879 *range = (struct kvm_msr_filter_range) { 5880 .flags = 0, 5881 .nmsrs = 1, 5882 .base = handler->msr, 5883 .bitmap = (__u8 *)&zero, 5884 }; 5885 5886 if (handler->rdmsr) { 5887 range->flags |= KVM_MSR_FILTER_READ; 5888 } 5889 5890 if (handler->wrmsr) { 5891 range->flags |= KVM_MSR_FILTER_WRITE; 5892 } 5893 } 5894 } 5895 5896 return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter); 5897 } 5898 5899 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr, 5900 QEMUWRMSRHandler *wrmsr) 5901 { 5902 int i, ret; 5903 5904 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5905 if (!msr_handlers[i].msr) { 5906 msr_handlers[i] = (KVMMSRHandlers) { 5907 .msr = msr, 5908 .rdmsr = rdmsr, 5909 .wrmsr = wrmsr, 5910 }; 5911 5912 ret = kvm_install_msr_filters(s); 5913 if (ret) { 5914 msr_handlers[i] = (KVMMSRHandlers) { }; 5915 return ret; 5916 } 5917 5918 return 0; 5919 } 5920 } 5921 5922 return -EINVAL; 5923 } 5924 5925 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run) 5926 { 5927 int i; 5928 bool r; 5929 5930 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5931 KVMMSRHandlers *handler = &msr_handlers[i]; 5932 if (run->msr.index == handler->msr) { 5933 if (handler->rdmsr) { 5934 r = handler->rdmsr(cpu, handler->msr, 5935 (uint64_t *)&run->msr.data); 5936 run->msr.error = r ? 0 : 1; 5937 return 0; 5938 } 5939 } 5940 } 5941 5942 g_assert_not_reached(); 5943 } 5944 5945 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run) 5946 { 5947 int i; 5948 bool r; 5949 5950 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) { 5951 KVMMSRHandlers *handler = &msr_handlers[i]; 5952 if (run->msr.index == handler->msr) { 5953 if (handler->wrmsr) { 5954 r = handler->wrmsr(cpu, handler->msr, run->msr.data); 5955 run->msr.error = r ? 0 : 1; 5956 return 0; 5957 } 5958 } 5959 } 5960 5961 g_assert_not_reached(); 5962 } 5963 5964 static bool has_sgx_provisioning; 5965 5966 static bool __kvm_enable_sgx_provisioning(KVMState *s) 5967 { 5968 int fd, ret; 5969 5970 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) { 5971 return false; 5972 } 5973 5974 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY); 5975 if (fd < 0) { 5976 return false; 5977 } 5978 5979 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd); 5980 if (ret) { 5981 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret)); 5982 exit(1); 5983 } 5984 close(fd); 5985 return true; 5986 } 5987 5988 bool kvm_enable_sgx_provisioning(KVMState *s) 5989 { 5990 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning); 5991 } 5992 5993 static bool host_supports_vmx(void) 5994 { 5995 uint32_t ecx, unused; 5996 5997 host_cpuid(1, 0, &unused, &unused, &ecx, &unused); 5998 return ecx & CPUID_EXT_VMX; 5999 } 6000 6001 /* 6002 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE 6003 * to service guest-initiated memory attribute update requests so that 6004 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be 6005 * backed by the private memory pool provided by guest_memfd, and as such 6006 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX). 6007 * 6008 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live 6009 * migration, are not implemented here currently. 6010 * 6011 * For the guest_memfd use-case, these exits will generally be synthesized 6012 * by KVM based on platform-specific hypercalls, like GHCB requests in the 6013 * case of SEV-SNP, and not issued directly within the guest though the 6014 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is 6015 * not actually advertised to guests via the KVM CPUID feature bit, as 6016 * opposed to SEV live migration where it would be. Since it is unlikely the 6017 * SEV live migration use-case would be useful for guest-memfd backed guests, 6018 * because private/shared page tracking is already provided through other 6019 * means, these 2 use-cases should be treated as being mutually-exclusive. 6020 */ 6021 static int kvm_handle_hc_map_gpa_range(X86CPU *cpu, struct kvm_run *run) 6022 { 6023 struct kvm_pre_fault_memory mem; 6024 uint64_t gpa, size, attributes; 6025 int ret; 6026 6027 if (!machine_require_guest_memfd(current_machine)) 6028 return -EINVAL; 6029 6030 gpa = run->hypercall.args[0]; 6031 size = run->hypercall.args[1] * TARGET_PAGE_SIZE; 6032 attributes = run->hypercall.args[2]; 6033 6034 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags); 6035 6036 ret = kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED); 6037 if (ret || !kvm_pre_fault_memory_supported) { 6038 return ret; 6039 } 6040 6041 /* 6042 * Opportunistically pre-fault memory in. Failures are ignored so that any 6043 * errors in faulting in the memory will get captured in KVM page fault 6044 * path when the guest first accesses the page. 6045 */ 6046 memset(&mem, 0, sizeof(mem)); 6047 mem.gpa = gpa; 6048 mem.size = size; 6049 while (mem.size) { 6050 if (kvm_vcpu_ioctl(CPU(cpu), KVM_PRE_FAULT_MEMORY, &mem)) { 6051 break; 6052 } 6053 } 6054 6055 return 0; 6056 } 6057 6058 static int kvm_handle_hypercall(X86CPU *cpu, struct kvm_run *run) 6059 { 6060 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE) 6061 return kvm_handle_hc_map_gpa_range(cpu, run); 6062 6063 return -EINVAL; 6064 } 6065 6066 #define VMX_INVALID_GUEST_STATE 0x80000021 6067 6068 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) 6069 { 6070 X86CPU *cpu = X86_CPU(cs); 6071 uint64_t code; 6072 int ret; 6073 bool ctx_invalid; 6074 KVMState *state; 6075 6076 switch (run->exit_reason) { 6077 case KVM_EXIT_HLT: 6078 DPRINTF("handle_hlt\n"); 6079 bql_lock(); 6080 ret = kvm_handle_halt(cpu); 6081 bql_unlock(); 6082 break; 6083 case KVM_EXIT_SET_TPR: 6084 ret = 0; 6085 break; 6086 case KVM_EXIT_TPR_ACCESS: 6087 bql_lock(); 6088 ret = kvm_handle_tpr_access(cpu); 6089 bql_unlock(); 6090 break; 6091 case KVM_EXIT_FAIL_ENTRY: 6092 code = run->fail_entry.hardware_entry_failure_reason; 6093 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", 6094 code); 6095 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { 6096 fprintf(stderr, 6097 "\nIf you're running a guest on an Intel machine without " 6098 "unrestricted mode\n" 6099 "support, the failure can be most likely due to the guest " 6100 "entering an invalid\n" 6101 "state for Intel VT. For example, the guest maybe running " 6102 "in big real mode\n" 6103 "which is not supported on less recent Intel processors." 6104 "\n\n"); 6105 } 6106 ret = -1; 6107 break; 6108 case KVM_EXIT_EXCEPTION: 6109 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", 6110 run->ex.exception, run->ex.error_code); 6111 ret = -1; 6112 break; 6113 case KVM_EXIT_DEBUG: 6114 DPRINTF("kvm_exit_debug\n"); 6115 bql_lock(); 6116 ret = kvm_handle_debug(cpu, &run->debug.arch); 6117 bql_unlock(); 6118 break; 6119 case KVM_EXIT_HYPERV: 6120 ret = kvm_hv_handle_exit(cpu, &run->hyperv); 6121 break; 6122 case KVM_EXIT_IOAPIC_EOI: 6123 ioapic_eoi_broadcast(run->eoi.vector); 6124 ret = 0; 6125 break; 6126 case KVM_EXIT_X86_BUS_LOCK: 6127 /* already handled in kvm_arch_post_run */ 6128 ret = 0; 6129 break; 6130 case KVM_EXIT_NOTIFY: 6131 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID); 6132 state = KVM_STATE(current_accel()); 6133 if (ctx_invalid || 6134 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) { 6135 warn_report("KVM internal error: Encountered a notify exit " 6136 "with invalid context in guest."); 6137 ret = -1; 6138 } else { 6139 warn_report_once("KVM: Encountered a notify exit with valid " 6140 "context in guest. " 6141 "The guest could be misbehaving."); 6142 ret = 0; 6143 } 6144 break; 6145 case KVM_EXIT_X86_RDMSR: 6146 /* We only enable MSR filtering, any other exit is bogus */ 6147 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6148 ret = kvm_handle_rdmsr(cpu, run); 6149 break; 6150 case KVM_EXIT_X86_WRMSR: 6151 /* We only enable MSR filtering, any other exit is bogus */ 6152 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER); 6153 ret = kvm_handle_wrmsr(cpu, run); 6154 break; 6155 #ifdef CONFIG_XEN_EMU 6156 case KVM_EXIT_XEN: 6157 ret = kvm_xen_handle_exit(cpu, &run->xen); 6158 break; 6159 #endif 6160 case KVM_EXIT_HYPERCALL: 6161 ret = kvm_handle_hypercall(cpu, run); 6162 break; 6163 case KVM_EXIT_SYSTEM_EVENT: 6164 switch (run->system_event.type) { 6165 case KVM_SYSTEM_EVENT_TDX_FATAL: 6166 ret = tdx_handle_report_fatal_error(cpu, run); 6167 break; 6168 default: 6169 ret = -1; 6170 break; 6171 } 6172 break; 6173 default: 6174 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); 6175 ret = -1; 6176 break; 6177 } 6178 6179 return ret; 6180 } 6181 6182 bool kvm_arch_stop_on_emulation_error(CPUState *cs) 6183 { 6184 X86CPU *cpu = X86_CPU(cs); 6185 CPUX86State *env = &cpu->env; 6186 6187 kvm_cpu_synchronize_state(cs); 6188 return !(env->cr[0] & CR0_PE_MASK) || 6189 ((env->segs[R_CS].selector & 3) != 3); 6190 } 6191 6192 void kvm_arch_init_irq_routing(KVMState *s) 6193 { 6194 /* We know at this point that we're using the in-kernel 6195 * irqchip, so we can use irqfds, and on x86 we know 6196 * we can use msi via irqfd and GSI routing. 6197 */ 6198 kvm_msi_via_irqfd_allowed = true; 6199 kvm_gsi_routing_allowed = true; 6200 6201 if (kvm_irqchip_is_split()) { 6202 KVMRouteChange c = kvm_irqchip_begin_route_changes(s); 6203 int i; 6204 6205 /* If the ioapic is in QEMU and the lapics are in KVM, reserve 6206 MSI routes for signaling interrupts to the local apics. */ 6207 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 6208 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) { 6209 error_report("Could not enable split IRQ mode."); 6210 exit(1); 6211 } 6212 } 6213 kvm_irqchip_commit_route_changes(&c); 6214 } 6215 } 6216 6217 int kvm_arch_irqchip_create(KVMState *s) 6218 { 6219 int ret; 6220 if (kvm_kernel_irqchip_split()) { 6221 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); 6222 if (ret) { 6223 error_report("Could not enable split irqchip mode: %s", 6224 strerror(-ret)); 6225 exit(1); 6226 } else { 6227 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); 6228 kvm_split_irqchip = true; 6229 return 1; 6230 } 6231 } else { 6232 return 0; 6233 } 6234 } 6235 6236 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address) 6237 { 6238 CPUX86State *env; 6239 uint64_t ext_id; 6240 6241 if (!first_cpu) { 6242 return address; 6243 } 6244 env = &X86_CPU(first_cpu)->env; 6245 if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) { 6246 return address; 6247 } 6248 6249 /* 6250 * If the remappable format bit is set, or the upper bits are 6251 * already set in address_hi, or the low extended bits aren't 6252 * there anyway, do nothing. 6253 */ 6254 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT); 6255 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) { 6256 return address; 6257 } 6258 6259 address &= ~ext_id; 6260 address |= ext_id << 35; 6261 return address; 6262 } 6263 6264 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, 6265 uint64_t address, uint32_t data, PCIDevice *dev) 6266 { 6267 X86IOMMUState *iommu = x86_iommu_get_default(); 6268 6269 if (iommu) { 6270 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu); 6271 6272 if (class->int_remap) { 6273 int ret; 6274 MSIMessage src, dst; 6275 6276 src.address = route->u.msi.address_hi; 6277 src.address <<= VTD_MSI_ADDR_HI_SHIFT; 6278 src.address |= route->u.msi.address_lo; 6279 src.data = route->u.msi.data; 6280 6281 ret = class->int_remap(iommu, &src, &dst, dev ? \ 6282 pci_requester_id(dev) : \ 6283 X86_IOMMU_SID_INVALID); 6284 if (ret) { 6285 trace_kvm_x86_fixup_msi_error(route->gsi); 6286 return 1; 6287 } 6288 6289 /* 6290 * Handled untranslated compatibility format interrupt with 6291 * extended destination ID in the low bits 11-5. */ 6292 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address); 6293 6294 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; 6295 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; 6296 route->u.msi.data = dst.data; 6297 return 0; 6298 } 6299 } 6300 6301 #ifdef CONFIG_XEN_EMU 6302 if (xen_mode == XEN_EMULATE) { 6303 int handled = xen_evtchn_translate_pirq_msi(route, address, data); 6304 6305 /* 6306 * If it was a PIRQ and successfully routed (handled == 0) or it was 6307 * an error (handled < 0), return. If it wasn't a PIRQ, keep going. 6308 */ 6309 if (handled <= 0) { 6310 return handled; 6311 } 6312 } 6313 #endif 6314 6315 address = kvm_swizzle_msi_ext_dest_id(address); 6316 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT; 6317 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK; 6318 return 0; 6319 } 6320 6321 typedef struct MSIRouteEntry MSIRouteEntry; 6322 6323 struct MSIRouteEntry { 6324 PCIDevice *dev; /* Device pointer */ 6325 int vector; /* MSI/MSIX vector index */ 6326 int virq; /* Virtual IRQ index */ 6327 QLIST_ENTRY(MSIRouteEntry) list; 6328 }; 6329 6330 /* List of used GSI routes */ 6331 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ 6332 QLIST_HEAD_INITIALIZER(msi_route_list); 6333 6334 void kvm_update_msi_routes_all(void *private, bool global, 6335 uint32_t index, uint32_t mask) 6336 { 6337 int cnt = 0, vector; 6338 MSIRouteEntry *entry; 6339 MSIMessage msg; 6340 PCIDevice *dev; 6341 6342 /* TODO: explicit route update */ 6343 QLIST_FOREACH(entry, &msi_route_list, list) { 6344 cnt++; 6345 vector = entry->vector; 6346 dev = entry->dev; 6347 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) { 6348 msg = msix_get_message(dev, vector); 6349 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) { 6350 msg = msi_get_message(dev, vector); 6351 } else { 6352 /* 6353 * Either MSI/MSIX is disabled for the device, or the 6354 * specific message was masked out. Skip this one. 6355 */ 6356 continue; 6357 } 6358 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); 6359 } 6360 kvm_irqchip_commit_routes(kvm_state); 6361 trace_kvm_x86_update_msi_routes(cnt); 6362 } 6363 6364 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, 6365 int vector, PCIDevice *dev) 6366 { 6367 static bool notify_list_inited = false; 6368 MSIRouteEntry *entry; 6369 6370 if (!dev) { 6371 /* These are (possibly) IOAPIC routes only used for split 6372 * kernel irqchip mode, while what we are housekeeping are 6373 * PCI devices only. */ 6374 return 0; 6375 } 6376 6377 entry = g_new0(MSIRouteEntry, 1); 6378 entry->dev = dev; 6379 entry->vector = vector; 6380 entry->virq = route->gsi; 6381 QLIST_INSERT_HEAD(&msi_route_list, entry, list); 6382 6383 trace_kvm_x86_add_msi_route(route->gsi); 6384 6385 if (!notify_list_inited) { 6386 /* For the first time we do add route, add ourselves into 6387 * IOMMU's IEC notify list if needed. */ 6388 X86IOMMUState *iommu = x86_iommu_get_default(); 6389 if (iommu) { 6390 x86_iommu_iec_register_notifier(iommu, 6391 kvm_update_msi_routes_all, 6392 NULL); 6393 } 6394 notify_list_inited = true; 6395 } 6396 return 0; 6397 } 6398 6399 int kvm_arch_release_virq_post(int virq) 6400 { 6401 MSIRouteEntry *entry, *next; 6402 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { 6403 if (entry->virq == virq) { 6404 trace_kvm_x86_remove_msi_route(virq); 6405 QLIST_REMOVE(entry, list); 6406 g_free(entry); 6407 break; 6408 } 6409 } 6410 return 0; 6411 } 6412 6413 int kvm_arch_msi_data_to_gsi(uint32_t data) 6414 { 6415 abort(); 6416 } 6417 6418 bool kvm_has_waitpkg(void) 6419 { 6420 return has_msr_umwait; 6421 } 6422 6423 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 6424 6425 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask) 6426 { 6427 KVMState *s = kvm_state; 6428 uint64_t supported; 6429 6430 mask &= XSTATE_DYNAMIC_MASK; 6431 if (!mask) { 6432 return; 6433 } 6434 /* 6435 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0]. 6436 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned 6437 * about them already because they are not supported features. 6438 */ 6439 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX); 6440 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32; 6441 mask &= supported; 6442 6443 while (mask) { 6444 int bit = ctz64(mask); 6445 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit); 6446 if (rc) { 6447 /* 6448 * Older kernel version (<5.17) do not support 6449 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return 6450 * any dynamic feature from kvm_arch_get_supported_cpuid. 6451 */ 6452 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure " 6453 "for feature bit %d", bit); 6454 } 6455 mask &= ~BIT_ULL(bit); 6456 } 6457 } 6458 6459 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp) 6460 { 6461 KVMState *s = KVM_STATE(obj); 6462 return s->notify_vmexit; 6463 } 6464 6465 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp) 6466 { 6467 KVMState *s = KVM_STATE(obj); 6468 6469 if (s->fd != -1) { 6470 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6471 return; 6472 } 6473 6474 s->notify_vmexit = value; 6475 } 6476 6477 static void kvm_arch_get_notify_window(Object *obj, Visitor *v, 6478 const char *name, void *opaque, 6479 Error **errp) 6480 { 6481 KVMState *s = KVM_STATE(obj); 6482 uint32_t value = s->notify_window; 6483 6484 visit_type_uint32(v, name, &value, errp); 6485 } 6486 6487 static void kvm_arch_set_notify_window(Object *obj, Visitor *v, 6488 const char *name, void *opaque, 6489 Error **errp) 6490 { 6491 KVMState *s = KVM_STATE(obj); 6492 uint32_t value; 6493 6494 if (s->fd != -1) { 6495 error_setg(errp, "Cannot set properties after the accelerator has been initialized"); 6496 return; 6497 } 6498 6499 if (!visit_type_uint32(v, name, &value, errp)) { 6500 return; 6501 } 6502 6503 s->notify_window = value; 6504 } 6505 6506 static void kvm_arch_get_xen_version(Object *obj, Visitor *v, 6507 const char *name, void *opaque, 6508 Error **errp) 6509 { 6510 KVMState *s = KVM_STATE(obj); 6511 uint32_t value = s->xen_version; 6512 6513 visit_type_uint32(v, name, &value, errp); 6514 } 6515 6516 static void kvm_arch_set_xen_version(Object *obj, Visitor *v, 6517 const char *name, void *opaque, 6518 Error **errp) 6519 { 6520 KVMState *s = KVM_STATE(obj); 6521 Error *error = NULL; 6522 uint32_t value; 6523 6524 visit_type_uint32(v, name, &value, &error); 6525 if (error) { 6526 error_propagate(errp, error); 6527 return; 6528 } 6529 6530 s->xen_version = value; 6531 if (value && xen_mode == XEN_DISABLED) { 6532 xen_mode = XEN_EMULATE; 6533 } 6534 } 6535 6536 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v, 6537 const char *name, void *opaque, 6538 Error **errp) 6539 { 6540 KVMState *s = KVM_STATE(obj); 6541 uint16_t value = s->xen_gnttab_max_frames; 6542 6543 visit_type_uint16(v, name, &value, errp); 6544 } 6545 6546 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v, 6547 const char *name, void *opaque, 6548 Error **errp) 6549 { 6550 KVMState *s = KVM_STATE(obj); 6551 Error *error = NULL; 6552 uint16_t value; 6553 6554 visit_type_uint16(v, name, &value, &error); 6555 if (error) { 6556 error_propagate(errp, error); 6557 return; 6558 } 6559 6560 s->xen_gnttab_max_frames = value; 6561 } 6562 6563 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6564 const char *name, void *opaque, 6565 Error **errp) 6566 { 6567 KVMState *s = KVM_STATE(obj); 6568 uint16_t value = s->xen_evtchn_max_pirq; 6569 6570 visit_type_uint16(v, name, &value, errp); 6571 } 6572 6573 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v, 6574 const char *name, void *opaque, 6575 Error **errp) 6576 { 6577 KVMState *s = KVM_STATE(obj); 6578 Error *error = NULL; 6579 uint16_t value; 6580 6581 visit_type_uint16(v, name, &value, &error); 6582 if (error) { 6583 error_propagate(errp, error); 6584 return; 6585 } 6586 6587 s->xen_evtchn_max_pirq = value; 6588 } 6589 6590 void kvm_arch_accel_class_init(ObjectClass *oc) 6591 { 6592 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption", 6593 &NotifyVmexitOption_lookup, 6594 kvm_arch_get_notify_vmexit, 6595 kvm_arch_set_notify_vmexit); 6596 object_class_property_set_description(oc, "notify-vmexit", 6597 "Enable notify VM exit"); 6598 6599 object_class_property_add(oc, "notify-window", "uint32", 6600 kvm_arch_get_notify_window, 6601 kvm_arch_set_notify_window, 6602 NULL, NULL); 6603 object_class_property_set_description(oc, "notify-window", 6604 "Clock cycles without an event window " 6605 "after which a notification VM exit occurs"); 6606 6607 object_class_property_add(oc, "xen-version", "uint32", 6608 kvm_arch_get_xen_version, 6609 kvm_arch_set_xen_version, 6610 NULL, NULL); 6611 object_class_property_set_description(oc, "xen-version", 6612 "Xen version to be emulated " 6613 "(in XENVER_version form " 6614 "e.g. 0x4000a for 4.10)"); 6615 6616 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16", 6617 kvm_arch_get_xen_gnttab_max_frames, 6618 kvm_arch_set_xen_gnttab_max_frames, 6619 NULL, NULL); 6620 object_class_property_set_description(oc, "xen-gnttab-max-frames", 6621 "Maximum number of grant table frames"); 6622 6623 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16", 6624 kvm_arch_get_xen_evtchn_max_pirq, 6625 kvm_arch_set_xen_evtchn_max_pirq, 6626 NULL, NULL); 6627 object_class_property_set_description(oc, "xen-evtchn-max-pirq", 6628 "Maximum number of Xen PIRQs"); 6629 } 6630 6631 void kvm_set_max_apic_id(uint32_t max_apic_id) 6632 { 6633 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id); 6634 } 6635