xref: /qemu/target/i386/kvm/kvm.c (revision bcfee4938f8d4e8bf5f49981d3c8a78cf267cb4e)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
30 
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "system/system.h"
35 #include "system/hw_accel.h"
36 #include "system/kvm_int.h"
37 #include "system/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "xen-emu.h"
42 #include "hyperv.h"
43 #include "hyperv-proto.h"
44 
45 #include "gdbstub/enums.h"
46 #include "qemu/host-utils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/ratelimit.h"
49 #include "qemu/config-file.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "hw/i386/x86.h"
53 #include "hw/i386/kvm/xen_evtchn.h"
54 #include "hw/i386/pc.h"
55 #include "hw/i386/apic.h"
56 #include "hw/i386/apic_internal.h"
57 #include "hw/i386/apic-msidef.h"
58 #include "hw/i386/intel_iommu.h"
59 #include "hw/i386/topology.h"
60 #include "hw/i386/x86-iommu.h"
61 #include "hw/i386/e820_memory_layout.h"
62 
63 #include "hw/xen/xen.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/pci/msi.h"
67 #include "hw/pci/msix.h"
68 #include "migration/blocker.h"
69 #include "exec/memattrs.h"
70 #include "exec/target_page.h"
71 #include "trace.h"
72 
73 #include CONFIG_DEVICES
74 
75 //#define DEBUG_KVM
76 
77 #ifdef DEBUG_KVM
78 #define DPRINTF(fmt, ...) \
79     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
80 #else
81 #define DPRINTF(fmt, ...) \
82     do { } while (0)
83 #endif
84 
85 /*
86  * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
87  * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
88  * Since these must be part of guest physical memory, we need to allocate
89  * them, both by setting their start addresses in the kernel and by
90  * creating a corresponding e820 entry. We need 4 pages before the BIOS,
91  * so this value allows up to 16M BIOSes.
92  */
93 #define KVM_IDENTITY_BASE 0xfeffc000
94 
95 /* From arch/x86/kvm/lapic.h */
96 #define KVM_APIC_BUS_CYCLE_NS       1
97 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
98 
99 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
100  * 255 kvm_msr_entry structs */
101 #define MSR_BUF_SIZE 4096
102 
103 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
104 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
105 typedef struct {
106     uint32_t msr;
107     QEMURDMSRHandler *rdmsr;
108     QEMUWRMSRHandler *wrmsr;
109 } KVMMSRHandlers;
110 
111 static void kvm_init_msrs(X86CPU *cpu);
112 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
113                           QEMUWRMSRHandler *wrmsr);
114 
115 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
116     KVM_CAP_INFO(SET_TSS_ADDR),
117     KVM_CAP_INFO(EXT_CPUID),
118     KVM_CAP_INFO(MP_STATE),
119     KVM_CAP_INFO(SIGNAL_MSI),
120     KVM_CAP_INFO(IRQ_ROUTING),
121     KVM_CAP_INFO(DEBUGREGS),
122     KVM_CAP_INFO(XSAVE),
123     KVM_CAP_INFO(VCPU_EVENTS),
124     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
125     KVM_CAP_INFO(MCE),
126     KVM_CAP_INFO(ADJUST_CLOCK),
127     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
128     KVM_CAP_LAST_INFO
129 };
130 
131 static bool has_msr_star;
132 static bool has_msr_hsave_pa;
133 static bool has_msr_tsc_aux;
134 static bool has_msr_tsc_adjust;
135 static bool has_msr_tsc_deadline;
136 static bool has_msr_feature_control;
137 static bool has_msr_misc_enable;
138 static bool has_msr_smbase;
139 static bool has_msr_bndcfgs;
140 static int lm_capable_kernel;
141 static bool has_msr_hv_hypercall;
142 static bool has_msr_hv_crash;
143 static bool has_msr_hv_reset;
144 static bool has_msr_hv_vpindex;
145 static bool hv_vpindex_settable;
146 static bool has_msr_hv_runtime;
147 static bool has_msr_hv_synic;
148 static bool has_msr_hv_stimer;
149 static bool has_msr_hv_frequencies;
150 static bool has_msr_hv_reenlightenment;
151 static bool has_msr_hv_syndbg_options;
152 static bool has_msr_xss;
153 static bool has_msr_umwait;
154 static bool has_msr_spec_ctrl;
155 static bool has_tsc_scale_msr;
156 static bool has_msr_tsx_ctrl;
157 static bool has_msr_virt_ssbd;
158 static bool has_msr_smi_count;
159 static bool has_msr_arch_capabs;
160 static bool has_msr_core_capabs;
161 static bool has_msr_vmx_vmfunc;
162 static bool has_msr_ucode_rev;
163 static bool has_msr_vmx_procbased_ctls2;
164 static bool has_msr_perf_capabs;
165 static bool has_msr_pkrs;
166 static bool has_msr_hwcr;
167 
168 static uint32_t has_architectural_pmu_version;
169 static uint32_t num_architectural_pmu_gp_counters;
170 static uint32_t num_architectural_pmu_fixed_counters;
171 
172 static int has_xsave2;
173 static int has_xcrs;
174 static int has_sregs2;
175 static int has_exception_payload;
176 static int has_triple_fault_event;
177 
178 static bool has_msr_mcg_ext_ctl;
179 
180 static struct kvm_cpuid2 *cpuid_cache;
181 static struct kvm_cpuid2 *hv_cpuid_cache;
182 static struct kvm_msr_list *kvm_feature_msrs;
183 
184 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
185 
186 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
187 static RateLimit bus_lock_ratelimit_ctrl;
188 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
189 
190 static const char *vm_type_name[] = {
191     [KVM_X86_DEFAULT_VM] = "default",
192     [KVM_X86_SEV_VM] = "SEV",
193     [KVM_X86_SEV_ES_VM] = "SEV-ES",
194     [KVM_X86_SNP_VM] = "SEV-SNP",
195 };
196 
197 bool kvm_is_vm_type_supported(int type)
198 {
199     uint32_t machine_types;
200 
201     /*
202      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
203      * is always supported
204      */
205     if (type == KVM_X86_DEFAULT_VM) {
206         return true;
207     }
208 
209     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
210                                         KVM_CAP_VM_TYPES);
211     return !!(machine_types & BIT(type));
212 }
213 
214 int kvm_get_vm_type(MachineState *ms)
215 {
216     int kvm_type = KVM_X86_DEFAULT_VM;
217 
218     if (ms->cgs) {
219         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
220             error_report("configuration type %s not supported for x86 guests",
221                          object_get_typename(OBJECT(ms->cgs)));
222             exit(1);
223         }
224         kvm_type = x86_confidential_guest_kvm_type(
225             X86_CONFIDENTIAL_GUEST(ms->cgs));
226     }
227 
228     if (!kvm_is_vm_type_supported(kvm_type)) {
229         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
230         exit(1);
231     }
232 
233     return kvm_type;
234 }
235 
236 bool kvm_enable_hypercall(uint64_t enable_mask)
237 {
238     KVMState *s = KVM_STATE(current_accel());
239 
240     return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
241 }
242 
243 bool kvm_has_smm(void)
244 {
245     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
246 }
247 
248 bool kvm_has_adjust_clock_stable(void)
249 {
250     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
251 
252     return (ret & KVM_CLOCK_TSC_STABLE);
253 }
254 
255 bool kvm_has_exception_payload(void)
256 {
257     return has_exception_payload;
258 }
259 
260 static bool kvm_x2apic_api_set_flags(uint64_t flags)
261 {
262     KVMState *s = KVM_STATE(current_accel());
263 
264     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
265 }
266 
267 #define MEMORIZE(fn, _result) \
268     ({ \
269         static bool _memorized; \
270         \
271         if (_memorized) { \
272             return _result; \
273         } \
274         _memorized = true; \
275         _result = fn; \
276     })
277 
278 static bool has_x2apic_api;
279 
280 bool kvm_has_x2apic_api(void)
281 {
282     return has_x2apic_api;
283 }
284 
285 bool kvm_enable_x2apic(void)
286 {
287     return MEMORIZE(
288              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
289                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
290              has_x2apic_api);
291 }
292 
293 bool kvm_hv_vpindex_settable(void)
294 {
295     return hv_vpindex_settable;
296 }
297 
298 static int kvm_get_tsc(CPUState *cs)
299 {
300     X86CPU *cpu = X86_CPU(cs);
301     CPUX86State *env = &cpu->env;
302     uint64_t value;
303     int ret;
304 
305     if (env->tsc_valid) {
306         return 0;
307     }
308 
309     env->tsc_valid = !runstate_is_running();
310 
311     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
312     if (ret < 0) {
313         return ret;
314     }
315 
316     env->tsc = value;
317     return 0;
318 }
319 
320 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
321 {
322     kvm_get_tsc(cpu);
323 }
324 
325 void kvm_synchronize_all_tsc(void)
326 {
327     CPUState *cpu;
328 
329     if (kvm_enabled()) {
330         CPU_FOREACH(cpu) {
331             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
332         }
333     }
334 }
335 
336 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
337 {
338     struct kvm_cpuid2 *cpuid;
339     int r, size;
340 
341     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
342     cpuid = g_malloc0(size);
343     cpuid->nent = max;
344     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
345     if (r == 0 && cpuid->nent >= max) {
346         r = -E2BIG;
347     }
348     if (r < 0) {
349         if (r == -E2BIG) {
350             g_free(cpuid);
351             return NULL;
352         } else {
353             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
354                     strerror(-r));
355             exit(1);
356         }
357     }
358     return cpuid;
359 }
360 
361 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
362  * for all entries.
363  */
364 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
365 {
366     struct kvm_cpuid2 *cpuid;
367     int max = 1;
368 
369     if (cpuid_cache != NULL) {
370         return cpuid_cache;
371     }
372     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
373         max *= 2;
374     }
375     cpuid_cache = cpuid;
376     return cpuid;
377 }
378 
379 static bool host_tsx_broken(void)
380 {
381     int family, model, stepping;\
382     char vendor[CPUID_VENDOR_SZ + 1];
383 
384     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
385 
386     /* Check if we are running on a Haswell host known to have broken TSX */
387     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
388            (family == 6) &&
389            ((model == 63 && stepping < 4) ||
390             model == 60 || model == 69 || model == 70);
391 }
392 
393 /* Returns the value for a specific register on the cpuid entry
394  */
395 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
396 {
397     uint32_t ret = 0;
398     switch (reg) {
399     case R_EAX:
400         ret = entry->eax;
401         break;
402     case R_EBX:
403         ret = entry->ebx;
404         break;
405     case R_ECX:
406         ret = entry->ecx;
407         break;
408     case R_EDX:
409         ret = entry->edx;
410         break;
411     }
412     return ret;
413 }
414 
415 /* Find matching entry for function/index on kvm_cpuid2 struct
416  */
417 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
418                                                  uint32_t function,
419                                                  uint32_t index)
420 {
421     int i;
422     for (i = 0; i < cpuid->nent; ++i) {
423         if (cpuid->entries[i].function == function &&
424             cpuid->entries[i].index == index) {
425             return &cpuid->entries[i];
426         }
427     }
428     /* not found: */
429     return NULL;
430 }
431 
432 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
433                                       uint32_t index, int reg)
434 {
435     struct kvm_cpuid2 *cpuid;
436     uint32_t ret = 0;
437     uint32_t cpuid_1_edx, unused;
438     uint64_t bitmask;
439 
440     cpuid = get_supported_cpuid(s);
441 
442     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
443     if (entry) {
444         ret = cpuid_entry_get_reg(entry, reg);
445     }
446 
447     /* Fixups for the data returned by KVM, below */
448 
449     if (function == 1 && reg == R_EDX) {
450         /* KVM before 2.6.30 misreports the following features */
451         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
452         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
453         ret |= CPUID_HT;
454     } else if (function == 1 && reg == R_ECX) {
455         /* We can set the hypervisor flag, even if KVM does not return it on
456          * GET_SUPPORTED_CPUID
457          */
458         ret |= CPUID_EXT_HYPERVISOR;
459         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
460          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
461          * and the irqchip is in the kernel.
462          */
463         if (kvm_irqchip_in_kernel() &&
464                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
465             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
466         }
467 
468         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
469          * without the in-kernel irqchip
470          */
471         if (!kvm_irqchip_in_kernel()) {
472             ret &= ~CPUID_EXT_X2APIC;
473         }
474 
475         if (enable_cpu_pm) {
476             int disable_exits = kvm_check_extension(s,
477                                                     KVM_CAP_X86_DISABLE_EXITS);
478 
479             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
480                 ret |= CPUID_EXT_MONITOR;
481             }
482         }
483     } else if (function == 6 && reg == R_EAX) {
484         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
485     } else if (function == 7 && index == 0 && reg == R_EBX) {
486         /* Not new instructions, just an optimization.  */
487         uint32_t ebx;
488         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
489         ret |= ebx & CPUID_7_0_EBX_ERMS;
490 
491         if (host_tsx_broken()) {
492             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
493         }
494     } else if (function == 7 && index == 0 && reg == R_EDX) {
495         /* Not new instructions, just an optimization.  */
496         uint32_t edx;
497         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
498         ret |= edx & CPUID_7_0_EDX_FSRM;
499 
500         /*
501          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
502          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
503          * returned by KVM_GET_MSR_INDEX_LIST.
504          */
505         if (!has_msr_arch_capabs) {
506             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
507         }
508     } else if (function == 7 && index == 1 && reg == R_EAX) {
509         /* Not new instructions, just an optimization.  */
510         uint32_t eax;
511         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
512         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
513     } else if (function == 7 && index == 2 && reg == R_EDX) {
514         uint32_t edx;
515         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
516         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
517     } else if (function == 0xd && index == 0 &&
518                (reg == R_EAX || reg == R_EDX)) {
519         /*
520          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
521          * features that still have to be enabled with the arch_prctl
522          * system call.  QEMU needs the full value, which is retrieved
523          * with KVM_GET_DEVICE_ATTR.
524          */
525         struct kvm_device_attr attr = {
526             .group = 0,
527             .attr = KVM_X86_XCOMP_GUEST_SUPP,
528             .addr = (unsigned long) &bitmask
529         };
530 
531         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
532         if (!sys_attr) {
533             return ret;
534         }
535 
536         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
537         if (rc < 0) {
538             if (rc != -ENXIO) {
539                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
540                             "error: %d", rc);
541             }
542             return ret;
543         }
544         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
545     } else if (function == 0x80000001 && reg == R_ECX) {
546         /*
547          * It's safe to enable TOPOEXT even if it's not returned by
548          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
549          * us to keep CPU models including TOPOEXT runnable on older kernels.
550          */
551         ret |= CPUID_EXT3_TOPOEXT;
552     } else if (function == 0x80000001 && reg == R_EDX) {
553         /* On Intel, kvm returns cpuid according to the Intel spec,
554          * so add missing bits according to the AMD spec:
555          */
556         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
557         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
558     } else if (function == 0x80000007 && reg == R_EBX) {
559         ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
560     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
561         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
562          * be enabled without the in-kernel irqchip
563          */
564         if (!kvm_irqchip_in_kernel()) {
565             ret &= ~CPUID_KVM_PV_UNHALT;
566         }
567         if (kvm_irqchip_is_split()) {
568             ret |= CPUID_KVM_MSI_EXT_DEST_ID;
569         }
570     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
571         ret |= CPUID_KVM_HINTS_REALTIME;
572     }
573 
574     if (current_machine->cgs) {
575         ret = x86_confidential_guest_mask_cpuid_features(
576             X86_CONFIDENTIAL_GUEST(current_machine->cgs),
577             function, index, reg, ret);
578     }
579     return ret;
580 }
581 
582 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
583 {
584     struct {
585         struct kvm_msrs info;
586         struct kvm_msr_entry entries[1];
587     } msr_data = {};
588     uint64_t value;
589     uint32_t ret, can_be_one, must_be_one;
590 
591     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
592         return 0;
593     }
594 
595     /* Check if requested MSR is supported feature MSR */
596     int i;
597     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
598         if (kvm_feature_msrs->indices[i] == index) {
599             break;
600         }
601     if (i == kvm_feature_msrs->nmsrs) {
602         return 0; /* if the feature MSR is not supported, simply return 0 */
603     }
604 
605     msr_data.info.nmsrs = 1;
606     msr_data.entries[0].index = index;
607 
608     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
609     if (ret != 1) {
610         error_report("KVM get MSR (index=0x%x) feature failed, %s",
611             index, strerror(-ret));
612         exit(1);
613     }
614 
615     value = msr_data.entries[0].data;
616     switch (index) {
617     case MSR_IA32_VMX_PROCBASED_CTLS2:
618         if (!has_msr_vmx_procbased_ctls2) {
619             /* KVM forgot to add these bits for some time, do this ourselves. */
620             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
621                 CPUID_XSAVE_XSAVES) {
622                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
623             }
624             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
625                 CPUID_EXT_RDRAND) {
626                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
627             }
628             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
629                 CPUID_7_0_EBX_INVPCID) {
630                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
631             }
632             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
633                 CPUID_7_0_EBX_RDSEED) {
634                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
635             }
636             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
637                 CPUID_EXT2_RDTSCP) {
638                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
639             }
640         }
641         /* fall through */
642     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
643     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
644     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
645     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
646         /*
647          * Return true for bits that can be one, but do not have to be one.
648          * The SDM tells us which bits could have a "must be one" setting,
649          * so we can do the opposite transformation in make_vmx_msr_value.
650          */
651         must_be_one = (uint32_t)value;
652         can_be_one = (uint32_t)(value >> 32);
653         return can_be_one & ~must_be_one;
654 
655     default:
656         return value;
657     }
658 }
659 
660 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
661                                      int *max_banks)
662 {
663     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
664     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
665 }
666 
667 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
668 {
669     CPUState *cs = CPU(cpu);
670     CPUX86State *env = &cpu->env;
671     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
672                       MCI_STATUS_ADDRV;
673     uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
674     int flags = 0;
675 
676     if (!IS_AMD_CPU(env)) {
677         status |= MCI_STATUS_S | MCI_STATUS_UC;
678         if (code == BUS_MCEERR_AR) {
679             status |= MCI_STATUS_AR | 0x134;
680             mcg_status |= MCG_STATUS_EIPV;
681         } else {
682             status |= 0xc0;
683         }
684     } else {
685         if (code == BUS_MCEERR_AR) {
686             status |= MCI_STATUS_UC | MCI_STATUS_POISON;
687             mcg_status |= MCG_STATUS_EIPV;
688         } else {
689             /* Setting the POISON bit for deferred errors indicates to the
690              * guest kernel that the address provided by the MCE is valid
691              * and usable which will ensure that the guest kernel will send
692              * a SIGBUS_AO signal to the guest process. This allows for
693              * more desirable behavior in the case that the guest process
694              * with poisoned memory has set the MCE_KILL_EARLY prctl flag
695              * which indicates that the process would prefer to handle or
696              * shutdown due to the poisoned memory condition before the
697              * memory has been accessed.
698              *
699              * While the POISON bit would not be set in a deferred error
700              * sent from hardware, the bit is not meaningful for deferred
701              * errors and can be reused in this scenario.
702              */
703             status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
704         }
705     }
706 
707     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
708     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
709      * guest kernel back into env->mcg_ext_ctl.
710      */
711     cpu_synchronize_state(cs);
712     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
713         mcg_status |= MCG_STATUS_LMCE;
714         flags = 0;
715     }
716 
717     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
718                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
719 }
720 
721 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
722 {
723     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
724 
725     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
726                                    &mff);
727 }
728 
729 static void hardware_memory_error(void *host_addr)
730 {
731     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
732     error_report("QEMU got Hardware memory error at addr %p", host_addr);
733     exit(1);
734 }
735 
736 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
737 {
738     X86CPU *cpu = X86_CPU(c);
739     CPUX86State *env = &cpu->env;
740     ram_addr_t ram_addr;
741     hwaddr paddr;
742 
743     /* If we get an action required MCE, it has been injected by KVM
744      * while the VM was running.  An action optional MCE instead should
745      * be coming from the main thread, which qemu_init_sigbus identifies
746      * as the "early kill" thread.
747      */
748     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
749 
750     if ((env->mcg_cap & MCG_SER_P) && addr) {
751         ram_addr = qemu_ram_addr_from_host(addr);
752         if (ram_addr != RAM_ADDR_INVALID &&
753             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
754             kvm_hwpoison_page_add(ram_addr);
755             kvm_mce_inject(cpu, paddr, code);
756 
757             /*
758              * Use different logging severity based on error type.
759              * If there is additional MCE reporting on the hypervisor, QEMU VA
760              * could be another source to identify the PA and MCE details.
761              */
762             if (code == BUS_MCEERR_AR) {
763                 error_report("Guest MCE Memory Error at QEMU addr %p and "
764                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
765                     addr, paddr, "BUS_MCEERR_AR");
766             } else {
767                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
768                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
769                      addr, paddr, "BUS_MCEERR_AO");
770             }
771 
772             return;
773         }
774 
775         if (code == BUS_MCEERR_AO) {
776             warn_report("Hardware memory error at addr %p of type %s "
777                 "for memory used by QEMU itself instead of guest system!",
778                  addr, "BUS_MCEERR_AO");
779         }
780     }
781 
782     if (code == BUS_MCEERR_AR) {
783         hardware_memory_error(addr);
784     }
785 
786     /* Hope we are lucky for AO MCE, just notify a event */
787     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
788 }
789 
790 static void kvm_queue_exception(CPUX86State *env,
791                                 int32_t exception_nr,
792                                 uint8_t exception_has_payload,
793                                 uint64_t exception_payload)
794 {
795     assert(env->exception_nr == -1);
796     assert(!env->exception_pending);
797     assert(!env->exception_injected);
798     assert(!env->exception_has_payload);
799 
800     env->exception_nr = exception_nr;
801 
802     if (has_exception_payload) {
803         env->exception_pending = 1;
804 
805         env->exception_has_payload = exception_has_payload;
806         env->exception_payload = exception_payload;
807     } else {
808         env->exception_injected = 1;
809 
810         if (exception_nr == EXCP01_DB) {
811             assert(exception_has_payload);
812             env->dr[6] = exception_payload;
813         } else if (exception_nr == EXCP0E_PAGE) {
814             assert(exception_has_payload);
815             env->cr[2] = exception_payload;
816         } else {
817             assert(!exception_has_payload);
818         }
819     }
820 }
821 
822 static void cpu_update_state(void *opaque, bool running, RunState state)
823 {
824     CPUX86State *env = opaque;
825 
826     if (running) {
827         env->tsc_valid = false;
828     }
829 }
830 
831 unsigned long kvm_arch_vcpu_id(CPUState *cs)
832 {
833     X86CPU *cpu = X86_CPU(cs);
834     return cpu->apic_id;
835 }
836 
837 #ifndef KVM_CPUID_SIGNATURE_NEXT
838 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
839 #endif
840 
841 static bool hyperv_enabled(X86CPU *cpu)
842 {
843     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
844         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
845          cpu->hyperv_features || cpu->hyperv_passthrough);
846 }
847 
848 /*
849  * Check whether target_freq is within conservative
850  * ntp correctable bounds (250ppm) of freq
851  */
852 static inline bool freq_within_bounds(int freq, int target_freq)
853 {
854         int max_freq = freq + (freq * 250 / 1000000);
855         int min_freq = freq - (freq * 250 / 1000000);
856 
857         if (target_freq >= min_freq && target_freq <= max_freq) {
858                 return true;
859         }
860 
861         return false;
862 }
863 
864 static int kvm_arch_set_tsc_khz(CPUState *cs)
865 {
866     X86CPU *cpu = X86_CPU(cs);
867     CPUX86State *env = &cpu->env;
868     int r, cur_freq;
869     bool set_ioctl = false;
870 
871     if (!env->tsc_khz) {
872         return 0;
873     }
874 
875     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
876                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
877 
878     /*
879      * If TSC scaling is supported, attempt to set TSC frequency.
880      */
881     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
882         set_ioctl = true;
883     }
884 
885     /*
886      * If desired TSC frequency is within bounds of NTP correction,
887      * attempt to set TSC frequency.
888      */
889     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
890         set_ioctl = true;
891     }
892 
893     r = set_ioctl ?
894         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
895         -ENOTSUP;
896 
897     if (r < 0) {
898         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
899          * TSC frequency doesn't match the one we want.
900          */
901         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
902                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
903                    -ENOTSUP;
904         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
905             warn_report("TSC frequency mismatch between "
906                         "VM (%" PRId64 " kHz) and host (%d kHz), "
907                         "and TSC scaling unavailable",
908                         env->tsc_khz, cur_freq);
909             return r;
910         }
911     }
912 
913     return 0;
914 }
915 
916 static bool tsc_is_stable_and_known(CPUX86State *env)
917 {
918     if (!env->tsc_khz) {
919         return false;
920     }
921     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
922         || env->user_tsc_khz;
923 }
924 
925 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
926 
927 static struct {
928     const char *desc;
929     struct {
930         uint32_t func;
931         int reg;
932         uint32_t bits;
933     } flags[2];
934     uint64_t dependencies;
935     bool skip_passthrough;
936 } kvm_hyperv_properties[] = {
937     [HYPERV_FEAT_RELAXED] = {
938         .desc = "relaxed timing (hv-relaxed)",
939         .flags = {
940             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
941              .bits = HV_RELAXED_TIMING_RECOMMENDED}
942         }
943     },
944     [HYPERV_FEAT_VAPIC] = {
945         .desc = "virtual APIC (hv-vapic)",
946         .flags = {
947             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
948              .bits = HV_APIC_ACCESS_AVAILABLE}
949         }
950     },
951     [HYPERV_FEAT_TIME] = {
952         .desc = "clocksources (hv-time)",
953         .flags = {
954             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
955              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
956         }
957     },
958     [HYPERV_FEAT_CRASH] = {
959         .desc = "crash MSRs (hv-crash)",
960         .flags = {
961             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
962              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
963         }
964     },
965     [HYPERV_FEAT_RESET] = {
966         .desc = "reset MSR (hv-reset)",
967         .flags = {
968             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
969              .bits = HV_RESET_AVAILABLE}
970         }
971     },
972     [HYPERV_FEAT_VPINDEX] = {
973         .desc = "VP_INDEX MSR (hv-vpindex)",
974         .flags = {
975             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
976              .bits = HV_VP_INDEX_AVAILABLE}
977         }
978     },
979     [HYPERV_FEAT_RUNTIME] = {
980         .desc = "VP_RUNTIME MSR (hv-runtime)",
981         .flags = {
982             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
983              .bits = HV_VP_RUNTIME_AVAILABLE}
984         }
985     },
986     [HYPERV_FEAT_SYNIC] = {
987         .desc = "synthetic interrupt controller (hv-synic)",
988         .flags = {
989             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
990              .bits = HV_SYNIC_AVAILABLE}
991         }
992     },
993     [HYPERV_FEAT_STIMER] = {
994         .desc = "synthetic timers (hv-stimer)",
995         .flags = {
996             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
997              .bits = HV_SYNTIMERS_AVAILABLE}
998         },
999         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1000     },
1001     [HYPERV_FEAT_FREQUENCIES] = {
1002         .desc = "frequency MSRs (hv-frequencies)",
1003         .flags = {
1004             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1005              .bits = HV_ACCESS_FREQUENCY_MSRS},
1006             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1007              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1008         }
1009     },
1010     [HYPERV_FEAT_REENLIGHTENMENT] = {
1011         .desc = "reenlightenment MSRs (hv-reenlightenment)",
1012         .flags = {
1013             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1014              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1015         }
1016     },
1017     [HYPERV_FEAT_TLBFLUSH] = {
1018         .desc = "paravirtualized TLB flush (hv-tlbflush)",
1019         .flags = {
1020             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1021              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1022              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1023         },
1024         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1025     },
1026     [HYPERV_FEAT_EVMCS] = {
1027         .desc = "enlightened VMCS (hv-evmcs)",
1028         .flags = {
1029             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1030              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1031         },
1032         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1033     },
1034     [HYPERV_FEAT_IPI] = {
1035         .desc = "paravirtualized IPI (hv-ipi)",
1036         .flags = {
1037             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1038              .bits = HV_CLUSTER_IPI_RECOMMENDED |
1039              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1040         },
1041         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1042     },
1043     [HYPERV_FEAT_STIMER_DIRECT] = {
1044         .desc = "direct mode synthetic timers (hv-stimer-direct)",
1045         .flags = {
1046             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1047              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1048         },
1049         .dependencies = BIT(HYPERV_FEAT_STIMER)
1050     },
1051     [HYPERV_FEAT_AVIC] = {
1052         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1053         .flags = {
1054             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1055              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1056         }
1057     },
1058     [HYPERV_FEAT_SYNDBG] = {
1059         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1060         .flags = {
1061             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1062              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1063         },
1064         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED),
1065         .skip_passthrough = true,
1066     },
1067     [HYPERV_FEAT_MSR_BITMAP] = {
1068         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1069         .flags = {
1070             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1071              .bits = HV_NESTED_MSR_BITMAP}
1072         }
1073     },
1074     [HYPERV_FEAT_XMM_INPUT] = {
1075         .desc = "XMM fast hypercall input (hv-xmm-input)",
1076         .flags = {
1077             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1078              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1079         }
1080     },
1081     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1082         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1083         .flags = {
1084             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1085              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1086         },
1087         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1088     },
1089     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1090         .desc = "direct TLB flush (hv-tlbflush-direct)",
1091         .flags = {
1092             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1093              .bits = HV_NESTED_DIRECT_FLUSH}
1094         },
1095         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1096     },
1097 };
1098 
1099 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1100                                            bool do_sys_ioctl)
1101 {
1102     struct kvm_cpuid2 *cpuid;
1103     int r, size;
1104 
1105     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1106     cpuid = g_malloc0(size);
1107     cpuid->nent = max;
1108 
1109     if (do_sys_ioctl) {
1110         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1111     } else {
1112         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1113     }
1114     if (r == 0 && cpuid->nent >= max) {
1115         r = -E2BIG;
1116     }
1117     if (r < 0) {
1118         if (r == -E2BIG) {
1119             g_free(cpuid);
1120             return NULL;
1121         } else {
1122             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1123                     strerror(-r));
1124             exit(1);
1125         }
1126     }
1127     return cpuid;
1128 }
1129 
1130 /*
1131  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1132  * for all entries.
1133  */
1134 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1135 {
1136     struct kvm_cpuid2 *cpuid;
1137     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1138     int max = 11;
1139     int i;
1140     bool do_sys_ioctl;
1141 
1142     do_sys_ioctl =
1143         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1144 
1145     /*
1146      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1147      * unsupported, kvm_hyperv_expand_features() checks for that.
1148      */
1149     assert(do_sys_ioctl || cs->kvm_state);
1150 
1151     /*
1152      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1153      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1154      * it and re-trying until we succeed.
1155      */
1156     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1157         max++;
1158     }
1159 
1160     /*
1161      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1162      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1163      * information early, just check for the capability and set the bit
1164      * manually.
1165      */
1166     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1167                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1168         for (i = 0; i < cpuid->nent; i++) {
1169             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1170                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1171             }
1172         }
1173     }
1174 
1175     return cpuid;
1176 }
1177 
1178 /*
1179  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1180  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1181  */
1182 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1183 {
1184     X86CPU *cpu = X86_CPU(cs);
1185     struct kvm_cpuid2 *cpuid;
1186     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1187 
1188     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1189     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1190     cpuid->nent = 2;
1191 
1192     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1193     entry_feat = &cpuid->entries[0];
1194     entry_feat->function = HV_CPUID_FEATURES;
1195 
1196     entry_recomm = &cpuid->entries[1];
1197     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1198     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1199 
1200     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1201         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1202         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1203         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1204         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1205         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1206     }
1207 
1208     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1209         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1210         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1211     }
1212 
1213     if (has_msr_hv_frequencies) {
1214         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1215         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1216     }
1217 
1218     if (has_msr_hv_crash) {
1219         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1220     }
1221 
1222     if (has_msr_hv_reenlightenment) {
1223         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1224     }
1225 
1226     if (has_msr_hv_reset) {
1227         entry_feat->eax |= HV_RESET_AVAILABLE;
1228     }
1229 
1230     if (has_msr_hv_vpindex) {
1231         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1232     }
1233 
1234     if (has_msr_hv_runtime) {
1235         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1236     }
1237 
1238     if (has_msr_hv_synic) {
1239         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1240             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1241 
1242         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1243             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1244         }
1245     }
1246 
1247     if (has_msr_hv_stimer) {
1248         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1249     }
1250 
1251     if (has_msr_hv_syndbg_options) {
1252         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1253         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1254         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1255     }
1256 
1257     if (kvm_check_extension(cs->kvm_state,
1258                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1259         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1260         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1261     }
1262 
1263     if (kvm_check_extension(cs->kvm_state,
1264                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1265         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1266     }
1267 
1268     if (kvm_check_extension(cs->kvm_state,
1269                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1270         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1271         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1272     }
1273 
1274     return cpuid;
1275 }
1276 
1277 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1278 {
1279     struct kvm_cpuid_entry2 *entry;
1280     struct kvm_cpuid2 *cpuid;
1281 
1282     if (hv_cpuid_cache) {
1283         cpuid = hv_cpuid_cache;
1284     } else {
1285         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1286             cpuid = get_supported_hv_cpuid(cs);
1287         } else {
1288             /*
1289              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1290              * before KVM context is created but this is only done when
1291              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1292              * KVM_CAP_HYPERV_CPUID.
1293              */
1294             assert(cs->kvm_state);
1295 
1296             cpuid = get_supported_hv_cpuid_legacy(cs);
1297         }
1298         hv_cpuid_cache = cpuid;
1299     }
1300 
1301     if (!cpuid) {
1302         return 0;
1303     }
1304 
1305     entry = cpuid_find_entry(cpuid, func, 0);
1306     if (!entry) {
1307         return 0;
1308     }
1309 
1310     return cpuid_entry_get_reg(entry, reg);
1311 }
1312 
1313 static bool hyperv_feature_supported(CPUState *cs, int feature)
1314 {
1315     uint32_t func, bits;
1316     int i, reg;
1317 
1318     /*
1319      * kvm_hyperv_properties needs to define at least one CPUID flag which
1320      * must be used to detect the feature, it's hard to say whether it is
1321      * supported or not otherwise.
1322      */
1323     assert(kvm_hyperv_properties[feature].flags[0].func);
1324 
1325     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1326 
1327         func = kvm_hyperv_properties[feature].flags[i].func;
1328         reg = kvm_hyperv_properties[feature].flags[i].reg;
1329         bits = kvm_hyperv_properties[feature].flags[i].bits;
1330 
1331         if (!func) {
1332             continue;
1333         }
1334 
1335         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1336             return false;
1337         }
1338     }
1339 
1340     return true;
1341 }
1342 
1343 /* Checks that all feature dependencies are enabled */
1344 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1345 {
1346     uint64_t deps;
1347     int dep_feat;
1348 
1349     deps = kvm_hyperv_properties[feature].dependencies;
1350     while (deps) {
1351         dep_feat = ctz64(deps);
1352         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1353             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1354                        kvm_hyperv_properties[feature].desc,
1355                        kvm_hyperv_properties[dep_feat].desc);
1356             return false;
1357         }
1358         deps &= ~(1ull << dep_feat);
1359     }
1360 
1361     return true;
1362 }
1363 
1364 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1365 {
1366     X86CPU *cpu = X86_CPU(cs);
1367     uint32_t r = 0;
1368     int i, j;
1369 
1370     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1371         if (!hyperv_feat_enabled(cpu, i)) {
1372             continue;
1373         }
1374 
1375         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1376             if (kvm_hyperv_properties[i].flags[j].func != func) {
1377                 continue;
1378             }
1379             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1380                 continue;
1381             }
1382 
1383             r |= kvm_hyperv_properties[i].flags[j].bits;
1384         }
1385     }
1386 
1387     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1388     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1389         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1390             r |= DEFAULT_EVMCS_VERSION;
1391         }
1392     }
1393 
1394     return r;
1395 }
1396 
1397 /*
1398  * Expand Hyper-V CPU features. In partucular, check that all the requested
1399  * features are supported by the host and the sanity of the configuration
1400  * (that all the required dependencies are included). Also, this takes care
1401  * of 'hv_passthrough' mode and fills the environment with all supported
1402  * Hyper-V features.
1403  */
1404 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1405 {
1406     CPUState *cs = CPU(cpu);
1407     Error *local_err = NULL;
1408     int feat;
1409 
1410     if (!hyperv_enabled(cpu))
1411         return true;
1412 
1413     /*
1414      * When kvm_hyperv_expand_features is called at CPU feature expansion
1415      * time per-CPU kvm_state is not available yet so we can only proceed
1416      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1417      */
1418     if (!cs->kvm_state &&
1419         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1420         return true;
1421 
1422     if (cpu->hyperv_passthrough) {
1423         cpu->hyperv_vendor_id[0] =
1424             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1425         cpu->hyperv_vendor_id[1] =
1426             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1427         cpu->hyperv_vendor_id[2] =
1428             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1429         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1430                                        sizeof(cpu->hyperv_vendor_id) + 1);
1431         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1432                sizeof(cpu->hyperv_vendor_id));
1433         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1434 
1435         cpu->hyperv_interface_id[0] =
1436             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1437         cpu->hyperv_interface_id[1] =
1438             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1439         cpu->hyperv_interface_id[2] =
1440             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1441         cpu->hyperv_interface_id[3] =
1442             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1443 
1444         cpu->hyperv_ver_id_build =
1445             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1446         cpu->hyperv_ver_id_major =
1447             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1448         cpu->hyperv_ver_id_minor =
1449             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1450         cpu->hyperv_ver_id_sp =
1451             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1452         cpu->hyperv_ver_id_sb =
1453             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1454         cpu->hyperv_ver_id_sn =
1455             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1456 
1457         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1458                                             R_EAX);
1459         cpu->hyperv_limits[0] =
1460             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1461         cpu->hyperv_limits[1] =
1462             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1463         cpu->hyperv_limits[2] =
1464             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1465 
1466         cpu->hyperv_spinlock_attempts =
1467             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1468 
1469         /*
1470          * Mark feature as enabled in 'cpu->hyperv_features' as
1471          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1472          */
1473         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1474             if (hyperv_feature_supported(cs, feat) &&
1475                 !kvm_hyperv_properties[feat].skip_passthrough) {
1476                 cpu->hyperv_features |= BIT(feat);
1477             }
1478         }
1479     } else {
1480         /* Check features availability and dependencies */
1481         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1482             /* If the feature was not requested skip it. */
1483             if (!hyperv_feat_enabled(cpu, feat)) {
1484                 continue;
1485             }
1486 
1487             /* Check if the feature is supported by KVM */
1488             if (!hyperv_feature_supported(cs, feat)) {
1489                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1490                            kvm_hyperv_properties[feat].desc);
1491                 return false;
1492             }
1493 
1494             /* Check dependencies */
1495             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1496                 error_propagate(errp, local_err);
1497                 return false;
1498             }
1499         }
1500     }
1501 
1502     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1503     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1504         !cpu->hyperv_synic_kvm_only &&
1505         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1506         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1507                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1508                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1509         return false;
1510     }
1511 
1512     return true;
1513 }
1514 
1515 /*
1516  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1517  */
1518 static int hyperv_fill_cpuids(CPUState *cs,
1519                               struct kvm_cpuid_entry2 *cpuid_ent)
1520 {
1521     X86CPU *cpu = X86_CPU(cs);
1522     struct kvm_cpuid_entry2 *c;
1523     uint32_t signature[3];
1524     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1525     uint32_t nested_eax =
1526         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1527 
1528     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1529         HV_CPUID_IMPLEMENT_LIMITS;
1530 
1531     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1532         max_cpuid_leaf =
1533             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1534     }
1535 
1536     c = &cpuid_ent[cpuid_i++];
1537     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1538     c->eax = max_cpuid_leaf;
1539     c->ebx = cpu->hyperv_vendor_id[0];
1540     c->ecx = cpu->hyperv_vendor_id[1];
1541     c->edx = cpu->hyperv_vendor_id[2];
1542 
1543     c = &cpuid_ent[cpuid_i++];
1544     c->function = HV_CPUID_INTERFACE;
1545     c->eax = cpu->hyperv_interface_id[0];
1546     c->ebx = cpu->hyperv_interface_id[1];
1547     c->ecx = cpu->hyperv_interface_id[2];
1548     c->edx = cpu->hyperv_interface_id[3];
1549 
1550     c = &cpuid_ent[cpuid_i++];
1551     c->function = HV_CPUID_VERSION;
1552     c->eax = cpu->hyperv_ver_id_build;
1553     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1554         cpu->hyperv_ver_id_minor;
1555     c->ecx = cpu->hyperv_ver_id_sp;
1556     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1557         (cpu->hyperv_ver_id_sn & 0xffffff);
1558 
1559     c = &cpuid_ent[cpuid_i++];
1560     c->function = HV_CPUID_FEATURES;
1561     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1562     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1563     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1564 
1565     /* Unconditionally required with any Hyper-V enlightenment */
1566     c->eax |= HV_HYPERCALL_AVAILABLE;
1567 
1568     /* SynIC and Vmbus devices require messages/signals hypercalls */
1569     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1570         !cpu->hyperv_synic_kvm_only) {
1571         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1572     }
1573 
1574 
1575     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1576     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1577 
1578     c = &cpuid_ent[cpuid_i++];
1579     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1580     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1581     c->ebx = cpu->hyperv_spinlock_attempts;
1582 
1583     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1584         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1585         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1586     }
1587 
1588     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1589         c->eax |= HV_NO_NONARCH_CORESHARING;
1590     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1591         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1592             HV_NO_NONARCH_CORESHARING;
1593     }
1594 
1595     c = &cpuid_ent[cpuid_i++];
1596     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1597     c->eax = cpu->hv_max_vps;
1598     c->ebx = cpu->hyperv_limits[0];
1599     c->ecx = cpu->hyperv_limits[1];
1600     c->edx = cpu->hyperv_limits[2];
1601 
1602     if (nested_eax) {
1603         uint32_t function;
1604 
1605         /* Create zeroed 0x40000006..0x40000009 leaves */
1606         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1607              function < HV_CPUID_NESTED_FEATURES; function++) {
1608             c = &cpuid_ent[cpuid_i++];
1609             c->function = function;
1610         }
1611 
1612         c = &cpuid_ent[cpuid_i++];
1613         c->function = HV_CPUID_NESTED_FEATURES;
1614         c->eax = nested_eax;
1615     }
1616 
1617     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1618         c = &cpuid_ent[cpuid_i++];
1619         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1620         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1621             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1622         memcpy(signature, "Microsoft VS", 12);
1623         c->eax = 0;
1624         c->ebx = signature[0];
1625         c->ecx = signature[1];
1626         c->edx = signature[2];
1627 
1628         c = &cpuid_ent[cpuid_i++];
1629         c->function = HV_CPUID_SYNDBG_INTERFACE;
1630         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1631         c->eax = signature[0];
1632         c->ebx = 0;
1633         c->ecx = 0;
1634         c->edx = 0;
1635 
1636         c = &cpuid_ent[cpuid_i++];
1637         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1638         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1639         c->ebx = 0;
1640         c->ecx = 0;
1641         c->edx = 0;
1642     }
1643 
1644     return cpuid_i;
1645 }
1646 
1647 static Error *hv_passthrough_mig_blocker;
1648 static Error *hv_no_nonarch_cs_mig_blocker;
1649 
1650 /* Checks that the exposed eVMCS version range is supported by KVM */
1651 static bool evmcs_version_supported(uint16_t evmcs_version,
1652                                     uint16_t supported_evmcs_version)
1653 {
1654     uint8_t min_version = evmcs_version & 0xff;
1655     uint8_t max_version = evmcs_version >> 8;
1656     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1657     uint8_t max_supported_version = supported_evmcs_version >> 8;
1658 
1659     return (min_version >= min_supported_version) &&
1660         (max_version <= max_supported_version);
1661 }
1662 
1663 static int hyperv_init_vcpu(X86CPU *cpu)
1664 {
1665     CPUState *cs = CPU(cpu);
1666     Error *local_err = NULL;
1667     int ret;
1668 
1669     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1670         error_setg(&hv_passthrough_mig_blocker,
1671                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1672                    " set of hv-* flags instead");
1673         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1674         if (ret < 0) {
1675             error_report_err(local_err);
1676             return ret;
1677         }
1678     }
1679 
1680     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1681         hv_no_nonarch_cs_mig_blocker == NULL) {
1682         error_setg(&hv_no_nonarch_cs_mig_blocker,
1683                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1684                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1685                    " make sure SMT is disabled and/or that vCPUs are properly"
1686                    " pinned)");
1687         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1688         if (ret < 0) {
1689             error_report_err(local_err);
1690             return ret;
1691         }
1692     }
1693 
1694     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1695         /*
1696          * the kernel doesn't support setting vp_index; assert that its value
1697          * is in sync
1698          */
1699         uint64_t value;
1700 
1701         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1702         if (ret < 0) {
1703             return ret;
1704         }
1705 
1706         if (value != hyperv_vp_index(CPU(cpu))) {
1707             error_report("kernel's vp_index != QEMU's vp_index");
1708             return -ENXIO;
1709         }
1710     }
1711 
1712     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1713         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1714             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1715         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1716         if (ret < 0) {
1717             error_report("failed to turn on HyperV SynIC in KVM: %s",
1718                          strerror(-ret));
1719             return ret;
1720         }
1721 
1722         if (!cpu->hyperv_synic_kvm_only) {
1723             ret = hyperv_x86_synic_add(cpu);
1724             if (ret < 0) {
1725                 error_report("failed to create HyperV SynIC: %s",
1726                              strerror(-ret));
1727                 return ret;
1728             }
1729         }
1730     }
1731 
1732     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1733         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1734         uint16_t supported_evmcs_version;
1735 
1736         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1737                                   (uintptr_t)&supported_evmcs_version);
1738 
1739         /*
1740          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1741          * option sets. Note: we hardcode the maximum supported eVMCS version
1742          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1743          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1744          * to be added.
1745          */
1746         if (ret < 0) {
1747             error_report("Hyper-V %s is not supported by kernel",
1748                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1749             return ret;
1750         }
1751 
1752         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1753             error_report("eVMCS version range [%d..%d] is not supported by "
1754                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1755                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1756                          supported_evmcs_version >> 8);
1757             return -ENOTSUP;
1758         }
1759     }
1760 
1761     if (cpu->hyperv_enforce_cpuid) {
1762         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1763         if (ret < 0) {
1764             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1765                          strerror(-ret));
1766             return ret;
1767         }
1768     }
1769 
1770     /* Skip SynIC and VP_INDEX since they are hard deps already */
1771     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1772         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1773         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1774         hyperv_x86_set_vmbus_recommended_features_enabled();
1775     }
1776 
1777     return 0;
1778 }
1779 
1780 static Error *invtsc_mig_blocker;
1781 
1782 #define KVM_MAX_CPUID_ENTRIES  100
1783 
1784 static void kvm_init_xsave(CPUX86State *env)
1785 {
1786     if (has_xsave2) {
1787         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1788     } else {
1789         env->xsave_buf_len = sizeof(struct kvm_xsave);
1790     }
1791 
1792     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1793     memset(env->xsave_buf, 0, env->xsave_buf_len);
1794     /*
1795      * The allocated storage must be large enough for all of the
1796      * possible XSAVE state components.
1797      */
1798     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1799            env->xsave_buf_len);
1800 }
1801 
1802 static void kvm_init_nested_state(CPUX86State *env)
1803 {
1804     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1805     uint32_t size;
1806 
1807     if (!env->nested_state) {
1808         return;
1809     }
1810 
1811     size = env->nested_state->size;
1812 
1813     memset(env->nested_state, 0, size);
1814     env->nested_state->size = size;
1815 
1816     if (cpu_has_vmx(env)) {
1817         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1818         vmx_hdr = &env->nested_state->hdr.vmx;
1819         vmx_hdr->vmxon_pa = -1ull;
1820         vmx_hdr->vmcs12_pa = -1ull;
1821     } else if (cpu_has_svm(env)) {
1822         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1823     }
1824 }
1825 
1826 static uint32_t kvm_x86_build_cpuid(CPUX86State *env,
1827                                     struct kvm_cpuid_entry2 *entries,
1828                                     uint32_t cpuid_i)
1829 {
1830     uint32_t limit, i, j;
1831     uint32_t unused;
1832     struct kvm_cpuid_entry2 *c;
1833 
1834     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1835 
1836     for (i = 0; i <= limit; i++) {
1837         j = 0;
1838         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1839             goto full;
1840         }
1841         c = &entries[cpuid_i++];
1842         switch (i) {
1843         case 2: {
1844             /* Keep reading function 2 till all the input is received */
1845             int times;
1846 
1847             c->function = i;
1848             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1849             times = c->eax & 0xff;
1850             if (times > 1) {
1851                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1852                            KVM_CPUID_FLAG_STATE_READ_NEXT;
1853             }
1854 
1855             for (j = 1; j < times; ++j) {
1856                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1857                     goto full;
1858                 }
1859                 c = &entries[cpuid_i++];
1860                 c->function = i;
1861                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1862                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1863             }
1864             break;
1865         }
1866         case 0x1f:
1867             if (!x86_has_extended_topo(env->avail_cpu_topo)) {
1868                 cpuid_i--;
1869                 break;
1870             }
1871             /* fallthrough */
1872         case 4:
1873         case 0xb:
1874         case 0xd:
1875             for (j = 0; ; j++) {
1876                 c->function = i;
1877                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1878                 c->index = j;
1879                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1880 
1881                 if (i == 4 && c->eax == 0) {
1882                     break;
1883                 }
1884                 if (i == 0xb && !(c->ecx & 0xff00)) {
1885                     break;
1886                 }
1887                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1888                     break;
1889                 }
1890                 if (i == 0xd && c->eax == 0) {
1891                     if (j < 63) {
1892                         continue;
1893                     } else {
1894                         cpuid_i--;
1895                         break;
1896                     }
1897                 }
1898                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1899                     goto full;
1900                 }
1901                 c = &entries[cpuid_i++];
1902             }
1903             break;
1904         case 0x12:
1905             for (j = 0; ; j++) {
1906                 c->function = i;
1907                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1908                 c->index = j;
1909                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1910 
1911                 if (j > 1 && (c->eax & 0xf) != 1) {
1912                     break;
1913                 }
1914 
1915                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1916                     goto full;
1917                 }
1918                 c = &entries[cpuid_i++];
1919             }
1920             break;
1921         case 0x7:
1922         case 0x14:
1923         case 0x1d:
1924         case 0x1e:
1925         case 0x24: {
1926             uint32_t times;
1927 
1928             c->function = i;
1929             c->index = 0;
1930             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1931             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1932             times = c->eax;
1933 
1934             for (j = 1; j <= times; ++j) {
1935                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1936                     goto full;
1937                 }
1938                 c = &entries[cpuid_i++];
1939                 c->function = i;
1940                 c->index = j;
1941                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1942                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1943             }
1944             break;
1945         }
1946         default:
1947             c->function = i;
1948             c->flags = 0;
1949             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1950             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1951                 /*
1952                  * KVM already returns all zeroes if a CPUID entry is missing,
1953                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1954                  */
1955                 cpuid_i--;
1956             }
1957             break;
1958         }
1959     }
1960 
1961     if (limit >= 0x0a) {
1962         uint32_t eax, edx;
1963 
1964         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1965 
1966         has_architectural_pmu_version = eax & 0xff;
1967         if (has_architectural_pmu_version > 0) {
1968             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1969 
1970             /* Shouldn't be more than 32, since that's the number of bits
1971              * available in EBX to tell us _which_ counters are available.
1972              * Play it safe.
1973              */
1974             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1975                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1976             }
1977 
1978             if (has_architectural_pmu_version > 1) {
1979                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1980 
1981                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1982                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1983                 }
1984             }
1985         }
1986     }
1987 
1988     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1989 
1990     for (i = 0x80000000; i <= limit; i++) {
1991         j = 0;
1992         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1993             goto full;
1994         }
1995         c = &entries[cpuid_i++];
1996 
1997         switch (i) {
1998         case 0x8000001d:
1999             /* Query for all AMD cache information leaves */
2000             for (j = 0; ; j++) {
2001                 c->function = i;
2002                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2003                 c->index = j;
2004                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2005 
2006                 if (c->eax == 0) {
2007                     break;
2008                 }
2009                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2010                     goto full;
2011                 }
2012                 c = &entries[cpuid_i++];
2013             }
2014             break;
2015         default:
2016             c->function = i;
2017             c->flags = 0;
2018             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2019             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2020                 /*
2021                  * KVM already returns all zeroes if a CPUID entry is missing,
2022                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2023                  */
2024                 cpuid_i--;
2025             }
2026             break;
2027         }
2028     }
2029 
2030     /* Call Centaur's CPUID instructions they are supported. */
2031     if (env->cpuid_xlevel2 > 0) {
2032         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2033 
2034         for (i = 0xC0000000; i <= limit; i++) {
2035             j = 0;
2036             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2037                 goto full;
2038             }
2039             c = &entries[cpuid_i++];
2040 
2041             c->function = i;
2042             c->flags = 0;
2043             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2044         }
2045     }
2046 
2047     return cpuid_i;
2048 
2049 full:
2050     fprintf(stderr, "cpuid_data is full, no space for "
2051             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2052     abort();
2053 }
2054 
2055 int kvm_arch_init_vcpu(CPUState *cs)
2056 {
2057     struct {
2058         struct kvm_cpuid2 cpuid;
2059         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2060     } cpuid_data;
2061     /*
2062      * The kernel defines these structs with padding fields so there
2063      * should be no extra padding in our cpuid_data struct.
2064      */
2065     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2066                       sizeof(struct kvm_cpuid2) +
2067                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2068 
2069     X86CPU *cpu = X86_CPU(cs);
2070     CPUX86State *env = &cpu->env;
2071     uint32_t cpuid_i;
2072     struct kvm_cpuid_entry2 *c;
2073     uint32_t signature[3];
2074     int kvm_base = KVM_CPUID_SIGNATURE;
2075     int max_nested_state_len;
2076     int r;
2077     Error *local_err = NULL;
2078 
2079     memset(&cpuid_data, 0, sizeof(cpuid_data));
2080 
2081     cpuid_i = 0;
2082 
2083     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2084 
2085     r = kvm_arch_set_tsc_khz(cs);
2086     if (r < 0) {
2087         return r;
2088     }
2089 
2090     /* vcpu's TSC frequency is either specified by user, or following
2091      * the value used by KVM if the former is not present. In the
2092      * latter case, we query it from KVM and record in env->tsc_khz,
2093      * so that vcpu's TSC frequency can be migrated later via this field.
2094      */
2095     if (!env->tsc_khz) {
2096         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2097             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2098             -ENOTSUP;
2099         if (r > 0) {
2100             env->tsc_khz = r;
2101         }
2102     }
2103 
2104     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2105 
2106     /*
2107      * kvm_hyperv_expand_features() is called here for the second time in case
2108      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2109      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2110      * check which Hyper-V enlightenments are supported and which are not, we
2111      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2112      * behavior is preserved.
2113      */
2114     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2115         error_report_err(local_err);
2116         return -ENOSYS;
2117     }
2118 
2119     if (hyperv_enabled(cpu)) {
2120         r = hyperv_init_vcpu(cpu);
2121         if (r) {
2122             return r;
2123         }
2124 
2125         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2126         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2127         has_msr_hv_hypercall = true;
2128     }
2129 
2130     if (cs->kvm_state->xen_version) {
2131 #ifdef CONFIG_XEN_EMU
2132         struct kvm_cpuid_entry2 *xen_max_leaf;
2133 
2134         memcpy(signature, "XenVMMXenVMM", 12);
2135 
2136         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2137         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2138         c->eax = kvm_base + XEN_CPUID_TIME;
2139         c->ebx = signature[0];
2140         c->ecx = signature[1];
2141         c->edx = signature[2];
2142 
2143         c = &cpuid_data.entries[cpuid_i++];
2144         c->function = kvm_base + XEN_CPUID_VENDOR;
2145         c->eax = cs->kvm_state->xen_version;
2146         c->ebx = 0;
2147         c->ecx = 0;
2148         c->edx = 0;
2149 
2150         c = &cpuid_data.entries[cpuid_i++];
2151         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2152         /* Number of hypercall-transfer pages */
2153         c->eax = 1;
2154         /* Hypercall MSR base address */
2155         if (hyperv_enabled(cpu)) {
2156             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2157             kvm_xen_init(cs->kvm_state, c->ebx);
2158         } else {
2159             c->ebx = XEN_HYPERCALL_MSR;
2160         }
2161         c->ecx = 0;
2162         c->edx = 0;
2163 
2164         c = &cpuid_data.entries[cpuid_i++];
2165         c->function = kvm_base + XEN_CPUID_TIME;
2166         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2167             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2168         /* default=0 (emulate if necessary) */
2169         c->ebx = 0;
2170         /* guest tsc frequency */
2171         c->ecx = env->user_tsc_khz;
2172         /* guest tsc incarnation (migration count) */
2173         c->edx = 0;
2174 
2175         c = &cpuid_data.entries[cpuid_i++];
2176         c->function = kvm_base + XEN_CPUID_HVM;
2177         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2178         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2179             c->function = kvm_base + XEN_CPUID_HVM;
2180 
2181             if (cpu->xen_vapic) {
2182                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2183                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2184             }
2185 
2186             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2187 
2188             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2189                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2190                 c->ebx = cs->cpu_index;
2191             }
2192 
2193             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2194                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2195             }
2196         }
2197 
2198         r = kvm_xen_init_vcpu(cs);
2199         if (r) {
2200             return r;
2201         }
2202 
2203         kvm_base += 0x100;
2204 #else /* CONFIG_XEN_EMU */
2205         /* This should never happen as kvm_arch_init() would have died first. */
2206         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2207         abort();
2208 #endif
2209     } else if (cpu->expose_kvm) {
2210         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2211         c = &cpuid_data.entries[cpuid_i++];
2212         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2213         c->eax = KVM_CPUID_FEATURES | kvm_base;
2214         c->ebx = signature[0];
2215         c->ecx = signature[1];
2216         c->edx = signature[2];
2217 
2218         c = &cpuid_data.entries[cpuid_i++];
2219         c->function = KVM_CPUID_FEATURES | kvm_base;
2220         c->eax = env->features[FEAT_KVM];
2221         c->edx = env->features[FEAT_KVM_HINTS];
2222     }
2223 
2224     if (cpu->kvm_pv_enforce_cpuid) {
2225         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2226         if (r < 0) {
2227             fprintf(stderr,
2228                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2229                     strerror(-r));
2230             abort();
2231         }
2232     }
2233 
2234     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2235     cpuid_data.cpuid.nent = cpuid_i;
2236 
2237     if (((env->cpuid_version >> 8)&0xF) >= 6
2238         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2239            (CPUID_MCE | CPUID_MCA)) {
2240         uint64_t mcg_cap, unsupported_caps;
2241         int banks;
2242         int ret;
2243 
2244         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2245         if (ret < 0) {
2246             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2247             return ret;
2248         }
2249 
2250         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2251             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2252                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2253             return -ENOTSUP;
2254         }
2255 
2256         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2257         if (unsupported_caps) {
2258             if (unsupported_caps & MCG_LMCE_P) {
2259                 error_report("kvm: LMCE not supported");
2260                 return -ENOTSUP;
2261             }
2262             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2263                         unsupported_caps);
2264         }
2265 
2266         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2267         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2268         if (ret < 0) {
2269             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2270             return ret;
2271         }
2272     }
2273 
2274     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2275 
2276     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2277     if (c) {
2278         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2279                                   !!(c->ecx & CPUID_EXT_SMX);
2280     }
2281 
2282     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2283     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2284         has_msr_feature_control = true;
2285     }
2286 
2287     if (env->mcg_cap & MCG_LMCE_P) {
2288         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2289     }
2290 
2291     if (!env->user_tsc_khz) {
2292         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2293             invtsc_mig_blocker == NULL) {
2294             error_setg(&invtsc_mig_blocker,
2295                        "State blocked by non-migratable CPU device"
2296                        " (invtsc flag)");
2297             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2298             if (r < 0) {
2299                 error_report_err(local_err);
2300                 return r;
2301             }
2302         }
2303     }
2304 
2305     if (cpu->vmware_cpuid_freq
2306         /* Guests depend on 0x40000000 to detect this feature, so only expose
2307          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2308         && cpu->expose_kvm
2309         && kvm_base == KVM_CPUID_SIGNATURE
2310         /* TSC clock must be stable and known for this feature. */
2311         && tsc_is_stable_and_known(env)) {
2312 
2313         c = &cpuid_data.entries[cpuid_i++];
2314         c->function = KVM_CPUID_SIGNATURE | 0x10;
2315         c->eax = env->tsc_khz;
2316         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2317         c->ecx = c->edx = 0;
2318 
2319         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2320         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2321     }
2322 
2323     cpuid_data.cpuid.nent = cpuid_i;
2324 
2325     cpuid_data.cpuid.padding = 0;
2326     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2327     if (r) {
2328         goto fail;
2329     }
2330     kvm_init_xsave(env);
2331 
2332     max_nested_state_len = kvm_max_nested_state_length();
2333     if (max_nested_state_len > 0) {
2334         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2335 
2336         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2337             env->nested_state = g_malloc0(max_nested_state_len);
2338             env->nested_state->size = max_nested_state_len;
2339 
2340             kvm_init_nested_state(env);
2341         }
2342     }
2343 
2344     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2345 
2346     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2347         has_msr_tsc_aux = false;
2348     }
2349 
2350     kvm_init_msrs(cpu);
2351 
2352     return 0;
2353 
2354  fail:
2355     migrate_del_blocker(&invtsc_mig_blocker);
2356 
2357     return r;
2358 }
2359 
2360 int kvm_arch_destroy_vcpu(CPUState *cs)
2361 {
2362     X86CPU *cpu = X86_CPU(cs);
2363     CPUX86State *env = &cpu->env;
2364 
2365     g_free(env->xsave_buf);
2366 
2367     g_free(cpu->kvm_msr_buf);
2368     cpu->kvm_msr_buf = NULL;
2369 
2370     g_free(env->nested_state);
2371     env->nested_state = NULL;
2372 
2373     qemu_del_vm_change_state_handler(cpu->vmsentry);
2374 
2375     return 0;
2376 }
2377 
2378 void kvm_arch_reset_vcpu(X86CPU *cpu)
2379 {
2380     CPUX86State *env = &cpu->env;
2381 
2382     env->xcr0 = 1;
2383     if (kvm_irqchip_in_kernel()) {
2384         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2385                                           KVM_MP_STATE_UNINITIALIZED;
2386     } else {
2387         env->mp_state = KVM_MP_STATE_RUNNABLE;
2388     }
2389 
2390     /* enabled by default */
2391     env->poll_control_msr = 1;
2392 
2393     kvm_init_nested_state(env);
2394 
2395     sev_es_set_reset_vector(CPU(cpu));
2396 }
2397 
2398 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2399 {
2400     CPUX86State *env = &cpu->env;
2401     int i;
2402 
2403     /*
2404      * Reset SynIC after all other devices have been reset to let them remove
2405      * their SINT routes first.
2406      */
2407     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2408         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2409             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2410         }
2411 
2412         hyperv_x86_synic_reset(cpu);
2413     }
2414 }
2415 
2416 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd)
2417 {
2418     g_autofree struct kvm_msrs *msrs = NULL;
2419 
2420     msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0]));
2421     msrs->entries[0].index = MSR_IA32_TSC;
2422     msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */
2423     msrs->nmsrs++;
2424 
2425     if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) {
2426         warn_report("parked vCPU %lu TSC reset failed: %d",
2427                     vcpu_id, errno);
2428     }
2429 }
2430 
2431 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2432 {
2433     CPUX86State *env = &cpu->env;
2434 
2435     /* APs get directly into wait-for-SIPI state.  */
2436     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2437         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2438     }
2439 }
2440 
2441 static int kvm_get_supported_feature_msrs(KVMState *s)
2442 {
2443     int ret = 0;
2444 
2445     if (kvm_feature_msrs != NULL) {
2446         return 0;
2447     }
2448 
2449     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2450         return 0;
2451     }
2452 
2453     struct kvm_msr_list msr_list;
2454 
2455     msr_list.nmsrs = 0;
2456     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2457     if (ret < 0 && ret != -E2BIG) {
2458         error_report("Fetch KVM feature MSR list failed: %s",
2459             strerror(-ret));
2460         return ret;
2461     }
2462 
2463     assert(msr_list.nmsrs > 0);
2464     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2465                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2466 
2467     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2468     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2469 
2470     if (ret < 0) {
2471         error_report("Fetch KVM feature MSR list failed: %s",
2472             strerror(-ret));
2473         g_free(kvm_feature_msrs);
2474         kvm_feature_msrs = NULL;
2475         return ret;
2476     }
2477 
2478     return 0;
2479 }
2480 
2481 static int kvm_get_supported_msrs(KVMState *s)
2482 {
2483     int ret = 0;
2484     struct kvm_msr_list msr_list, *kvm_msr_list;
2485 
2486     /*
2487      *  Obtain MSR list from KVM.  These are the MSRs that we must
2488      *  save/restore.
2489      */
2490     msr_list.nmsrs = 0;
2491     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2492     if (ret < 0 && ret != -E2BIG) {
2493         return ret;
2494     }
2495     /*
2496      * Old kernel modules had a bug and could write beyond the provided
2497      * memory. Allocate at least a safe amount of 1K.
2498      */
2499     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2500                                           msr_list.nmsrs *
2501                                           sizeof(msr_list.indices[0])));
2502 
2503     kvm_msr_list->nmsrs = msr_list.nmsrs;
2504     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2505     if (ret >= 0) {
2506         int i;
2507 
2508         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2509             switch (kvm_msr_list->indices[i]) {
2510             case MSR_STAR:
2511                 has_msr_star = true;
2512                 break;
2513             case MSR_VM_HSAVE_PA:
2514                 has_msr_hsave_pa = true;
2515                 break;
2516             case MSR_TSC_AUX:
2517                 has_msr_tsc_aux = true;
2518                 break;
2519             case MSR_TSC_ADJUST:
2520                 has_msr_tsc_adjust = true;
2521                 break;
2522             case MSR_IA32_TSCDEADLINE:
2523                 has_msr_tsc_deadline = true;
2524                 break;
2525             case MSR_IA32_SMBASE:
2526                 has_msr_smbase = true;
2527                 break;
2528             case MSR_SMI_COUNT:
2529                 has_msr_smi_count = true;
2530                 break;
2531             case MSR_IA32_MISC_ENABLE:
2532                 has_msr_misc_enable = true;
2533                 break;
2534             case MSR_IA32_BNDCFGS:
2535                 has_msr_bndcfgs = true;
2536                 break;
2537             case MSR_IA32_XSS:
2538                 has_msr_xss = true;
2539                 break;
2540             case MSR_IA32_UMWAIT_CONTROL:
2541                 has_msr_umwait = true;
2542                 break;
2543             case HV_X64_MSR_CRASH_CTL:
2544                 has_msr_hv_crash = true;
2545                 break;
2546             case HV_X64_MSR_RESET:
2547                 has_msr_hv_reset = true;
2548                 break;
2549             case HV_X64_MSR_VP_INDEX:
2550                 has_msr_hv_vpindex = true;
2551                 break;
2552             case HV_X64_MSR_VP_RUNTIME:
2553                 has_msr_hv_runtime = true;
2554                 break;
2555             case HV_X64_MSR_SCONTROL:
2556                 has_msr_hv_synic = true;
2557                 break;
2558             case HV_X64_MSR_STIMER0_CONFIG:
2559                 has_msr_hv_stimer = true;
2560                 break;
2561             case HV_X64_MSR_TSC_FREQUENCY:
2562                 has_msr_hv_frequencies = true;
2563                 break;
2564             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2565                 has_msr_hv_reenlightenment = true;
2566                 break;
2567             case HV_X64_MSR_SYNDBG_OPTIONS:
2568                 has_msr_hv_syndbg_options = true;
2569                 break;
2570             case MSR_IA32_SPEC_CTRL:
2571                 has_msr_spec_ctrl = true;
2572                 break;
2573             case MSR_AMD64_TSC_RATIO:
2574                 has_tsc_scale_msr = true;
2575                 break;
2576             case MSR_IA32_TSX_CTRL:
2577                 has_msr_tsx_ctrl = true;
2578                 break;
2579             case MSR_VIRT_SSBD:
2580                 has_msr_virt_ssbd = true;
2581                 break;
2582             case MSR_IA32_ARCH_CAPABILITIES:
2583                 has_msr_arch_capabs = true;
2584                 break;
2585             case MSR_IA32_CORE_CAPABILITY:
2586                 has_msr_core_capabs = true;
2587                 break;
2588             case MSR_IA32_PERF_CAPABILITIES:
2589                 has_msr_perf_capabs = true;
2590                 break;
2591             case MSR_IA32_VMX_VMFUNC:
2592                 has_msr_vmx_vmfunc = true;
2593                 break;
2594             case MSR_IA32_UCODE_REV:
2595                 has_msr_ucode_rev = true;
2596                 break;
2597             case MSR_IA32_VMX_PROCBASED_CTLS2:
2598                 has_msr_vmx_procbased_ctls2 = true;
2599                 break;
2600             case MSR_IA32_PKRS:
2601                 has_msr_pkrs = true;
2602                 break;
2603             case MSR_K7_HWCR:
2604                 has_msr_hwcr = true;
2605             }
2606         }
2607     }
2608 
2609     g_free(kvm_msr_list);
2610 
2611     return ret;
2612 }
2613 
2614 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2615                                         uint32_t msr,
2616                                         uint64_t *val)
2617 {
2618     *val = cpu_x86_get_msr_core_thread_count(cpu);
2619 
2620     return true;
2621 }
2622 
2623 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2624                                       uint32_t msr,
2625                                       uint64_t *val)
2626 {
2627 
2628     CPUState *cs = CPU(cpu);
2629 
2630     *val = cs->kvm_state->msr_energy.msr_unit;
2631 
2632     return true;
2633 }
2634 
2635 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2636                                       uint32_t msr,
2637                                       uint64_t *val)
2638 {
2639 
2640     CPUState *cs = CPU(cpu);
2641 
2642     *val = cs->kvm_state->msr_energy.msr_limit;
2643 
2644     return true;
2645 }
2646 
2647 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2648                                      uint32_t msr,
2649                                      uint64_t *val)
2650 {
2651 
2652     CPUState *cs = CPU(cpu);
2653 
2654     *val = cs->kvm_state->msr_energy.msr_info;
2655 
2656     return true;
2657 }
2658 
2659 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2660                                         uint32_t msr,
2661                                         uint64_t *val)
2662 {
2663 
2664     CPUState *cs = CPU(cpu);
2665     *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2666 
2667     return true;
2668 }
2669 
2670 static Notifier smram_machine_done;
2671 static KVMMemoryListener smram_listener;
2672 static AddressSpace smram_address_space;
2673 static MemoryRegion smram_as_root;
2674 static MemoryRegion smram_as_mem;
2675 
2676 static void register_smram_listener(Notifier *n, void *unused)
2677 {
2678     MemoryRegion *smram =
2679         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2680 
2681     /* Outer container... */
2682     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2683     memory_region_set_enabled(&smram_as_root, true);
2684 
2685     /* ... with two regions inside: normal system memory with low
2686      * priority, and...
2687      */
2688     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2689                              get_system_memory(), 0, ~0ull);
2690     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2691     memory_region_set_enabled(&smram_as_mem, true);
2692 
2693     if (smram) {
2694         /* ... SMRAM with higher priority */
2695         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2696         memory_region_set_enabled(smram, true);
2697     }
2698 
2699     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2700     kvm_memory_listener_register(kvm_state, &smram_listener,
2701                                  &smram_address_space, 1, "kvm-smram");
2702 }
2703 
2704 static void *kvm_msr_energy_thread(void *data)
2705 {
2706     KVMState *s = data;
2707     struct KVMMsrEnergy *vmsr = &s->msr_energy;
2708 
2709     g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2710     g_autofree vmsr_thread_stat *thd_stat = NULL;
2711     g_autofree CPUState *cpu = NULL;
2712     g_autofree unsigned int *vpkgs_energy_stat = NULL;
2713     unsigned int num_threads = 0;
2714 
2715     X86CPUTopoIDs topo_ids;
2716 
2717     rcu_register_thread();
2718 
2719     /* Allocate memory for each package energy status */
2720     pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2721 
2722     /* Allocate memory for thread stats */
2723     thd_stat = g_new0(vmsr_thread_stat, 1);
2724 
2725     /* Allocate memory for holding virtual package energy counter */
2726     vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2727 
2728     /* Populate the max tick of each packages */
2729     for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2730         /*
2731          * Max numbers of ticks per package
2732          * Time in second * Number of ticks/second * Number of cores/package
2733          * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2734          */
2735         vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2736                         * sysconf(_SC_CLK_TCK)
2737                         * vmsr->host_topo.pkg_cpu_count[i];
2738     }
2739 
2740     while (true) {
2741         /* Get all qemu threads id */
2742         g_autofree pid_t *thread_ids
2743             = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2744 
2745         if (thread_ids == NULL) {
2746             goto clean;
2747         }
2748 
2749         thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2750         /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2751         memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2752 
2753         /* Populate all the thread stats */
2754         for (int i = 0; i < num_threads; i++) {
2755             thd_stat[i].utime = g_new0(unsigned long long, 2);
2756             thd_stat[i].stime = g_new0(unsigned long long, 2);
2757             thd_stat[i].thread_id = thread_ids[i];
2758             vmsr_read_thread_stat(vmsr->pid,
2759                                   thd_stat[i].thread_id,
2760                                   &thd_stat[i].utime[0],
2761                                   &thd_stat[i].stime[0],
2762                                   &thd_stat[i].cpu_id);
2763             thd_stat[i].pkg_id =
2764                 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2765         }
2766 
2767         /* Retrieve all packages power plane energy counter */
2768         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2769             for (int j = 0; j < num_threads; j++) {
2770                 /*
2771                  * Use the first thread we found that ran on the CPU
2772                  * of the package to read the packages energy counter
2773                  */
2774                 if (thd_stat[j].pkg_id == i) {
2775                     pkg_stat[i].e_start =
2776                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2777                                   thd_stat[j].cpu_id,
2778                                   thd_stat[j].thread_id,
2779                                   s->msr_energy.sioc);
2780                     break;
2781                 }
2782             }
2783         }
2784 
2785         /* Sleep a short period while the other threads are working */
2786         usleep(MSR_ENERGY_THREAD_SLEEP_US);
2787 
2788         /*
2789          * Retrieve all packages power plane energy counter
2790          * Calculate the delta of all packages
2791          */
2792         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2793             for (int j = 0; j < num_threads; j++) {
2794                 /*
2795                  * Use the first thread we found that ran on the CPU
2796                  * of the package to read the packages energy counter
2797                  */
2798                 if (thd_stat[j].pkg_id == i) {
2799                     pkg_stat[i].e_end =
2800                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2801                                   thd_stat[j].cpu_id,
2802                                   thd_stat[j].thread_id,
2803                                   s->msr_energy.sioc);
2804                     /*
2805                      * Prevent the case we have migrate the VM
2806                      * during the sleep period or any other cases
2807                      * were energy counter might be lower after
2808                      * the sleep period.
2809                      */
2810                     if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2811                         pkg_stat[i].e_delta =
2812                             pkg_stat[i].e_end - pkg_stat[i].e_start;
2813                     } else {
2814                         pkg_stat[i].e_delta = 0;
2815                     }
2816                     break;
2817                 }
2818             }
2819         }
2820 
2821         /* Delta of ticks spend by each thread between the sample */
2822         for (int i = 0; i < num_threads; i++) {
2823             vmsr_read_thread_stat(vmsr->pid,
2824                                   thd_stat[i].thread_id,
2825                                   &thd_stat[i].utime[1],
2826                                   &thd_stat[i].stime[1],
2827                                   &thd_stat[i].cpu_id);
2828 
2829             if (vmsr->pid < 0) {
2830                 /*
2831                  * We don't count the dead thread
2832                  * i.e threads that existed before the sleep
2833                  * and not anymore
2834                  */
2835                 thd_stat[i].delta_ticks = 0;
2836             } else {
2837                 vmsr_delta_ticks(thd_stat, i);
2838             }
2839         }
2840 
2841         /*
2842          * Identify the vcpu threads
2843          * Calculate the number of vcpu per package
2844          */
2845         CPU_FOREACH(cpu) {
2846             for (int i = 0; i < num_threads; i++) {
2847                 if (cpu->thread_id == thd_stat[i].thread_id) {
2848                     thd_stat[i].is_vcpu = true;
2849                     thd_stat[i].vcpu_id = cpu->cpu_index;
2850                     pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2851                     thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2852                     break;
2853                 }
2854             }
2855         }
2856 
2857         /* Retrieve the virtual package number of each vCPU */
2858         for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2859             for (int j = 0; j < num_threads; j++) {
2860                 if ((thd_stat[j].acpi_id ==
2861                         vmsr->guest_cpu_list->cpus[i].arch_id)
2862                     && (thd_stat[j].is_vcpu == true)) {
2863                     x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2864                         &vmsr->guest_topo_info, &topo_ids);
2865                     thd_stat[j].vpkg_id = topo_ids.pkg_id;
2866                 }
2867             }
2868         }
2869 
2870         /* Calculate the total energy of all non-vCPU thread */
2871         for (int i = 0; i < num_threads; i++) {
2872             if ((thd_stat[i].is_vcpu != true) &&
2873                 (thd_stat[i].delta_ticks > 0)) {
2874                 double temp;
2875                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2876                     thd_stat[i].delta_ticks,
2877                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2878                 pkg_stat[thd_stat[i].pkg_id].e_ratio
2879                     += (uint64_t)lround(temp);
2880             }
2881         }
2882 
2883         /* Calculate the ratio per non-vCPU thread of each package */
2884         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2885             if (pkg_stat[i].nb_vcpu > 0) {
2886                 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2887             }
2888         }
2889 
2890         /*
2891          * Calculate the energy for each Package:
2892          * Energy Package = sum of each vCPU energy that belongs to the package
2893          */
2894         for (int i = 0; i < num_threads; i++) {
2895             if ((thd_stat[i].is_vcpu == true) && \
2896                     (thd_stat[i].delta_ticks > 0)) {
2897                 double temp;
2898                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2899                     thd_stat[i].delta_ticks,
2900                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2901                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2902                     (uint64_t)lround(temp);
2903                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2904                     pkg_stat[thd_stat[i].pkg_id].e_ratio;
2905             }
2906         }
2907 
2908         /*
2909          * Finally populate the vmsr register of each vCPU with the total
2910          * package value to emulate the real hardware where each CPU return the
2911          * value of the package it belongs.
2912          */
2913         for (int i = 0; i < num_threads; i++) {
2914             if ((thd_stat[i].is_vcpu == true) && \
2915                     (thd_stat[i].delta_ticks > 0)) {
2916                 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2917                                         vpkgs_energy_stat[thd_stat[i].vpkg_id];
2918           }
2919         }
2920 
2921         /* Freeing memory before zeroing the pointer */
2922         for (int i = 0; i < num_threads; i++) {
2923             g_free(thd_stat[i].utime);
2924             g_free(thd_stat[i].stime);
2925         }
2926    }
2927 
2928 clean:
2929     rcu_unregister_thread();
2930     return NULL;
2931 }
2932 
2933 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2934 {
2935     MachineClass *mc = MACHINE_GET_CLASS(ms);
2936     struct KVMMsrEnergy *r = &s->msr_energy;
2937 
2938     /*
2939      * Sanity check
2940      * 1. Host cpu must be Intel cpu
2941      * 2. RAPL must be enabled on the Host
2942      */
2943     if (!is_host_cpu_intel()) {
2944         error_report("The RAPL feature can only be enabled on hosts "
2945                      "with Intel CPU models");
2946         return -1;
2947     }
2948 
2949     if (!is_rapl_enabled()) {
2950         return -1;
2951     }
2952 
2953     /* Retrieve the virtual topology */
2954     vmsr_init_topo_info(&r->guest_topo_info, ms);
2955 
2956     /* Retrieve the number of vcpu */
2957     r->guest_vcpus = ms->smp.cpus;
2958 
2959     /* Retrieve the number of virtual sockets */
2960     r->guest_vsockets = ms->smp.sockets;
2961 
2962     /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2963     r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2964 
2965     /* Retrieve the CPUArchIDlist */
2966     r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
2967 
2968     /* Max number of cpus on the Host */
2969     r->host_topo.maxcpus = vmsr_get_maxcpus();
2970     if (r->host_topo.maxcpus == 0) {
2971         error_report("host max cpus = 0");
2972         return -1;
2973     }
2974 
2975     /* Max number of packages on the host */
2976     r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
2977     if (r->host_topo.maxpkgs == 0) {
2978         error_report("host max pkgs = 0");
2979         return -1;
2980     }
2981 
2982     /* Allocate memory for each package on the host */
2983     r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
2984     r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
2985 
2986     vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
2987                                 r->host_topo.maxpkgs);
2988     for (int i = 0; i < r->host_topo.maxpkgs; i++) {
2989         if (r->host_topo.pkg_cpu_count[i] == 0) {
2990             error_report("cpu per packages = 0 on package_%d", i);
2991             return -1;
2992         }
2993     }
2994 
2995     /* Get QEMU PID*/
2996     r->pid = getpid();
2997 
2998     /* Compute the socket path if necessary */
2999     if (s->msr_energy.socket_path == NULL) {
3000         s->msr_energy.socket_path = vmsr_compute_default_paths();
3001     }
3002 
3003     /* Open socket with vmsr helper */
3004     s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
3005 
3006     if (s->msr_energy.sioc == NULL) {
3007         error_report("vmsr socket opening failed");
3008         return -1;
3009     }
3010 
3011     /* Those MSR values should not change */
3012     r->msr_unit  = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
3013                                     s->msr_energy.sioc);
3014     r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
3015                                     s->msr_energy.sioc);
3016     r->msr_info  = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
3017                                     s->msr_energy.sioc);
3018     if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3019         error_report("can't read any virtual msr");
3020         return -1;
3021     }
3022 
3023     qemu_thread_create(&r->msr_thr, "kvm-msr",
3024                        kvm_msr_energy_thread,
3025                        s, QEMU_THREAD_JOINABLE);
3026     return 0;
3027 }
3028 
3029 int kvm_arch_get_default_type(MachineState *ms)
3030 {
3031     return 0;
3032 }
3033 
3034 static int kvm_vm_enable_exception_payload(KVMState *s)
3035 {
3036     int ret = 0;
3037     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3038     if (has_exception_payload) {
3039         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3040         if (ret < 0) {
3041             error_report("kvm: Failed to enable exception payload cap: %s",
3042                          strerror(-ret));
3043         }
3044     }
3045 
3046     return ret;
3047 }
3048 
3049 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3050 {
3051     int ret = 0;
3052     has_triple_fault_event = \
3053         kvm_check_extension(s,
3054                             KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3055     if (has_triple_fault_event) {
3056         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3057         if (ret < 0) {
3058             error_report("kvm: Failed to enable triple fault event cap: %s",
3059                          strerror(-ret));
3060         }
3061     }
3062     return ret;
3063 }
3064 
3065 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3066 {
3067     return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3068 }
3069 
3070 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3071 {
3072     uint64_t shadow_mem;
3073     int ret = 0;
3074     shadow_mem = object_property_get_int(OBJECT(s),
3075                                          "kvm-shadow-mem",
3076                                          &error_abort);
3077     if (shadow_mem != -1) {
3078         shadow_mem /= 4096;
3079         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3080     }
3081     return ret;
3082 }
3083 
3084 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3085 {
3086     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3087 }
3088 
3089 static int kvm_vm_enable_disable_exits(KVMState *s)
3090 {
3091     int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3092 
3093     if (disable_exits) {
3094         disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3095                           KVM_X86_DISABLE_EXITS_HLT |
3096                           KVM_X86_DISABLE_EXITS_PAUSE |
3097                           KVM_X86_DISABLE_EXITS_CSTATE);
3098     }
3099 
3100     return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3101                              disable_exits);
3102 }
3103 
3104 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3105 {
3106     int ret = 0;
3107     ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3108     if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3109         error_report("kvm: bus lock detection unsupported");
3110         return -ENOTSUP;
3111     }
3112     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3113                             KVM_BUS_LOCK_DETECTION_EXIT);
3114     if (ret < 0) {
3115         error_report("kvm: Failed to enable bus lock detection cap: %s",
3116                      strerror(-ret));
3117     }
3118 
3119     return ret;
3120 }
3121 
3122 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3123 {
3124     int ret = 0;
3125     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3126         uint64_t notify_window_flags =
3127             ((uint64_t)s->notify_window << 32) |
3128             KVM_X86_NOTIFY_VMEXIT_ENABLED |
3129             KVM_X86_NOTIFY_VMEXIT_USER;
3130         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3131                                 notify_window_flags);
3132         if (ret < 0) {
3133             error_report("kvm: Failed to enable notify vmexit cap: %s",
3134                          strerror(-ret));
3135         }
3136     }
3137     return ret;
3138 }
3139 
3140 static int kvm_vm_enable_userspace_msr(KVMState *s)
3141 {
3142     int ret;
3143 
3144     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3145                             KVM_MSR_EXIT_REASON_FILTER);
3146     if (ret < 0) {
3147         error_report("Could not enable user space MSRs: %s",
3148                      strerror(-ret));
3149         exit(1);
3150     }
3151 
3152     ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3153                          kvm_rdmsr_core_thread_count, NULL);
3154     if (ret < 0) {
3155         error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
3156                      strerror(-ret));
3157         exit(1);
3158     }
3159 
3160     return 0;
3161 }
3162 
3163 static int kvm_vm_enable_energy_msrs(KVMState *s)
3164 {
3165     int ret;
3166 
3167     if (s->msr_energy.enable == true) {
3168         ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3169                              kvm_rdmsr_rapl_power_unit, NULL);
3170         if (ret < 0) {
3171             error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s",
3172                          strerror(-ret));
3173             return ret;
3174         }
3175 
3176         ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3177                              kvm_rdmsr_pkg_power_limit, NULL);
3178         if (ret < 0) {
3179             error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s",
3180                          strerror(-ret));
3181             return ret;
3182         }
3183 
3184         ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3185                              kvm_rdmsr_pkg_power_info, NULL);
3186         if (ret < 0) {
3187             error_report("Could not install MSR_PKG_POWER_INFO handler: %s",
3188                          strerror(-ret));
3189             return ret;
3190         }
3191         ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3192                              kvm_rdmsr_pkg_energy_status, NULL);
3193         if (ret < 0) {
3194             error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s",
3195                          strerror(-ret));
3196             return ret;
3197         }
3198     }
3199     return 0;
3200 }
3201 
3202 int kvm_arch_init(MachineState *ms, KVMState *s)
3203 {
3204     int ret;
3205     struct utsname utsname;
3206     Error *local_err = NULL;
3207 
3208     /*
3209      * Initialize SEV context, if required
3210      *
3211      * If no memory encryption is requested (ms->cgs == NULL) this is
3212      * a no-op.
3213      *
3214      * It's also a no-op if a non-SEV confidential guest support
3215      * mechanism is selected.  SEV is the only mechanism available to
3216      * select on x86 at present, so this doesn't arise, but if new
3217      * mechanisms are supported in future (e.g. TDX), they'll need
3218      * their own initialization either here or elsewhere.
3219      */
3220     if (ms->cgs) {
3221         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3222         if (ret < 0) {
3223             error_report_err(local_err);
3224             return ret;
3225         }
3226     }
3227 
3228     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3229     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3230 
3231     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3232 
3233     ret = kvm_vm_enable_exception_payload(s);
3234     if (ret < 0) {
3235         return ret;
3236     }
3237 
3238     ret = kvm_vm_enable_triple_fault_event(s);
3239     if (ret < 0) {
3240         return ret;
3241     }
3242 
3243     if (s->xen_version) {
3244 #ifdef CONFIG_XEN_EMU
3245         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3246             error_report("kvm: Xen support only available in PC machine");
3247             return -ENOTSUP;
3248         }
3249         /* hyperv_enabled() doesn't work yet. */
3250         uint32_t msr = XEN_HYPERCALL_MSR;
3251         ret = kvm_xen_init(s, msr);
3252         if (ret < 0) {
3253             return ret;
3254         }
3255 #else
3256         error_report("kvm: Xen support not enabled in qemu");
3257         return -ENOTSUP;
3258 #endif
3259     }
3260 
3261     ret = kvm_get_supported_msrs(s);
3262     if (ret < 0) {
3263         return ret;
3264     }
3265 
3266     ret = kvm_get_supported_feature_msrs(s);
3267     if (ret < 0) {
3268         return ret;
3269     }
3270 
3271     uname(&utsname);
3272     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3273 
3274     ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3275     if (ret < 0) {
3276         return ret;
3277     }
3278 
3279     /* Set TSS base one page after EPT identity map. */
3280     ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3281     if (ret < 0) {
3282         return ret;
3283     }
3284 
3285     /* Tell fw_cfg to notify the BIOS to reserve the range. */
3286     e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3287 
3288     ret = kvm_vm_set_nr_mmu_pages(s);
3289     if (ret < 0) {
3290         return ret;
3291     }
3292 
3293     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3294         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3295         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3296         smram_machine_done.notify = register_smram_listener;
3297         qemu_add_machine_init_done_notifier(&smram_machine_done);
3298     }
3299 
3300     if (enable_cpu_pm) {
3301         ret = kvm_vm_enable_disable_exits(s);
3302         if (ret < 0) {
3303             error_report("kvm: guest stopping CPU not supported: %s",
3304                          strerror(-ret));
3305             return ret;
3306         }
3307     }
3308 
3309     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3310         X86MachineState *x86ms = X86_MACHINE(ms);
3311 
3312         if (x86ms->bus_lock_ratelimit > 0) {
3313             ret = kvm_vm_enable_bus_lock_exit(s);
3314             if (ret < 0) {
3315                 return ret;
3316             }
3317             ratelimit_init(&bus_lock_ratelimit_ctrl);
3318             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3319                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3320         }
3321     }
3322 
3323     if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3324         ret = kvm_vm_enable_notify_vmexit(s);
3325         if (ret < 0) {
3326             return ret;
3327         }
3328     }
3329 
3330     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3331         ret = kvm_vm_enable_userspace_msr(s);
3332         if (ret < 0) {
3333             return ret;
3334         }
3335 
3336         if (s->msr_energy.enable == true) {
3337             ret = kvm_vm_enable_energy_msrs(s);
3338             if (ret < 0) {
3339                 return ret;
3340             }
3341 
3342             ret = kvm_msr_energy_thread_init(s, ms);
3343             if (ret < 0) {
3344                 error_report("kvm : error RAPL feature requirement not met");
3345                 return ret;
3346             }
3347         }
3348     }
3349 
3350     return 0;
3351 }
3352 
3353 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3354 {
3355     lhs->selector = rhs->selector;
3356     lhs->base = rhs->base;
3357     lhs->limit = rhs->limit;
3358     lhs->type = 3;
3359     lhs->present = 1;
3360     lhs->dpl = 3;
3361     lhs->db = 0;
3362     lhs->s = 1;
3363     lhs->l = 0;
3364     lhs->g = 0;
3365     lhs->avl = 0;
3366     lhs->unusable = 0;
3367 }
3368 
3369 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3370 {
3371     unsigned flags = rhs->flags;
3372     lhs->selector = rhs->selector;
3373     lhs->base = rhs->base;
3374     lhs->limit = rhs->limit;
3375     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3376     lhs->present = (flags & DESC_P_MASK) != 0;
3377     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3378     lhs->db = (flags >> DESC_B_SHIFT) & 1;
3379     lhs->s = (flags & DESC_S_MASK) != 0;
3380     lhs->l = (flags >> DESC_L_SHIFT) & 1;
3381     lhs->g = (flags & DESC_G_MASK) != 0;
3382     lhs->avl = (flags & DESC_AVL_MASK) != 0;
3383     lhs->unusable = !lhs->present;
3384     lhs->padding = 0;
3385 }
3386 
3387 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3388 {
3389     lhs->selector = rhs->selector;
3390     lhs->base = rhs->base;
3391     lhs->limit = rhs->limit;
3392     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3393                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3394                  (rhs->dpl << DESC_DPL_SHIFT) |
3395                  (rhs->db << DESC_B_SHIFT) |
3396                  (rhs->s * DESC_S_MASK) |
3397                  (rhs->l << DESC_L_SHIFT) |
3398                  (rhs->g * DESC_G_MASK) |
3399                  (rhs->avl * DESC_AVL_MASK);
3400 }
3401 
3402 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3403 {
3404     if (set) {
3405         *kvm_reg = *qemu_reg;
3406     } else {
3407         *qemu_reg = *kvm_reg;
3408     }
3409 }
3410 
3411 static int kvm_getput_regs(X86CPU *cpu, int set)
3412 {
3413     CPUX86State *env = &cpu->env;
3414     struct kvm_regs regs;
3415     int ret = 0;
3416 
3417     if (!set) {
3418         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3419         if (ret < 0) {
3420             return ret;
3421         }
3422     }
3423 
3424     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3425     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3426     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3427     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3428     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3429     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3430     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3431     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3432 #ifdef TARGET_X86_64
3433     kvm_getput_reg(&regs.r8, &env->regs[8], set);
3434     kvm_getput_reg(&regs.r9, &env->regs[9], set);
3435     kvm_getput_reg(&regs.r10, &env->regs[10], set);
3436     kvm_getput_reg(&regs.r11, &env->regs[11], set);
3437     kvm_getput_reg(&regs.r12, &env->regs[12], set);
3438     kvm_getput_reg(&regs.r13, &env->regs[13], set);
3439     kvm_getput_reg(&regs.r14, &env->regs[14], set);
3440     kvm_getput_reg(&regs.r15, &env->regs[15], set);
3441 #endif
3442 
3443     kvm_getput_reg(&regs.rflags, &env->eflags, set);
3444     kvm_getput_reg(&regs.rip, &env->eip, set);
3445 
3446     if (set) {
3447         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3448     }
3449 
3450     return ret;
3451 }
3452 
3453 static int kvm_put_xsave(X86CPU *cpu)
3454 {
3455     CPUX86State *env = &cpu->env;
3456     void *xsave = env->xsave_buf;
3457 
3458     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3459 
3460     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3461 }
3462 
3463 static int kvm_put_xcrs(X86CPU *cpu)
3464 {
3465     CPUX86State *env = &cpu->env;
3466     struct kvm_xcrs xcrs = {};
3467 
3468     if (!has_xcrs) {
3469         return 0;
3470     }
3471 
3472     xcrs.nr_xcrs = 1;
3473     xcrs.flags = 0;
3474     xcrs.xcrs[0].xcr = 0;
3475     xcrs.xcrs[0].value = env->xcr0;
3476     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3477 }
3478 
3479 static int kvm_put_sregs(X86CPU *cpu)
3480 {
3481     CPUX86State *env = &cpu->env;
3482     struct kvm_sregs sregs;
3483 
3484     /*
3485      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3486      * always followed by KVM_SET_VCPU_EVENTS.
3487      */
3488     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3489 
3490     if ((env->eflags & VM_MASK)) {
3491         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3492         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3493         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3494         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3495         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3496         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3497     } else {
3498         set_seg(&sregs.cs, &env->segs[R_CS]);
3499         set_seg(&sregs.ds, &env->segs[R_DS]);
3500         set_seg(&sregs.es, &env->segs[R_ES]);
3501         set_seg(&sregs.fs, &env->segs[R_FS]);
3502         set_seg(&sregs.gs, &env->segs[R_GS]);
3503         set_seg(&sregs.ss, &env->segs[R_SS]);
3504     }
3505 
3506     set_seg(&sregs.tr, &env->tr);
3507     set_seg(&sregs.ldt, &env->ldt);
3508 
3509     sregs.idt.limit = env->idt.limit;
3510     sregs.idt.base = env->idt.base;
3511     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3512     sregs.gdt.limit = env->gdt.limit;
3513     sregs.gdt.base = env->gdt.base;
3514     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3515 
3516     sregs.cr0 = env->cr[0];
3517     sregs.cr2 = env->cr[2];
3518     sregs.cr3 = env->cr[3];
3519     sregs.cr4 = env->cr[4];
3520 
3521     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3522     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3523 
3524     sregs.efer = env->efer;
3525 
3526     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3527 }
3528 
3529 static int kvm_put_sregs2(X86CPU *cpu)
3530 {
3531     CPUX86State *env = &cpu->env;
3532     struct kvm_sregs2 sregs;
3533     int i;
3534 
3535     sregs.flags = 0;
3536 
3537     if ((env->eflags & VM_MASK)) {
3538         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3539         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3540         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3541         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3542         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3543         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3544     } else {
3545         set_seg(&sregs.cs, &env->segs[R_CS]);
3546         set_seg(&sregs.ds, &env->segs[R_DS]);
3547         set_seg(&sregs.es, &env->segs[R_ES]);
3548         set_seg(&sregs.fs, &env->segs[R_FS]);
3549         set_seg(&sregs.gs, &env->segs[R_GS]);
3550         set_seg(&sregs.ss, &env->segs[R_SS]);
3551     }
3552 
3553     set_seg(&sregs.tr, &env->tr);
3554     set_seg(&sregs.ldt, &env->ldt);
3555 
3556     sregs.idt.limit = env->idt.limit;
3557     sregs.idt.base = env->idt.base;
3558     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3559     sregs.gdt.limit = env->gdt.limit;
3560     sregs.gdt.base = env->gdt.base;
3561     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3562 
3563     sregs.cr0 = env->cr[0];
3564     sregs.cr2 = env->cr[2];
3565     sregs.cr3 = env->cr[3];
3566     sregs.cr4 = env->cr[4];
3567 
3568     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3569     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3570 
3571     sregs.efer = env->efer;
3572 
3573     if (env->pdptrs_valid) {
3574         for (i = 0; i < 4; i++) {
3575             sregs.pdptrs[i] = env->pdptrs[i];
3576         }
3577         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3578     }
3579 
3580     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3581 }
3582 
3583 
3584 static void kvm_msr_buf_reset(X86CPU *cpu)
3585 {
3586     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3587 }
3588 
3589 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3590 {
3591     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3592     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3593     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3594 
3595     assert((void *)(entry + 1) <= limit);
3596 
3597     entry->index = index;
3598     entry->reserved = 0;
3599     entry->data = value;
3600     msrs->nmsrs++;
3601 }
3602 
3603 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3604 {
3605     kvm_msr_buf_reset(cpu);
3606     kvm_msr_entry_add(cpu, index, value);
3607 
3608     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3609 }
3610 
3611 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3612 {
3613     int ret;
3614     struct {
3615         struct kvm_msrs info;
3616         struct kvm_msr_entry entries[1];
3617     } msr_data = {
3618         .info.nmsrs = 1,
3619         .entries[0].index = index,
3620     };
3621 
3622     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3623     if (ret < 0) {
3624         return ret;
3625     }
3626     assert(ret == 1);
3627     *value = msr_data.entries[0].data;
3628     return ret;
3629 }
3630 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3631 {
3632     int ret;
3633 
3634     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3635     assert(ret == 1);
3636 }
3637 
3638 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3639 {
3640     CPUX86State *env = &cpu->env;
3641     int ret;
3642 
3643     if (!has_msr_tsc_deadline) {
3644         return 0;
3645     }
3646 
3647     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3648     if (ret < 0) {
3649         return ret;
3650     }
3651 
3652     assert(ret == 1);
3653     return 0;
3654 }
3655 
3656 /*
3657  * Provide a separate write service for the feature control MSR in order to
3658  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3659  * before writing any other state because forcibly leaving nested mode
3660  * invalidates the VCPU state.
3661  */
3662 static int kvm_put_msr_feature_control(X86CPU *cpu)
3663 {
3664     int ret;
3665 
3666     if (!has_msr_feature_control) {
3667         return 0;
3668     }
3669 
3670     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3671                           cpu->env.msr_ia32_feature_control);
3672     if (ret < 0) {
3673         return ret;
3674     }
3675 
3676     assert(ret == 1);
3677     return 0;
3678 }
3679 
3680 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3681 {
3682     uint32_t default1, can_be_one, can_be_zero;
3683     uint32_t must_be_one;
3684 
3685     switch (index) {
3686     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3687         default1 = 0x00000016;
3688         break;
3689     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3690         default1 = 0x0401e172;
3691         break;
3692     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3693         default1 = 0x000011ff;
3694         break;
3695     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3696         default1 = 0x00036dff;
3697         break;
3698     case MSR_IA32_VMX_PROCBASED_CTLS2:
3699         default1 = 0;
3700         break;
3701     default:
3702         abort();
3703     }
3704 
3705     /* If a feature bit is set, the control can be either set or clear.
3706      * Otherwise the value is limited to either 0 or 1 by default1.
3707      */
3708     can_be_one = features | default1;
3709     can_be_zero = features | ~default1;
3710     must_be_one = ~can_be_zero;
3711 
3712     /*
3713      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3714      * Bit 32:63 -> 1 if the control bit can be one.
3715      */
3716     return must_be_one | (((uint64_t)can_be_one) << 32);
3717 }
3718 
3719 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3720 {
3721     uint64_t kvm_vmx_basic =
3722         kvm_arch_get_supported_msr_feature(kvm_state,
3723                                            MSR_IA32_VMX_BASIC);
3724 
3725     if (!kvm_vmx_basic) {
3726         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3727          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3728          */
3729         return;
3730     }
3731 
3732     uint64_t kvm_vmx_misc =
3733         kvm_arch_get_supported_msr_feature(kvm_state,
3734                                            MSR_IA32_VMX_MISC);
3735     uint64_t kvm_vmx_ept_vpid =
3736         kvm_arch_get_supported_msr_feature(kvm_state,
3737                                            MSR_IA32_VMX_EPT_VPID_CAP);
3738 
3739     /*
3740      * If the guest is 64-bit, a value of 1 is allowed for the host address
3741      * space size vmexit control.
3742      */
3743     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3744         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3745 
3746     /*
3747      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3748      * not change them for backwards compatibility.
3749      */
3750     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3751         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3752          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3753          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3754 
3755     /*
3756      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3757      * change in the future but are always zero for now, clear them to be
3758      * future proof.  Bits 32-63 in theory could change, though KVM does
3759      * not support dual-monitor treatment and probably never will; mask
3760      * them out as well.
3761      */
3762     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3763         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3764          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3765 
3766     /*
3767      * EPT memory types should not change either, so we do not bother
3768      * adding features for them.
3769      */
3770     uint64_t fixed_vmx_ept_mask =
3771             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3772              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3773     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3774 
3775     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3776                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3777                                          f[FEAT_VMX_PROCBASED_CTLS]));
3778     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3779                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3780                                          f[FEAT_VMX_PINBASED_CTLS]));
3781     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3782                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3783                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3784     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3785                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3786                                          f[FEAT_VMX_ENTRY_CTLS]));
3787     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3788                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3789                                          f[FEAT_VMX_SECONDARY_CTLS]));
3790     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3791                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3792     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3793                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3794     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3795                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3796     if (has_msr_vmx_vmfunc) {
3797         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3798     }
3799 
3800     /*
3801      * Just to be safe, write these with constant values.  The CRn_FIXED1
3802      * MSRs are generated by KVM based on the vCPU's CPUID.
3803      */
3804     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3805                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3806     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3807                       CR4_VMXE_MASK);
3808 
3809     if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3810         /* FRED injected-event data (0x2052).  */
3811         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3812     } else if (f[FEAT_VMX_EXIT_CTLS] &
3813                VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3814         /* Secondary VM-exit controls (0x2044).  */
3815         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3816     } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3817         /* TSC multiplier (0x2032).  */
3818         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3819     } else {
3820         /* Preemption timer (0x482E).  */
3821         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3822     }
3823 }
3824 
3825 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3826 {
3827     uint64_t kvm_perf_cap =
3828         kvm_arch_get_supported_msr_feature(kvm_state,
3829                                            MSR_IA32_PERF_CAPABILITIES);
3830 
3831     if (kvm_perf_cap) {
3832         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3833                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3834     }
3835 }
3836 
3837 static int kvm_buf_set_msrs(X86CPU *cpu)
3838 {
3839     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3840     if (ret < 0) {
3841         return ret;
3842     }
3843 
3844     if (ret < cpu->kvm_msr_buf->nmsrs) {
3845         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3846         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3847                      (uint32_t)e->index, (uint64_t)e->data);
3848     }
3849 
3850     assert(ret == cpu->kvm_msr_buf->nmsrs);
3851     return 0;
3852 }
3853 
3854 static void kvm_init_msrs(X86CPU *cpu)
3855 {
3856     CPUX86State *env = &cpu->env;
3857 
3858     kvm_msr_buf_reset(cpu);
3859     if (has_msr_arch_capabs) {
3860         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3861                           env->features[FEAT_ARCH_CAPABILITIES]);
3862     }
3863 
3864     if (has_msr_core_capabs) {
3865         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3866                           env->features[FEAT_CORE_CAPABILITY]);
3867     }
3868 
3869     if (has_msr_perf_capabs && cpu->enable_pmu) {
3870         kvm_msr_entry_add_perf(cpu, env->features);
3871     }
3872 
3873     if (has_msr_ucode_rev) {
3874         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3875     }
3876 
3877     /*
3878      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3879      * all kernels with MSR features should have them.
3880      */
3881     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3882         kvm_msr_entry_add_vmx(cpu, env->features);
3883     }
3884 
3885     assert(kvm_buf_set_msrs(cpu) == 0);
3886 }
3887 
3888 static int kvm_put_msrs(X86CPU *cpu, int level)
3889 {
3890     CPUX86State *env = &cpu->env;
3891     int i;
3892 
3893     kvm_msr_buf_reset(cpu);
3894 
3895     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3896     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3897     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3898     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3899     if (has_msr_star) {
3900         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3901     }
3902     if (has_msr_hsave_pa) {
3903         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3904     }
3905     if (has_msr_tsc_aux) {
3906         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3907     }
3908     if (has_msr_tsc_adjust) {
3909         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3910     }
3911     if (has_msr_misc_enable) {
3912         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3913                           env->msr_ia32_misc_enable);
3914     }
3915     if (has_msr_smbase) {
3916         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3917     }
3918     if (has_msr_smi_count) {
3919         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3920     }
3921     if (has_msr_pkrs) {
3922         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3923     }
3924     if (has_msr_bndcfgs) {
3925         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3926     }
3927     if (has_msr_xss) {
3928         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3929     }
3930     if (has_msr_umwait) {
3931         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3932     }
3933     if (has_msr_spec_ctrl) {
3934         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3935     }
3936     if (has_tsc_scale_msr) {
3937         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3938     }
3939 
3940     if (has_msr_tsx_ctrl) {
3941         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3942     }
3943     if (has_msr_virt_ssbd) {
3944         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3945     }
3946     if (has_msr_hwcr) {
3947         kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr);
3948     }
3949 
3950 #ifdef TARGET_X86_64
3951     if (lm_capable_kernel) {
3952         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3953         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3954         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3955         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3956         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3957             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3958             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3959             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3960             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3961             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3962             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3963             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3964             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3965             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3966         }
3967     }
3968 #endif
3969 
3970     /*
3971      * The following MSRs have side effects on the guest or are too heavy
3972      * for normal writeback. Limit them to reset or full state updates.
3973      */
3974     if (level >= KVM_PUT_RESET_STATE) {
3975         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3976         if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
3977             kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3978             kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3979         }
3980         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
3981             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3982         }
3983         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
3984             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3985         }
3986         if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
3987             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3988         }
3989         if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
3990             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3991         }
3992 
3993         if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
3994             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3995         }
3996 
3997         if (has_architectural_pmu_version > 0) {
3998             if (has_architectural_pmu_version > 1) {
3999                 /* Stop the counter.  */
4000                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4001                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4002             }
4003 
4004             /* Set the counter values.  */
4005             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4006                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4007                                   env->msr_fixed_counters[i]);
4008             }
4009             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4010                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
4011                                   env->msr_gp_counters[i]);
4012                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
4013                                   env->msr_gp_evtsel[i]);
4014             }
4015             if (has_architectural_pmu_version > 1) {
4016                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
4017                                   env->msr_global_status);
4018                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4019                                   env->msr_global_ovf_ctrl);
4020 
4021                 /* Now start the PMU.  */
4022                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
4023                                   env->msr_fixed_ctr_ctrl);
4024                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
4025                                   env->msr_global_ctrl);
4026             }
4027         }
4028         /*
4029          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
4030          * only sync them to KVM on the first cpu
4031          */
4032         if (current_cpu == first_cpu) {
4033             if (has_msr_hv_hypercall) {
4034                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4035                                   env->msr_hv_guest_os_id);
4036                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4037                                   env->msr_hv_hypercall);
4038             }
4039             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4040                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4041                                   env->msr_hv_tsc);
4042             }
4043             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4044                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4045                                   env->msr_hv_reenlightenment_control);
4046                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4047                                   env->msr_hv_tsc_emulation_control);
4048                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4049                                   env->msr_hv_tsc_emulation_status);
4050             }
4051             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4052                 has_msr_hv_syndbg_options) {
4053                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4054                                   hyperv_syndbg_query_options());
4055             }
4056         }
4057         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4058             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4059                               env->msr_hv_vapic);
4060         }
4061         if (has_msr_hv_crash) {
4062             int j;
4063 
4064             for (j = 0; j < HV_CRASH_PARAMS; j++)
4065                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4066                                   env->msr_hv_crash_params[j]);
4067 
4068             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4069         }
4070         if (has_msr_hv_runtime) {
4071             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4072         }
4073         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4074             && hv_vpindex_settable) {
4075             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4076                               hyperv_vp_index(CPU(cpu)));
4077         }
4078         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4079             int j;
4080 
4081             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4082 
4083             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4084                               env->msr_hv_synic_control);
4085             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4086                               env->msr_hv_synic_evt_page);
4087             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4088                               env->msr_hv_synic_msg_page);
4089 
4090             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4091                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4092                                   env->msr_hv_synic_sint[j]);
4093             }
4094         }
4095         if (has_msr_hv_stimer) {
4096             int j;
4097 
4098             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4099                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4100                                 env->msr_hv_stimer_config[j]);
4101             }
4102 
4103             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4104                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4105                                 env->msr_hv_stimer_count[j]);
4106             }
4107         }
4108         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4109             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4110 
4111             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4112             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4113             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4114             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4115             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4116             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4117             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4118             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4119             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4120             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4121             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4122             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4123             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4124                 /* The CPU GPs if we write to a bit above the physical limit of
4125                  * the host CPU (and KVM emulates that)
4126                  */
4127                 uint64_t mask = env->mtrr_var[i].mask;
4128                 mask &= phys_mask;
4129 
4130                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4131                                   env->mtrr_var[i].base);
4132                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4133             }
4134         }
4135         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4136             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4137                                                     0x14, 1, R_EAX) & 0x7;
4138 
4139             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4140                             env->msr_rtit_ctrl);
4141             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4142                             env->msr_rtit_status);
4143             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4144                             env->msr_rtit_output_base);
4145             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4146                             env->msr_rtit_output_mask);
4147             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4148                             env->msr_rtit_cr3_match);
4149             for (i = 0; i < addr_num; i++) {
4150                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4151                             env->msr_rtit_addrs[i]);
4152             }
4153         }
4154 
4155         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4156             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4157                               env->msr_ia32_sgxlepubkeyhash[0]);
4158             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4159                               env->msr_ia32_sgxlepubkeyhash[1]);
4160             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4161                               env->msr_ia32_sgxlepubkeyhash[2]);
4162             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4163                               env->msr_ia32_sgxlepubkeyhash[3]);
4164         }
4165 
4166         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4167             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4168                               env->msr_xfd);
4169             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4170                               env->msr_xfd_err);
4171         }
4172 
4173         if (kvm_enabled() && cpu->enable_pmu &&
4174             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4175             uint64_t depth;
4176             int ret;
4177 
4178             /*
4179              * Only migrate Arch LBR states when the host Arch LBR depth
4180              * equals that of source guest's, this is to avoid mismatch
4181              * of guest/host config for the msr hence avoid unexpected
4182              * misbehavior.
4183              */
4184             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4185 
4186             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4187                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4188                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4189 
4190                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4191                     if (!env->lbr_records[i].from) {
4192                         continue;
4193                     }
4194                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4195                                       env->lbr_records[i].from);
4196                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4197                                       env->lbr_records[i].to);
4198                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4199                                       env->lbr_records[i].info);
4200                 }
4201             }
4202         }
4203 
4204         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4205          *       kvm_put_msr_feature_control. */
4206     }
4207 
4208     if (env->mcg_cap) {
4209         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4210         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4211         if (has_msr_mcg_ext_ctl) {
4212             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4213         }
4214         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4215             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4216         }
4217     }
4218 
4219     return kvm_buf_set_msrs(cpu);
4220 }
4221 
4222 
4223 static int kvm_get_xsave(X86CPU *cpu)
4224 {
4225     CPUX86State *env = &cpu->env;
4226     void *xsave = env->xsave_buf;
4227     unsigned long type;
4228     int ret;
4229 
4230     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4231     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4232     if (ret < 0) {
4233         return ret;
4234     }
4235     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4236 
4237     return 0;
4238 }
4239 
4240 static int kvm_get_xcrs(X86CPU *cpu)
4241 {
4242     CPUX86State *env = &cpu->env;
4243     int i, ret;
4244     struct kvm_xcrs xcrs;
4245 
4246     if (!has_xcrs) {
4247         return 0;
4248     }
4249 
4250     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4251     if (ret < 0) {
4252         return ret;
4253     }
4254 
4255     for (i = 0; i < xcrs.nr_xcrs; i++) {
4256         /* Only support xcr0 now */
4257         if (xcrs.xcrs[i].xcr == 0) {
4258             env->xcr0 = xcrs.xcrs[i].value;
4259             break;
4260         }
4261     }
4262     return 0;
4263 }
4264 
4265 static int kvm_get_sregs(X86CPU *cpu)
4266 {
4267     CPUX86State *env = &cpu->env;
4268     struct kvm_sregs sregs;
4269     int ret;
4270 
4271     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4272     if (ret < 0) {
4273         return ret;
4274     }
4275 
4276     /*
4277      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4278      * always preceded by KVM_GET_VCPU_EVENTS.
4279      */
4280 
4281     get_seg(&env->segs[R_CS], &sregs.cs);
4282     get_seg(&env->segs[R_DS], &sregs.ds);
4283     get_seg(&env->segs[R_ES], &sregs.es);
4284     get_seg(&env->segs[R_FS], &sregs.fs);
4285     get_seg(&env->segs[R_GS], &sregs.gs);
4286     get_seg(&env->segs[R_SS], &sregs.ss);
4287 
4288     get_seg(&env->tr, &sregs.tr);
4289     get_seg(&env->ldt, &sregs.ldt);
4290 
4291     env->idt.limit = sregs.idt.limit;
4292     env->idt.base = sregs.idt.base;
4293     env->gdt.limit = sregs.gdt.limit;
4294     env->gdt.base = sregs.gdt.base;
4295 
4296     env->cr[0] = sregs.cr0;
4297     env->cr[2] = sregs.cr2;
4298     env->cr[3] = sregs.cr3;
4299     env->cr[4] = sregs.cr4;
4300 
4301     env->efer = sregs.efer;
4302     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4303         env->cr[0] & CR0_PG_MASK) {
4304         env->efer |= MSR_EFER_LMA;
4305     }
4306 
4307     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4308     x86_update_hflags(env);
4309 
4310     return 0;
4311 }
4312 
4313 static int kvm_get_sregs2(X86CPU *cpu)
4314 {
4315     CPUX86State *env = &cpu->env;
4316     struct kvm_sregs2 sregs;
4317     int i, ret;
4318 
4319     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4320     if (ret < 0) {
4321         return ret;
4322     }
4323 
4324     get_seg(&env->segs[R_CS], &sregs.cs);
4325     get_seg(&env->segs[R_DS], &sregs.ds);
4326     get_seg(&env->segs[R_ES], &sregs.es);
4327     get_seg(&env->segs[R_FS], &sregs.fs);
4328     get_seg(&env->segs[R_GS], &sregs.gs);
4329     get_seg(&env->segs[R_SS], &sregs.ss);
4330 
4331     get_seg(&env->tr, &sregs.tr);
4332     get_seg(&env->ldt, &sregs.ldt);
4333 
4334     env->idt.limit = sregs.idt.limit;
4335     env->idt.base = sregs.idt.base;
4336     env->gdt.limit = sregs.gdt.limit;
4337     env->gdt.base = sregs.gdt.base;
4338 
4339     env->cr[0] = sregs.cr0;
4340     env->cr[2] = sregs.cr2;
4341     env->cr[3] = sregs.cr3;
4342     env->cr[4] = sregs.cr4;
4343 
4344     env->efer = sregs.efer;
4345     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4346         env->cr[0] & CR0_PG_MASK) {
4347         env->efer |= MSR_EFER_LMA;
4348     }
4349 
4350     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4351 
4352     if (env->pdptrs_valid) {
4353         for (i = 0; i < 4; i++) {
4354             env->pdptrs[i] = sregs.pdptrs[i];
4355         }
4356     }
4357 
4358     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4359     x86_update_hflags(env);
4360 
4361     return 0;
4362 }
4363 
4364 static int kvm_get_msrs(X86CPU *cpu)
4365 {
4366     CPUX86State *env = &cpu->env;
4367     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4368     int ret, i;
4369     uint64_t mtrr_top_bits;
4370 
4371     kvm_msr_buf_reset(cpu);
4372 
4373     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4374     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4375     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4376     kvm_msr_entry_add(cpu, MSR_PAT, 0);
4377     if (has_msr_star) {
4378         kvm_msr_entry_add(cpu, MSR_STAR, 0);
4379     }
4380     if (has_msr_hsave_pa) {
4381         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4382     }
4383     if (has_msr_tsc_aux) {
4384         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4385     }
4386     if (has_msr_tsc_adjust) {
4387         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4388     }
4389     if (has_msr_tsc_deadline) {
4390         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4391     }
4392     if (has_msr_misc_enable) {
4393         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4394     }
4395     if (has_msr_smbase) {
4396         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4397     }
4398     if (has_msr_smi_count) {
4399         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4400     }
4401     if (has_msr_feature_control) {
4402         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4403     }
4404     if (has_msr_pkrs) {
4405         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4406     }
4407     if (has_msr_bndcfgs) {
4408         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4409     }
4410     if (has_msr_xss) {
4411         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4412     }
4413     if (has_msr_umwait) {
4414         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4415     }
4416     if (has_msr_spec_ctrl) {
4417         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4418     }
4419     if (has_tsc_scale_msr) {
4420         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4421     }
4422 
4423     if (has_msr_tsx_ctrl) {
4424         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4425     }
4426     if (has_msr_virt_ssbd) {
4427         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4428     }
4429     if (!env->tsc_valid) {
4430         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4431         env->tsc_valid = !runstate_is_running();
4432     }
4433     if (has_msr_hwcr) {
4434         kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0);
4435     }
4436 
4437 #ifdef TARGET_X86_64
4438     if (lm_capable_kernel) {
4439         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4440         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4441         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4442         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4443         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4444             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4445             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4446             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4447             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4448             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4449             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4450             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4451             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4452             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4453         }
4454     }
4455 #endif
4456     if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
4457         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4458         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4459     }
4460     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4461         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4462     }
4463     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4464         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4465     }
4466     if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4467         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4468     }
4469     if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4470         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4471     }
4472     if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4473         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4474     }
4475     if (has_architectural_pmu_version > 0) {
4476         if (has_architectural_pmu_version > 1) {
4477             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4478             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4479             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4480             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4481         }
4482         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4483             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4484         }
4485         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4486             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4487             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4488         }
4489     }
4490 
4491     if (env->mcg_cap) {
4492         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4493         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4494         if (has_msr_mcg_ext_ctl) {
4495             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4496         }
4497         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4498             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4499         }
4500     }
4501 
4502     if (has_msr_hv_hypercall) {
4503         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4504         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4505     }
4506     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4507         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4508     }
4509     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4510         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4511     }
4512     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4513         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4514         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4515         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4516     }
4517     if (has_msr_hv_syndbg_options) {
4518         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4519     }
4520     if (has_msr_hv_crash) {
4521         int j;
4522 
4523         for (j = 0; j < HV_CRASH_PARAMS; j++) {
4524             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4525         }
4526     }
4527     if (has_msr_hv_runtime) {
4528         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4529     }
4530     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4531         uint32_t msr;
4532 
4533         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4534         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4535         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4536         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4537             kvm_msr_entry_add(cpu, msr, 0);
4538         }
4539     }
4540     if (has_msr_hv_stimer) {
4541         uint32_t msr;
4542 
4543         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4544              msr++) {
4545             kvm_msr_entry_add(cpu, msr, 0);
4546         }
4547     }
4548     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4549         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4550         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4551         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4552         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4553         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4554         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4555         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4556         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4557         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4558         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4559         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4560         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4561         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4562             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4563             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4564         }
4565     }
4566 
4567     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4568         int addr_num =
4569             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4570 
4571         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4572         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4573         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4574         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4575         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4576         for (i = 0; i < addr_num; i++) {
4577             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4578         }
4579     }
4580 
4581     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4582         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4583         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4584         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4585         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4586     }
4587 
4588     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4589         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4590         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4591     }
4592 
4593     if (kvm_enabled() && cpu->enable_pmu &&
4594         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4595         uint64_t depth;
4596 
4597         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4598         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4599             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4600             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4601 
4602             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4603                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4604                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4605                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4606             }
4607         }
4608     }
4609 
4610     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4611     if (ret < 0) {
4612         return ret;
4613     }
4614 
4615     if (ret < cpu->kvm_msr_buf->nmsrs) {
4616         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4617         error_report("error: failed to get MSR 0x%" PRIx32,
4618                      (uint32_t)e->index);
4619     }
4620 
4621     assert(ret == cpu->kvm_msr_buf->nmsrs);
4622     /*
4623      * MTRR masks: Each mask consists of 5 parts
4624      * a  10..0: must be zero
4625      * b  11   : valid bit
4626      * c n-1.12: actual mask bits
4627      * d  51..n: reserved must be zero
4628      * e  63.52: reserved must be zero
4629      *
4630      * 'n' is the number of physical bits supported by the CPU and is
4631      * apparently always <= 52.   We know our 'n' but don't know what
4632      * the destinations 'n' is; it might be smaller, in which case
4633      * it masks (c) on loading. It might be larger, in which case
4634      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4635      * we're migrating to.
4636      */
4637 
4638     if (cpu->fill_mtrr_mask) {
4639         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4640         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4641         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4642     } else {
4643         mtrr_top_bits = 0;
4644     }
4645 
4646     for (i = 0; i < ret; i++) {
4647         uint32_t index = msrs[i].index;
4648         switch (index) {
4649         case MSR_IA32_SYSENTER_CS:
4650             env->sysenter_cs = msrs[i].data;
4651             break;
4652         case MSR_IA32_SYSENTER_ESP:
4653             env->sysenter_esp = msrs[i].data;
4654             break;
4655         case MSR_IA32_SYSENTER_EIP:
4656             env->sysenter_eip = msrs[i].data;
4657             break;
4658         case MSR_PAT:
4659             env->pat = msrs[i].data;
4660             break;
4661         case MSR_STAR:
4662             env->star = msrs[i].data;
4663             break;
4664 #ifdef TARGET_X86_64
4665         case MSR_CSTAR:
4666             env->cstar = msrs[i].data;
4667             break;
4668         case MSR_KERNELGSBASE:
4669             env->kernelgsbase = msrs[i].data;
4670             break;
4671         case MSR_FMASK:
4672             env->fmask = msrs[i].data;
4673             break;
4674         case MSR_LSTAR:
4675             env->lstar = msrs[i].data;
4676             break;
4677         case MSR_IA32_FRED_RSP0:
4678             env->fred_rsp0 = msrs[i].data;
4679             break;
4680         case MSR_IA32_FRED_RSP1:
4681             env->fred_rsp1 = msrs[i].data;
4682             break;
4683         case MSR_IA32_FRED_RSP2:
4684             env->fred_rsp2 = msrs[i].data;
4685             break;
4686         case MSR_IA32_FRED_RSP3:
4687             env->fred_rsp3 = msrs[i].data;
4688             break;
4689         case MSR_IA32_FRED_STKLVLS:
4690             env->fred_stklvls = msrs[i].data;
4691             break;
4692         case MSR_IA32_FRED_SSP1:
4693             env->fred_ssp1 = msrs[i].data;
4694             break;
4695         case MSR_IA32_FRED_SSP2:
4696             env->fred_ssp2 = msrs[i].data;
4697             break;
4698         case MSR_IA32_FRED_SSP3:
4699             env->fred_ssp3 = msrs[i].data;
4700             break;
4701         case MSR_IA32_FRED_CONFIG:
4702             env->fred_config = msrs[i].data;
4703             break;
4704 #endif
4705         case MSR_IA32_TSC:
4706             env->tsc = msrs[i].data;
4707             break;
4708         case MSR_TSC_AUX:
4709             env->tsc_aux = msrs[i].data;
4710             break;
4711         case MSR_TSC_ADJUST:
4712             env->tsc_adjust = msrs[i].data;
4713             break;
4714         case MSR_IA32_TSCDEADLINE:
4715             env->tsc_deadline = msrs[i].data;
4716             break;
4717         case MSR_VM_HSAVE_PA:
4718             env->vm_hsave = msrs[i].data;
4719             break;
4720         case MSR_KVM_SYSTEM_TIME:
4721             env->system_time_msr = msrs[i].data;
4722             break;
4723         case MSR_KVM_WALL_CLOCK:
4724             env->wall_clock_msr = msrs[i].data;
4725             break;
4726         case MSR_MCG_STATUS:
4727             env->mcg_status = msrs[i].data;
4728             break;
4729         case MSR_MCG_CTL:
4730             env->mcg_ctl = msrs[i].data;
4731             break;
4732         case MSR_MCG_EXT_CTL:
4733             env->mcg_ext_ctl = msrs[i].data;
4734             break;
4735         case MSR_IA32_MISC_ENABLE:
4736             env->msr_ia32_misc_enable = msrs[i].data;
4737             break;
4738         case MSR_IA32_SMBASE:
4739             env->smbase = msrs[i].data;
4740             break;
4741         case MSR_SMI_COUNT:
4742             env->msr_smi_count = msrs[i].data;
4743             break;
4744         case MSR_IA32_FEATURE_CONTROL:
4745             env->msr_ia32_feature_control = msrs[i].data;
4746             break;
4747         case MSR_IA32_BNDCFGS:
4748             env->msr_bndcfgs = msrs[i].data;
4749             break;
4750         case MSR_IA32_XSS:
4751             env->xss = msrs[i].data;
4752             break;
4753         case MSR_IA32_UMWAIT_CONTROL:
4754             env->umwait = msrs[i].data;
4755             break;
4756         case MSR_IA32_PKRS:
4757             env->pkrs = msrs[i].data;
4758             break;
4759         default:
4760             if (msrs[i].index >= MSR_MC0_CTL &&
4761                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4762                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4763             }
4764             break;
4765         case MSR_KVM_ASYNC_PF_EN:
4766             env->async_pf_en_msr = msrs[i].data;
4767             break;
4768         case MSR_KVM_ASYNC_PF_INT:
4769             env->async_pf_int_msr = msrs[i].data;
4770             break;
4771         case MSR_KVM_PV_EOI_EN:
4772             env->pv_eoi_en_msr = msrs[i].data;
4773             break;
4774         case MSR_KVM_STEAL_TIME:
4775             env->steal_time_msr = msrs[i].data;
4776             break;
4777         case MSR_KVM_POLL_CONTROL: {
4778             env->poll_control_msr = msrs[i].data;
4779             break;
4780         }
4781         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4782             env->msr_fixed_ctr_ctrl = msrs[i].data;
4783             break;
4784         case MSR_CORE_PERF_GLOBAL_CTRL:
4785             env->msr_global_ctrl = msrs[i].data;
4786             break;
4787         case MSR_CORE_PERF_GLOBAL_STATUS:
4788             env->msr_global_status = msrs[i].data;
4789             break;
4790         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4791             env->msr_global_ovf_ctrl = msrs[i].data;
4792             break;
4793         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4794             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4795             break;
4796         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4797             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4798             break;
4799         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4800             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4801             break;
4802         case HV_X64_MSR_HYPERCALL:
4803             env->msr_hv_hypercall = msrs[i].data;
4804             break;
4805         case HV_X64_MSR_GUEST_OS_ID:
4806             env->msr_hv_guest_os_id = msrs[i].data;
4807             break;
4808         case HV_X64_MSR_APIC_ASSIST_PAGE:
4809             env->msr_hv_vapic = msrs[i].data;
4810             break;
4811         case HV_X64_MSR_REFERENCE_TSC:
4812             env->msr_hv_tsc = msrs[i].data;
4813             break;
4814         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4815             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4816             break;
4817         case HV_X64_MSR_VP_RUNTIME:
4818             env->msr_hv_runtime = msrs[i].data;
4819             break;
4820         case HV_X64_MSR_SCONTROL:
4821             env->msr_hv_synic_control = msrs[i].data;
4822             break;
4823         case HV_X64_MSR_SIEFP:
4824             env->msr_hv_synic_evt_page = msrs[i].data;
4825             break;
4826         case HV_X64_MSR_SIMP:
4827             env->msr_hv_synic_msg_page = msrs[i].data;
4828             break;
4829         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4830             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4831             break;
4832         case HV_X64_MSR_STIMER0_CONFIG:
4833         case HV_X64_MSR_STIMER1_CONFIG:
4834         case HV_X64_MSR_STIMER2_CONFIG:
4835         case HV_X64_MSR_STIMER3_CONFIG:
4836             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4837                                 msrs[i].data;
4838             break;
4839         case HV_X64_MSR_STIMER0_COUNT:
4840         case HV_X64_MSR_STIMER1_COUNT:
4841         case HV_X64_MSR_STIMER2_COUNT:
4842         case HV_X64_MSR_STIMER3_COUNT:
4843             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4844                                 msrs[i].data;
4845             break;
4846         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4847             env->msr_hv_reenlightenment_control = msrs[i].data;
4848             break;
4849         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4850             env->msr_hv_tsc_emulation_control = msrs[i].data;
4851             break;
4852         case HV_X64_MSR_TSC_EMULATION_STATUS:
4853             env->msr_hv_tsc_emulation_status = msrs[i].data;
4854             break;
4855         case HV_X64_MSR_SYNDBG_OPTIONS:
4856             env->msr_hv_syndbg_options = msrs[i].data;
4857             break;
4858         case MSR_MTRRdefType:
4859             env->mtrr_deftype = msrs[i].data;
4860             break;
4861         case MSR_MTRRfix64K_00000:
4862             env->mtrr_fixed[0] = msrs[i].data;
4863             break;
4864         case MSR_MTRRfix16K_80000:
4865             env->mtrr_fixed[1] = msrs[i].data;
4866             break;
4867         case MSR_MTRRfix16K_A0000:
4868             env->mtrr_fixed[2] = msrs[i].data;
4869             break;
4870         case MSR_MTRRfix4K_C0000:
4871             env->mtrr_fixed[3] = msrs[i].data;
4872             break;
4873         case MSR_MTRRfix4K_C8000:
4874             env->mtrr_fixed[4] = msrs[i].data;
4875             break;
4876         case MSR_MTRRfix4K_D0000:
4877             env->mtrr_fixed[5] = msrs[i].data;
4878             break;
4879         case MSR_MTRRfix4K_D8000:
4880             env->mtrr_fixed[6] = msrs[i].data;
4881             break;
4882         case MSR_MTRRfix4K_E0000:
4883             env->mtrr_fixed[7] = msrs[i].data;
4884             break;
4885         case MSR_MTRRfix4K_E8000:
4886             env->mtrr_fixed[8] = msrs[i].data;
4887             break;
4888         case MSR_MTRRfix4K_F0000:
4889             env->mtrr_fixed[9] = msrs[i].data;
4890             break;
4891         case MSR_MTRRfix4K_F8000:
4892             env->mtrr_fixed[10] = msrs[i].data;
4893             break;
4894         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4895             if (index & 1) {
4896                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4897                                                                mtrr_top_bits;
4898             } else {
4899                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4900             }
4901             break;
4902         case MSR_IA32_SPEC_CTRL:
4903             env->spec_ctrl = msrs[i].data;
4904             break;
4905         case MSR_AMD64_TSC_RATIO:
4906             env->amd_tsc_scale_msr = msrs[i].data;
4907             break;
4908         case MSR_IA32_TSX_CTRL:
4909             env->tsx_ctrl = msrs[i].data;
4910             break;
4911         case MSR_VIRT_SSBD:
4912             env->virt_ssbd = msrs[i].data;
4913             break;
4914         case MSR_IA32_RTIT_CTL:
4915             env->msr_rtit_ctrl = msrs[i].data;
4916             break;
4917         case MSR_IA32_RTIT_STATUS:
4918             env->msr_rtit_status = msrs[i].data;
4919             break;
4920         case MSR_IA32_RTIT_OUTPUT_BASE:
4921             env->msr_rtit_output_base = msrs[i].data;
4922             break;
4923         case MSR_IA32_RTIT_OUTPUT_MASK:
4924             env->msr_rtit_output_mask = msrs[i].data;
4925             break;
4926         case MSR_IA32_RTIT_CR3_MATCH:
4927             env->msr_rtit_cr3_match = msrs[i].data;
4928             break;
4929         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4930             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4931             break;
4932         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4933             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4934                            msrs[i].data;
4935             break;
4936         case MSR_IA32_XFD:
4937             env->msr_xfd = msrs[i].data;
4938             break;
4939         case MSR_IA32_XFD_ERR:
4940             env->msr_xfd_err = msrs[i].data;
4941             break;
4942         case MSR_ARCH_LBR_CTL:
4943             env->msr_lbr_ctl = msrs[i].data;
4944             break;
4945         case MSR_ARCH_LBR_DEPTH:
4946             env->msr_lbr_depth = msrs[i].data;
4947             break;
4948         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4949             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4950             break;
4951         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4952             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4953             break;
4954         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4955             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4956             break;
4957         case MSR_K7_HWCR:
4958             env->msr_hwcr = msrs[i].data;
4959             break;
4960         }
4961     }
4962 
4963     return 0;
4964 }
4965 
4966 static int kvm_put_mp_state(X86CPU *cpu)
4967 {
4968     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4969 
4970     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4971 }
4972 
4973 static int kvm_get_mp_state(X86CPU *cpu)
4974 {
4975     CPUState *cs = CPU(cpu);
4976     CPUX86State *env = &cpu->env;
4977     struct kvm_mp_state mp_state;
4978     int ret;
4979 
4980     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4981     if (ret < 0) {
4982         return ret;
4983     }
4984     env->mp_state = mp_state.mp_state;
4985     if (kvm_irqchip_in_kernel()) {
4986         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4987     }
4988     return 0;
4989 }
4990 
4991 static int kvm_get_apic(X86CPU *cpu)
4992 {
4993     DeviceState *apic = cpu->apic_state;
4994     struct kvm_lapic_state kapic;
4995     int ret;
4996 
4997     if (apic && kvm_irqchip_in_kernel()) {
4998         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4999         if (ret < 0) {
5000             return ret;
5001         }
5002 
5003         kvm_get_apic_state(apic, &kapic);
5004     }
5005     return 0;
5006 }
5007 
5008 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
5009 {
5010     CPUState *cs = CPU(cpu);
5011     CPUX86State *env = &cpu->env;
5012     struct kvm_vcpu_events events = {};
5013 
5014     events.flags = 0;
5015 
5016     if (has_exception_payload) {
5017         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5018         events.exception.pending = env->exception_pending;
5019         events.exception_has_payload = env->exception_has_payload;
5020         events.exception_payload = env->exception_payload;
5021     }
5022     events.exception.nr = env->exception_nr;
5023     events.exception.injected = env->exception_injected;
5024     events.exception.has_error_code = env->has_error_code;
5025     events.exception.error_code = env->error_code;
5026 
5027     events.interrupt.injected = (env->interrupt_injected >= 0);
5028     events.interrupt.nr = env->interrupt_injected;
5029     events.interrupt.soft = env->soft_interrupt;
5030 
5031     events.nmi.injected = env->nmi_injected;
5032     events.nmi.pending = env->nmi_pending;
5033     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
5034 
5035     events.sipi_vector = env->sipi_vector;
5036 
5037     if (has_msr_smbase) {
5038         events.flags |= KVM_VCPUEVENT_VALID_SMM;
5039         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5040         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5041         if (kvm_irqchip_in_kernel()) {
5042             /* As soon as these are moved to the kernel, remove them
5043              * from cs->interrupt_request.
5044              */
5045             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5046             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5047             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5048         } else {
5049             /* Keep these in cs->interrupt_request.  */
5050             events.smi.pending = 0;
5051             events.smi.latched_init = 0;
5052         }
5053     }
5054 
5055     if (level >= KVM_PUT_RESET_STATE) {
5056         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5057         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5058             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5059         }
5060     }
5061 
5062     if (has_triple_fault_event) {
5063         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5064         events.triple_fault.pending = env->triple_fault_pending;
5065     }
5066 
5067     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5068 }
5069 
5070 static int kvm_get_vcpu_events(X86CPU *cpu)
5071 {
5072     CPUX86State *env = &cpu->env;
5073     struct kvm_vcpu_events events;
5074     int ret;
5075 
5076     memset(&events, 0, sizeof(events));
5077     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5078     if (ret < 0) {
5079        return ret;
5080     }
5081 
5082     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5083         env->exception_pending = events.exception.pending;
5084         env->exception_has_payload = events.exception_has_payload;
5085         env->exception_payload = events.exception_payload;
5086     } else {
5087         env->exception_pending = 0;
5088         env->exception_has_payload = false;
5089     }
5090     env->exception_injected = events.exception.injected;
5091     env->exception_nr =
5092         (env->exception_pending || env->exception_injected) ?
5093         events.exception.nr : -1;
5094     env->has_error_code = events.exception.has_error_code;
5095     env->error_code = events.exception.error_code;
5096 
5097     env->interrupt_injected =
5098         events.interrupt.injected ? events.interrupt.nr : -1;
5099     env->soft_interrupt = events.interrupt.soft;
5100 
5101     env->nmi_injected = events.nmi.injected;
5102     env->nmi_pending = events.nmi.pending;
5103     if (events.nmi.masked) {
5104         env->hflags2 |= HF2_NMI_MASK;
5105     } else {
5106         env->hflags2 &= ~HF2_NMI_MASK;
5107     }
5108 
5109     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5110         if (events.smi.smm) {
5111             env->hflags |= HF_SMM_MASK;
5112         } else {
5113             env->hflags &= ~HF_SMM_MASK;
5114         }
5115         if (events.smi.pending) {
5116             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5117         } else {
5118             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5119         }
5120         if (events.smi.smm_inside_nmi) {
5121             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5122         } else {
5123             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5124         }
5125         if (events.smi.latched_init) {
5126             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5127         } else {
5128             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5129         }
5130     }
5131 
5132     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5133         env->triple_fault_pending = events.triple_fault.pending;
5134     }
5135 
5136     env->sipi_vector = events.sipi_vector;
5137 
5138     return 0;
5139 }
5140 
5141 static int kvm_put_debugregs(X86CPU *cpu)
5142 {
5143     CPUX86State *env = &cpu->env;
5144     struct kvm_debugregs dbgregs;
5145     int i;
5146 
5147     memset(&dbgregs, 0, sizeof(dbgregs));
5148     for (i = 0; i < 4; i++) {
5149         dbgregs.db[i] = env->dr[i];
5150     }
5151     dbgregs.dr6 = env->dr[6];
5152     dbgregs.dr7 = env->dr[7];
5153     dbgregs.flags = 0;
5154 
5155     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5156 }
5157 
5158 static int kvm_get_debugregs(X86CPU *cpu)
5159 {
5160     CPUX86State *env = &cpu->env;
5161     struct kvm_debugregs dbgregs;
5162     int i, ret;
5163 
5164     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5165     if (ret < 0) {
5166         return ret;
5167     }
5168     for (i = 0; i < 4; i++) {
5169         env->dr[i] = dbgregs.db[i];
5170     }
5171     env->dr[4] = env->dr[6] = dbgregs.dr6;
5172     env->dr[5] = env->dr[7] = dbgregs.dr7;
5173 
5174     return 0;
5175 }
5176 
5177 static int kvm_put_nested_state(X86CPU *cpu)
5178 {
5179     CPUX86State *env = &cpu->env;
5180     int max_nested_state_len = kvm_max_nested_state_length();
5181 
5182     if (!env->nested_state) {
5183         return 0;
5184     }
5185 
5186     /*
5187      * Copy flags that are affected by reset from env->hflags and env->hflags2.
5188      */
5189     if (env->hflags & HF_GUEST_MASK) {
5190         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5191     } else {
5192         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5193     }
5194 
5195     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5196     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5197         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5198     } else {
5199         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5200     }
5201 
5202     assert(env->nested_state->size <= max_nested_state_len);
5203     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5204 }
5205 
5206 static int kvm_get_nested_state(X86CPU *cpu)
5207 {
5208     CPUX86State *env = &cpu->env;
5209     int max_nested_state_len = kvm_max_nested_state_length();
5210     int ret;
5211 
5212     if (!env->nested_state) {
5213         return 0;
5214     }
5215 
5216     /*
5217      * It is possible that migration restored a smaller size into
5218      * nested_state->hdr.size than what our kernel support.
5219      * We preserve migration origin nested_state->hdr.size for
5220      * call to KVM_SET_NESTED_STATE but wish that our next call
5221      * to KVM_GET_NESTED_STATE will use max size our kernel support.
5222      */
5223     env->nested_state->size = max_nested_state_len;
5224 
5225     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5226     if (ret < 0) {
5227         return ret;
5228     }
5229 
5230     /*
5231      * Copy flags that are affected by reset to env->hflags and env->hflags2.
5232      */
5233     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5234         env->hflags |= HF_GUEST_MASK;
5235     } else {
5236         env->hflags &= ~HF_GUEST_MASK;
5237     }
5238 
5239     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5240     if (cpu_has_svm(env)) {
5241         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5242             env->hflags2 |= HF2_GIF_MASK;
5243         } else {
5244             env->hflags2 &= ~HF2_GIF_MASK;
5245         }
5246     }
5247 
5248     return ret;
5249 }
5250 
5251 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5252 {
5253     X86CPU *x86_cpu = X86_CPU(cpu);
5254     int ret;
5255 
5256     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5257 
5258     /*
5259      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5260      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5261      * precede kvm_put_nested_state() when 'real' nested state is set.
5262      */
5263     if (level >= KVM_PUT_RESET_STATE) {
5264         ret = kvm_put_msr_feature_control(x86_cpu);
5265         if (ret < 0) {
5266             error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5267             return ret;
5268         }
5269     }
5270 
5271     /* must be before kvm_put_nested_state so that EFER.SVME is set */
5272     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5273     if (ret < 0) {
5274         error_setg_errno(errp, -ret, "Failed to set special registers");
5275         return ret;
5276     }
5277 
5278     if (level >= KVM_PUT_RESET_STATE) {
5279         ret = kvm_put_nested_state(x86_cpu);
5280         if (ret < 0) {
5281             error_setg_errno(errp, -ret, "Failed to set nested state");
5282             return ret;
5283         }
5284     }
5285 
5286     if (level == KVM_PUT_FULL_STATE) {
5287         /* We don't check for kvm_arch_set_tsc_khz() errors here,
5288          * because TSC frequency mismatch shouldn't abort migration,
5289          * unless the user explicitly asked for a more strict TSC
5290          * setting (e.g. using an explicit "tsc-freq" option).
5291          */
5292         kvm_arch_set_tsc_khz(cpu);
5293     }
5294 
5295 #ifdef CONFIG_XEN_EMU
5296     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5297         ret = kvm_put_xen_state(cpu);
5298         if (ret < 0) {
5299             error_setg_errno(errp, -ret, "Failed to set Xen state");
5300             return ret;
5301         }
5302     }
5303 #endif
5304 
5305     ret = kvm_getput_regs(x86_cpu, 1);
5306     if (ret < 0) {
5307         error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5308         return ret;
5309     }
5310     ret = kvm_put_xsave(x86_cpu);
5311     if (ret < 0) {
5312         error_setg_errno(errp, -ret, "Failed to set XSAVE");
5313         return ret;
5314     }
5315     ret = kvm_put_xcrs(x86_cpu);
5316     if (ret < 0) {
5317         error_setg_errno(errp, -ret, "Failed to set XCRs");
5318         return ret;
5319     }
5320     ret = kvm_put_msrs(x86_cpu, level);
5321     if (ret < 0) {
5322         error_setg_errno(errp, -ret, "Failed to set MSRs");
5323         return ret;
5324     }
5325     ret = kvm_put_vcpu_events(x86_cpu, level);
5326     if (ret < 0) {
5327         error_setg_errno(errp, -ret, "Failed to set vCPU events");
5328         return ret;
5329     }
5330     if (level >= KVM_PUT_RESET_STATE) {
5331         ret = kvm_put_mp_state(x86_cpu);
5332         if (ret < 0) {
5333             error_setg_errno(errp, -ret, "Failed to set MP state");
5334             return ret;
5335         }
5336     }
5337 
5338     ret = kvm_put_tscdeadline_msr(x86_cpu);
5339     if (ret < 0) {
5340         error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5341         return ret;
5342     }
5343     ret = kvm_put_debugregs(x86_cpu);
5344     if (ret < 0) {
5345         error_setg_errno(errp, -ret, "Failed to set debug registers");
5346         return ret;
5347     }
5348     return 0;
5349 }
5350 
5351 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5352 {
5353     X86CPU *cpu = X86_CPU(cs);
5354     int ret;
5355 
5356     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5357 
5358     ret = kvm_get_vcpu_events(cpu);
5359     if (ret < 0) {
5360         error_setg_errno(errp, -ret, "Failed to get vCPU events");
5361         goto out;
5362     }
5363     /*
5364      * KVM_GET_MPSTATE can modify CS and RIP, call it before
5365      * KVM_GET_REGS and KVM_GET_SREGS.
5366      */
5367     ret = kvm_get_mp_state(cpu);
5368     if (ret < 0) {
5369         error_setg_errno(errp, -ret, "Failed to get MP state");
5370         goto out;
5371     }
5372     ret = kvm_getput_regs(cpu, 0);
5373     if (ret < 0) {
5374         error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5375         goto out;
5376     }
5377     ret = kvm_get_xsave(cpu);
5378     if (ret < 0) {
5379         error_setg_errno(errp, -ret, "Failed to get XSAVE");
5380         goto out;
5381     }
5382     ret = kvm_get_xcrs(cpu);
5383     if (ret < 0) {
5384         error_setg_errno(errp, -ret, "Failed to get XCRs");
5385         goto out;
5386     }
5387     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5388     if (ret < 0) {
5389         error_setg_errno(errp, -ret, "Failed to get special registers");
5390         goto out;
5391     }
5392     ret = kvm_get_msrs(cpu);
5393     if (ret < 0) {
5394         error_setg_errno(errp, -ret, "Failed to get MSRs");
5395         goto out;
5396     }
5397     ret = kvm_get_apic(cpu);
5398     if (ret < 0) {
5399         error_setg_errno(errp, -ret, "Failed to get APIC");
5400         goto out;
5401     }
5402     ret = kvm_get_debugregs(cpu);
5403     if (ret < 0) {
5404         error_setg_errno(errp, -ret, "Failed to get debug registers");
5405         goto out;
5406     }
5407     ret = kvm_get_nested_state(cpu);
5408     if (ret < 0) {
5409         error_setg_errno(errp, -ret, "Failed to get nested state");
5410         goto out;
5411     }
5412 #ifdef CONFIG_XEN_EMU
5413     if (xen_mode == XEN_EMULATE) {
5414         ret = kvm_get_xen_state(cs);
5415         if (ret < 0) {
5416             error_setg_errno(errp, -ret, "Failed to get Xen state");
5417             goto out;
5418         }
5419     }
5420 #endif
5421     ret = 0;
5422  out:
5423     cpu_sync_bndcs_hflags(&cpu->env);
5424     return ret;
5425 }
5426 
5427 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5428 {
5429     X86CPU *x86_cpu = X86_CPU(cpu);
5430     CPUX86State *env = &x86_cpu->env;
5431     int ret;
5432 
5433     /* Inject NMI */
5434     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5435         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5436             bql_lock();
5437             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5438             bql_unlock();
5439             DPRINTF("injected NMI\n");
5440             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5441             if (ret < 0) {
5442                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5443                         strerror(-ret));
5444             }
5445         }
5446         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5447             bql_lock();
5448             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5449             bql_unlock();
5450             DPRINTF("injected SMI\n");
5451             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5452             if (ret < 0) {
5453                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5454                         strerror(-ret));
5455             }
5456         }
5457     }
5458 
5459     if (!kvm_pic_in_kernel()) {
5460         bql_lock();
5461     }
5462 
5463     /* Force the VCPU out of its inner loop to process any INIT requests
5464      * or (for userspace APIC, but it is cheap to combine the checks here)
5465      * pending TPR access reports.
5466      */
5467     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5468         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5469             !(env->hflags & HF_SMM_MASK)) {
5470             cpu->exit_request = 1;
5471         }
5472         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5473             cpu->exit_request = 1;
5474         }
5475     }
5476 
5477     if (!kvm_pic_in_kernel()) {
5478         /* Try to inject an interrupt if the guest can accept it */
5479         if (run->ready_for_interrupt_injection &&
5480             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5481             (env->eflags & IF_MASK)) {
5482             int irq;
5483 
5484             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5485             irq = cpu_get_pic_interrupt(env);
5486             if (irq >= 0) {
5487                 struct kvm_interrupt intr;
5488 
5489                 intr.irq = irq;
5490                 DPRINTF("injected interrupt %d\n", irq);
5491                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5492                 if (ret < 0) {
5493                     fprintf(stderr,
5494                             "KVM: injection failed, interrupt lost (%s)\n",
5495                             strerror(-ret));
5496                 }
5497             }
5498         }
5499 
5500         /* If we have an interrupt but the guest is not ready to receive an
5501          * interrupt, request an interrupt window exit.  This will
5502          * cause a return to userspace as soon as the guest is ready to
5503          * receive interrupts. */
5504         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5505             run->request_interrupt_window = 1;
5506         } else {
5507             run->request_interrupt_window = 0;
5508         }
5509 
5510         DPRINTF("setting tpr\n");
5511         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5512 
5513         bql_unlock();
5514     }
5515 }
5516 
5517 static void kvm_rate_limit_on_bus_lock(void)
5518 {
5519     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5520 
5521     if (delay_ns) {
5522         g_usleep(delay_ns / SCALE_US);
5523     }
5524 }
5525 
5526 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5527 {
5528     X86CPU *x86_cpu = X86_CPU(cpu);
5529     CPUX86State *env = &x86_cpu->env;
5530 
5531     if (run->flags & KVM_RUN_X86_SMM) {
5532         env->hflags |= HF_SMM_MASK;
5533     } else {
5534         env->hflags &= ~HF_SMM_MASK;
5535     }
5536     if (run->if_flag) {
5537         env->eflags |= IF_MASK;
5538     } else {
5539         env->eflags &= ~IF_MASK;
5540     }
5541     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5542         kvm_rate_limit_on_bus_lock();
5543     }
5544 
5545 #ifdef CONFIG_XEN_EMU
5546     /*
5547      * If the callback is asserted as a GSI (or PCI INTx) then check if
5548      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5549      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5550      * EOI and only resample then, exactly how the VFIO eventfd pairs
5551      * are designed to work for level triggered interrupts.
5552      */
5553     if (x86_cpu->env.xen_callback_asserted) {
5554         kvm_xen_maybe_deassert_callback(cpu);
5555     }
5556 #endif
5557 
5558     /* We need to protect the apic state against concurrent accesses from
5559      * different threads in case the userspace irqchip is used. */
5560     if (!kvm_irqchip_in_kernel()) {
5561         bql_lock();
5562     }
5563     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5564     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5565     if (!kvm_irqchip_in_kernel()) {
5566         bql_unlock();
5567     }
5568     return cpu_get_mem_attrs(env);
5569 }
5570 
5571 int kvm_arch_process_async_events(CPUState *cs)
5572 {
5573     X86CPU *cpu = X86_CPU(cs);
5574     CPUX86State *env = &cpu->env;
5575 
5576     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5577         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5578         assert(env->mcg_cap);
5579 
5580         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5581 
5582         kvm_cpu_synchronize_state(cs);
5583 
5584         if (env->exception_nr == EXCP08_DBLE) {
5585             /* this means triple fault */
5586             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5587             cs->exit_request = 1;
5588             return 0;
5589         }
5590         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5591         env->has_error_code = 0;
5592 
5593         cs->halted = 0;
5594         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5595             env->mp_state = KVM_MP_STATE_RUNNABLE;
5596         }
5597     }
5598 
5599     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5600         !(env->hflags & HF_SMM_MASK)) {
5601         kvm_cpu_synchronize_state(cs);
5602         do_cpu_init(cpu);
5603     }
5604 
5605     if (kvm_irqchip_in_kernel()) {
5606         return 0;
5607     }
5608 
5609     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5610         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5611         apic_poll_irq(cpu->apic_state);
5612     }
5613     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5614          (env->eflags & IF_MASK)) ||
5615         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5616         cs->halted = 0;
5617     }
5618     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5619         kvm_cpu_synchronize_state(cs);
5620         do_cpu_sipi(cpu);
5621     }
5622     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5623         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5624         kvm_cpu_synchronize_state(cs);
5625         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5626                                       env->tpr_access_type);
5627     }
5628 
5629     return cs->halted;
5630 }
5631 
5632 static int kvm_handle_halt(X86CPU *cpu)
5633 {
5634     CPUState *cs = CPU(cpu);
5635     CPUX86State *env = &cpu->env;
5636 
5637     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5638           (env->eflags & IF_MASK)) &&
5639         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5640         cs->halted = 1;
5641         return EXCP_HLT;
5642     }
5643 
5644     return 0;
5645 }
5646 
5647 static int kvm_handle_tpr_access(X86CPU *cpu)
5648 {
5649     CPUState *cs = CPU(cpu);
5650     struct kvm_run *run = cs->kvm_run;
5651 
5652     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5653                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
5654                                                            : TPR_ACCESS_READ);
5655     return 1;
5656 }
5657 
5658 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5659 {
5660     static const uint8_t int3 = 0xcc;
5661 
5662     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5663         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5664         return -EINVAL;
5665     }
5666     return 0;
5667 }
5668 
5669 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5670 {
5671     uint8_t int3;
5672 
5673     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5674         return -EINVAL;
5675     }
5676     if (int3 != 0xcc) {
5677         return 0;
5678     }
5679     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5680         return -EINVAL;
5681     }
5682     return 0;
5683 }
5684 
5685 static struct {
5686     target_ulong addr;
5687     int len;
5688     int type;
5689 } hw_breakpoint[4];
5690 
5691 static int nb_hw_breakpoint;
5692 
5693 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5694 {
5695     int n;
5696 
5697     for (n = 0; n < nb_hw_breakpoint; n++) {
5698         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5699             (hw_breakpoint[n].len == len || len == -1)) {
5700             return n;
5701         }
5702     }
5703     return -1;
5704 }
5705 
5706 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5707 {
5708     switch (type) {
5709     case GDB_BREAKPOINT_HW:
5710         len = 1;
5711         break;
5712     case GDB_WATCHPOINT_WRITE:
5713     case GDB_WATCHPOINT_ACCESS:
5714         switch (len) {
5715         case 1:
5716             break;
5717         case 2:
5718         case 4:
5719         case 8:
5720             if (addr & (len - 1)) {
5721                 return -EINVAL;
5722             }
5723             break;
5724         default:
5725             return -EINVAL;
5726         }
5727         break;
5728     default:
5729         return -ENOSYS;
5730     }
5731 
5732     if (nb_hw_breakpoint == 4) {
5733         return -ENOBUFS;
5734     }
5735     if (find_hw_breakpoint(addr, len, type) >= 0) {
5736         return -EEXIST;
5737     }
5738     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5739     hw_breakpoint[nb_hw_breakpoint].len = len;
5740     hw_breakpoint[nb_hw_breakpoint].type = type;
5741     nb_hw_breakpoint++;
5742 
5743     return 0;
5744 }
5745 
5746 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5747 {
5748     int n;
5749 
5750     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5751     if (n < 0) {
5752         return -ENOENT;
5753     }
5754     nb_hw_breakpoint--;
5755     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5756 
5757     return 0;
5758 }
5759 
5760 void kvm_arch_remove_all_hw_breakpoints(void)
5761 {
5762     nb_hw_breakpoint = 0;
5763 }
5764 
5765 static CPUWatchpoint hw_watchpoint;
5766 
5767 static int kvm_handle_debug(X86CPU *cpu,
5768                             struct kvm_debug_exit_arch *arch_info)
5769 {
5770     CPUState *cs = CPU(cpu);
5771     CPUX86State *env = &cpu->env;
5772     int ret = 0;
5773     int n;
5774 
5775     if (arch_info->exception == EXCP01_DB) {
5776         if (arch_info->dr6 & DR6_BS) {
5777             if (cs->singlestep_enabled) {
5778                 ret = EXCP_DEBUG;
5779             }
5780         } else {
5781             for (n = 0; n < 4; n++) {
5782                 if (arch_info->dr6 & (1 << n)) {
5783                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5784                     case 0x0:
5785                         ret = EXCP_DEBUG;
5786                         break;
5787                     case 0x1:
5788                         ret = EXCP_DEBUG;
5789                         cs->watchpoint_hit = &hw_watchpoint;
5790                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5791                         hw_watchpoint.flags = BP_MEM_WRITE;
5792                         break;
5793                     case 0x3:
5794                         ret = EXCP_DEBUG;
5795                         cs->watchpoint_hit = &hw_watchpoint;
5796                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5797                         hw_watchpoint.flags = BP_MEM_ACCESS;
5798                         break;
5799                     }
5800                 }
5801             }
5802         }
5803     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5804         ret = EXCP_DEBUG;
5805     }
5806     if (ret == 0) {
5807         cpu_synchronize_state(cs);
5808         assert(env->exception_nr == -1);
5809 
5810         /* pass to guest */
5811         kvm_queue_exception(env, arch_info->exception,
5812                             arch_info->exception == EXCP01_DB,
5813                             arch_info->dr6);
5814         env->has_error_code = 0;
5815     }
5816 
5817     return ret;
5818 }
5819 
5820 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5821 {
5822     const uint8_t type_code[] = {
5823         [GDB_BREAKPOINT_HW] = 0x0,
5824         [GDB_WATCHPOINT_WRITE] = 0x1,
5825         [GDB_WATCHPOINT_ACCESS] = 0x3
5826     };
5827     const uint8_t len_code[] = {
5828         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5829     };
5830     int n;
5831 
5832     if (kvm_sw_breakpoints_active(cpu)) {
5833         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5834     }
5835     if (nb_hw_breakpoint > 0) {
5836         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5837         dbg->arch.debugreg[7] = 0x0600;
5838         for (n = 0; n < nb_hw_breakpoint; n++) {
5839             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5840             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5841                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5842                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5843         }
5844     }
5845 }
5846 
5847 static int kvm_install_msr_filters(KVMState *s)
5848 {
5849     uint64_t zero = 0;
5850     struct kvm_msr_filter filter = {
5851         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5852     };
5853     int i, j = 0;
5854 
5855     QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges));
5856     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5857         KVMMSRHandlers *handler = &msr_handlers[i];
5858         if (handler->msr) {
5859             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5860 
5861             *range = (struct kvm_msr_filter_range) {
5862                 .flags = 0,
5863                 .nmsrs = 1,
5864                 .base = handler->msr,
5865                 .bitmap = (__u8 *)&zero,
5866             };
5867 
5868             if (handler->rdmsr) {
5869                 range->flags |= KVM_MSR_FILTER_READ;
5870             }
5871 
5872             if (handler->wrmsr) {
5873                 range->flags |= KVM_MSR_FILTER_WRITE;
5874             }
5875         }
5876     }
5877 
5878     return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5879 }
5880 
5881 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5882                           QEMUWRMSRHandler *wrmsr)
5883 {
5884     int i, ret;
5885 
5886     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5887         if (!msr_handlers[i].msr) {
5888             msr_handlers[i] = (KVMMSRHandlers) {
5889                 .msr = msr,
5890                 .rdmsr = rdmsr,
5891                 .wrmsr = wrmsr,
5892             };
5893 
5894             ret = kvm_install_msr_filters(s);
5895             if (ret) {
5896                 msr_handlers[i] = (KVMMSRHandlers) { };
5897                 return ret;
5898             }
5899 
5900             return 0;
5901         }
5902     }
5903 
5904     return -EINVAL;
5905 }
5906 
5907 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5908 {
5909     int i;
5910     bool r;
5911 
5912     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5913         KVMMSRHandlers *handler = &msr_handlers[i];
5914         if (run->msr.index == handler->msr) {
5915             if (handler->rdmsr) {
5916                 r = handler->rdmsr(cpu, handler->msr,
5917                                    (uint64_t *)&run->msr.data);
5918                 run->msr.error = r ? 0 : 1;
5919                 return 0;
5920             }
5921         }
5922     }
5923 
5924     g_assert_not_reached();
5925 }
5926 
5927 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5928 {
5929     int i;
5930     bool r;
5931 
5932     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5933         KVMMSRHandlers *handler = &msr_handlers[i];
5934         if (run->msr.index == handler->msr) {
5935             if (handler->wrmsr) {
5936                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5937                 run->msr.error = r ? 0 : 1;
5938                 return 0;
5939             }
5940         }
5941     }
5942 
5943     g_assert_not_reached();
5944 }
5945 
5946 static bool has_sgx_provisioning;
5947 
5948 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5949 {
5950     int fd, ret;
5951 
5952     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5953         return false;
5954     }
5955 
5956     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5957     if (fd < 0) {
5958         return false;
5959     }
5960 
5961     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5962     if (ret) {
5963         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5964         exit(1);
5965     }
5966     close(fd);
5967     return true;
5968 }
5969 
5970 bool kvm_enable_sgx_provisioning(KVMState *s)
5971 {
5972     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5973 }
5974 
5975 static bool host_supports_vmx(void)
5976 {
5977     uint32_t ecx, unused;
5978 
5979     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5980     return ecx & CPUID_EXT_VMX;
5981 }
5982 
5983 /*
5984  * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
5985  * to service guest-initiated memory attribute update requests so that
5986  * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
5987  * backed by the private memory pool provided by guest_memfd, and as such
5988  * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
5989  *
5990  * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
5991  * migration, are not implemented here currently.
5992  *
5993  * For the guest_memfd use-case, these exits will generally be synthesized
5994  * by KVM based on platform-specific hypercalls, like GHCB requests in the
5995  * case of SEV-SNP, and not issued directly within the guest though the
5996  * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
5997  * not actually advertised to guests via the KVM CPUID feature bit, as
5998  * opposed to SEV live migration where it would be. Since it is unlikely the
5999  * SEV live migration use-case would be useful for guest-memfd backed guests,
6000  * because private/shared page tracking is already provided through other
6001  * means, these 2 use-cases should be treated as being mutually-exclusive.
6002  */
6003 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run)
6004 {
6005     uint64_t gpa, size, attributes;
6006 
6007     if (!machine_require_guest_memfd(current_machine))
6008         return -EINVAL;
6009 
6010     gpa = run->hypercall.args[0];
6011     size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
6012     attributes = run->hypercall.args[2];
6013 
6014     trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
6015 
6016     return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
6017 }
6018 
6019 static int kvm_handle_hypercall(struct kvm_run *run)
6020 {
6021     if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
6022         return kvm_handle_hc_map_gpa_range(run);
6023 
6024     return -EINVAL;
6025 }
6026 
6027 #define VMX_INVALID_GUEST_STATE 0x80000021
6028 
6029 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
6030 {
6031     X86CPU *cpu = X86_CPU(cs);
6032     uint64_t code;
6033     int ret;
6034     bool ctx_invalid;
6035     KVMState *state;
6036 
6037     switch (run->exit_reason) {
6038     case KVM_EXIT_HLT:
6039         DPRINTF("handle_hlt\n");
6040         bql_lock();
6041         ret = kvm_handle_halt(cpu);
6042         bql_unlock();
6043         break;
6044     case KVM_EXIT_SET_TPR:
6045         ret = 0;
6046         break;
6047     case KVM_EXIT_TPR_ACCESS:
6048         bql_lock();
6049         ret = kvm_handle_tpr_access(cpu);
6050         bql_unlock();
6051         break;
6052     case KVM_EXIT_FAIL_ENTRY:
6053         code = run->fail_entry.hardware_entry_failure_reason;
6054         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6055                 code);
6056         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6057             fprintf(stderr,
6058                     "\nIf you're running a guest on an Intel machine without "
6059                         "unrestricted mode\n"
6060                     "support, the failure can be most likely due to the guest "
6061                         "entering an invalid\n"
6062                     "state for Intel VT. For example, the guest maybe running "
6063                         "in big real mode\n"
6064                     "which is not supported on less recent Intel processors."
6065                         "\n\n");
6066         }
6067         ret = -1;
6068         break;
6069     case KVM_EXIT_EXCEPTION:
6070         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6071                 run->ex.exception, run->ex.error_code);
6072         ret = -1;
6073         break;
6074     case KVM_EXIT_DEBUG:
6075         DPRINTF("kvm_exit_debug\n");
6076         bql_lock();
6077         ret = kvm_handle_debug(cpu, &run->debug.arch);
6078         bql_unlock();
6079         break;
6080     case KVM_EXIT_HYPERV:
6081         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6082         break;
6083     case KVM_EXIT_IOAPIC_EOI:
6084         ioapic_eoi_broadcast(run->eoi.vector);
6085         ret = 0;
6086         break;
6087     case KVM_EXIT_X86_BUS_LOCK:
6088         /* already handled in kvm_arch_post_run */
6089         ret = 0;
6090         break;
6091     case KVM_EXIT_NOTIFY:
6092         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6093         state = KVM_STATE(current_accel());
6094         if (ctx_invalid ||
6095             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6096             warn_report("KVM internal error: Encountered a notify exit "
6097                         "with invalid context in guest.");
6098             ret = -1;
6099         } else {
6100             warn_report_once("KVM: Encountered a notify exit with valid "
6101                              "context in guest. "
6102                              "The guest could be misbehaving.");
6103             ret = 0;
6104         }
6105         break;
6106     case KVM_EXIT_X86_RDMSR:
6107         /* We only enable MSR filtering, any other exit is bogus */
6108         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6109         ret = kvm_handle_rdmsr(cpu, run);
6110         break;
6111     case KVM_EXIT_X86_WRMSR:
6112         /* We only enable MSR filtering, any other exit is bogus */
6113         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6114         ret = kvm_handle_wrmsr(cpu, run);
6115         break;
6116 #ifdef CONFIG_XEN_EMU
6117     case KVM_EXIT_XEN:
6118         ret = kvm_xen_handle_exit(cpu, &run->xen);
6119         break;
6120 #endif
6121     case KVM_EXIT_HYPERCALL:
6122         ret = kvm_handle_hypercall(run);
6123         break;
6124     default:
6125         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6126         ret = -1;
6127         break;
6128     }
6129 
6130     return ret;
6131 }
6132 
6133 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6134 {
6135     X86CPU *cpu = X86_CPU(cs);
6136     CPUX86State *env = &cpu->env;
6137 
6138     kvm_cpu_synchronize_state(cs);
6139     return !(env->cr[0] & CR0_PE_MASK) ||
6140            ((env->segs[R_CS].selector  & 3) != 3);
6141 }
6142 
6143 void kvm_arch_init_irq_routing(KVMState *s)
6144 {
6145     /* We know at this point that we're using the in-kernel
6146      * irqchip, so we can use irqfds, and on x86 we know
6147      * we can use msi via irqfd and GSI routing.
6148      */
6149     kvm_msi_via_irqfd_allowed = true;
6150     kvm_gsi_routing_allowed = true;
6151 
6152     if (kvm_irqchip_is_split()) {
6153         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6154         int i;
6155 
6156         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6157            MSI routes for signaling interrupts to the local apics. */
6158         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6159             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6160                 error_report("Could not enable split IRQ mode.");
6161                 exit(1);
6162             }
6163         }
6164         kvm_irqchip_commit_route_changes(&c);
6165     }
6166 }
6167 
6168 int kvm_arch_irqchip_create(KVMState *s)
6169 {
6170     int ret;
6171     if (kvm_kernel_irqchip_split()) {
6172         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6173         if (ret) {
6174             error_report("Could not enable split irqchip mode: %s",
6175                          strerror(-ret));
6176             exit(1);
6177         } else {
6178             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6179             kvm_split_irqchip = true;
6180             return 1;
6181         }
6182     } else {
6183         return 0;
6184     }
6185 }
6186 
6187 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6188 {
6189     CPUX86State *env;
6190     uint64_t ext_id;
6191 
6192     if (!first_cpu) {
6193         return address;
6194     }
6195     env = &X86_CPU(first_cpu)->env;
6196     if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) {
6197         return address;
6198     }
6199 
6200     /*
6201      * If the remappable format bit is set, or the upper bits are
6202      * already set in address_hi, or the low extended bits aren't
6203      * there anyway, do nothing.
6204      */
6205     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6206     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6207         return address;
6208     }
6209 
6210     address &= ~ext_id;
6211     address |= ext_id << 35;
6212     return address;
6213 }
6214 
6215 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6216                              uint64_t address, uint32_t data, PCIDevice *dev)
6217 {
6218     X86IOMMUState *iommu = x86_iommu_get_default();
6219 
6220     if (iommu) {
6221         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6222 
6223         if (class->int_remap) {
6224             int ret;
6225             MSIMessage src, dst;
6226 
6227             src.address = route->u.msi.address_hi;
6228             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6229             src.address |= route->u.msi.address_lo;
6230             src.data = route->u.msi.data;
6231 
6232             ret = class->int_remap(iommu, &src, &dst, dev ?     \
6233                                    pci_requester_id(dev) :      \
6234                                    X86_IOMMU_SID_INVALID);
6235             if (ret) {
6236                 trace_kvm_x86_fixup_msi_error(route->gsi);
6237                 return 1;
6238             }
6239 
6240             /*
6241              * Handled untranslated compatibility format interrupt with
6242              * extended destination ID in the low bits 11-5. */
6243             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6244 
6245             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6246             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6247             route->u.msi.data = dst.data;
6248             return 0;
6249         }
6250     }
6251 
6252 #ifdef CONFIG_XEN_EMU
6253     if (xen_mode == XEN_EMULATE) {
6254         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6255 
6256         /*
6257          * If it was a PIRQ and successfully routed (handled == 0) or it was
6258          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6259          */
6260         if (handled <= 0) {
6261             return handled;
6262         }
6263     }
6264 #endif
6265 
6266     address = kvm_swizzle_msi_ext_dest_id(address);
6267     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6268     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6269     return 0;
6270 }
6271 
6272 typedef struct MSIRouteEntry MSIRouteEntry;
6273 
6274 struct MSIRouteEntry {
6275     PCIDevice *dev;             /* Device pointer */
6276     int vector;                 /* MSI/MSIX vector index */
6277     int virq;                   /* Virtual IRQ index */
6278     QLIST_ENTRY(MSIRouteEntry) list;
6279 };
6280 
6281 /* List of used GSI routes */
6282 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6283     QLIST_HEAD_INITIALIZER(msi_route_list);
6284 
6285 void kvm_update_msi_routes_all(void *private, bool global,
6286                                uint32_t index, uint32_t mask)
6287 {
6288     int cnt = 0, vector;
6289     MSIRouteEntry *entry;
6290     MSIMessage msg;
6291     PCIDevice *dev;
6292 
6293     /* TODO: explicit route update */
6294     QLIST_FOREACH(entry, &msi_route_list, list) {
6295         cnt++;
6296         vector = entry->vector;
6297         dev = entry->dev;
6298         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6299             msg = msix_get_message(dev, vector);
6300         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6301             msg = msi_get_message(dev, vector);
6302         } else {
6303             /*
6304              * Either MSI/MSIX is disabled for the device, or the
6305              * specific message was masked out.  Skip this one.
6306              */
6307             continue;
6308         }
6309         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6310     }
6311     kvm_irqchip_commit_routes(kvm_state);
6312     trace_kvm_x86_update_msi_routes(cnt);
6313 }
6314 
6315 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6316                                 int vector, PCIDevice *dev)
6317 {
6318     static bool notify_list_inited = false;
6319     MSIRouteEntry *entry;
6320 
6321     if (!dev) {
6322         /* These are (possibly) IOAPIC routes only used for split
6323          * kernel irqchip mode, while what we are housekeeping are
6324          * PCI devices only. */
6325         return 0;
6326     }
6327 
6328     entry = g_new0(MSIRouteEntry, 1);
6329     entry->dev = dev;
6330     entry->vector = vector;
6331     entry->virq = route->gsi;
6332     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6333 
6334     trace_kvm_x86_add_msi_route(route->gsi);
6335 
6336     if (!notify_list_inited) {
6337         /* For the first time we do add route, add ourselves into
6338          * IOMMU's IEC notify list if needed. */
6339         X86IOMMUState *iommu = x86_iommu_get_default();
6340         if (iommu) {
6341             x86_iommu_iec_register_notifier(iommu,
6342                                             kvm_update_msi_routes_all,
6343                                             NULL);
6344         }
6345         notify_list_inited = true;
6346     }
6347     return 0;
6348 }
6349 
6350 int kvm_arch_release_virq_post(int virq)
6351 {
6352     MSIRouteEntry *entry, *next;
6353     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6354         if (entry->virq == virq) {
6355             trace_kvm_x86_remove_msi_route(virq);
6356             QLIST_REMOVE(entry, list);
6357             g_free(entry);
6358             break;
6359         }
6360     }
6361     return 0;
6362 }
6363 
6364 int kvm_arch_msi_data_to_gsi(uint32_t data)
6365 {
6366     abort();
6367 }
6368 
6369 bool kvm_has_waitpkg(void)
6370 {
6371     return has_msr_umwait;
6372 }
6373 
6374 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
6375 
6376 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6377 {
6378     KVMState *s = kvm_state;
6379     uint64_t supported;
6380 
6381     mask &= XSTATE_DYNAMIC_MASK;
6382     if (!mask) {
6383         return;
6384     }
6385     /*
6386      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6387      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6388      * about them already because they are not supported features.
6389      */
6390     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6391     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6392     mask &= supported;
6393 
6394     while (mask) {
6395         int bit = ctz64(mask);
6396         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6397         if (rc) {
6398             /*
6399              * Older kernel version (<5.17) do not support
6400              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6401              * any dynamic feature from kvm_arch_get_supported_cpuid.
6402              */
6403             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6404                         "for feature bit %d", bit);
6405         }
6406         mask &= ~BIT_ULL(bit);
6407     }
6408 }
6409 
6410 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6411 {
6412     KVMState *s = KVM_STATE(obj);
6413     return s->notify_vmexit;
6414 }
6415 
6416 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6417 {
6418     KVMState *s = KVM_STATE(obj);
6419 
6420     if (s->fd != -1) {
6421         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6422         return;
6423     }
6424 
6425     s->notify_vmexit = value;
6426 }
6427 
6428 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6429                                        const char *name, void *opaque,
6430                                        Error **errp)
6431 {
6432     KVMState *s = KVM_STATE(obj);
6433     uint32_t value = s->notify_window;
6434 
6435     visit_type_uint32(v, name, &value, errp);
6436 }
6437 
6438 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6439                                        const char *name, void *opaque,
6440                                        Error **errp)
6441 {
6442     KVMState *s = KVM_STATE(obj);
6443     uint32_t value;
6444 
6445     if (s->fd != -1) {
6446         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6447         return;
6448     }
6449 
6450     if (!visit_type_uint32(v, name, &value, errp)) {
6451         return;
6452     }
6453 
6454     s->notify_window = value;
6455 }
6456 
6457 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6458                                      const char *name, void *opaque,
6459                                      Error **errp)
6460 {
6461     KVMState *s = KVM_STATE(obj);
6462     uint32_t value = s->xen_version;
6463 
6464     visit_type_uint32(v, name, &value, errp);
6465 }
6466 
6467 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6468                                      const char *name, void *opaque,
6469                                      Error **errp)
6470 {
6471     KVMState *s = KVM_STATE(obj);
6472     Error *error = NULL;
6473     uint32_t value;
6474 
6475     visit_type_uint32(v, name, &value, &error);
6476     if (error) {
6477         error_propagate(errp, error);
6478         return;
6479     }
6480 
6481     s->xen_version = value;
6482     if (value && xen_mode == XEN_DISABLED) {
6483         xen_mode = XEN_EMULATE;
6484     }
6485 }
6486 
6487 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6488                                                const char *name, void *opaque,
6489                                                Error **errp)
6490 {
6491     KVMState *s = KVM_STATE(obj);
6492     uint16_t value = s->xen_gnttab_max_frames;
6493 
6494     visit_type_uint16(v, name, &value, errp);
6495 }
6496 
6497 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6498                                                const char *name, void *opaque,
6499                                                Error **errp)
6500 {
6501     KVMState *s = KVM_STATE(obj);
6502     Error *error = NULL;
6503     uint16_t value;
6504 
6505     visit_type_uint16(v, name, &value, &error);
6506     if (error) {
6507         error_propagate(errp, error);
6508         return;
6509     }
6510 
6511     s->xen_gnttab_max_frames = value;
6512 }
6513 
6514 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6515                                              const char *name, void *opaque,
6516                                              Error **errp)
6517 {
6518     KVMState *s = KVM_STATE(obj);
6519     uint16_t value = s->xen_evtchn_max_pirq;
6520 
6521     visit_type_uint16(v, name, &value, errp);
6522 }
6523 
6524 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6525                                              const char *name, void *opaque,
6526                                              Error **errp)
6527 {
6528     KVMState *s = KVM_STATE(obj);
6529     Error *error = NULL;
6530     uint16_t value;
6531 
6532     visit_type_uint16(v, name, &value, &error);
6533     if (error) {
6534         error_propagate(errp, error);
6535         return;
6536     }
6537 
6538     s->xen_evtchn_max_pirq = value;
6539 }
6540 
6541 void kvm_arch_accel_class_init(ObjectClass *oc)
6542 {
6543     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6544                                    &NotifyVmexitOption_lookup,
6545                                    kvm_arch_get_notify_vmexit,
6546                                    kvm_arch_set_notify_vmexit);
6547     object_class_property_set_description(oc, "notify-vmexit",
6548                                           "Enable notify VM exit");
6549 
6550     object_class_property_add(oc, "notify-window", "uint32",
6551                               kvm_arch_get_notify_window,
6552                               kvm_arch_set_notify_window,
6553                               NULL, NULL);
6554     object_class_property_set_description(oc, "notify-window",
6555                                           "Clock cycles without an event window "
6556                                           "after which a notification VM exit occurs");
6557 
6558     object_class_property_add(oc, "xen-version", "uint32",
6559                               kvm_arch_get_xen_version,
6560                               kvm_arch_set_xen_version,
6561                               NULL, NULL);
6562     object_class_property_set_description(oc, "xen-version",
6563                                           "Xen version to be emulated "
6564                                           "(in XENVER_version form "
6565                                           "e.g. 0x4000a for 4.10)");
6566 
6567     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6568                               kvm_arch_get_xen_gnttab_max_frames,
6569                               kvm_arch_set_xen_gnttab_max_frames,
6570                               NULL, NULL);
6571     object_class_property_set_description(oc, "xen-gnttab-max-frames",
6572                                           "Maximum number of grant table frames");
6573 
6574     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6575                               kvm_arch_get_xen_evtchn_max_pirq,
6576                               kvm_arch_set_xen_evtchn_max_pirq,
6577                               NULL, NULL);
6578     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6579                                           "Maximum number of Xen PIRQs");
6580 }
6581 
6582 void kvm_set_max_apic_id(uint32_t max_apic_id)
6583 {
6584     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6585 }
6586