xref: /qemu/target/i386/kvm/kvm.c (revision a668268dc08f7f4d30cecd513054bb38ce48c0d6)
1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
30 
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "system/system.h"
35 #include "system/hw_accel.h"
36 #include "system/kvm_int.h"
37 #include "system/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "xen-emu.h"
42 #include "hyperv.h"
43 #include "hyperv-proto.h"
44 
45 #include "gdbstub/enums.h"
46 #include "qemu/host-utils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/ratelimit.h"
49 #include "qemu/config-file.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "hw/i386/x86.h"
53 #include "hw/i386/kvm/xen_evtchn.h"
54 #include "hw/i386/pc.h"
55 #include "hw/i386/apic.h"
56 #include "hw/i386/apic_internal.h"
57 #include "hw/i386/apic-msidef.h"
58 #include "hw/i386/intel_iommu.h"
59 #include "hw/i386/topology.h"
60 #include "hw/i386/x86-iommu.h"
61 #include "hw/i386/e820_memory_layout.h"
62 
63 #include "hw/xen/xen.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/pci/msi.h"
67 #include "hw/pci/msix.h"
68 #include "migration/blocker.h"
69 #include "exec/memattrs.h"
70 #include "exec/target_page.h"
71 #include "trace.h"
72 
73 #include CONFIG_DEVICES
74 
75 //#define DEBUG_KVM
76 
77 #ifdef DEBUG_KVM
78 #define DPRINTF(fmt, ...) \
79     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
80 #else
81 #define DPRINTF(fmt, ...) \
82     do { } while (0)
83 #endif
84 
85 /*
86  * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
87  * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
88  * Since these must be part of guest physical memory, we need to allocate
89  * them, both by setting their start addresses in the kernel and by
90  * creating a corresponding e820 entry. We need 4 pages before the BIOS,
91  * so this value allows up to 16M BIOSes.
92  */
93 #define KVM_IDENTITY_BASE 0xfeffc000
94 
95 /* From arch/x86/kvm/lapic.h */
96 #define KVM_APIC_BUS_CYCLE_NS       1
97 #define KVM_APIC_BUS_FREQUENCY      (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
98 
99 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
100  * 255 kvm_msr_entry structs */
101 #define MSR_BUF_SIZE 4096
102 
103 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
104 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
105 typedef struct {
106     uint32_t msr;
107     QEMURDMSRHandler *rdmsr;
108     QEMUWRMSRHandler *wrmsr;
109 } KVMMSRHandlers;
110 
111 static void kvm_init_msrs(X86CPU *cpu);
112 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
113                           QEMUWRMSRHandler *wrmsr);
114 
115 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
116     KVM_CAP_INFO(SET_TSS_ADDR),
117     KVM_CAP_INFO(EXT_CPUID),
118     KVM_CAP_INFO(MP_STATE),
119     KVM_CAP_INFO(SIGNAL_MSI),
120     KVM_CAP_INFO(IRQ_ROUTING),
121     KVM_CAP_INFO(DEBUGREGS),
122     KVM_CAP_INFO(XSAVE),
123     KVM_CAP_INFO(VCPU_EVENTS),
124     KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
125     KVM_CAP_INFO(MCE),
126     KVM_CAP_INFO(ADJUST_CLOCK),
127     KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
128     KVM_CAP_LAST_INFO
129 };
130 
131 static bool has_msr_star;
132 static bool has_msr_hsave_pa;
133 static bool has_msr_tsc_aux;
134 static bool has_msr_tsc_adjust;
135 static bool has_msr_tsc_deadline;
136 static bool has_msr_feature_control;
137 static bool has_msr_misc_enable;
138 static bool has_msr_smbase;
139 static bool has_msr_bndcfgs;
140 static int lm_capable_kernel;
141 static bool has_msr_hv_hypercall;
142 static bool has_msr_hv_crash;
143 static bool has_msr_hv_reset;
144 static bool has_msr_hv_vpindex;
145 static bool hv_vpindex_settable;
146 static bool has_msr_hv_runtime;
147 static bool has_msr_hv_synic;
148 static bool has_msr_hv_stimer;
149 static bool has_msr_hv_frequencies;
150 static bool has_msr_hv_reenlightenment;
151 static bool has_msr_hv_syndbg_options;
152 static bool has_msr_xss;
153 static bool has_msr_umwait;
154 static bool has_msr_spec_ctrl;
155 static bool has_tsc_scale_msr;
156 static bool has_msr_tsx_ctrl;
157 static bool has_msr_virt_ssbd;
158 static bool has_msr_smi_count;
159 static bool has_msr_arch_capabs;
160 static bool has_msr_core_capabs;
161 static bool has_msr_vmx_vmfunc;
162 static bool has_msr_ucode_rev;
163 static bool has_msr_vmx_procbased_ctls2;
164 static bool has_msr_perf_capabs;
165 static bool has_msr_pkrs;
166 static bool has_msr_hwcr;
167 
168 static uint32_t has_architectural_pmu_version;
169 static uint32_t num_architectural_pmu_gp_counters;
170 static uint32_t num_architectural_pmu_fixed_counters;
171 
172 static int has_xsave2;
173 static int has_xcrs;
174 static int has_sregs2;
175 static int has_exception_payload;
176 static int has_triple_fault_event;
177 
178 static bool has_msr_mcg_ext_ctl;
179 
180 static struct kvm_cpuid2 *cpuid_cache;
181 static struct kvm_cpuid2 *hv_cpuid_cache;
182 static struct kvm_msr_list *kvm_feature_msrs;
183 
184 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
185 
186 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
187 static RateLimit bus_lock_ratelimit_ctrl;
188 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
189 
190 static const char *vm_type_name[] = {
191     [KVM_X86_DEFAULT_VM] = "default",
192     [KVM_X86_SEV_VM] = "SEV",
193     [KVM_X86_SEV_ES_VM] = "SEV-ES",
194     [KVM_X86_SNP_VM] = "SEV-SNP",
195     [KVM_X86_TDX_VM] = "TDX",
196 };
197 
198 bool kvm_is_vm_type_supported(int type)
199 {
200     uint32_t machine_types;
201 
202     /*
203      * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
204      * is always supported
205      */
206     if (type == KVM_X86_DEFAULT_VM) {
207         return true;
208     }
209 
210     machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
211                                         KVM_CAP_VM_TYPES);
212     return !!(machine_types & BIT(type));
213 }
214 
215 int kvm_get_vm_type(MachineState *ms)
216 {
217     int kvm_type = KVM_X86_DEFAULT_VM;
218 
219     if (ms->cgs) {
220         if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
221             error_report("configuration type %s not supported for x86 guests",
222                          object_get_typename(OBJECT(ms->cgs)));
223             exit(1);
224         }
225         kvm_type = x86_confidential_guest_kvm_type(
226             X86_CONFIDENTIAL_GUEST(ms->cgs));
227     }
228 
229     if (!kvm_is_vm_type_supported(kvm_type)) {
230         error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
231         exit(1);
232     }
233 
234     return kvm_type;
235 }
236 
237 bool kvm_enable_hypercall(uint64_t enable_mask)
238 {
239     KVMState *s = KVM_STATE(current_accel());
240 
241     return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
242 }
243 
244 bool kvm_has_smm(void)
245 {
246     return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
247 }
248 
249 bool kvm_has_adjust_clock_stable(void)
250 {
251     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
252 
253     return (ret & KVM_CLOCK_TSC_STABLE);
254 }
255 
256 bool kvm_has_exception_payload(void)
257 {
258     return has_exception_payload;
259 }
260 
261 static bool kvm_x2apic_api_set_flags(uint64_t flags)
262 {
263     KVMState *s = KVM_STATE(current_accel());
264 
265     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
266 }
267 
268 #define MEMORIZE(fn, _result) \
269     ({ \
270         static bool _memorized; \
271         \
272         if (_memorized) { \
273             return _result; \
274         } \
275         _memorized = true; \
276         _result = fn; \
277     })
278 
279 static bool has_x2apic_api;
280 
281 bool kvm_has_x2apic_api(void)
282 {
283     return has_x2apic_api;
284 }
285 
286 bool kvm_enable_x2apic(void)
287 {
288     return MEMORIZE(
289              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
290                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
291              has_x2apic_api);
292 }
293 
294 bool kvm_hv_vpindex_settable(void)
295 {
296     return hv_vpindex_settable;
297 }
298 
299 static int kvm_get_tsc(CPUState *cs)
300 {
301     X86CPU *cpu = X86_CPU(cs);
302     CPUX86State *env = &cpu->env;
303     uint64_t value;
304     int ret;
305 
306     if (env->tsc_valid) {
307         return 0;
308     }
309 
310     env->tsc_valid = !runstate_is_running();
311 
312     ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
313     if (ret < 0) {
314         return ret;
315     }
316 
317     env->tsc = value;
318     return 0;
319 }
320 
321 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
322 {
323     kvm_get_tsc(cpu);
324 }
325 
326 void kvm_synchronize_all_tsc(void)
327 {
328     CPUState *cpu;
329 
330     if (kvm_enabled()) {
331         CPU_FOREACH(cpu) {
332             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
333         }
334     }
335 }
336 
337 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
338 {
339     struct kvm_cpuid2 *cpuid;
340     int r, size;
341 
342     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
343     cpuid = g_malloc0(size);
344     cpuid->nent = max;
345     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
346     if (r == 0 && cpuid->nent >= max) {
347         r = -E2BIG;
348     }
349     if (r < 0) {
350         if (r == -E2BIG) {
351             g_free(cpuid);
352             return NULL;
353         } else {
354             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
355                     strerror(-r));
356             exit(1);
357         }
358     }
359     return cpuid;
360 }
361 
362 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
363  * for all entries.
364  */
365 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
366 {
367     struct kvm_cpuid2 *cpuid;
368     int max = 1;
369 
370     if (cpuid_cache != NULL) {
371         return cpuid_cache;
372     }
373     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
374         max *= 2;
375     }
376     cpuid_cache = cpuid;
377     return cpuid;
378 }
379 
380 static bool host_tsx_broken(void)
381 {
382     int family, model, stepping;\
383     char vendor[CPUID_VENDOR_SZ + 1];
384 
385     host_cpu_vendor_fms(vendor, &family, &model, &stepping);
386 
387     /* Check if we are running on a Haswell host known to have broken TSX */
388     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
389            (family == 6) &&
390            ((model == 63 && stepping < 4) ||
391             model == 60 || model == 69 || model == 70);
392 }
393 
394 /* Returns the value for a specific register on the cpuid entry
395  */
396 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
397 {
398     uint32_t ret = 0;
399     switch (reg) {
400     case R_EAX:
401         ret = entry->eax;
402         break;
403     case R_EBX:
404         ret = entry->ebx;
405         break;
406     case R_ECX:
407         ret = entry->ecx;
408         break;
409     case R_EDX:
410         ret = entry->edx;
411         break;
412     }
413     return ret;
414 }
415 
416 /* Find matching entry for function/index on kvm_cpuid2 struct
417  */
418 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
419                                                  uint32_t function,
420                                                  uint32_t index)
421 {
422     int i;
423     for (i = 0; i < cpuid->nent; ++i) {
424         if (cpuid->entries[i].function == function &&
425             cpuid->entries[i].index == index) {
426             return &cpuid->entries[i];
427         }
428     }
429     /* not found: */
430     return NULL;
431 }
432 
433 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
434                                       uint32_t index, int reg)
435 {
436     struct kvm_cpuid2 *cpuid;
437     uint32_t ret = 0;
438     uint32_t cpuid_1_edx, unused;
439     uint64_t bitmask;
440 
441     cpuid = get_supported_cpuid(s);
442 
443     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
444     if (entry) {
445         ret = cpuid_entry_get_reg(entry, reg);
446     }
447 
448     /* Fixups for the data returned by KVM, below */
449 
450     if (function == 1 && reg == R_EDX) {
451         /* KVM before 2.6.30 misreports the following features */
452         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
453         /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
454         ret |= CPUID_HT;
455     } else if (function == 1 && reg == R_ECX) {
456         /* We can set the hypervisor flag, even if KVM does not return it on
457          * GET_SUPPORTED_CPUID
458          */
459         ret |= CPUID_EXT_HYPERVISOR;
460         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
461          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
462          * and the irqchip is in the kernel.
463          */
464         if (kvm_irqchip_in_kernel() &&
465                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
466             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
467         }
468 
469         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
470          * without the in-kernel irqchip
471          */
472         if (!kvm_irqchip_in_kernel()) {
473             ret &= ~CPUID_EXT_X2APIC;
474         }
475 
476         if (enable_cpu_pm) {
477             int disable_exits = kvm_check_extension(s,
478                                                     KVM_CAP_X86_DISABLE_EXITS);
479 
480             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
481                 ret |= CPUID_EXT_MONITOR;
482             }
483         }
484     } else if (function == 6 && reg == R_EAX) {
485         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
486     } else if (function == 7 && index == 0 && reg == R_EBX) {
487         /* Not new instructions, just an optimization.  */
488         uint32_t ebx;
489         host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
490         ret |= ebx & CPUID_7_0_EBX_ERMS;
491 
492         if (host_tsx_broken()) {
493             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
494         }
495     } else if (function == 7 && index == 0 && reg == R_EDX) {
496         /* Not new instructions, just an optimization.  */
497         uint32_t edx;
498         host_cpuid(7, 0, &unused, &unused, &unused, &edx);
499         ret |= edx & CPUID_7_0_EDX_FSRM;
500 
501         /*
502          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
503          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
504          * returned by KVM_GET_MSR_INDEX_LIST.
505          */
506         if (!has_msr_arch_capabs) {
507             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
508         }
509     } else if (function == 7 && index == 1 && reg == R_EAX) {
510         /* Not new instructions, just an optimization.  */
511         uint32_t eax;
512         host_cpuid(7, 1, &eax, &unused, &unused, &unused);
513         ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
514     } else if (function == 7 && index == 2 && reg == R_EDX) {
515         uint32_t edx;
516         host_cpuid(7, 2, &unused, &unused, &unused, &edx);
517         ret |= edx & CPUID_7_2_EDX_MCDT_NO;
518     } else if (function == 0xd && index == 0 &&
519                (reg == R_EAX || reg == R_EDX)) {
520         /*
521          * The value returned by KVM_GET_SUPPORTED_CPUID does not include
522          * features that still have to be enabled with the arch_prctl
523          * system call.  QEMU needs the full value, which is retrieved
524          * with KVM_GET_DEVICE_ATTR.
525          */
526         struct kvm_device_attr attr = {
527             .group = 0,
528             .attr = KVM_X86_XCOMP_GUEST_SUPP,
529             .addr = (unsigned long) &bitmask
530         };
531 
532         bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
533         if (!sys_attr) {
534             return ret;
535         }
536 
537         int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
538         if (rc < 0) {
539             if (rc != -ENXIO) {
540                 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
541                             "error: %d", rc);
542             }
543             return ret;
544         }
545         ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
546     } else if (function == 0x80000001 && reg == R_ECX) {
547         /*
548          * It's safe to enable TOPOEXT even if it's not returned by
549          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
550          * us to keep CPU models including TOPOEXT runnable on older kernels.
551          */
552         ret |= CPUID_EXT3_TOPOEXT;
553     } else if (function == 0x80000001 && reg == R_EDX) {
554         /* On Intel, kvm returns cpuid according to the Intel spec,
555          * so add missing bits according to the AMD spec:
556          */
557         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
558         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
559     } else if (function == 0x80000007 && reg == R_EBX) {
560         ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
561     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
562         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
563          * be enabled without the in-kernel irqchip
564          */
565         if (!kvm_irqchip_in_kernel()) {
566             ret &= ~CPUID_KVM_PV_UNHALT;
567         }
568         if (kvm_irqchip_is_split()) {
569             ret |= CPUID_KVM_MSI_EXT_DEST_ID;
570         }
571     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
572         ret |= CPUID_KVM_HINTS_REALTIME;
573     }
574 
575     if (current_machine->cgs) {
576         ret = x86_confidential_guest_mask_cpuid_features(
577             X86_CONFIDENTIAL_GUEST(current_machine->cgs),
578             function, index, reg, ret);
579     }
580     return ret;
581 }
582 
583 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
584 {
585     struct {
586         struct kvm_msrs info;
587         struct kvm_msr_entry entries[1];
588     } msr_data = {};
589     uint64_t value;
590     uint32_t ret, can_be_one, must_be_one;
591 
592     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
593         return 0;
594     }
595 
596     /* Check if requested MSR is supported feature MSR */
597     int i;
598     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
599         if (kvm_feature_msrs->indices[i] == index) {
600             break;
601         }
602     if (i == kvm_feature_msrs->nmsrs) {
603         return 0; /* if the feature MSR is not supported, simply return 0 */
604     }
605 
606     msr_data.info.nmsrs = 1;
607     msr_data.entries[0].index = index;
608 
609     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
610     if (ret != 1) {
611         error_report("KVM get MSR (index=0x%x) feature failed, %s",
612             index, strerror(-ret));
613         exit(1);
614     }
615 
616     value = msr_data.entries[0].data;
617     switch (index) {
618     case MSR_IA32_VMX_PROCBASED_CTLS2:
619         if (!has_msr_vmx_procbased_ctls2) {
620             /* KVM forgot to add these bits for some time, do this ourselves. */
621             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
622                 CPUID_XSAVE_XSAVES) {
623                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
624             }
625             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
626                 CPUID_EXT_RDRAND) {
627                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
628             }
629             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
630                 CPUID_7_0_EBX_INVPCID) {
631                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
632             }
633             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
634                 CPUID_7_0_EBX_RDSEED) {
635                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
636             }
637             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
638                 CPUID_EXT2_RDTSCP) {
639                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
640             }
641         }
642         /* fall through */
643     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
644     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
645     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
646     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
647         /*
648          * Return true for bits that can be one, but do not have to be one.
649          * The SDM tells us which bits could have a "must be one" setting,
650          * so we can do the opposite transformation in make_vmx_msr_value.
651          */
652         must_be_one = (uint32_t)value;
653         can_be_one = (uint32_t)(value >> 32);
654         return can_be_one & ~must_be_one;
655 
656     default:
657         return value;
658     }
659 }
660 
661 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
662                                      int *max_banks)
663 {
664     *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
665     return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
666 }
667 
668 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
669 {
670     CPUState *cs = CPU(cpu);
671     CPUX86State *env = &cpu->env;
672     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
673                       MCI_STATUS_ADDRV;
674     uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
675     int flags = 0;
676 
677     if (!IS_AMD_CPU(env)) {
678         status |= MCI_STATUS_S | MCI_STATUS_UC;
679         if (code == BUS_MCEERR_AR) {
680             status |= MCI_STATUS_AR | 0x134;
681             mcg_status |= MCG_STATUS_EIPV;
682         } else {
683             status |= 0xc0;
684         }
685     } else {
686         if (code == BUS_MCEERR_AR) {
687             status |= MCI_STATUS_UC | MCI_STATUS_POISON;
688             mcg_status |= MCG_STATUS_EIPV;
689         } else {
690             /* Setting the POISON bit for deferred errors indicates to the
691              * guest kernel that the address provided by the MCE is valid
692              * and usable which will ensure that the guest kernel will send
693              * a SIGBUS_AO signal to the guest process. This allows for
694              * more desirable behavior in the case that the guest process
695              * with poisoned memory has set the MCE_KILL_EARLY prctl flag
696              * which indicates that the process would prefer to handle or
697              * shutdown due to the poisoned memory condition before the
698              * memory has been accessed.
699              *
700              * While the POISON bit would not be set in a deferred error
701              * sent from hardware, the bit is not meaningful for deferred
702              * errors and can be reused in this scenario.
703              */
704             status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
705         }
706     }
707 
708     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
709     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
710      * guest kernel back into env->mcg_ext_ctl.
711      */
712     cpu_synchronize_state(cs);
713     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
714         mcg_status |= MCG_STATUS_LMCE;
715         flags = 0;
716     }
717 
718     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
719                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
720 }
721 
722 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
723 {
724     MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
725 
726     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
727                                    &mff);
728 }
729 
730 static void hardware_memory_error(void *host_addr)
731 {
732     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
733     error_report("QEMU got Hardware memory error at addr %p", host_addr);
734     exit(1);
735 }
736 
737 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
738 {
739     X86CPU *cpu = X86_CPU(c);
740     CPUX86State *env = &cpu->env;
741     ram_addr_t ram_addr;
742     hwaddr paddr;
743 
744     /* If we get an action required MCE, it has been injected by KVM
745      * while the VM was running.  An action optional MCE instead should
746      * be coming from the main thread, which qemu_init_sigbus identifies
747      * as the "early kill" thread.
748      */
749     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
750 
751     if ((env->mcg_cap & MCG_SER_P) && addr) {
752         ram_addr = qemu_ram_addr_from_host(addr);
753         if (ram_addr != RAM_ADDR_INVALID &&
754             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
755             kvm_hwpoison_page_add(ram_addr);
756             kvm_mce_inject(cpu, paddr, code);
757 
758             /*
759              * Use different logging severity based on error type.
760              * If there is additional MCE reporting on the hypervisor, QEMU VA
761              * could be another source to identify the PA and MCE details.
762              */
763             if (code == BUS_MCEERR_AR) {
764                 error_report("Guest MCE Memory Error at QEMU addr %p and "
765                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
766                     addr, paddr, "BUS_MCEERR_AR");
767             } else {
768                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
769                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
770                      addr, paddr, "BUS_MCEERR_AO");
771             }
772 
773             return;
774         }
775 
776         if (code == BUS_MCEERR_AO) {
777             warn_report("Hardware memory error at addr %p of type %s "
778                 "for memory used by QEMU itself instead of guest system!",
779                  addr, "BUS_MCEERR_AO");
780         }
781     }
782 
783     if (code == BUS_MCEERR_AR) {
784         hardware_memory_error(addr);
785     }
786 
787     /* Hope we are lucky for AO MCE, just notify a event */
788     emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
789 }
790 
791 static void kvm_queue_exception(CPUX86State *env,
792                                 int32_t exception_nr,
793                                 uint8_t exception_has_payload,
794                                 uint64_t exception_payload)
795 {
796     assert(env->exception_nr == -1);
797     assert(!env->exception_pending);
798     assert(!env->exception_injected);
799     assert(!env->exception_has_payload);
800 
801     env->exception_nr = exception_nr;
802 
803     if (has_exception_payload) {
804         env->exception_pending = 1;
805 
806         env->exception_has_payload = exception_has_payload;
807         env->exception_payload = exception_payload;
808     } else {
809         env->exception_injected = 1;
810 
811         if (exception_nr == EXCP01_DB) {
812             assert(exception_has_payload);
813             env->dr[6] = exception_payload;
814         } else if (exception_nr == EXCP0E_PAGE) {
815             assert(exception_has_payload);
816             env->cr[2] = exception_payload;
817         } else {
818             assert(!exception_has_payload);
819         }
820     }
821 }
822 
823 static void cpu_update_state(void *opaque, bool running, RunState state)
824 {
825     CPUX86State *env = opaque;
826 
827     if (running) {
828         env->tsc_valid = false;
829     }
830 }
831 
832 unsigned long kvm_arch_vcpu_id(CPUState *cs)
833 {
834     X86CPU *cpu = X86_CPU(cs);
835     return cpu->apic_id;
836 }
837 
838 #ifndef KVM_CPUID_SIGNATURE_NEXT
839 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
840 #endif
841 
842 static bool hyperv_enabled(X86CPU *cpu)
843 {
844     return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
845         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
846          cpu->hyperv_features || cpu->hyperv_passthrough);
847 }
848 
849 /*
850  * Check whether target_freq is within conservative
851  * ntp correctable bounds (250ppm) of freq
852  */
853 static inline bool freq_within_bounds(int freq, int target_freq)
854 {
855         int max_freq = freq + (freq * 250 / 1000000);
856         int min_freq = freq - (freq * 250 / 1000000);
857 
858         if (target_freq >= min_freq && target_freq <= max_freq) {
859                 return true;
860         }
861 
862         return false;
863 }
864 
865 static int kvm_arch_set_tsc_khz(CPUState *cs)
866 {
867     X86CPU *cpu = X86_CPU(cs);
868     CPUX86State *env = &cpu->env;
869     int r, cur_freq;
870     bool set_ioctl = false;
871 
872     if (!env->tsc_khz) {
873         return 0;
874     }
875 
876     cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
877                kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
878 
879     /*
880      * If TSC scaling is supported, attempt to set TSC frequency.
881      */
882     if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
883         set_ioctl = true;
884     }
885 
886     /*
887      * If desired TSC frequency is within bounds of NTP correction,
888      * attempt to set TSC frequency.
889      */
890     if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
891         set_ioctl = true;
892     }
893 
894     r = set_ioctl ?
895         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
896         -ENOTSUP;
897 
898     if (r < 0) {
899         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
900          * TSC frequency doesn't match the one we want.
901          */
902         cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
903                    kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
904                    -ENOTSUP;
905         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
906             warn_report("TSC frequency mismatch between "
907                         "VM (%" PRId64 " kHz) and host (%d kHz), "
908                         "and TSC scaling unavailable",
909                         env->tsc_khz, cur_freq);
910             return r;
911         }
912     }
913 
914     return 0;
915 }
916 
917 static bool tsc_is_stable_and_known(CPUX86State *env)
918 {
919     if (!env->tsc_khz) {
920         return false;
921     }
922     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
923         || env->user_tsc_khz;
924 }
925 
926 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
927 
928 static struct {
929     const char *desc;
930     struct {
931         uint32_t func;
932         int reg;
933         uint32_t bits;
934     } flags[2];
935     uint64_t dependencies;
936     bool skip_passthrough;
937 } kvm_hyperv_properties[] = {
938     [HYPERV_FEAT_RELAXED] = {
939         .desc = "relaxed timing (hv-relaxed)",
940         .flags = {
941             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
942              .bits = HV_RELAXED_TIMING_RECOMMENDED}
943         }
944     },
945     [HYPERV_FEAT_VAPIC] = {
946         .desc = "virtual APIC (hv-vapic)",
947         .flags = {
948             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
949              .bits = HV_APIC_ACCESS_AVAILABLE}
950         }
951     },
952     [HYPERV_FEAT_TIME] = {
953         .desc = "clocksources (hv-time)",
954         .flags = {
955             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
956              .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
957         }
958     },
959     [HYPERV_FEAT_CRASH] = {
960         .desc = "crash MSRs (hv-crash)",
961         .flags = {
962             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
963              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
964         }
965     },
966     [HYPERV_FEAT_RESET] = {
967         .desc = "reset MSR (hv-reset)",
968         .flags = {
969             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
970              .bits = HV_RESET_AVAILABLE}
971         }
972     },
973     [HYPERV_FEAT_VPINDEX] = {
974         .desc = "VP_INDEX MSR (hv-vpindex)",
975         .flags = {
976             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
977              .bits = HV_VP_INDEX_AVAILABLE}
978         }
979     },
980     [HYPERV_FEAT_RUNTIME] = {
981         .desc = "VP_RUNTIME MSR (hv-runtime)",
982         .flags = {
983             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
984              .bits = HV_VP_RUNTIME_AVAILABLE}
985         }
986     },
987     [HYPERV_FEAT_SYNIC] = {
988         .desc = "synthetic interrupt controller (hv-synic)",
989         .flags = {
990             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
991              .bits = HV_SYNIC_AVAILABLE}
992         }
993     },
994     [HYPERV_FEAT_STIMER] = {
995         .desc = "synthetic timers (hv-stimer)",
996         .flags = {
997             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
998              .bits = HV_SYNTIMERS_AVAILABLE}
999         },
1000         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1001     },
1002     [HYPERV_FEAT_FREQUENCIES] = {
1003         .desc = "frequency MSRs (hv-frequencies)",
1004         .flags = {
1005             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1006              .bits = HV_ACCESS_FREQUENCY_MSRS},
1007             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1008              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1009         }
1010     },
1011     [HYPERV_FEAT_REENLIGHTENMENT] = {
1012         .desc = "reenlightenment MSRs (hv-reenlightenment)",
1013         .flags = {
1014             {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1015              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1016         }
1017     },
1018     [HYPERV_FEAT_TLBFLUSH] = {
1019         .desc = "paravirtualized TLB flush (hv-tlbflush)",
1020         .flags = {
1021             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1022              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1023              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1024         },
1025         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1026     },
1027     [HYPERV_FEAT_EVMCS] = {
1028         .desc = "enlightened VMCS (hv-evmcs)",
1029         .flags = {
1030             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1031              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1032         },
1033         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1034     },
1035     [HYPERV_FEAT_IPI] = {
1036         .desc = "paravirtualized IPI (hv-ipi)",
1037         .flags = {
1038             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1039              .bits = HV_CLUSTER_IPI_RECOMMENDED |
1040              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1041         },
1042         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1043     },
1044     [HYPERV_FEAT_STIMER_DIRECT] = {
1045         .desc = "direct mode synthetic timers (hv-stimer-direct)",
1046         .flags = {
1047             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1048              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1049         },
1050         .dependencies = BIT(HYPERV_FEAT_STIMER)
1051     },
1052     [HYPERV_FEAT_AVIC] = {
1053         .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1054         .flags = {
1055             {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1056              .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1057         }
1058     },
1059     [HYPERV_FEAT_SYNDBG] = {
1060         .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1061         .flags = {
1062             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1063              .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1064         },
1065         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED),
1066         .skip_passthrough = true,
1067     },
1068     [HYPERV_FEAT_MSR_BITMAP] = {
1069         .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1070         .flags = {
1071             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1072              .bits = HV_NESTED_MSR_BITMAP}
1073         }
1074     },
1075     [HYPERV_FEAT_XMM_INPUT] = {
1076         .desc = "XMM fast hypercall input (hv-xmm-input)",
1077         .flags = {
1078             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1079              .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1080         }
1081     },
1082     [HYPERV_FEAT_TLBFLUSH_EXT] = {
1083         .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1084         .flags = {
1085             {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1086              .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1087         },
1088         .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1089     },
1090     [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1091         .desc = "direct TLB flush (hv-tlbflush-direct)",
1092         .flags = {
1093             {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1094              .bits = HV_NESTED_DIRECT_FLUSH}
1095         },
1096         .dependencies = BIT(HYPERV_FEAT_VAPIC)
1097     },
1098 };
1099 
1100 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1101                                            bool do_sys_ioctl)
1102 {
1103     struct kvm_cpuid2 *cpuid;
1104     int r, size;
1105 
1106     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1107     cpuid = g_malloc0(size);
1108     cpuid->nent = max;
1109 
1110     if (do_sys_ioctl) {
1111         r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1112     } else {
1113         r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1114     }
1115     if (r == 0 && cpuid->nent >= max) {
1116         r = -E2BIG;
1117     }
1118     if (r < 0) {
1119         if (r == -E2BIG) {
1120             g_free(cpuid);
1121             return NULL;
1122         } else {
1123             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1124                     strerror(-r));
1125             exit(1);
1126         }
1127     }
1128     return cpuid;
1129 }
1130 
1131 /*
1132  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1133  * for all entries.
1134  */
1135 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1136 {
1137     struct kvm_cpuid2 *cpuid;
1138     /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1139     int max = 11;
1140     int i;
1141     bool do_sys_ioctl;
1142 
1143     do_sys_ioctl =
1144         kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1145 
1146     /*
1147      * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1148      * unsupported, kvm_hyperv_expand_features() checks for that.
1149      */
1150     assert(do_sys_ioctl || cs->kvm_state);
1151 
1152     /*
1153      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1154      * -E2BIG, however, it doesn't report back the right size. Keep increasing
1155      * it and re-trying until we succeed.
1156      */
1157     while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1158         max++;
1159     }
1160 
1161     /*
1162      * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1163      * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1164      * information early, just check for the capability and set the bit
1165      * manually.
1166      */
1167     if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1168                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1169         for (i = 0; i < cpuid->nent; i++) {
1170             if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1171                 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1172             }
1173         }
1174     }
1175 
1176     return cpuid;
1177 }
1178 
1179 /*
1180  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1181  * leaves from KVM_CAP_HYPERV* and present MSRs data.
1182  */
1183 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1184 {
1185     X86CPU *cpu = X86_CPU(cs);
1186     struct kvm_cpuid2 *cpuid;
1187     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1188 
1189     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1190     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1191     cpuid->nent = 2;
1192 
1193     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1194     entry_feat = &cpuid->entries[0];
1195     entry_feat->function = HV_CPUID_FEATURES;
1196 
1197     entry_recomm = &cpuid->entries[1];
1198     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1199     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1200 
1201     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1202         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1203         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1204         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1205         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1206         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1207     }
1208 
1209     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1210         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1211         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1212     }
1213 
1214     if (has_msr_hv_frequencies) {
1215         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1216         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1217     }
1218 
1219     if (has_msr_hv_crash) {
1220         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1221     }
1222 
1223     if (has_msr_hv_reenlightenment) {
1224         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1225     }
1226 
1227     if (has_msr_hv_reset) {
1228         entry_feat->eax |= HV_RESET_AVAILABLE;
1229     }
1230 
1231     if (has_msr_hv_vpindex) {
1232         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1233     }
1234 
1235     if (has_msr_hv_runtime) {
1236         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1237     }
1238 
1239     if (has_msr_hv_synic) {
1240         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1241             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1242 
1243         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1244             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1245         }
1246     }
1247 
1248     if (has_msr_hv_stimer) {
1249         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1250     }
1251 
1252     if (has_msr_hv_syndbg_options) {
1253         entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1254         entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1255         entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1256     }
1257 
1258     if (kvm_check_extension(cs->kvm_state,
1259                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1260         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1261         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1262     }
1263 
1264     if (kvm_check_extension(cs->kvm_state,
1265                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1266         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1267     }
1268 
1269     if (kvm_check_extension(cs->kvm_state,
1270                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1271         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1272         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1273     }
1274 
1275     return cpuid;
1276 }
1277 
1278 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1279 {
1280     struct kvm_cpuid_entry2 *entry;
1281     struct kvm_cpuid2 *cpuid;
1282 
1283     if (hv_cpuid_cache) {
1284         cpuid = hv_cpuid_cache;
1285     } else {
1286         if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1287             cpuid = get_supported_hv_cpuid(cs);
1288         } else {
1289             /*
1290              * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1291              * before KVM context is created but this is only done when
1292              * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1293              * KVM_CAP_HYPERV_CPUID.
1294              */
1295             assert(cs->kvm_state);
1296 
1297             cpuid = get_supported_hv_cpuid_legacy(cs);
1298         }
1299         hv_cpuid_cache = cpuid;
1300     }
1301 
1302     if (!cpuid) {
1303         return 0;
1304     }
1305 
1306     entry = cpuid_find_entry(cpuid, func, 0);
1307     if (!entry) {
1308         return 0;
1309     }
1310 
1311     return cpuid_entry_get_reg(entry, reg);
1312 }
1313 
1314 static bool hyperv_feature_supported(CPUState *cs, int feature)
1315 {
1316     uint32_t func, bits;
1317     int i, reg;
1318 
1319     /*
1320      * kvm_hyperv_properties needs to define at least one CPUID flag which
1321      * must be used to detect the feature, it's hard to say whether it is
1322      * supported or not otherwise.
1323      */
1324     assert(kvm_hyperv_properties[feature].flags[0].func);
1325 
1326     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1327 
1328         func = kvm_hyperv_properties[feature].flags[i].func;
1329         reg = kvm_hyperv_properties[feature].flags[i].reg;
1330         bits = kvm_hyperv_properties[feature].flags[i].bits;
1331 
1332         if (!func) {
1333             continue;
1334         }
1335 
1336         if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1337             return false;
1338         }
1339     }
1340 
1341     return true;
1342 }
1343 
1344 /* Checks that all feature dependencies are enabled */
1345 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1346 {
1347     uint64_t deps;
1348     int dep_feat;
1349 
1350     deps = kvm_hyperv_properties[feature].dependencies;
1351     while (deps) {
1352         dep_feat = ctz64(deps);
1353         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1354             error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1355                        kvm_hyperv_properties[feature].desc,
1356                        kvm_hyperv_properties[dep_feat].desc);
1357             return false;
1358         }
1359         deps &= ~(1ull << dep_feat);
1360     }
1361 
1362     return true;
1363 }
1364 
1365 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1366 {
1367     X86CPU *cpu = X86_CPU(cs);
1368     uint32_t r = 0;
1369     int i, j;
1370 
1371     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1372         if (!hyperv_feat_enabled(cpu, i)) {
1373             continue;
1374         }
1375 
1376         for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1377             if (kvm_hyperv_properties[i].flags[j].func != func) {
1378                 continue;
1379             }
1380             if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1381                 continue;
1382             }
1383 
1384             r |= kvm_hyperv_properties[i].flags[j].bits;
1385         }
1386     }
1387 
1388     /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1389     if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1390         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1391             r |= DEFAULT_EVMCS_VERSION;
1392         }
1393     }
1394 
1395     return r;
1396 }
1397 
1398 /*
1399  * Expand Hyper-V CPU features. In partucular, check that all the requested
1400  * features are supported by the host and the sanity of the configuration
1401  * (that all the required dependencies are included). Also, this takes care
1402  * of 'hv_passthrough' mode and fills the environment with all supported
1403  * Hyper-V features.
1404  */
1405 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1406 {
1407     CPUState *cs = CPU(cpu);
1408     Error *local_err = NULL;
1409     int feat;
1410 
1411     if (!hyperv_enabled(cpu))
1412         return true;
1413 
1414     /*
1415      * When kvm_hyperv_expand_features is called at CPU feature expansion
1416      * time per-CPU kvm_state is not available yet so we can only proceed
1417      * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1418      */
1419     if (!cs->kvm_state &&
1420         !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1421         return true;
1422 
1423     if (cpu->hyperv_passthrough) {
1424         cpu->hyperv_vendor_id[0] =
1425             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1426         cpu->hyperv_vendor_id[1] =
1427             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1428         cpu->hyperv_vendor_id[2] =
1429             hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1430         cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1431                                        sizeof(cpu->hyperv_vendor_id) + 1);
1432         memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1433                sizeof(cpu->hyperv_vendor_id));
1434         cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1435 
1436         cpu->hyperv_interface_id[0] =
1437             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1438         cpu->hyperv_interface_id[1] =
1439             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1440         cpu->hyperv_interface_id[2] =
1441             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1442         cpu->hyperv_interface_id[3] =
1443             hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1444 
1445         cpu->hyperv_ver_id_build =
1446             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1447         cpu->hyperv_ver_id_major =
1448             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1449         cpu->hyperv_ver_id_minor =
1450             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1451         cpu->hyperv_ver_id_sp =
1452             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1453         cpu->hyperv_ver_id_sb =
1454             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1455         cpu->hyperv_ver_id_sn =
1456             hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1457 
1458         cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1459                                             R_EAX);
1460         cpu->hyperv_limits[0] =
1461             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1462         cpu->hyperv_limits[1] =
1463             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1464         cpu->hyperv_limits[2] =
1465             hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1466 
1467         cpu->hyperv_spinlock_attempts =
1468             hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1469 
1470         /*
1471          * Mark feature as enabled in 'cpu->hyperv_features' as
1472          * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1473          */
1474         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1475             if (hyperv_feature_supported(cs, feat) &&
1476                 !kvm_hyperv_properties[feat].skip_passthrough) {
1477                 cpu->hyperv_features |= BIT(feat);
1478             }
1479         }
1480     } else {
1481         /* Check features availability and dependencies */
1482         for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1483             /* If the feature was not requested skip it. */
1484             if (!hyperv_feat_enabled(cpu, feat)) {
1485                 continue;
1486             }
1487 
1488             /* Check if the feature is supported by KVM */
1489             if (!hyperv_feature_supported(cs, feat)) {
1490                 error_setg(errp, "Hyper-V %s is not supported by kernel",
1491                            kvm_hyperv_properties[feat].desc);
1492                 return false;
1493             }
1494 
1495             /* Check dependencies */
1496             if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1497                 error_propagate(errp, local_err);
1498                 return false;
1499             }
1500         }
1501     }
1502 
1503     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1504     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1505         !cpu->hyperv_synic_kvm_only &&
1506         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1507         error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1508                    kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1509                    kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1510         return false;
1511     }
1512 
1513     return true;
1514 }
1515 
1516 /*
1517  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1518  */
1519 static int hyperv_fill_cpuids(CPUState *cs,
1520                               struct kvm_cpuid_entry2 *cpuid_ent)
1521 {
1522     X86CPU *cpu = X86_CPU(cs);
1523     struct kvm_cpuid_entry2 *c;
1524     uint32_t signature[3];
1525     uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1526     uint32_t nested_eax =
1527         hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1528 
1529     max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1530         HV_CPUID_IMPLEMENT_LIMITS;
1531 
1532     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1533         max_cpuid_leaf =
1534             MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1535     }
1536 
1537     c = &cpuid_ent[cpuid_i++];
1538     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1539     c->eax = max_cpuid_leaf;
1540     c->ebx = cpu->hyperv_vendor_id[0];
1541     c->ecx = cpu->hyperv_vendor_id[1];
1542     c->edx = cpu->hyperv_vendor_id[2];
1543 
1544     c = &cpuid_ent[cpuid_i++];
1545     c->function = HV_CPUID_INTERFACE;
1546     c->eax = cpu->hyperv_interface_id[0];
1547     c->ebx = cpu->hyperv_interface_id[1];
1548     c->ecx = cpu->hyperv_interface_id[2];
1549     c->edx = cpu->hyperv_interface_id[3];
1550 
1551     c = &cpuid_ent[cpuid_i++];
1552     c->function = HV_CPUID_VERSION;
1553     c->eax = cpu->hyperv_ver_id_build;
1554     c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1555         cpu->hyperv_ver_id_minor;
1556     c->ecx = cpu->hyperv_ver_id_sp;
1557     c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1558         (cpu->hyperv_ver_id_sn & 0xffffff);
1559 
1560     c = &cpuid_ent[cpuid_i++];
1561     c->function = HV_CPUID_FEATURES;
1562     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1563     c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1564     c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1565 
1566     /* Unconditionally required with any Hyper-V enlightenment */
1567     c->eax |= HV_HYPERCALL_AVAILABLE;
1568 
1569     /* SynIC and Vmbus devices require messages/signals hypercalls */
1570     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1571         !cpu->hyperv_synic_kvm_only) {
1572         c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1573     }
1574 
1575 
1576     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1577     c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1578 
1579     c = &cpuid_ent[cpuid_i++];
1580     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1581     c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1582     c->ebx = cpu->hyperv_spinlock_attempts;
1583 
1584     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1585         !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1586         c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1587     }
1588 
1589     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1590         c->eax |= HV_NO_NONARCH_CORESHARING;
1591     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1592         c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1593             HV_NO_NONARCH_CORESHARING;
1594     }
1595 
1596     c = &cpuid_ent[cpuid_i++];
1597     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1598     c->eax = cpu->hv_max_vps;
1599     c->ebx = cpu->hyperv_limits[0];
1600     c->ecx = cpu->hyperv_limits[1];
1601     c->edx = cpu->hyperv_limits[2];
1602 
1603     if (nested_eax) {
1604         uint32_t function;
1605 
1606         /* Create zeroed 0x40000006..0x40000009 leaves */
1607         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1608              function < HV_CPUID_NESTED_FEATURES; function++) {
1609             c = &cpuid_ent[cpuid_i++];
1610             c->function = function;
1611         }
1612 
1613         c = &cpuid_ent[cpuid_i++];
1614         c->function = HV_CPUID_NESTED_FEATURES;
1615         c->eax = nested_eax;
1616     }
1617 
1618     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1619         c = &cpuid_ent[cpuid_i++];
1620         c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1621         c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1622             HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1623         memcpy(signature, "Microsoft VS", 12);
1624         c->eax = 0;
1625         c->ebx = signature[0];
1626         c->ecx = signature[1];
1627         c->edx = signature[2];
1628 
1629         c = &cpuid_ent[cpuid_i++];
1630         c->function = HV_CPUID_SYNDBG_INTERFACE;
1631         memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1632         c->eax = signature[0];
1633         c->ebx = 0;
1634         c->ecx = 0;
1635         c->edx = 0;
1636 
1637         c = &cpuid_ent[cpuid_i++];
1638         c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1639         c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1640         c->ebx = 0;
1641         c->ecx = 0;
1642         c->edx = 0;
1643     }
1644 
1645     return cpuid_i;
1646 }
1647 
1648 static Error *hv_passthrough_mig_blocker;
1649 static Error *hv_no_nonarch_cs_mig_blocker;
1650 
1651 /* Checks that the exposed eVMCS version range is supported by KVM */
1652 static bool evmcs_version_supported(uint16_t evmcs_version,
1653                                     uint16_t supported_evmcs_version)
1654 {
1655     uint8_t min_version = evmcs_version & 0xff;
1656     uint8_t max_version = evmcs_version >> 8;
1657     uint8_t min_supported_version = supported_evmcs_version & 0xff;
1658     uint8_t max_supported_version = supported_evmcs_version >> 8;
1659 
1660     return (min_version >= min_supported_version) &&
1661         (max_version <= max_supported_version);
1662 }
1663 
1664 static int hyperv_init_vcpu(X86CPU *cpu)
1665 {
1666     CPUState *cs = CPU(cpu);
1667     Error *local_err = NULL;
1668     int ret;
1669 
1670     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1671         error_setg(&hv_passthrough_mig_blocker,
1672                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1673                    " set of hv-* flags instead");
1674         ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1675         if (ret < 0) {
1676             error_report_err(local_err);
1677             return ret;
1678         }
1679     }
1680 
1681     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1682         hv_no_nonarch_cs_mig_blocker == NULL) {
1683         error_setg(&hv_no_nonarch_cs_mig_blocker,
1684                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1685                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1686                    " make sure SMT is disabled and/or that vCPUs are properly"
1687                    " pinned)");
1688         ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1689         if (ret < 0) {
1690             error_report_err(local_err);
1691             return ret;
1692         }
1693     }
1694 
1695     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1696         /*
1697          * the kernel doesn't support setting vp_index; assert that its value
1698          * is in sync
1699          */
1700         uint64_t value;
1701 
1702         ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1703         if (ret < 0) {
1704             return ret;
1705         }
1706 
1707         if (value != hyperv_vp_index(CPU(cpu))) {
1708             error_report("kernel's vp_index != QEMU's vp_index");
1709             return -ENXIO;
1710         }
1711     }
1712 
1713     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1714         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1715             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1716         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1717         if (ret < 0) {
1718             error_report("failed to turn on HyperV SynIC in KVM: %s",
1719                          strerror(-ret));
1720             return ret;
1721         }
1722 
1723         if (!cpu->hyperv_synic_kvm_only) {
1724             ret = hyperv_x86_synic_add(cpu);
1725             if (ret < 0) {
1726                 error_report("failed to create HyperV SynIC: %s",
1727                              strerror(-ret));
1728                 return ret;
1729             }
1730         }
1731     }
1732 
1733     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1734         uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1735         uint16_t supported_evmcs_version;
1736 
1737         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1738                                   (uintptr_t)&supported_evmcs_version);
1739 
1740         /*
1741          * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1742          * option sets. Note: we hardcode the maximum supported eVMCS version
1743          * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1744          * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1745          * to be added.
1746          */
1747         if (ret < 0) {
1748             error_report("Hyper-V %s is not supported by kernel",
1749                          kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1750             return ret;
1751         }
1752 
1753         if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1754             error_report("eVMCS version range [%d..%d] is not supported by "
1755                          "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1756                          evmcs_version >> 8, supported_evmcs_version & 0xff,
1757                          supported_evmcs_version >> 8);
1758             return -ENOTSUP;
1759         }
1760     }
1761 
1762     if (cpu->hyperv_enforce_cpuid) {
1763         ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1764         if (ret < 0) {
1765             error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1766                          strerror(-ret));
1767             return ret;
1768         }
1769     }
1770 
1771     /* Skip SynIC and VP_INDEX since they are hard deps already */
1772     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1773         hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1774         hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1775         hyperv_x86_set_vmbus_recommended_features_enabled();
1776     }
1777 
1778     return 0;
1779 }
1780 
1781 static Error *invtsc_mig_blocker;
1782 
1783 static void kvm_init_xsave(CPUX86State *env)
1784 {
1785     if (has_xsave2) {
1786         env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1787     } else {
1788         env->xsave_buf_len = sizeof(struct kvm_xsave);
1789     }
1790 
1791     env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1792     memset(env->xsave_buf, 0, env->xsave_buf_len);
1793     /*
1794      * The allocated storage must be large enough for all of the
1795      * possible XSAVE state components.
1796      */
1797     assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1798            env->xsave_buf_len);
1799 }
1800 
1801 static void kvm_init_nested_state(CPUX86State *env)
1802 {
1803     struct kvm_vmx_nested_state_hdr *vmx_hdr;
1804     uint32_t size;
1805 
1806     if (!env->nested_state) {
1807         return;
1808     }
1809 
1810     size = env->nested_state->size;
1811 
1812     memset(env->nested_state, 0, size);
1813     env->nested_state->size = size;
1814 
1815     if (cpu_has_vmx(env)) {
1816         env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1817         vmx_hdr = &env->nested_state->hdr.vmx;
1818         vmx_hdr->vmxon_pa = -1ull;
1819         vmx_hdr->vmcs12_pa = -1ull;
1820     } else if (cpu_has_svm(env)) {
1821         env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1822     }
1823 }
1824 
1825 static uint32_t kvm_x86_build_cpuid(CPUX86State *env,
1826                                     struct kvm_cpuid_entry2 *entries,
1827                                     uint32_t cpuid_i)
1828 {
1829     uint32_t limit, i, j;
1830     uint32_t unused;
1831     struct kvm_cpuid_entry2 *c;
1832 
1833     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1834 
1835     for (i = 0; i <= limit; i++) {
1836         j = 0;
1837         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1838             goto full;
1839         }
1840         c = &entries[cpuid_i++];
1841         switch (i) {
1842         case 2: {
1843             /* Keep reading function 2 till all the input is received */
1844             int times;
1845 
1846             c->function = i;
1847             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1848             times = c->eax & 0xff;
1849             if (times > 1) {
1850                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1851                            KVM_CPUID_FLAG_STATE_READ_NEXT;
1852             }
1853 
1854             for (j = 1; j < times; ++j) {
1855                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1856                     goto full;
1857                 }
1858                 c = &entries[cpuid_i++];
1859                 c->function = i;
1860                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1861                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1862             }
1863             break;
1864         }
1865         case 0x1f:
1866             if (!x86_has_extended_topo(env->avail_cpu_topo)) {
1867                 cpuid_i--;
1868                 break;
1869             }
1870             /* fallthrough */
1871         case 4:
1872         case 0xb:
1873         case 0xd:
1874             for (j = 0; ; j++) {
1875                 c->function = i;
1876                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1877                 c->index = j;
1878                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1879 
1880                 if (i == 4 && c->eax == 0) {
1881                     break;
1882                 }
1883                 if (i == 0xb && !(c->ecx & 0xff00)) {
1884                     break;
1885                 }
1886                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1887                     break;
1888                 }
1889                 if (i == 0xd && c->eax == 0) {
1890                     if (j < 63) {
1891                         continue;
1892                     } else {
1893                         cpuid_i--;
1894                         break;
1895                     }
1896                 }
1897                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1898                     goto full;
1899                 }
1900                 c = &entries[cpuid_i++];
1901             }
1902             break;
1903         case 0x12:
1904             for (j = 0; ; j++) {
1905                 c->function = i;
1906                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1907                 c->index = j;
1908                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1909 
1910                 if (j > 1 && (c->eax & 0xf) != 1) {
1911                     break;
1912                 }
1913 
1914                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1915                     goto full;
1916                 }
1917                 c = &entries[cpuid_i++];
1918             }
1919             break;
1920         case 0x7:
1921         case 0x14:
1922         case 0x1d:
1923         case 0x1e:
1924         case 0x24: {
1925             uint32_t times;
1926 
1927             c->function = i;
1928             c->index = 0;
1929             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1930             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1931             times = c->eax;
1932 
1933             for (j = 1; j <= times; ++j) {
1934                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1935                     goto full;
1936                 }
1937                 c = &entries[cpuid_i++];
1938                 c->function = i;
1939                 c->index = j;
1940                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1941                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1942             }
1943             break;
1944         }
1945         default:
1946             c->function = i;
1947             c->flags = 0;
1948             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1949             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1950                 /*
1951                  * KVM already returns all zeroes if a CPUID entry is missing,
1952                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1953                  */
1954                 cpuid_i--;
1955             }
1956             break;
1957         }
1958     }
1959 
1960     if (limit >= 0x0a) {
1961         uint32_t eax, edx;
1962 
1963         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1964 
1965         has_architectural_pmu_version = eax & 0xff;
1966         if (has_architectural_pmu_version > 0) {
1967             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1968 
1969             /* Shouldn't be more than 32, since that's the number of bits
1970              * available in EBX to tell us _which_ counters are available.
1971              * Play it safe.
1972              */
1973             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1974                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1975             }
1976 
1977             if (has_architectural_pmu_version > 1) {
1978                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1979 
1980                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1981                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1982                 }
1983             }
1984         }
1985     }
1986 
1987     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1988 
1989     for (i = 0x80000000; i <= limit; i++) {
1990         j = 0;
1991         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1992             goto full;
1993         }
1994         c = &entries[cpuid_i++];
1995 
1996         switch (i) {
1997         case 0x8000001d:
1998             /* Query for all AMD cache information leaves */
1999             for (j = 0; ; j++) {
2000                 c->function = i;
2001                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2002                 c->index = j;
2003                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
2004 
2005                 if (c->eax == 0) {
2006                     break;
2007                 }
2008                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2009                     goto full;
2010                 }
2011                 c = &entries[cpuid_i++];
2012             }
2013             break;
2014         default:
2015             c->function = i;
2016             c->flags = 0;
2017             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2018             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2019                 /*
2020                  * KVM already returns all zeroes if a CPUID entry is missing,
2021                  * so we can omit it and avoid hitting KVM's 80-entry limit.
2022                  */
2023                 cpuid_i--;
2024             }
2025             break;
2026         }
2027     }
2028 
2029     /* Call Centaur's CPUID instructions they are supported. */
2030     if (env->cpuid_xlevel2 > 0) {
2031         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2032 
2033         for (i = 0xC0000000; i <= limit; i++) {
2034             j = 0;
2035             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2036                 goto full;
2037             }
2038             c = &entries[cpuid_i++];
2039 
2040             c->function = i;
2041             c->flags = 0;
2042             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2043         }
2044     }
2045 
2046     return cpuid_i;
2047 
2048 full:
2049     fprintf(stderr, "cpuid_data is full, no space for "
2050             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2051     abort();
2052 }
2053 
2054 int kvm_arch_pre_create_vcpu(CPUState *cpu, Error **errp)
2055 {
2056     return 0;
2057 }
2058 
2059 int kvm_arch_init_vcpu(CPUState *cs)
2060 {
2061     struct {
2062         struct kvm_cpuid2 cpuid;
2063         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2064     } cpuid_data;
2065     /*
2066      * The kernel defines these structs with padding fields so there
2067      * should be no extra padding in our cpuid_data struct.
2068      */
2069     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2070                       sizeof(struct kvm_cpuid2) +
2071                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2072 
2073     X86CPU *cpu = X86_CPU(cs);
2074     CPUX86State *env = &cpu->env;
2075     uint32_t cpuid_i;
2076     struct kvm_cpuid_entry2 *c;
2077     uint32_t signature[3];
2078     int kvm_base = KVM_CPUID_SIGNATURE;
2079     int max_nested_state_len;
2080     int r;
2081     Error *local_err = NULL;
2082 
2083     memset(&cpuid_data, 0, sizeof(cpuid_data));
2084 
2085     cpuid_i = 0;
2086 
2087     has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2088 
2089     r = kvm_arch_set_tsc_khz(cs);
2090     if (r < 0) {
2091         return r;
2092     }
2093 
2094     /* vcpu's TSC frequency is either specified by user, or following
2095      * the value used by KVM if the former is not present. In the
2096      * latter case, we query it from KVM and record in env->tsc_khz,
2097      * so that vcpu's TSC frequency can be migrated later via this field.
2098      */
2099     if (!env->tsc_khz) {
2100         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2101             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2102             -ENOTSUP;
2103         if (r > 0) {
2104             env->tsc_khz = r;
2105         }
2106     }
2107 
2108     env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2109 
2110     /*
2111      * kvm_hyperv_expand_features() is called here for the second time in case
2112      * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2113      * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2114      * check which Hyper-V enlightenments are supported and which are not, we
2115      * can still proceed and check/expand Hyper-V enlightenments here so legacy
2116      * behavior is preserved.
2117      */
2118     if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2119         error_report_err(local_err);
2120         return -ENOSYS;
2121     }
2122 
2123     if (hyperv_enabled(cpu)) {
2124         r = hyperv_init_vcpu(cpu);
2125         if (r) {
2126             return r;
2127         }
2128 
2129         cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2130         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2131         has_msr_hv_hypercall = true;
2132     }
2133 
2134     if (cs->kvm_state->xen_version) {
2135 #ifdef CONFIG_XEN_EMU
2136         struct kvm_cpuid_entry2 *xen_max_leaf;
2137 
2138         memcpy(signature, "XenVMMXenVMM", 12);
2139 
2140         xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2141         c->function = kvm_base + XEN_CPUID_SIGNATURE;
2142         c->eax = kvm_base + XEN_CPUID_TIME;
2143         c->ebx = signature[0];
2144         c->ecx = signature[1];
2145         c->edx = signature[2];
2146 
2147         c = &cpuid_data.entries[cpuid_i++];
2148         c->function = kvm_base + XEN_CPUID_VENDOR;
2149         c->eax = cs->kvm_state->xen_version;
2150         c->ebx = 0;
2151         c->ecx = 0;
2152         c->edx = 0;
2153 
2154         c = &cpuid_data.entries[cpuid_i++];
2155         c->function = kvm_base + XEN_CPUID_HVM_MSR;
2156         /* Number of hypercall-transfer pages */
2157         c->eax = 1;
2158         /* Hypercall MSR base address */
2159         if (hyperv_enabled(cpu)) {
2160             c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2161             kvm_xen_init(cs->kvm_state, c->ebx);
2162         } else {
2163             c->ebx = XEN_HYPERCALL_MSR;
2164         }
2165         c->ecx = 0;
2166         c->edx = 0;
2167 
2168         c = &cpuid_data.entries[cpuid_i++];
2169         c->function = kvm_base + XEN_CPUID_TIME;
2170         c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2171             (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2172         /* default=0 (emulate if necessary) */
2173         c->ebx = 0;
2174         /* guest tsc frequency */
2175         c->ecx = env->user_tsc_khz;
2176         /* guest tsc incarnation (migration count) */
2177         c->edx = 0;
2178 
2179         c = &cpuid_data.entries[cpuid_i++];
2180         c->function = kvm_base + XEN_CPUID_HVM;
2181         xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2182         if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2183             c->function = kvm_base + XEN_CPUID_HVM;
2184 
2185             if (cpu->xen_vapic) {
2186                 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2187                 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2188             }
2189 
2190             c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2191 
2192             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2193                 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2194                 c->ebx = cs->cpu_index;
2195             }
2196 
2197             if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2198                 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2199             }
2200         }
2201 
2202         r = kvm_xen_init_vcpu(cs);
2203         if (r) {
2204             return r;
2205         }
2206 
2207         kvm_base += 0x100;
2208 #else /* CONFIG_XEN_EMU */
2209         /* This should never happen as kvm_arch_init() would have died first. */
2210         fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2211         abort();
2212 #endif
2213     } else if (cpu->expose_kvm) {
2214         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2215         c = &cpuid_data.entries[cpuid_i++];
2216         c->function = KVM_CPUID_SIGNATURE | kvm_base;
2217         c->eax = KVM_CPUID_FEATURES | kvm_base;
2218         c->ebx = signature[0];
2219         c->ecx = signature[1];
2220         c->edx = signature[2];
2221 
2222         c = &cpuid_data.entries[cpuid_i++];
2223         c->function = KVM_CPUID_FEATURES | kvm_base;
2224         c->eax = env->features[FEAT_KVM];
2225         c->edx = env->features[FEAT_KVM_HINTS];
2226     }
2227 
2228     if (cpu->kvm_pv_enforce_cpuid) {
2229         r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2230         if (r < 0) {
2231             fprintf(stderr,
2232                     "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2233                     strerror(-r));
2234             abort();
2235         }
2236     }
2237 
2238     cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2239     cpuid_data.cpuid.nent = cpuid_i;
2240 
2241     if (((env->cpuid_version >> 8)&0xF) >= 6
2242         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2243            (CPUID_MCE | CPUID_MCA)) {
2244         uint64_t mcg_cap, unsupported_caps;
2245         int banks;
2246         int ret;
2247 
2248         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2249         if (ret < 0) {
2250             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2251             return ret;
2252         }
2253 
2254         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2255             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2256                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2257             return -ENOTSUP;
2258         }
2259 
2260         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2261         if (unsupported_caps) {
2262             if (unsupported_caps & MCG_LMCE_P) {
2263                 error_report("kvm: LMCE not supported");
2264                 return -ENOTSUP;
2265             }
2266             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2267                         unsupported_caps);
2268         }
2269 
2270         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2271         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2272         if (ret < 0) {
2273             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2274             return ret;
2275         }
2276     }
2277 
2278     cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2279 
2280     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2281     if (c) {
2282         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2283                                   !!(c->ecx & CPUID_EXT_SMX);
2284     }
2285 
2286     c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2287     if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2288         has_msr_feature_control = true;
2289     }
2290 
2291     if (env->mcg_cap & MCG_LMCE_P) {
2292         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2293     }
2294 
2295     if (!env->user_tsc_khz) {
2296         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2297             invtsc_mig_blocker == NULL) {
2298             error_setg(&invtsc_mig_blocker,
2299                        "State blocked by non-migratable CPU device"
2300                        " (invtsc flag)");
2301             r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2302             if (r < 0) {
2303                 error_report_err(local_err);
2304                 return r;
2305             }
2306         }
2307     }
2308 
2309     if (cpu->vmware_cpuid_freq
2310         /* Guests depend on 0x40000000 to detect this feature, so only expose
2311          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2312         && cpu->expose_kvm
2313         && kvm_base == KVM_CPUID_SIGNATURE
2314         /* TSC clock must be stable and known for this feature. */
2315         && tsc_is_stable_and_known(env)) {
2316 
2317         c = &cpuid_data.entries[cpuid_i++];
2318         c->function = KVM_CPUID_SIGNATURE | 0x10;
2319         c->eax = env->tsc_khz;
2320         c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2321         c->ecx = c->edx = 0;
2322 
2323         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2324         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2325     }
2326 
2327     cpuid_data.cpuid.nent = cpuid_i;
2328 
2329     cpuid_data.cpuid.padding = 0;
2330     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2331     if (r) {
2332         goto fail;
2333     }
2334     kvm_init_xsave(env);
2335 
2336     max_nested_state_len = kvm_max_nested_state_length();
2337     if (max_nested_state_len > 0) {
2338         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2339 
2340         if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2341             env->nested_state = g_malloc0(max_nested_state_len);
2342             env->nested_state->size = max_nested_state_len;
2343 
2344             kvm_init_nested_state(env);
2345         }
2346     }
2347 
2348     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2349 
2350     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2351         has_msr_tsc_aux = false;
2352     }
2353 
2354     kvm_init_msrs(cpu);
2355 
2356     return 0;
2357 
2358  fail:
2359     migrate_del_blocker(&invtsc_mig_blocker);
2360 
2361     return r;
2362 }
2363 
2364 int kvm_arch_destroy_vcpu(CPUState *cs)
2365 {
2366     X86CPU *cpu = X86_CPU(cs);
2367     CPUX86State *env = &cpu->env;
2368 
2369     g_free(env->xsave_buf);
2370 
2371     g_free(cpu->kvm_msr_buf);
2372     cpu->kvm_msr_buf = NULL;
2373 
2374     g_free(env->nested_state);
2375     env->nested_state = NULL;
2376 
2377     qemu_del_vm_change_state_handler(cpu->vmsentry);
2378 
2379     return 0;
2380 }
2381 
2382 void kvm_arch_reset_vcpu(X86CPU *cpu)
2383 {
2384     CPUX86State *env = &cpu->env;
2385 
2386     env->xcr0 = 1;
2387     if (kvm_irqchip_in_kernel()) {
2388         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2389                                           KVM_MP_STATE_UNINITIALIZED;
2390     } else {
2391         env->mp_state = KVM_MP_STATE_RUNNABLE;
2392     }
2393 
2394     /* enabled by default */
2395     env->poll_control_msr = 1;
2396 
2397     kvm_init_nested_state(env);
2398 
2399     sev_es_set_reset_vector(CPU(cpu));
2400 }
2401 
2402 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2403 {
2404     CPUX86State *env = &cpu->env;
2405     int i;
2406 
2407     /*
2408      * Reset SynIC after all other devices have been reset to let them remove
2409      * their SINT routes first.
2410      */
2411     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2412         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2413             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2414         }
2415 
2416         hyperv_x86_synic_reset(cpu);
2417     }
2418 }
2419 
2420 void kvm_arch_reset_parked_vcpu(unsigned long vcpu_id, int kvm_fd)
2421 {
2422     g_autofree struct kvm_msrs *msrs = NULL;
2423 
2424     msrs = g_malloc0(sizeof(*msrs) + sizeof(msrs->entries[0]));
2425     msrs->entries[0].index = MSR_IA32_TSC;
2426     msrs->entries[0].data = 1; /* match the value in x86_cpu_reset() */
2427     msrs->nmsrs++;
2428 
2429     if (ioctl(kvm_fd, KVM_SET_MSRS, msrs) != 1) {
2430         warn_report("parked vCPU %lu TSC reset failed: %d",
2431                     vcpu_id, errno);
2432     }
2433 }
2434 
2435 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2436 {
2437     CPUX86State *env = &cpu->env;
2438 
2439     /* APs get directly into wait-for-SIPI state.  */
2440     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2441         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2442     }
2443 }
2444 
2445 static int kvm_get_supported_feature_msrs(KVMState *s)
2446 {
2447     int ret = 0;
2448 
2449     if (kvm_feature_msrs != NULL) {
2450         return 0;
2451     }
2452 
2453     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2454         return 0;
2455     }
2456 
2457     struct kvm_msr_list msr_list;
2458 
2459     msr_list.nmsrs = 0;
2460     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2461     if (ret < 0 && ret != -E2BIG) {
2462         error_report("Fetch KVM feature MSR list failed: %s",
2463             strerror(-ret));
2464         return ret;
2465     }
2466 
2467     assert(msr_list.nmsrs > 0);
2468     kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2469                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
2470 
2471     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2472     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2473 
2474     if (ret < 0) {
2475         error_report("Fetch KVM feature MSR list failed: %s",
2476             strerror(-ret));
2477         g_free(kvm_feature_msrs);
2478         kvm_feature_msrs = NULL;
2479         return ret;
2480     }
2481 
2482     return 0;
2483 }
2484 
2485 static int kvm_get_supported_msrs(KVMState *s)
2486 {
2487     int ret = 0;
2488     struct kvm_msr_list msr_list, *kvm_msr_list;
2489 
2490     /*
2491      *  Obtain MSR list from KVM.  These are the MSRs that we must
2492      *  save/restore.
2493      */
2494     msr_list.nmsrs = 0;
2495     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2496     if (ret < 0 && ret != -E2BIG) {
2497         return ret;
2498     }
2499     /*
2500      * Old kernel modules had a bug and could write beyond the provided
2501      * memory. Allocate at least a safe amount of 1K.
2502      */
2503     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2504                                           msr_list.nmsrs *
2505                                           sizeof(msr_list.indices[0])));
2506 
2507     kvm_msr_list->nmsrs = msr_list.nmsrs;
2508     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2509     if (ret >= 0) {
2510         int i;
2511 
2512         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2513             switch (kvm_msr_list->indices[i]) {
2514             case MSR_STAR:
2515                 has_msr_star = true;
2516                 break;
2517             case MSR_VM_HSAVE_PA:
2518                 has_msr_hsave_pa = true;
2519                 break;
2520             case MSR_TSC_AUX:
2521                 has_msr_tsc_aux = true;
2522                 break;
2523             case MSR_TSC_ADJUST:
2524                 has_msr_tsc_adjust = true;
2525                 break;
2526             case MSR_IA32_TSCDEADLINE:
2527                 has_msr_tsc_deadline = true;
2528                 break;
2529             case MSR_IA32_SMBASE:
2530                 has_msr_smbase = true;
2531                 break;
2532             case MSR_SMI_COUNT:
2533                 has_msr_smi_count = true;
2534                 break;
2535             case MSR_IA32_MISC_ENABLE:
2536                 has_msr_misc_enable = true;
2537                 break;
2538             case MSR_IA32_BNDCFGS:
2539                 has_msr_bndcfgs = true;
2540                 break;
2541             case MSR_IA32_XSS:
2542                 has_msr_xss = true;
2543                 break;
2544             case MSR_IA32_UMWAIT_CONTROL:
2545                 has_msr_umwait = true;
2546                 break;
2547             case HV_X64_MSR_CRASH_CTL:
2548                 has_msr_hv_crash = true;
2549                 break;
2550             case HV_X64_MSR_RESET:
2551                 has_msr_hv_reset = true;
2552                 break;
2553             case HV_X64_MSR_VP_INDEX:
2554                 has_msr_hv_vpindex = true;
2555                 break;
2556             case HV_X64_MSR_VP_RUNTIME:
2557                 has_msr_hv_runtime = true;
2558                 break;
2559             case HV_X64_MSR_SCONTROL:
2560                 has_msr_hv_synic = true;
2561                 break;
2562             case HV_X64_MSR_STIMER0_CONFIG:
2563                 has_msr_hv_stimer = true;
2564                 break;
2565             case HV_X64_MSR_TSC_FREQUENCY:
2566                 has_msr_hv_frequencies = true;
2567                 break;
2568             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2569                 has_msr_hv_reenlightenment = true;
2570                 break;
2571             case HV_X64_MSR_SYNDBG_OPTIONS:
2572                 has_msr_hv_syndbg_options = true;
2573                 break;
2574             case MSR_IA32_SPEC_CTRL:
2575                 has_msr_spec_ctrl = true;
2576                 break;
2577             case MSR_AMD64_TSC_RATIO:
2578                 has_tsc_scale_msr = true;
2579                 break;
2580             case MSR_IA32_TSX_CTRL:
2581                 has_msr_tsx_ctrl = true;
2582                 break;
2583             case MSR_VIRT_SSBD:
2584                 has_msr_virt_ssbd = true;
2585                 break;
2586             case MSR_IA32_ARCH_CAPABILITIES:
2587                 has_msr_arch_capabs = true;
2588                 break;
2589             case MSR_IA32_CORE_CAPABILITY:
2590                 has_msr_core_capabs = true;
2591                 break;
2592             case MSR_IA32_PERF_CAPABILITIES:
2593                 has_msr_perf_capabs = true;
2594                 break;
2595             case MSR_IA32_VMX_VMFUNC:
2596                 has_msr_vmx_vmfunc = true;
2597                 break;
2598             case MSR_IA32_UCODE_REV:
2599                 has_msr_ucode_rev = true;
2600                 break;
2601             case MSR_IA32_VMX_PROCBASED_CTLS2:
2602                 has_msr_vmx_procbased_ctls2 = true;
2603                 break;
2604             case MSR_IA32_PKRS:
2605                 has_msr_pkrs = true;
2606                 break;
2607             case MSR_K7_HWCR:
2608                 has_msr_hwcr = true;
2609             }
2610         }
2611     }
2612 
2613     g_free(kvm_msr_list);
2614 
2615     return ret;
2616 }
2617 
2618 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2619                                         uint32_t msr,
2620                                         uint64_t *val)
2621 {
2622     *val = cpu_x86_get_msr_core_thread_count(cpu);
2623 
2624     return true;
2625 }
2626 
2627 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2628                                       uint32_t msr,
2629                                       uint64_t *val)
2630 {
2631 
2632     CPUState *cs = CPU(cpu);
2633 
2634     *val = cs->kvm_state->msr_energy.msr_unit;
2635 
2636     return true;
2637 }
2638 
2639 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2640                                       uint32_t msr,
2641                                       uint64_t *val)
2642 {
2643 
2644     CPUState *cs = CPU(cpu);
2645 
2646     *val = cs->kvm_state->msr_energy.msr_limit;
2647 
2648     return true;
2649 }
2650 
2651 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2652                                      uint32_t msr,
2653                                      uint64_t *val)
2654 {
2655 
2656     CPUState *cs = CPU(cpu);
2657 
2658     *val = cs->kvm_state->msr_energy.msr_info;
2659 
2660     return true;
2661 }
2662 
2663 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2664                                         uint32_t msr,
2665                                         uint64_t *val)
2666 {
2667 
2668     CPUState *cs = CPU(cpu);
2669     *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2670 
2671     return true;
2672 }
2673 
2674 static Notifier smram_machine_done;
2675 static KVMMemoryListener smram_listener;
2676 static AddressSpace smram_address_space;
2677 static MemoryRegion smram_as_root;
2678 static MemoryRegion smram_as_mem;
2679 
2680 static void register_smram_listener(Notifier *n, void *unused)
2681 {
2682     MemoryRegion *smram =
2683         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2684 
2685     /* Outer container... */
2686     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2687     memory_region_set_enabled(&smram_as_root, true);
2688 
2689     /* ... with two regions inside: normal system memory with low
2690      * priority, and...
2691      */
2692     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2693                              get_system_memory(), 0, ~0ull);
2694     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2695     memory_region_set_enabled(&smram_as_mem, true);
2696 
2697     if (smram) {
2698         /* ... SMRAM with higher priority */
2699         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2700         memory_region_set_enabled(smram, true);
2701     }
2702 
2703     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2704     kvm_memory_listener_register(kvm_state, &smram_listener,
2705                                  &smram_address_space, 1, "kvm-smram");
2706 }
2707 
2708 static void *kvm_msr_energy_thread(void *data)
2709 {
2710     KVMState *s = data;
2711     struct KVMMsrEnergy *vmsr = &s->msr_energy;
2712 
2713     g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2714     g_autofree vmsr_thread_stat *thd_stat = NULL;
2715     g_autofree CPUState *cpu = NULL;
2716     g_autofree unsigned int *vpkgs_energy_stat = NULL;
2717     unsigned int num_threads = 0;
2718 
2719     X86CPUTopoIDs topo_ids;
2720 
2721     rcu_register_thread();
2722 
2723     /* Allocate memory for each package energy status */
2724     pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2725 
2726     /* Allocate memory for thread stats */
2727     thd_stat = g_new0(vmsr_thread_stat, 1);
2728 
2729     /* Allocate memory for holding virtual package energy counter */
2730     vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2731 
2732     /* Populate the max tick of each packages */
2733     for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2734         /*
2735          * Max numbers of ticks per package
2736          * Time in second * Number of ticks/second * Number of cores/package
2737          * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2738          */
2739         vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2740                         * sysconf(_SC_CLK_TCK)
2741                         * vmsr->host_topo.pkg_cpu_count[i];
2742     }
2743 
2744     while (true) {
2745         /* Get all qemu threads id */
2746         g_autofree pid_t *thread_ids
2747             = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2748 
2749         if (thread_ids == NULL) {
2750             goto clean;
2751         }
2752 
2753         thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2754         /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2755         memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2756 
2757         /* Populate all the thread stats */
2758         for (int i = 0; i < num_threads; i++) {
2759             thd_stat[i].utime = g_new0(unsigned long long, 2);
2760             thd_stat[i].stime = g_new0(unsigned long long, 2);
2761             thd_stat[i].thread_id = thread_ids[i];
2762             vmsr_read_thread_stat(vmsr->pid,
2763                                   thd_stat[i].thread_id,
2764                                   &thd_stat[i].utime[0],
2765                                   &thd_stat[i].stime[0],
2766                                   &thd_stat[i].cpu_id);
2767             thd_stat[i].pkg_id =
2768                 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2769         }
2770 
2771         /* Retrieve all packages power plane energy counter */
2772         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2773             for (int j = 0; j < num_threads; j++) {
2774                 /*
2775                  * Use the first thread we found that ran on the CPU
2776                  * of the package to read the packages energy counter
2777                  */
2778                 if (thd_stat[j].pkg_id == i) {
2779                     pkg_stat[i].e_start =
2780                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2781                                   thd_stat[j].cpu_id,
2782                                   thd_stat[j].thread_id,
2783                                   s->msr_energy.sioc);
2784                     break;
2785                 }
2786             }
2787         }
2788 
2789         /* Sleep a short period while the other threads are working */
2790         usleep(MSR_ENERGY_THREAD_SLEEP_US);
2791 
2792         /*
2793          * Retrieve all packages power plane energy counter
2794          * Calculate the delta of all packages
2795          */
2796         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2797             for (int j = 0; j < num_threads; j++) {
2798                 /*
2799                  * Use the first thread we found that ran on the CPU
2800                  * of the package to read the packages energy counter
2801                  */
2802                 if (thd_stat[j].pkg_id == i) {
2803                     pkg_stat[i].e_end =
2804                     vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2805                                   thd_stat[j].cpu_id,
2806                                   thd_stat[j].thread_id,
2807                                   s->msr_energy.sioc);
2808                     /*
2809                      * Prevent the case we have migrate the VM
2810                      * during the sleep period or any other cases
2811                      * were energy counter might be lower after
2812                      * the sleep period.
2813                      */
2814                     if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2815                         pkg_stat[i].e_delta =
2816                             pkg_stat[i].e_end - pkg_stat[i].e_start;
2817                     } else {
2818                         pkg_stat[i].e_delta = 0;
2819                     }
2820                     break;
2821                 }
2822             }
2823         }
2824 
2825         /* Delta of ticks spend by each thread between the sample */
2826         for (int i = 0; i < num_threads; i++) {
2827             vmsr_read_thread_stat(vmsr->pid,
2828                                   thd_stat[i].thread_id,
2829                                   &thd_stat[i].utime[1],
2830                                   &thd_stat[i].stime[1],
2831                                   &thd_stat[i].cpu_id);
2832 
2833             if (vmsr->pid < 0) {
2834                 /*
2835                  * We don't count the dead thread
2836                  * i.e threads that existed before the sleep
2837                  * and not anymore
2838                  */
2839                 thd_stat[i].delta_ticks = 0;
2840             } else {
2841                 vmsr_delta_ticks(thd_stat, i);
2842             }
2843         }
2844 
2845         /*
2846          * Identify the vcpu threads
2847          * Calculate the number of vcpu per package
2848          */
2849         CPU_FOREACH(cpu) {
2850             for (int i = 0; i < num_threads; i++) {
2851                 if (cpu->thread_id == thd_stat[i].thread_id) {
2852                     thd_stat[i].is_vcpu = true;
2853                     thd_stat[i].vcpu_id = cpu->cpu_index;
2854                     pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2855                     thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2856                     break;
2857                 }
2858             }
2859         }
2860 
2861         /* Retrieve the virtual package number of each vCPU */
2862         for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2863             for (int j = 0; j < num_threads; j++) {
2864                 if ((thd_stat[j].acpi_id ==
2865                         vmsr->guest_cpu_list->cpus[i].arch_id)
2866                     && (thd_stat[j].is_vcpu == true)) {
2867                     x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2868                         &vmsr->guest_topo_info, &topo_ids);
2869                     thd_stat[j].vpkg_id = topo_ids.pkg_id;
2870                 }
2871             }
2872         }
2873 
2874         /* Calculate the total energy of all non-vCPU thread */
2875         for (int i = 0; i < num_threads; i++) {
2876             if ((thd_stat[i].is_vcpu != true) &&
2877                 (thd_stat[i].delta_ticks > 0)) {
2878                 double temp;
2879                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2880                     thd_stat[i].delta_ticks,
2881                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2882                 pkg_stat[thd_stat[i].pkg_id].e_ratio
2883                     += (uint64_t)lround(temp);
2884             }
2885         }
2886 
2887         /* Calculate the ratio per non-vCPU thread of each package */
2888         for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2889             if (pkg_stat[i].nb_vcpu > 0) {
2890                 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2891             }
2892         }
2893 
2894         /*
2895          * Calculate the energy for each Package:
2896          * Energy Package = sum of each vCPU energy that belongs to the package
2897          */
2898         for (int i = 0; i < num_threads; i++) {
2899             if ((thd_stat[i].is_vcpu == true) && \
2900                     (thd_stat[i].delta_ticks > 0)) {
2901                 double temp;
2902                 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2903                     thd_stat[i].delta_ticks,
2904                     vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2905                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2906                     (uint64_t)lround(temp);
2907                 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2908                     pkg_stat[thd_stat[i].pkg_id].e_ratio;
2909             }
2910         }
2911 
2912         /*
2913          * Finally populate the vmsr register of each vCPU with the total
2914          * package value to emulate the real hardware where each CPU return the
2915          * value of the package it belongs.
2916          */
2917         for (int i = 0; i < num_threads; i++) {
2918             if ((thd_stat[i].is_vcpu == true) && \
2919                     (thd_stat[i].delta_ticks > 0)) {
2920                 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2921                                         vpkgs_energy_stat[thd_stat[i].vpkg_id];
2922           }
2923         }
2924 
2925         /* Freeing memory before zeroing the pointer */
2926         for (int i = 0; i < num_threads; i++) {
2927             g_free(thd_stat[i].utime);
2928             g_free(thd_stat[i].stime);
2929         }
2930    }
2931 
2932 clean:
2933     rcu_unregister_thread();
2934     return NULL;
2935 }
2936 
2937 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2938 {
2939     MachineClass *mc = MACHINE_GET_CLASS(ms);
2940     struct KVMMsrEnergy *r = &s->msr_energy;
2941 
2942     /*
2943      * Sanity check
2944      * 1. Host cpu must be Intel cpu
2945      * 2. RAPL must be enabled on the Host
2946      */
2947     if (!is_host_cpu_intel()) {
2948         error_report("The RAPL feature can only be enabled on hosts "
2949                      "with Intel CPU models");
2950         return -1;
2951     }
2952 
2953     if (!is_rapl_enabled()) {
2954         return -1;
2955     }
2956 
2957     /* Retrieve the virtual topology */
2958     vmsr_init_topo_info(&r->guest_topo_info, ms);
2959 
2960     /* Retrieve the number of vcpu */
2961     r->guest_vcpus = ms->smp.cpus;
2962 
2963     /* Retrieve the number of virtual sockets */
2964     r->guest_vsockets = ms->smp.sockets;
2965 
2966     /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2967     r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2968 
2969     /* Retrieve the CPUArchIDlist */
2970     r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
2971 
2972     /* Max number of cpus on the Host */
2973     r->host_topo.maxcpus = vmsr_get_maxcpus();
2974     if (r->host_topo.maxcpus == 0) {
2975         error_report("host max cpus = 0");
2976         return -1;
2977     }
2978 
2979     /* Max number of packages on the host */
2980     r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
2981     if (r->host_topo.maxpkgs == 0) {
2982         error_report("host max pkgs = 0");
2983         return -1;
2984     }
2985 
2986     /* Allocate memory for each package on the host */
2987     r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
2988     r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
2989 
2990     vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
2991                                 r->host_topo.maxpkgs);
2992     for (int i = 0; i < r->host_topo.maxpkgs; i++) {
2993         if (r->host_topo.pkg_cpu_count[i] == 0) {
2994             error_report("cpu per packages = 0 on package_%d", i);
2995             return -1;
2996         }
2997     }
2998 
2999     /* Get QEMU PID*/
3000     r->pid = getpid();
3001 
3002     /* Compute the socket path if necessary */
3003     if (s->msr_energy.socket_path == NULL) {
3004         s->msr_energy.socket_path = vmsr_compute_default_paths();
3005     }
3006 
3007     /* Open socket with vmsr helper */
3008     s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
3009 
3010     if (s->msr_energy.sioc == NULL) {
3011         error_report("vmsr socket opening failed");
3012         return -1;
3013     }
3014 
3015     /* Those MSR values should not change */
3016     r->msr_unit  = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
3017                                     s->msr_energy.sioc);
3018     r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
3019                                     s->msr_energy.sioc);
3020     r->msr_info  = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
3021                                     s->msr_energy.sioc);
3022     if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3023         error_report("can't read any virtual msr");
3024         return -1;
3025     }
3026 
3027     qemu_thread_create(&r->msr_thr, "kvm-msr",
3028                        kvm_msr_energy_thread,
3029                        s, QEMU_THREAD_JOINABLE);
3030     return 0;
3031 }
3032 
3033 int kvm_arch_get_default_type(MachineState *ms)
3034 {
3035     return 0;
3036 }
3037 
3038 static int kvm_vm_enable_exception_payload(KVMState *s)
3039 {
3040     int ret = 0;
3041     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3042     if (has_exception_payload) {
3043         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3044         if (ret < 0) {
3045             error_report("kvm: Failed to enable exception payload cap: %s",
3046                          strerror(-ret));
3047         }
3048     }
3049 
3050     return ret;
3051 }
3052 
3053 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3054 {
3055     int ret = 0;
3056     has_triple_fault_event = \
3057         kvm_check_extension(s,
3058                             KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3059     if (has_triple_fault_event) {
3060         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3061         if (ret < 0) {
3062             error_report("kvm: Failed to enable triple fault event cap: %s",
3063                          strerror(-ret));
3064         }
3065     }
3066     return ret;
3067 }
3068 
3069 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3070 {
3071     return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3072 }
3073 
3074 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3075 {
3076     uint64_t shadow_mem;
3077     int ret = 0;
3078     shadow_mem = object_property_get_int(OBJECT(s),
3079                                          "kvm-shadow-mem",
3080                                          &error_abort);
3081     if (shadow_mem != -1) {
3082         shadow_mem /= 4096;
3083         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3084     }
3085     return ret;
3086 }
3087 
3088 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3089 {
3090     return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3091 }
3092 
3093 static int kvm_vm_enable_disable_exits(KVMState *s)
3094 {
3095     int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3096 
3097     if (disable_exits) {
3098         disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3099                           KVM_X86_DISABLE_EXITS_HLT |
3100                           KVM_X86_DISABLE_EXITS_PAUSE |
3101                           KVM_X86_DISABLE_EXITS_CSTATE);
3102     }
3103 
3104     return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3105                              disable_exits);
3106 }
3107 
3108 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3109 {
3110     int ret = 0;
3111     ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3112     if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3113         error_report("kvm: bus lock detection unsupported");
3114         return -ENOTSUP;
3115     }
3116     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3117                             KVM_BUS_LOCK_DETECTION_EXIT);
3118     if (ret < 0) {
3119         error_report("kvm: Failed to enable bus lock detection cap: %s",
3120                      strerror(-ret));
3121     }
3122 
3123     return ret;
3124 }
3125 
3126 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3127 {
3128     int ret = 0;
3129     if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3130         uint64_t notify_window_flags =
3131             ((uint64_t)s->notify_window << 32) |
3132             KVM_X86_NOTIFY_VMEXIT_ENABLED |
3133             KVM_X86_NOTIFY_VMEXIT_USER;
3134         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3135                                 notify_window_flags);
3136         if (ret < 0) {
3137             error_report("kvm: Failed to enable notify vmexit cap: %s",
3138                          strerror(-ret));
3139         }
3140     }
3141     return ret;
3142 }
3143 
3144 static int kvm_vm_enable_userspace_msr(KVMState *s)
3145 {
3146     int ret;
3147 
3148     ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3149                             KVM_MSR_EXIT_REASON_FILTER);
3150     if (ret < 0) {
3151         error_report("Could not enable user space MSRs: %s",
3152                      strerror(-ret));
3153         exit(1);
3154     }
3155 
3156     ret = kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3157                          kvm_rdmsr_core_thread_count, NULL);
3158     if (ret < 0) {
3159         error_report("Could not install MSR_CORE_THREAD_COUNT handler: %s",
3160                      strerror(-ret));
3161         exit(1);
3162     }
3163 
3164     return 0;
3165 }
3166 
3167 static int kvm_vm_enable_energy_msrs(KVMState *s)
3168 {
3169     int ret;
3170 
3171     if (s->msr_energy.enable == true) {
3172         ret = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3173                              kvm_rdmsr_rapl_power_unit, NULL);
3174         if (ret < 0) {
3175             error_report("Could not install MSR_RAPL_POWER_UNIT handler: %s",
3176                          strerror(-ret));
3177             return ret;
3178         }
3179 
3180         ret = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3181                              kvm_rdmsr_pkg_power_limit, NULL);
3182         if (ret < 0) {
3183             error_report("Could not install MSR_PKG_POWER_LIMIT handler: %s",
3184                          strerror(-ret));
3185             return ret;
3186         }
3187 
3188         ret = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3189                              kvm_rdmsr_pkg_power_info, NULL);
3190         if (ret < 0) {
3191             error_report("Could not install MSR_PKG_POWER_INFO handler: %s",
3192                          strerror(-ret));
3193             return ret;
3194         }
3195         ret = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3196                              kvm_rdmsr_pkg_energy_status, NULL);
3197         if (ret < 0) {
3198             error_report("Could not install MSR_PKG_ENERGY_STATUS handler: %s",
3199                          strerror(-ret));
3200             return ret;
3201         }
3202     }
3203     return 0;
3204 }
3205 
3206 int kvm_arch_init(MachineState *ms, KVMState *s)
3207 {
3208     int ret;
3209     struct utsname utsname;
3210     Error *local_err = NULL;
3211 
3212     /*
3213      * Initialize confidential guest (SEV/TDX) context, if required
3214      */
3215     if (ms->cgs) {
3216         ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3217         if (ret < 0) {
3218             error_report_err(local_err);
3219             return ret;
3220         }
3221     }
3222 
3223     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3224     has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3225 
3226     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3227 
3228     ret = kvm_vm_enable_exception_payload(s);
3229     if (ret < 0) {
3230         return ret;
3231     }
3232 
3233     ret = kvm_vm_enable_triple_fault_event(s);
3234     if (ret < 0) {
3235         return ret;
3236     }
3237 
3238     if (s->xen_version) {
3239 #ifdef CONFIG_XEN_EMU
3240         if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3241             error_report("kvm: Xen support only available in PC machine");
3242             return -ENOTSUP;
3243         }
3244         /* hyperv_enabled() doesn't work yet. */
3245         uint32_t msr = XEN_HYPERCALL_MSR;
3246         ret = kvm_xen_init(s, msr);
3247         if (ret < 0) {
3248             return ret;
3249         }
3250 #else
3251         error_report("kvm: Xen support not enabled in qemu");
3252         return -ENOTSUP;
3253 #endif
3254     }
3255 
3256     ret = kvm_get_supported_msrs(s);
3257     if (ret < 0) {
3258         return ret;
3259     }
3260 
3261     ret = kvm_get_supported_feature_msrs(s);
3262     if (ret < 0) {
3263         return ret;
3264     }
3265 
3266     uname(&utsname);
3267     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3268 
3269     ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3270     if (ret < 0) {
3271         return ret;
3272     }
3273 
3274     /* Set TSS base one page after EPT identity map. */
3275     ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3276     if (ret < 0) {
3277         return ret;
3278     }
3279 
3280     /* Tell fw_cfg to notify the BIOS to reserve the range. */
3281     e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3282 
3283     ret = kvm_vm_set_nr_mmu_pages(s);
3284     if (ret < 0) {
3285         return ret;
3286     }
3287 
3288     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3289         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3290         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3291         smram_machine_done.notify = register_smram_listener;
3292         qemu_add_machine_init_done_notifier(&smram_machine_done);
3293     }
3294 
3295     if (enable_cpu_pm) {
3296         ret = kvm_vm_enable_disable_exits(s);
3297         if (ret < 0) {
3298             error_report("kvm: guest stopping CPU not supported: %s",
3299                          strerror(-ret));
3300             return ret;
3301         }
3302     }
3303 
3304     if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3305         X86MachineState *x86ms = X86_MACHINE(ms);
3306 
3307         if (x86ms->bus_lock_ratelimit > 0) {
3308             ret = kvm_vm_enable_bus_lock_exit(s);
3309             if (ret < 0) {
3310                 return ret;
3311             }
3312             ratelimit_init(&bus_lock_ratelimit_ctrl);
3313             ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3314                                 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3315         }
3316     }
3317 
3318     if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3319         ret = kvm_vm_enable_notify_vmexit(s);
3320         if (ret < 0) {
3321             return ret;
3322         }
3323     }
3324 
3325     if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3326         ret = kvm_vm_enable_userspace_msr(s);
3327         if (ret < 0) {
3328             return ret;
3329         }
3330 
3331         if (s->msr_energy.enable == true) {
3332             ret = kvm_vm_enable_energy_msrs(s);
3333             if (ret < 0) {
3334                 return ret;
3335             }
3336 
3337             ret = kvm_msr_energy_thread_init(s, ms);
3338             if (ret < 0) {
3339                 error_report("kvm : error RAPL feature requirement not met");
3340                 return ret;
3341             }
3342         }
3343     }
3344 
3345     return 0;
3346 }
3347 
3348 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3349 {
3350     lhs->selector = rhs->selector;
3351     lhs->base = rhs->base;
3352     lhs->limit = rhs->limit;
3353     lhs->type = 3;
3354     lhs->present = 1;
3355     lhs->dpl = 3;
3356     lhs->db = 0;
3357     lhs->s = 1;
3358     lhs->l = 0;
3359     lhs->g = 0;
3360     lhs->avl = 0;
3361     lhs->unusable = 0;
3362 }
3363 
3364 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3365 {
3366     unsigned flags = rhs->flags;
3367     lhs->selector = rhs->selector;
3368     lhs->base = rhs->base;
3369     lhs->limit = rhs->limit;
3370     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3371     lhs->present = (flags & DESC_P_MASK) != 0;
3372     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3373     lhs->db = (flags >> DESC_B_SHIFT) & 1;
3374     lhs->s = (flags & DESC_S_MASK) != 0;
3375     lhs->l = (flags >> DESC_L_SHIFT) & 1;
3376     lhs->g = (flags & DESC_G_MASK) != 0;
3377     lhs->avl = (flags & DESC_AVL_MASK) != 0;
3378     lhs->unusable = !lhs->present;
3379     lhs->padding = 0;
3380 }
3381 
3382 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3383 {
3384     lhs->selector = rhs->selector;
3385     lhs->base = rhs->base;
3386     lhs->limit = rhs->limit;
3387     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3388                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3389                  (rhs->dpl << DESC_DPL_SHIFT) |
3390                  (rhs->db << DESC_B_SHIFT) |
3391                  (rhs->s * DESC_S_MASK) |
3392                  (rhs->l << DESC_L_SHIFT) |
3393                  (rhs->g * DESC_G_MASK) |
3394                  (rhs->avl * DESC_AVL_MASK);
3395 }
3396 
3397 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3398 {
3399     if (set) {
3400         *kvm_reg = *qemu_reg;
3401     } else {
3402         *qemu_reg = *kvm_reg;
3403     }
3404 }
3405 
3406 static int kvm_getput_regs(X86CPU *cpu, int set)
3407 {
3408     CPUX86State *env = &cpu->env;
3409     struct kvm_regs regs;
3410     int ret = 0;
3411 
3412     if (!set) {
3413         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3414         if (ret < 0) {
3415             return ret;
3416         }
3417     }
3418 
3419     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3420     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3421     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3422     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3423     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3424     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3425     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3426     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3427 #ifdef TARGET_X86_64
3428     kvm_getput_reg(&regs.r8, &env->regs[8], set);
3429     kvm_getput_reg(&regs.r9, &env->regs[9], set);
3430     kvm_getput_reg(&regs.r10, &env->regs[10], set);
3431     kvm_getput_reg(&regs.r11, &env->regs[11], set);
3432     kvm_getput_reg(&regs.r12, &env->regs[12], set);
3433     kvm_getput_reg(&regs.r13, &env->regs[13], set);
3434     kvm_getput_reg(&regs.r14, &env->regs[14], set);
3435     kvm_getput_reg(&regs.r15, &env->regs[15], set);
3436 #endif
3437 
3438     kvm_getput_reg(&regs.rflags, &env->eflags, set);
3439     kvm_getput_reg(&regs.rip, &env->eip, set);
3440 
3441     if (set) {
3442         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3443     }
3444 
3445     return ret;
3446 }
3447 
3448 static int kvm_put_xsave(X86CPU *cpu)
3449 {
3450     CPUX86State *env = &cpu->env;
3451     void *xsave = env->xsave_buf;
3452 
3453     x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3454 
3455     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3456 }
3457 
3458 static int kvm_put_xcrs(X86CPU *cpu)
3459 {
3460     CPUX86State *env = &cpu->env;
3461     struct kvm_xcrs xcrs = {};
3462 
3463     if (!has_xcrs) {
3464         return 0;
3465     }
3466 
3467     xcrs.nr_xcrs = 1;
3468     xcrs.flags = 0;
3469     xcrs.xcrs[0].xcr = 0;
3470     xcrs.xcrs[0].value = env->xcr0;
3471     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3472 }
3473 
3474 static int kvm_put_sregs(X86CPU *cpu)
3475 {
3476     CPUX86State *env = &cpu->env;
3477     struct kvm_sregs sregs;
3478 
3479     /*
3480      * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3481      * always followed by KVM_SET_VCPU_EVENTS.
3482      */
3483     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3484 
3485     if ((env->eflags & VM_MASK)) {
3486         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3487         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3488         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3489         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3490         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3491         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3492     } else {
3493         set_seg(&sregs.cs, &env->segs[R_CS]);
3494         set_seg(&sregs.ds, &env->segs[R_DS]);
3495         set_seg(&sregs.es, &env->segs[R_ES]);
3496         set_seg(&sregs.fs, &env->segs[R_FS]);
3497         set_seg(&sregs.gs, &env->segs[R_GS]);
3498         set_seg(&sregs.ss, &env->segs[R_SS]);
3499     }
3500 
3501     set_seg(&sregs.tr, &env->tr);
3502     set_seg(&sregs.ldt, &env->ldt);
3503 
3504     sregs.idt.limit = env->idt.limit;
3505     sregs.idt.base = env->idt.base;
3506     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3507     sregs.gdt.limit = env->gdt.limit;
3508     sregs.gdt.base = env->gdt.base;
3509     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3510 
3511     sregs.cr0 = env->cr[0];
3512     sregs.cr2 = env->cr[2];
3513     sregs.cr3 = env->cr[3];
3514     sregs.cr4 = env->cr[4];
3515 
3516     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3517     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3518 
3519     sregs.efer = env->efer;
3520 
3521     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3522 }
3523 
3524 static int kvm_put_sregs2(X86CPU *cpu)
3525 {
3526     CPUX86State *env = &cpu->env;
3527     struct kvm_sregs2 sregs;
3528     int i;
3529 
3530     sregs.flags = 0;
3531 
3532     if ((env->eflags & VM_MASK)) {
3533         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3534         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3535         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3536         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3537         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3538         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3539     } else {
3540         set_seg(&sregs.cs, &env->segs[R_CS]);
3541         set_seg(&sregs.ds, &env->segs[R_DS]);
3542         set_seg(&sregs.es, &env->segs[R_ES]);
3543         set_seg(&sregs.fs, &env->segs[R_FS]);
3544         set_seg(&sregs.gs, &env->segs[R_GS]);
3545         set_seg(&sregs.ss, &env->segs[R_SS]);
3546     }
3547 
3548     set_seg(&sregs.tr, &env->tr);
3549     set_seg(&sregs.ldt, &env->ldt);
3550 
3551     sregs.idt.limit = env->idt.limit;
3552     sregs.idt.base = env->idt.base;
3553     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3554     sregs.gdt.limit = env->gdt.limit;
3555     sregs.gdt.base = env->gdt.base;
3556     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3557 
3558     sregs.cr0 = env->cr[0];
3559     sregs.cr2 = env->cr[2];
3560     sregs.cr3 = env->cr[3];
3561     sregs.cr4 = env->cr[4];
3562 
3563     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3564     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3565 
3566     sregs.efer = env->efer;
3567 
3568     if (env->pdptrs_valid) {
3569         for (i = 0; i < 4; i++) {
3570             sregs.pdptrs[i] = env->pdptrs[i];
3571         }
3572         sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3573     }
3574 
3575     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3576 }
3577 
3578 
3579 static void kvm_msr_buf_reset(X86CPU *cpu)
3580 {
3581     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3582 }
3583 
3584 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3585 {
3586     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3587     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3588     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3589 
3590     assert((void *)(entry + 1) <= limit);
3591 
3592     entry->index = index;
3593     entry->reserved = 0;
3594     entry->data = value;
3595     msrs->nmsrs++;
3596 }
3597 
3598 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3599 {
3600     kvm_msr_buf_reset(cpu);
3601     kvm_msr_entry_add(cpu, index, value);
3602 
3603     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3604 }
3605 
3606 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3607 {
3608     int ret;
3609     struct {
3610         struct kvm_msrs info;
3611         struct kvm_msr_entry entries[1];
3612     } msr_data = {
3613         .info.nmsrs = 1,
3614         .entries[0].index = index,
3615     };
3616 
3617     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3618     if (ret < 0) {
3619         return ret;
3620     }
3621     assert(ret == 1);
3622     *value = msr_data.entries[0].data;
3623     return ret;
3624 }
3625 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3626 {
3627     int ret;
3628 
3629     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3630     assert(ret == 1);
3631 }
3632 
3633 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3634 {
3635     CPUX86State *env = &cpu->env;
3636     int ret;
3637 
3638     if (!has_msr_tsc_deadline) {
3639         return 0;
3640     }
3641 
3642     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3643     if (ret < 0) {
3644         return ret;
3645     }
3646 
3647     assert(ret == 1);
3648     return 0;
3649 }
3650 
3651 /*
3652  * Provide a separate write service for the feature control MSR in order to
3653  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3654  * before writing any other state because forcibly leaving nested mode
3655  * invalidates the VCPU state.
3656  */
3657 static int kvm_put_msr_feature_control(X86CPU *cpu)
3658 {
3659     int ret;
3660 
3661     if (!has_msr_feature_control) {
3662         return 0;
3663     }
3664 
3665     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3666                           cpu->env.msr_ia32_feature_control);
3667     if (ret < 0) {
3668         return ret;
3669     }
3670 
3671     assert(ret == 1);
3672     return 0;
3673 }
3674 
3675 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3676 {
3677     uint32_t default1, can_be_one, can_be_zero;
3678     uint32_t must_be_one;
3679 
3680     switch (index) {
3681     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3682         default1 = 0x00000016;
3683         break;
3684     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3685         default1 = 0x0401e172;
3686         break;
3687     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3688         default1 = 0x000011ff;
3689         break;
3690     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3691         default1 = 0x00036dff;
3692         break;
3693     case MSR_IA32_VMX_PROCBASED_CTLS2:
3694         default1 = 0;
3695         break;
3696     default:
3697         abort();
3698     }
3699 
3700     /* If a feature bit is set, the control can be either set or clear.
3701      * Otherwise the value is limited to either 0 or 1 by default1.
3702      */
3703     can_be_one = features | default1;
3704     can_be_zero = features | ~default1;
3705     must_be_one = ~can_be_zero;
3706 
3707     /*
3708      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3709      * Bit 32:63 -> 1 if the control bit can be one.
3710      */
3711     return must_be_one | (((uint64_t)can_be_one) << 32);
3712 }
3713 
3714 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3715 {
3716     uint64_t kvm_vmx_basic =
3717         kvm_arch_get_supported_msr_feature(kvm_state,
3718                                            MSR_IA32_VMX_BASIC);
3719 
3720     if (!kvm_vmx_basic) {
3721         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3722          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3723          */
3724         return;
3725     }
3726 
3727     uint64_t kvm_vmx_misc =
3728         kvm_arch_get_supported_msr_feature(kvm_state,
3729                                            MSR_IA32_VMX_MISC);
3730     uint64_t kvm_vmx_ept_vpid =
3731         kvm_arch_get_supported_msr_feature(kvm_state,
3732                                            MSR_IA32_VMX_EPT_VPID_CAP);
3733 
3734     /*
3735      * If the guest is 64-bit, a value of 1 is allowed for the host address
3736      * space size vmexit control.
3737      */
3738     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3739         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3740 
3741     /*
3742      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
3743      * not change them for backwards compatibility.
3744      */
3745     uint64_t fixed_vmx_basic = kvm_vmx_basic &
3746         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3747          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3748          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3749 
3750     /*
3751      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
3752      * change in the future but are always zero for now, clear them to be
3753      * future proof.  Bits 32-63 in theory could change, though KVM does
3754      * not support dual-monitor treatment and probably never will; mask
3755      * them out as well.
3756      */
3757     uint64_t fixed_vmx_misc = kvm_vmx_misc &
3758         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3759          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3760 
3761     /*
3762      * EPT memory types should not change either, so we do not bother
3763      * adding features for them.
3764      */
3765     uint64_t fixed_vmx_ept_mask =
3766             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3767              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3768     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3769 
3770     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3771                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3772                                          f[FEAT_VMX_PROCBASED_CTLS]));
3773     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3774                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3775                                          f[FEAT_VMX_PINBASED_CTLS]));
3776     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3777                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3778                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3779     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3780                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3781                                          f[FEAT_VMX_ENTRY_CTLS]));
3782     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3783                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3784                                          f[FEAT_VMX_SECONDARY_CTLS]));
3785     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3786                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3787     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3788                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3789     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3790                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
3791     if (has_msr_vmx_vmfunc) {
3792         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3793     }
3794 
3795     /*
3796      * Just to be safe, write these with constant values.  The CRn_FIXED1
3797      * MSRs are generated by KVM based on the vCPU's CPUID.
3798      */
3799     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3800                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3801     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3802                       CR4_VMXE_MASK);
3803 
3804     if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3805         /* FRED injected-event data (0x2052).  */
3806         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3807     } else if (f[FEAT_VMX_EXIT_CTLS] &
3808                VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3809         /* Secondary VM-exit controls (0x2044).  */
3810         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3811     } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3812         /* TSC multiplier (0x2032).  */
3813         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3814     } else {
3815         /* Preemption timer (0x482E).  */
3816         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3817     }
3818 }
3819 
3820 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3821 {
3822     uint64_t kvm_perf_cap =
3823         kvm_arch_get_supported_msr_feature(kvm_state,
3824                                            MSR_IA32_PERF_CAPABILITIES);
3825 
3826     if (kvm_perf_cap) {
3827         kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3828                         kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3829     }
3830 }
3831 
3832 static int kvm_buf_set_msrs(X86CPU *cpu)
3833 {
3834     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3835     if (ret < 0) {
3836         return ret;
3837     }
3838 
3839     if (ret < cpu->kvm_msr_buf->nmsrs) {
3840         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3841         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3842                      (uint32_t)e->index, (uint64_t)e->data);
3843     }
3844 
3845     assert(ret == cpu->kvm_msr_buf->nmsrs);
3846     return 0;
3847 }
3848 
3849 static void kvm_init_msrs(X86CPU *cpu)
3850 {
3851     CPUX86State *env = &cpu->env;
3852 
3853     kvm_msr_buf_reset(cpu);
3854     if (has_msr_arch_capabs) {
3855         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3856                           env->features[FEAT_ARCH_CAPABILITIES]);
3857     }
3858 
3859     if (has_msr_core_capabs) {
3860         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3861                           env->features[FEAT_CORE_CAPABILITY]);
3862     }
3863 
3864     if (has_msr_perf_capabs && cpu->enable_pmu) {
3865         kvm_msr_entry_add_perf(cpu, env->features);
3866     }
3867 
3868     if (has_msr_ucode_rev) {
3869         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3870     }
3871 
3872     /*
3873      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3874      * all kernels with MSR features should have them.
3875      */
3876     if (kvm_feature_msrs && cpu_has_vmx(env)) {
3877         kvm_msr_entry_add_vmx(cpu, env->features);
3878     }
3879 
3880     assert(kvm_buf_set_msrs(cpu) == 0);
3881 }
3882 
3883 static int kvm_put_msrs(X86CPU *cpu, int level)
3884 {
3885     CPUX86State *env = &cpu->env;
3886     int i;
3887 
3888     kvm_msr_buf_reset(cpu);
3889 
3890     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3891     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3892     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3893     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3894     if (has_msr_star) {
3895         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3896     }
3897     if (has_msr_hsave_pa) {
3898         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3899     }
3900     if (has_msr_tsc_aux) {
3901         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3902     }
3903     if (has_msr_tsc_adjust) {
3904         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3905     }
3906     if (has_msr_misc_enable) {
3907         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3908                           env->msr_ia32_misc_enable);
3909     }
3910     if (has_msr_smbase) {
3911         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3912     }
3913     if (has_msr_smi_count) {
3914         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3915     }
3916     if (has_msr_pkrs) {
3917         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3918     }
3919     if (has_msr_bndcfgs) {
3920         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3921     }
3922     if (has_msr_xss) {
3923         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3924     }
3925     if (has_msr_umwait) {
3926         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3927     }
3928     if (has_msr_spec_ctrl) {
3929         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3930     }
3931     if (has_tsc_scale_msr) {
3932         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3933     }
3934 
3935     if (has_msr_tsx_ctrl) {
3936         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3937     }
3938     if (has_msr_virt_ssbd) {
3939         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3940     }
3941     if (has_msr_hwcr) {
3942         kvm_msr_entry_add(cpu, MSR_K7_HWCR, env->msr_hwcr);
3943     }
3944 
3945 #ifdef TARGET_X86_64
3946     if (lm_capable_kernel) {
3947         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3948         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3949         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3950         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3951         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3952             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3953             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3954             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3955             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3956             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3957             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3958             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3959             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3960             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3961         }
3962     }
3963 #endif
3964 
3965     /*
3966      * The following MSRs have side effects on the guest or are too heavy
3967      * for normal writeback. Limit them to reset or full state updates.
3968      */
3969     if (level >= KVM_PUT_RESET_STATE) {
3970         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3971         if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
3972             kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3973             kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3974         }
3975         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
3976             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3977         }
3978         if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
3979             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3980         }
3981         if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
3982             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3983         }
3984         if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
3985             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3986         }
3987 
3988         if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
3989             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3990         }
3991 
3992         if (has_architectural_pmu_version > 0) {
3993             if (has_architectural_pmu_version > 1) {
3994                 /* Stop the counter.  */
3995                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3996                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3997             }
3998 
3999             /* Set the counter values.  */
4000             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4001                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
4002                                   env->msr_fixed_counters[i]);
4003             }
4004             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4005                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
4006                                   env->msr_gp_counters[i]);
4007                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
4008                                   env->msr_gp_evtsel[i]);
4009             }
4010             if (has_architectural_pmu_version > 1) {
4011                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
4012                                   env->msr_global_status);
4013                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4014                                   env->msr_global_ovf_ctrl);
4015 
4016                 /* Now start the PMU.  */
4017                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
4018                                   env->msr_fixed_ctr_ctrl);
4019                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
4020                                   env->msr_global_ctrl);
4021             }
4022         }
4023         /*
4024          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
4025          * only sync them to KVM on the first cpu
4026          */
4027         if (current_cpu == first_cpu) {
4028             if (has_msr_hv_hypercall) {
4029                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4030                                   env->msr_hv_guest_os_id);
4031                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4032                                   env->msr_hv_hypercall);
4033             }
4034             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4035                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4036                                   env->msr_hv_tsc);
4037             }
4038             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4039                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4040                                   env->msr_hv_reenlightenment_control);
4041                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4042                                   env->msr_hv_tsc_emulation_control);
4043                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4044                                   env->msr_hv_tsc_emulation_status);
4045             }
4046             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4047                 has_msr_hv_syndbg_options) {
4048                 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4049                                   hyperv_syndbg_query_options());
4050             }
4051         }
4052         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4053             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4054                               env->msr_hv_vapic);
4055         }
4056         if (has_msr_hv_crash) {
4057             int j;
4058 
4059             for (j = 0; j < HV_CRASH_PARAMS; j++)
4060                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4061                                   env->msr_hv_crash_params[j]);
4062 
4063             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4064         }
4065         if (has_msr_hv_runtime) {
4066             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4067         }
4068         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4069             && hv_vpindex_settable) {
4070             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4071                               hyperv_vp_index(CPU(cpu)));
4072         }
4073         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4074             int j;
4075 
4076             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4077 
4078             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4079                               env->msr_hv_synic_control);
4080             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4081                               env->msr_hv_synic_evt_page);
4082             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4083                               env->msr_hv_synic_msg_page);
4084 
4085             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4086                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4087                                   env->msr_hv_synic_sint[j]);
4088             }
4089         }
4090         if (has_msr_hv_stimer) {
4091             int j;
4092 
4093             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4094                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4095                                 env->msr_hv_stimer_config[j]);
4096             }
4097 
4098             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4099                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4100                                 env->msr_hv_stimer_count[j]);
4101             }
4102         }
4103         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4104             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4105 
4106             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4107             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4108             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4109             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4110             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4111             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4112             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4113             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4114             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4115             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4116             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4117             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4118             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4119                 /* The CPU GPs if we write to a bit above the physical limit of
4120                  * the host CPU (and KVM emulates that)
4121                  */
4122                 uint64_t mask = env->mtrr_var[i].mask;
4123                 mask &= phys_mask;
4124 
4125                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4126                                   env->mtrr_var[i].base);
4127                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4128             }
4129         }
4130         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4131             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4132                                                     0x14, 1, R_EAX) & 0x7;
4133 
4134             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4135                             env->msr_rtit_ctrl);
4136             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4137                             env->msr_rtit_status);
4138             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4139                             env->msr_rtit_output_base);
4140             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4141                             env->msr_rtit_output_mask);
4142             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4143                             env->msr_rtit_cr3_match);
4144             for (i = 0; i < addr_num; i++) {
4145                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4146                             env->msr_rtit_addrs[i]);
4147             }
4148         }
4149 
4150         if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4151             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4152                               env->msr_ia32_sgxlepubkeyhash[0]);
4153             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4154                               env->msr_ia32_sgxlepubkeyhash[1]);
4155             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4156                               env->msr_ia32_sgxlepubkeyhash[2]);
4157             kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4158                               env->msr_ia32_sgxlepubkeyhash[3]);
4159         }
4160 
4161         if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4162             kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4163                               env->msr_xfd);
4164             kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4165                               env->msr_xfd_err);
4166         }
4167 
4168         if (kvm_enabled() && cpu->enable_pmu &&
4169             (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4170             uint64_t depth;
4171             int ret;
4172 
4173             /*
4174              * Only migrate Arch LBR states when the host Arch LBR depth
4175              * equals that of source guest's, this is to avoid mismatch
4176              * of guest/host config for the msr hence avoid unexpected
4177              * misbehavior.
4178              */
4179             ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4180 
4181             if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4182                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4183                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4184 
4185                 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4186                     if (!env->lbr_records[i].from) {
4187                         continue;
4188                     }
4189                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4190                                       env->lbr_records[i].from);
4191                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4192                                       env->lbr_records[i].to);
4193                     kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4194                                       env->lbr_records[i].info);
4195                 }
4196             }
4197         }
4198 
4199         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4200          *       kvm_put_msr_feature_control. */
4201     }
4202 
4203     if (env->mcg_cap) {
4204         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4205         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4206         if (has_msr_mcg_ext_ctl) {
4207             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4208         }
4209         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4210             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4211         }
4212     }
4213 
4214     return kvm_buf_set_msrs(cpu);
4215 }
4216 
4217 
4218 static int kvm_get_xsave(X86CPU *cpu)
4219 {
4220     CPUX86State *env = &cpu->env;
4221     void *xsave = env->xsave_buf;
4222     unsigned long type;
4223     int ret;
4224 
4225     type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4226     ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4227     if (ret < 0) {
4228         return ret;
4229     }
4230     x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4231 
4232     return 0;
4233 }
4234 
4235 static int kvm_get_xcrs(X86CPU *cpu)
4236 {
4237     CPUX86State *env = &cpu->env;
4238     int i, ret;
4239     struct kvm_xcrs xcrs;
4240 
4241     if (!has_xcrs) {
4242         return 0;
4243     }
4244 
4245     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4246     if (ret < 0) {
4247         return ret;
4248     }
4249 
4250     for (i = 0; i < xcrs.nr_xcrs; i++) {
4251         /* Only support xcr0 now */
4252         if (xcrs.xcrs[i].xcr == 0) {
4253             env->xcr0 = xcrs.xcrs[i].value;
4254             break;
4255         }
4256     }
4257     return 0;
4258 }
4259 
4260 static int kvm_get_sregs(X86CPU *cpu)
4261 {
4262     CPUX86State *env = &cpu->env;
4263     struct kvm_sregs sregs;
4264     int ret;
4265 
4266     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4267     if (ret < 0) {
4268         return ret;
4269     }
4270 
4271     /*
4272      * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4273      * always preceded by KVM_GET_VCPU_EVENTS.
4274      */
4275 
4276     get_seg(&env->segs[R_CS], &sregs.cs);
4277     get_seg(&env->segs[R_DS], &sregs.ds);
4278     get_seg(&env->segs[R_ES], &sregs.es);
4279     get_seg(&env->segs[R_FS], &sregs.fs);
4280     get_seg(&env->segs[R_GS], &sregs.gs);
4281     get_seg(&env->segs[R_SS], &sregs.ss);
4282 
4283     get_seg(&env->tr, &sregs.tr);
4284     get_seg(&env->ldt, &sregs.ldt);
4285 
4286     env->idt.limit = sregs.idt.limit;
4287     env->idt.base = sregs.idt.base;
4288     env->gdt.limit = sregs.gdt.limit;
4289     env->gdt.base = sregs.gdt.base;
4290 
4291     env->cr[0] = sregs.cr0;
4292     env->cr[2] = sregs.cr2;
4293     env->cr[3] = sregs.cr3;
4294     env->cr[4] = sregs.cr4;
4295 
4296     env->efer = sregs.efer;
4297     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4298         env->cr[0] & CR0_PG_MASK) {
4299         env->efer |= MSR_EFER_LMA;
4300     }
4301 
4302     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4303     x86_update_hflags(env);
4304 
4305     return 0;
4306 }
4307 
4308 static int kvm_get_sregs2(X86CPU *cpu)
4309 {
4310     CPUX86State *env = &cpu->env;
4311     struct kvm_sregs2 sregs;
4312     int i, ret;
4313 
4314     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4315     if (ret < 0) {
4316         return ret;
4317     }
4318 
4319     get_seg(&env->segs[R_CS], &sregs.cs);
4320     get_seg(&env->segs[R_DS], &sregs.ds);
4321     get_seg(&env->segs[R_ES], &sregs.es);
4322     get_seg(&env->segs[R_FS], &sregs.fs);
4323     get_seg(&env->segs[R_GS], &sregs.gs);
4324     get_seg(&env->segs[R_SS], &sregs.ss);
4325 
4326     get_seg(&env->tr, &sregs.tr);
4327     get_seg(&env->ldt, &sregs.ldt);
4328 
4329     env->idt.limit = sregs.idt.limit;
4330     env->idt.base = sregs.idt.base;
4331     env->gdt.limit = sregs.gdt.limit;
4332     env->gdt.base = sregs.gdt.base;
4333 
4334     env->cr[0] = sregs.cr0;
4335     env->cr[2] = sregs.cr2;
4336     env->cr[3] = sregs.cr3;
4337     env->cr[4] = sregs.cr4;
4338 
4339     env->efer = sregs.efer;
4340     if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4341         env->cr[0] & CR0_PG_MASK) {
4342         env->efer |= MSR_EFER_LMA;
4343     }
4344 
4345     env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4346 
4347     if (env->pdptrs_valid) {
4348         for (i = 0; i < 4; i++) {
4349             env->pdptrs[i] = sregs.pdptrs[i];
4350         }
4351     }
4352 
4353     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4354     x86_update_hflags(env);
4355 
4356     return 0;
4357 }
4358 
4359 static int kvm_get_msrs(X86CPU *cpu)
4360 {
4361     CPUX86State *env = &cpu->env;
4362     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4363     int ret, i;
4364     uint64_t mtrr_top_bits;
4365 
4366     kvm_msr_buf_reset(cpu);
4367 
4368     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4369     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4370     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4371     kvm_msr_entry_add(cpu, MSR_PAT, 0);
4372     if (has_msr_star) {
4373         kvm_msr_entry_add(cpu, MSR_STAR, 0);
4374     }
4375     if (has_msr_hsave_pa) {
4376         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4377     }
4378     if (has_msr_tsc_aux) {
4379         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4380     }
4381     if (has_msr_tsc_adjust) {
4382         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4383     }
4384     if (has_msr_tsc_deadline) {
4385         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4386     }
4387     if (has_msr_misc_enable) {
4388         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4389     }
4390     if (has_msr_smbase) {
4391         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4392     }
4393     if (has_msr_smi_count) {
4394         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4395     }
4396     if (has_msr_feature_control) {
4397         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4398     }
4399     if (has_msr_pkrs) {
4400         kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4401     }
4402     if (has_msr_bndcfgs) {
4403         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4404     }
4405     if (has_msr_xss) {
4406         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4407     }
4408     if (has_msr_umwait) {
4409         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4410     }
4411     if (has_msr_spec_ctrl) {
4412         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4413     }
4414     if (has_tsc_scale_msr) {
4415         kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4416     }
4417 
4418     if (has_msr_tsx_ctrl) {
4419         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4420     }
4421     if (has_msr_virt_ssbd) {
4422         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4423     }
4424     if (!env->tsc_valid) {
4425         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4426         env->tsc_valid = !runstate_is_running();
4427     }
4428     if (has_msr_hwcr) {
4429         kvm_msr_entry_add(cpu, MSR_K7_HWCR, 0);
4430     }
4431 
4432 #ifdef TARGET_X86_64
4433     if (lm_capable_kernel) {
4434         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4435         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4436         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4437         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4438         if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4439             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4440             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4441             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4442             kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4443             kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4444             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4445             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4446             kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4447             kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4448         }
4449     }
4450 #endif
4451     if (env->features[FEAT_KVM] & (CPUID_KVM_CLOCK | CPUID_KVM_CLOCK2)) {
4452         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4453         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4454     }
4455     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF_INT) {
4456         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4457     }
4458     if (env->features[FEAT_KVM] & CPUID_KVM_ASYNCPF) {
4459         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4460     }
4461     if (env->features[FEAT_KVM] & CPUID_KVM_PV_EOI) {
4462         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4463     }
4464     if (env->features[FEAT_KVM] & CPUID_KVM_STEAL_TIME) {
4465         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4466     }
4467     if (env->features[FEAT_KVM] & CPUID_KVM_POLL_CONTROL) {
4468         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4469     }
4470     if (has_architectural_pmu_version > 0) {
4471         if (has_architectural_pmu_version > 1) {
4472             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4473             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4474             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4475             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4476         }
4477         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4478             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4479         }
4480         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4481             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4482             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4483         }
4484     }
4485 
4486     if (env->mcg_cap) {
4487         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4488         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4489         if (has_msr_mcg_ext_ctl) {
4490             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4491         }
4492         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4493             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4494         }
4495     }
4496 
4497     if (has_msr_hv_hypercall) {
4498         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4499         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4500     }
4501     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4502         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4503     }
4504     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4505         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4506     }
4507     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4508         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4509         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4510         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4511     }
4512     if (has_msr_hv_syndbg_options) {
4513         kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4514     }
4515     if (has_msr_hv_crash) {
4516         int j;
4517 
4518         for (j = 0; j < HV_CRASH_PARAMS; j++) {
4519             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4520         }
4521     }
4522     if (has_msr_hv_runtime) {
4523         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4524     }
4525     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4526         uint32_t msr;
4527 
4528         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4529         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4530         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4531         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4532             kvm_msr_entry_add(cpu, msr, 0);
4533         }
4534     }
4535     if (has_msr_hv_stimer) {
4536         uint32_t msr;
4537 
4538         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4539              msr++) {
4540             kvm_msr_entry_add(cpu, msr, 0);
4541         }
4542     }
4543     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4544         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4545         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4546         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4547         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4548         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4549         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4550         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4551         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4552         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4553         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4554         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4555         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4556         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4557             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4558             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4559         }
4560     }
4561 
4562     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4563         int addr_num =
4564             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4565 
4566         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4567         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4568         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4569         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4570         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4571         for (i = 0; i < addr_num; i++) {
4572             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4573         }
4574     }
4575 
4576     if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4577         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4578         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4579         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4580         kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4581     }
4582 
4583     if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4584         kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4585         kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4586     }
4587 
4588     if (kvm_enabled() && cpu->enable_pmu &&
4589         (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4590         uint64_t depth;
4591 
4592         ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4593         if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4594             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4595             kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4596 
4597             for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4598                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4599                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4600                 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4601             }
4602         }
4603     }
4604 
4605     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4606     if (ret < 0) {
4607         return ret;
4608     }
4609 
4610     if (ret < cpu->kvm_msr_buf->nmsrs) {
4611         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4612         error_report("error: failed to get MSR 0x%" PRIx32,
4613                      (uint32_t)e->index);
4614     }
4615 
4616     assert(ret == cpu->kvm_msr_buf->nmsrs);
4617     /*
4618      * MTRR masks: Each mask consists of 5 parts
4619      * a  10..0: must be zero
4620      * b  11   : valid bit
4621      * c n-1.12: actual mask bits
4622      * d  51..n: reserved must be zero
4623      * e  63.52: reserved must be zero
4624      *
4625      * 'n' is the number of physical bits supported by the CPU and is
4626      * apparently always <= 52.   We know our 'n' but don't know what
4627      * the destinations 'n' is; it might be smaller, in which case
4628      * it masks (c) on loading. It might be larger, in which case
4629      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4630      * we're migrating to.
4631      */
4632 
4633     if (cpu->fill_mtrr_mask) {
4634         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4635         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4636         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4637     } else {
4638         mtrr_top_bits = 0;
4639     }
4640 
4641     for (i = 0; i < ret; i++) {
4642         uint32_t index = msrs[i].index;
4643         switch (index) {
4644         case MSR_IA32_SYSENTER_CS:
4645             env->sysenter_cs = msrs[i].data;
4646             break;
4647         case MSR_IA32_SYSENTER_ESP:
4648             env->sysenter_esp = msrs[i].data;
4649             break;
4650         case MSR_IA32_SYSENTER_EIP:
4651             env->sysenter_eip = msrs[i].data;
4652             break;
4653         case MSR_PAT:
4654             env->pat = msrs[i].data;
4655             break;
4656         case MSR_STAR:
4657             env->star = msrs[i].data;
4658             break;
4659 #ifdef TARGET_X86_64
4660         case MSR_CSTAR:
4661             env->cstar = msrs[i].data;
4662             break;
4663         case MSR_KERNELGSBASE:
4664             env->kernelgsbase = msrs[i].data;
4665             break;
4666         case MSR_FMASK:
4667             env->fmask = msrs[i].data;
4668             break;
4669         case MSR_LSTAR:
4670             env->lstar = msrs[i].data;
4671             break;
4672         case MSR_IA32_FRED_RSP0:
4673             env->fred_rsp0 = msrs[i].data;
4674             break;
4675         case MSR_IA32_FRED_RSP1:
4676             env->fred_rsp1 = msrs[i].data;
4677             break;
4678         case MSR_IA32_FRED_RSP2:
4679             env->fred_rsp2 = msrs[i].data;
4680             break;
4681         case MSR_IA32_FRED_RSP3:
4682             env->fred_rsp3 = msrs[i].data;
4683             break;
4684         case MSR_IA32_FRED_STKLVLS:
4685             env->fred_stklvls = msrs[i].data;
4686             break;
4687         case MSR_IA32_FRED_SSP1:
4688             env->fred_ssp1 = msrs[i].data;
4689             break;
4690         case MSR_IA32_FRED_SSP2:
4691             env->fred_ssp2 = msrs[i].data;
4692             break;
4693         case MSR_IA32_FRED_SSP3:
4694             env->fred_ssp3 = msrs[i].data;
4695             break;
4696         case MSR_IA32_FRED_CONFIG:
4697             env->fred_config = msrs[i].data;
4698             break;
4699 #endif
4700         case MSR_IA32_TSC:
4701             env->tsc = msrs[i].data;
4702             break;
4703         case MSR_TSC_AUX:
4704             env->tsc_aux = msrs[i].data;
4705             break;
4706         case MSR_TSC_ADJUST:
4707             env->tsc_adjust = msrs[i].data;
4708             break;
4709         case MSR_IA32_TSCDEADLINE:
4710             env->tsc_deadline = msrs[i].data;
4711             break;
4712         case MSR_VM_HSAVE_PA:
4713             env->vm_hsave = msrs[i].data;
4714             break;
4715         case MSR_KVM_SYSTEM_TIME:
4716             env->system_time_msr = msrs[i].data;
4717             break;
4718         case MSR_KVM_WALL_CLOCK:
4719             env->wall_clock_msr = msrs[i].data;
4720             break;
4721         case MSR_MCG_STATUS:
4722             env->mcg_status = msrs[i].data;
4723             break;
4724         case MSR_MCG_CTL:
4725             env->mcg_ctl = msrs[i].data;
4726             break;
4727         case MSR_MCG_EXT_CTL:
4728             env->mcg_ext_ctl = msrs[i].data;
4729             break;
4730         case MSR_IA32_MISC_ENABLE:
4731             env->msr_ia32_misc_enable = msrs[i].data;
4732             break;
4733         case MSR_IA32_SMBASE:
4734             env->smbase = msrs[i].data;
4735             break;
4736         case MSR_SMI_COUNT:
4737             env->msr_smi_count = msrs[i].data;
4738             break;
4739         case MSR_IA32_FEATURE_CONTROL:
4740             env->msr_ia32_feature_control = msrs[i].data;
4741             break;
4742         case MSR_IA32_BNDCFGS:
4743             env->msr_bndcfgs = msrs[i].data;
4744             break;
4745         case MSR_IA32_XSS:
4746             env->xss = msrs[i].data;
4747             break;
4748         case MSR_IA32_UMWAIT_CONTROL:
4749             env->umwait = msrs[i].data;
4750             break;
4751         case MSR_IA32_PKRS:
4752             env->pkrs = msrs[i].data;
4753             break;
4754         default:
4755             if (msrs[i].index >= MSR_MC0_CTL &&
4756                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4757                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4758             }
4759             break;
4760         case MSR_KVM_ASYNC_PF_EN:
4761             env->async_pf_en_msr = msrs[i].data;
4762             break;
4763         case MSR_KVM_ASYNC_PF_INT:
4764             env->async_pf_int_msr = msrs[i].data;
4765             break;
4766         case MSR_KVM_PV_EOI_EN:
4767             env->pv_eoi_en_msr = msrs[i].data;
4768             break;
4769         case MSR_KVM_STEAL_TIME:
4770             env->steal_time_msr = msrs[i].data;
4771             break;
4772         case MSR_KVM_POLL_CONTROL: {
4773             env->poll_control_msr = msrs[i].data;
4774             break;
4775         }
4776         case MSR_CORE_PERF_FIXED_CTR_CTRL:
4777             env->msr_fixed_ctr_ctrl = msrs[i].data;
4778             break;
4779         case MSR_CORE_PERF_GLOBAL_CTRL:
4780             env->msr_global_ctrl = msrs[i].data;
4781             break;
4782         case MSR_CORE_PERF_GLOBAL_STATUS:
4783             env->msr_global_status = msrs[i].data;
4784             break;
4785         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4786             env->msr_global_ovf_ctrl = msrs[i].data;
4787             break;
4788         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4789             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4790             break;
4791         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4792             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4793             break;
4794         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4795             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4796             break;
4797         case HV_X64_MSR_HYPERCALL:
4798             env->msr_hv_hypercall = msrs[i].data;
4799             break;
4800         case HV_X64_MSR_GUEST_OS_ID:
4801             env->msr_hv_guest_os_id = msrs[i].data;
4802             break;
4803         case HV_X64_MSR_APIC_ASSIST_PAGE:
4804             env->msr_hv_vapic = msrs[i].data;
4805             break;
4806         case HV_X64_MSR_REFERENCE_TSC:
4807             env->msr_hv_tsc = msrs[i].data;
4808             break;
4809         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4810             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4811             break;
4812         case HV_X64_MSR_VP_RUNTIME:
4813             env->msr_hv_runtime = msrs[i].data;
4814             break;
4815         case HV_X64_MSR_SCONTROL:
4816             env->msr_hv_synic_control = msrs[i].data;
4817             break;
4818         case HV_X64_MSR_SIEFP:
4819             env->msr_hv_synic_evt_page = msrs[i].data;
4820             break;
4821         case HV_X64_MSR_SIMP:
4822             env->msr_hv_synic_msg_page = msrs[i].data;
4823             break;
4824         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4825             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4826             break;
4827         case HV_X64_MSR_STIMER0_CONFIG:
4828         case HV_X64_MSR_STIMER1_CONFIG:
4829         case HV_X64_MSR_STIMER2_CONFIG:
4830         case HV_X64_MSR_STIMER3_CONFIG:
4831             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4832                                 msrs[i].data;
4833             break;
4834         case HV_X64_MSR_STIMER0_COUNT:
4835         case HV_X64_MSR_STIMER1_COUNT:
4836         case HV_X64_MSR_STIMER2_COUNT:
4837         case HV_X64_MSR_STIMER3_COUNT:
4838             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4839                                 msrs[i].data;
4840             break;
4841         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4842             env->msr_hv_reenlightenment_control = msrs[i].data;
4843             break;
4844         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4845             env->msr_hv_tsc_emulation_control = msrs[i].data;
4846             break;
4847         case HV_X64_MSR_TSC_EMULATION_STATUS:
4848             env->msr_hv_tsc_emulation_status = msrs[i].data;
4849             break;
4850         case HV_X64_MSR_SYNDBG_OPTIONS:
4851             env->msr_hv_syndbg_options = msrs[i].data;
4852             break;
4853         case MSR_MTRRdefType:
4854             env->mtrr_deftype = msrs[i].data;
4855             break;
4856         case MSR_MTRRfix64K_00000:
4857             env->mtrr_fixed[0] = msrs[i].data;
4858             break;
4859         case MSR_MTRRfix16K_80000:
4860             env->mtrr_fixed[1] = msrs[i].data;
4861             break;
4862         case MSR_MTRRfix16K_A0000:
4863             env->mtrr_fixed[2] = msrs[i].data;
4864             break;
4865         case MSR_MTRRfix4K_C0000:
4866             env->mtrr_fixed[3] = msrs[i].data;
4867             break;
4868         case MSR_MTRRfix4K_C8000:
4869             env->mtrr_fixed[4] = msrs[i].data;
4870             break;
4871         case MSR_MTRRfix4K_D0000:
4872             env->mtrr_fixed[5] = msrs[i].data;
4873             break;
4874         case MSR_MTRRfix4K_D8000:
4875             env->mtrr_fixed[6] = msrs[i].data;
4876             break;
4877         case MSR_MTRRfix4K_E0000:
4878             env->mtrr_fixed[7] = msrs[i].data;
4879             break;
4880         case MSR_MTRRfix4K_E8000:
4881             env->mtrr_fixed[8] = msrs[i].data;
4882             break;
4883         case MSR_MTRRfix4K_F0000:
4884             env->mtrr_fixed[9] = msrs[i].data;
4885             break;
4886         case MSR_MTRRfix4K_F8000:
4887             env->mtrr_fixed[10] = msrs[i].data;
4888             break;
4889         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4890             if (index & 1) {
4891                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4892                                                                mtrr_top_bits;
4893             } else {
4894                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4895             }
4896             break;
4897         case MSR_IA32_SPEC_CTRL:
4898             env->spec_ctrl = msrs[i].data;
4899             break;
4900         case MSR_AMD64_TSC_RATIO:
4901             env->amd_tsc_scale_msr = msrs[i].data;
4902             break;
4903         case MSR_IA32_TSX_CTRL:
4904             env->tsx_ctrl = msrs[i].data;
4905             break;
4906         case MSR_VIRT_SSBD:
4907             env->virt_ssbd = msrs[i].data;
4908             break;
4909         case MSR_IA32_RTIT_CTL:
4910             env->msr_rtit_ctrl = msrs[i].data;
4911             break;
4912         case MSR_IA32_RTIT_STATUS:
4913             env->msr_rtit_status = msrs[i].data;
4914             break;
4915         case MSR_IA32_RTIT_OUTPUT_BASE:
4916             env->msr_rtit_output_base = msrs[i].data;
4917             break;
4918         case MSR_IA32_RTIT_OUTPUT_MASK:
4919             env->msr_rtit_output_mask = msrs[i].data;
4920             break;
4921         case MSR_IA32_RTIT_CR3_MATCH:
4922             env->msr_rtit_cr3_match = msrs[i].data;
4923             break;
4924         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4925             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4926             break;
4927         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4928             env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4929                            msrs[i].data;
4930             break;
4931         case MSR_IA32_XFD:
4932             env->msr_xfd = msrs[i].data;
4933             break;
4934         case MSR_IA32_XFD_ERR:
4935             env->msr_xfd_err = msrs[i].data;
4936             break;
4937         case MSR_ARCH_LBR_CTL:
4938             env->msr_lbr_ctl = msrs[i].data;
4939             break;
4940         case MSR_ARCH_LBR_DEPTH:
4941             env->msr_lbr_depth = msrs[i].data;
4942             break;
4943         case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4944             env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4945             break;
4946         case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4947             env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4948             break;
4949         case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4950             env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4951             break;
4952         case MSR_K7_HWCR:
4953             env->msr_hwcr = msrs[i].data;
4954             break;
4955         }
4956     }
4957 
4958     return 0;
4959 }
4960 
4961 static int kvm_put_mp_state(X86CPU *cpu)
4962 {
4963     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4964 
4965     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4966 }
4967 
4968 static int kvm_get_mp_state(X86CPU *cpu)
4969 {
4970     CPUState *cs = CPU(cpu);
4971     CPUX86State *env = &cpu->env;
4972     struct kvm_mp_state mp_state;
4973     int ret;
4974 
4975     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4976     if (ret < 0) {
4977         return ret;
4978     }
4979     env->mp_state = mp_state.mp_state;
4980     if (kvm_irqchip_in_kernel()) {
4981         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4982     }
4983     return 0;
4984 }
4985 
4986 static int kvm_get_apic(X86CPU *cpu)
4987 {
4988     DeviceState *apic = cpu->apic_state;
4989     struct kvm_lapic_state kapic;
4990     int ret;
4991 
4992     if (apic && kvm_irqchip_in_kernel()) {
4993         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4994         if (ret < 0) {
4995             return ret;
4996         }
4997 
4998         kvm_get_apic_state(apic, &kapic);
4999     }
5000     return 0;
5001 }
5002 
5003 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
5004 {
5005     CPUState *cs = CPU(cpu);
5006     CPUX86State *env = &cpu->env;
5007     struct kvm_vcpu_events events = {};
5008 
5009     events.flags = 0;
5010 
5011     if (has_exception_payload) {
5012         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5013         events.exception.pending = env->exception_pending;
5014         events.exception_has_payload = env->exception_has_payload;
5015         events.exception_payload = env->exception_payload;
5016     }
5017     events.exception.nr = env->exception_nr;
5018     events.exception.injected = env->exception_injected;
5019     events.exception.has_error_code = env->has_error_code;
5020     events.exception.error_code = env->error_code;
5021 
5022     events.interrupt.injected = (env->interrupt_injected >= 0);
5023     events.interrupt.nr = env->interrupt_injected;
5024     events.interrupt.soft = env->soft_interrupt;
5025 
5026     events.nmi.injected = env->nmi_injected;
5027     events.nmi.pending = env->nmi_pending;
5028     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
5029 
5030     events.sipi_vector = env->sipi_vector;
5031 
5032     if (has_msr_smbase) {
5033         events.flags |= KVM_VCPUEVENT_VALID_SMM;
5034         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5035         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5036         if (kvm_irqchip_in_kernel()) {
5037             /* As soon as these are moved to the kernel, remove them
5038              * from cs->interrupt_request.
5039              */
5040             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5041             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5042             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5043         } else {
5044             /* Keep these in cs->interrupt_request.  */
5045             events.smi.pending = 0;
5046             events.smi.latched_init = 0;
5047         }
5048     }
5049 
5050     if (level >= KVM_PUT_RESET_STATE) {
5051         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5052         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5053             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5054         }
5055     }
5056 
5057     if (has_triple_fault_event) {
5058         events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5059         events.triple_fault.pending = env->triple_fault_pending;
5060     }
5061 
5062     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5063 }
5064 
5065 static int kvm_get_vcpu_events(X86CPU *cpu)
5066 {
5067     CPUX86State *env = &cpu->env;
5068     struct kvm_vcpu_events events;
5069     int ret;
5070 
5071     memset(&events, 0, sizeof(events));
5072     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5073     if (ret < 0) {
5074        return ret;
5075     }
5076 
5077     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5078         env->exception_pending = events.exception.pending;
5079         env->exception_has_payload = events.exception_has_payload;
5080         env->exception_payload = events.exception_payload;
5081     } else {
5082         env->exception_pending = 0;
5083         env->exception_has_payload = false;
5084     }
5085     env->exception_injected = events.exception.injected;
5086     env->exception_nr =
5087         (env->exception_pending || env->exception_injected) ?
5088         events.exception.nr : -1;
5089     env->has_error_code = events.exception.has_error_code;
5090     env->error_code = events.exception.error_code;
5091 
5092     env->interrupt_injected =
5093         events.interrupt.injected ? events.interrupt.nr : -1;
5094     env->soft_interrupt = events.interrupt.soft;
5095 
5096     env->nmi_injected = events.nmi.injected;
5097     env->nmi_pending = events.nmi.pending;
5098     if (events.nmi.masked) {
5099         env->hflags2 |= HF2_NMI_MASK;
5100     } else {
5101         env->hflags2 &= ~HF2_NMI_MASK;
5102     }
5103 
5104     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5105         if (events.smi.smm) {
5106             env->hflags |= HF_SMM_MASK;
5107         } else {
5108             env->hflags &= ~HF_SMM_MASK;
5109         }
5110         if (events.smi.pending) {
5111             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5112         } else {
5113             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5114         }
5115         if (events.smi.smm_inside_nmi) {
5116             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5117         } else {
5118             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5119         }
5120         if (events.smi.latched_init) {
5121             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5122         } else {
5123             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5124         }
5125     }
5126 
5127     if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5128         env->triple_fault_pending = events.triple_fault.pending;
5129     }
5130 
5131     env->sipi_vector = events.sipi_vector;
5132 
5133     return 0;
5134 }
5135 
5136 static int kvm_put_debugregs(X86CPU *cpu)
5137 {
5138     CPUX86State *env = &cpu->env;
5139     struct kvm_debugregs dbgregs;
5140     int i;
5141 
5142     memset(&dbgregs, 0, sizeof(dbgregs));
5143     for (i = 0; i < 4; i++) {
5144         dbgregs.db[i] = env->dr[i];
5145     }
5146     dbgregs.dr6 = env->dr[6];
5147     dbgregs.dr7 = env->dr[7];
5148     dbgregs.flags = 0;
5149 
5150     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5151 }
5152 
5153 static int kvm_get_debugregs(X86CPU *cpu)
5154 {
5155     CPUX86State *env = &cpu->env;
5156     struct kvm_debugregs dbgregs;
5157     int i, ret;
5158 
5159     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5160     if (ret < 0) {
5161         return ret;
5162     }
5163     for (i = 0; i < 4; i++) {
5164         env->dr[i] = dbgregs.db[i];
5165     }
5166     env->dr[4] = env->dr[6] = dbgregs.dr6;
5167     env->dr[5] = env->dr[7] = dbgregs.dr7;
5168 
5169     return 0;
5170 }
5171 
5172 static int kvm_put_nested_state(X86CPU *cpu)
5173 {
5174     CPUX86State *env = &cpu->env;
5175     int max_nested_state_len = kvm_max_nested_state_length();
5176 
5177     if (!env->nested_state) {
5178         return 0;
5179     }
5180 
5181     /*
5182      * Copy flags that are affected by reset from env->hflags and env->hflags2.
5183      */
5184     if (env->hflags & HF_GUEST_MASK) {
5185         env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5186     } else {
5187         env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5188     }
5189 
5190     /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5191     if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5192         env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5193     } else {
5194         env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5195     }
5196 
5197     assert(env->nested_state->size <= max_nested_state_len);
5198     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5199 }
5200 
5201 static int kvm_get_nested_state(X86CPU *cpu)
5202 {
5203     CPUX86State *env = &cpu->env;
5204     int max_nested_state_len = kvm_max_nested_state_length();
5205     int ret;
5206 
5207     if (!env->nested_state) {
5208         return 0;
5209     }
5210 
5211     /*
5212      * It is possible that migration restored a smaller size into
5213      * nested_state->hdr.size than what our kernel support.
5214      * We preserve migration origin nested_state->hdr.size for
5215      * call to KVM_SET_NESTED_STATE but wish that our next call
5216      * to KVM_GET_NESTED_STATE will use max size our kernel support.
5217      */
5218     env->nested_state->size = max_nested_state_len;
5219 
5220     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5221     if (ret < 0) {
5222         return ret;
5223     }
5224 
5225     /*
5226      * Copy flags that are affected by reset to env->hflags and env->hflags2.
5227      */
5228     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5229         env->hflags |= HF_GUEST_MASK;
5230     } else {
5231         env->hflags &= ~HF_GUEST_MASK;
5232     }
5233 
5234     /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5235     if (cpu_has_svm(env)) {
5236         if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5237             env->hflags2 |= HF2_GIF_MASK;
5238         } else {
5239             env->hflags2 &= ~HF2_GIF_MASK;
5240         }
5241     }
5242 
5243     return ret;
5244 }
5245 
5246 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5247 {
5248     X86CPU *x86_cpu = X86_CPU(cpu);
5249     int ret;
5250 
5251     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5252 
5253     /*
5254      * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5255      * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5256      * precede kvm_put_nested_state() when 'real' nested state is set.
5257      */
5258     if (level >= KVM_PUT_RESET_STATE) {
5259         ret = kvm_put_msr_feature_control(x86_cpu);
5260         if (ret < 0) {
5261             error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5262             return ret;
5263         }
5264     }
5265 
5266     /* must be before kvm_put_nested_state so that EFER.SVME is set */
5267     ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5268     if (ret < 0) {
5269         error_setg_errno(errp, -ret, "Failed to set special registers");
5270         return ret;
5271     }
5272 
5273     if (level >= KVM_PUT_RESET_STATE) {
5274         ret = kvm_put_nested_state(x86_cpu);
5275         if (ret < 0) {
5276             error_setg_errno(errp, -ret, "Failed to set nested state");
5277             return ret;
5278         }
5279     }
5280 
5281     if (level == KVM_PUT_FULL_STATE) {
5282         /* We don't check for kvm_arch_set_tsc_khz() errors here,
5283          * because TSC frequency mismatch shouldn't abort migration,
5284          * unless the user explicitly asked for a more strict TSC
5285          * setting (e.g. using an explicit "tsc-freq" option).
5286          */
5287         kvm_arch_set_tsc_khz(cpu);
5288     }
5289 
5290 #ifdef CONFIG_XEN_EMU
5291     if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5292         ret = kvm_put_xen_state(cpu);
5293         if (ret < 0) {
5294             error_setg_errno(errp, -ret, "Failed to set Xen state");
5295             return ret;
5296         }
5297     }
5298 #endif
5299 
5300     ret = kvm_getput_regs(x86_cpu, 1);
5301     if (ret < 0) {
5302         error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5303         return ret;
5304     }
5305     ret = kvm_put_xsave(x86_cpu);
5306     if (ret < 0) {
5307         error_setg_errno(errp, -ret, "Failed to set XSAVE");
5308         return ret;
5309     }
5310     ret = kvm_put_xcrs(x86_cpu);
5311     if (ret < 0) {
5312         error_setg_errno(errp, -ret, "Failed to set XCRs");
5313         return ret;
5314     }
5315     ret = kvm_put_msrs(x86_cpu, level);
5316     if (ret < 0) {
5317         error_setg_errno(errp, -ret, "Failed to set MSRs");
5318         return ret;
5319     }
5320     ret = kvm_put_vcpu_events(x86_cpu, level);
5321     if (ret < 0) {
5322         error_setg_errno(errp, -ret, "Failed to set vCPU events");
5323         return ret;
5324     }
5325     if (level >= KVM_PUT_RESET_STATE) {
5326         ret = kvm_put_mp_state(x86_cpu);
5327         if (ret < 0) {
5328             error_setg_errno(errp, -ret, "Failed to set MP state");
5329             return ret;
5330         }
5331     }
5332 
5333     ret = kvm_put_tscdeadline_msr(x86_cpu);
5334     if (ret < 0) {
5335         error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5336         return ret;
5337     }
5338     ret = kvm_put_debugregs(x86_cpu);
5339     if (ret < 0) {
5340         error_setg_errno(errp, -ret, "Failed to set debug registers");
5341         return ret;
5342     }
5343     return 0;
5344 }
5345 
5346 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5347 {
5348     X86CPU *cpu = X86_CPU(cs);
5349     int ret;
5350 
5351     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5352 
5353     ret = kvm_get_vcpu_events(cpu);
5354     if (ret < 0) {
5355         error_setg_errno(errp, -ret, "Failed to get vCPU events");
5356         goto out;
5357     }
5358     /*
5359      * KVM_GET_MPSTATE can modify CS and RIP, call it before
5360      * KVM_GET_REGS and KVM_GET_SREGS.
5361      */
5362     ret = kvm_get_mp_state(cpu);
5363     if (ret < 0) {
5364         error_setg_errno(errp, -ret, "Failed to get MP state");
5365         goto out;
5366     }
5367     ret = kvm_getput_regs(cpu, 0);
5368     if (ret < 0) {
5369         error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5370         goto out;
5371     }
5372     ret = kvm_get_xsave(cpu);
5373     if (ret < 0) {
5374         error_setg_errno(errp, -ret, "Failed to get XSAVE");
5375         goto out;
5376     }
5377     ret = kvm_get_xcrs(cpu);
5378     if (ret < 0) {
5379         error_setg_errno(errp, -ret, "Failed to get XCRs");
5380         goto out;
5381     }
5382     ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5383     if (ret < 0) {
5384         error_setg_errno(errp, -ret, "Failed to get special registers");
5385         goto out;
5386     }
5387     ret = kvm_get_msrs(cpu);
5388     if (ret < 0) {
5389         error_setg_errno(errp, -ret, "Failed to get MSRs");
5390         goto out;
5391     }
5392     ret = kvm_get_apic(cpu);
5393     if (ret < 0) {
5394         error_setg_errno(errp, -ret, "Failed to get APIC");
5395         goto out;
5396     }
5397     ret = kvm_get_debugregs(cpu);
5398     if (ret < 0) {
5399         error_setg_errno(errp, -ret, "Failed to get debug registers");
5400         goto out;
5401     }
5402     ret = kvm_get_nested_state(cpu);
5403     if (ret < 0) {
5404         error_setg_errno(errp, -ret, "Failed to get nested state");
5405         goto out;
5406     }
5407 #ifdef CONFIG_XEN_EMU
5408     if (xen_mode == XEN_EMULATE) {
5409         ret = kvm_get_xen_state(cs);
5410         if (ret < 0) {
5411             error_setg_errno(errp, -ret, "Failed to get Xen state");
5412             goto out;
5413         }
5414     }
5415 #endif
5416     ret = 0;
5417  out:
5418     cpu_sync_bndcs_hflags(&cpu->env);
5419     return ret;
5420 }
5421 
5422 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5423 {
5424     X86CPU *x86_cpu = X86_CPU(cpu);
5425     CPUX86State *env = &x86_cpu->env;
5426     int ret;
5427 
5428     /* Inject NMI */
5429     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5430         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5431             bql_lock();
5432             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5433             bql_unlock();
5434             DPRINTF("injected NMI\n");
5435             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5436             if (ret < 0) {
5437                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5438                         strerror(-ret));
5439             }
5440         }
5441         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5442             bql_lock();
5443             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5444             bql_unlock();
5445             DPRINTF("injected SMI\n");
5446             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5447             if (ret < 0) {
5448                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5449                         strerror(-ret));
5450             }
5451         }
5452     }
5453 
5454     if (!kvm_pic_in_kernel()) {
5455         bql_lock();
5456     }
5457 
5458     /* Force the VCPU out of its inner loop to process any INIT requests
5459      * or (for userspace APIC, but it is cheap to combine the checks here)
5460      * pending TPR access reports.
5461      */
5462     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5463         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5464             !(env->hflags & HF_SMM_MASK)) {
5465             cpu->exit_request = 1;
5466         }
5467         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5468             cpu->exit_request = 1;
5469         }
5470     }
5471 
5472     if (!kvm_pic_in_kernel()) {
5473         /* Try to inject an interrupt if the guest can accept it */
5474         if (run->ready_for_interrupt_injection &&
5475             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5476             (env->eflags & IF_MASK)) {
5477             int irq;
5478 
5479             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5480             irq = cpu_get_pic_interrupt(env);
5481             if (irq >= 0) {
5482                 struct kvm_interrupt intr;
5483 
5484                 intr.irq = irq;
5485                 DPRINTF("injected interrupt %d\n", irq);
5486                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5487                 if (ret < 0) {
5488                     fprintf(stderr,
5489                             "KVM: injection failed, interrupt lost (%s)\n",
5490                             strerror(-ret));
5491                 }
5492             }
5493         }
5494 
5495         /* If we have an interrupt but the guest is not ready to receive an
5496          * interrupt, request an interrupt window exit.  This will
5497          * cause a return to userspace as soon as the guest is ready to
5498          * receive interrupts. */
5499         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5500             run->request_interrupt_window = 1;
5501         } else {
5502             run->request_interrupt_window = 0;
5503         }
5504 
5505         DPRINTF("setting tpr\n");
5506         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5507 
5508         bql_unlock();
5509     }
5510 }
5511 
5512 static void kvm_rate_limit_on_bus_lock(void)
5513 {
5514     uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5515 
5516     if (delay_ns) {
5517         g_usleep(delay_ns / SCALE_US);
5518     }
5519 }
5520 
5521 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5522 {
5523     X86CPU *x86_cpu = X86_CPU(cpu);
5524     CPUX86State *env = &x86_cpu->env;
5525 
5526     if (run->flags & KVM_RUN_X86_SMM) {
5527         env->hflags |= HF_SMM_MASK;
5528     } else {
5529         env->hflags &= ~HF_SMM_MASK;
5530     }
5531     if (run->if_flag) {
5532         env->eflags |= IF_MASK;
5533     } else {
5534         env->eflags &= ~IF_MASK;
5535     }
5536     if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5537         kvm_rate_limit_on_bus_lock();
5538     }
5539 
5540 #ifdef CONFIG_XEN_EMU
5541     /*
5542      * If the callback is asserted as a GSI (or PCI INTx) then check if
5543      * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5544      * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5545      * EOI and only resample then, exactly how the VFIO eventfd pairs
5546      * are designed to work for level triggered interrupts.
5547      */
5548     if (x86_cpu->env.xen_callback_asserted) {
5549         kvm_xen_maybe_deassert_callback(cpu);
5550     }
5551 #endif
5552 
5553     /* We need to protect the apic state against concurrent accesses from
5554      * different threads in case the userspace irqchip is used. */
5555     if (!kvm_irqchip_in_kernel()) {
5556         bql_lock();
5557     }
5558     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5559     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5560     if (!kvm_irqchip_in_kernel()) {
5561         bql_unlock();
5562     }
5563     return cpu_get_mem_attrs(env);
5564 }
5565 
5566 int kvm_arch_process_async_events(CPUState *cs)
5567 {
5568     X86CPU *cpu = X86_CPU(cs);
5569     CPUX86State *env = &cpu->env;
5570 
5571     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5572         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5573         assert(env->mcg_cap);
5574 
5575         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5576 
5577         kvm_cpu_synchronize_state(cs);
5578 
5579         if (env->exception_nr == EXCP08_DBLE) {
5580             /* this means triple fault */
5581             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5582             cs->exit_request = 1;
5583             return 0;
5584         }
5585         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5586         env->has_error_code = 0;
5587 
5588         cs->halted = 0;
5589         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5590             env->mp_state = KVM_MP_STATE_RUNNABLE;
5591         }
5592     }
5593 
5594     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5595         !(env->hflags & HF_SMM_MASK)) {
5596         kvm_cpu_synchronize_state(cs);
5597         do_cpu_init(cpu);
5598     }
5599 
5600     if (kvm_irqchip_in_kernel()) {
5601         return 0;
5602     }
5603 
5604     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5605         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5606         apic_poll_irq(cpu->apic_state);
5607     }
5608     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5609          (env->eflags & IF_MASK)) ||
5610         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5611         cs->halted = 0;
5612     }
5613     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5614         kvm_cpu_synchronize_state(cs);
5615         do_cpu_sipi(cpu);
5616     }
5617     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5618         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5619         kvm_cpu_synchronize_state(cs);
5620         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5621                                       env->tpr_access_type);
5622     }
5623 
5624     return cs->halted;
5625 }
5626 
5627 static int kvm_handle_halt(X86CPU *cpu)
5628 {
5629     CPUState *cs = CPU(cpu);
5630     CPUX86State *env = &cpu->env;
5631 
5632     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5633           (env->eflags & IF_MASK)) &&
5634         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5635         cs->halted = 1;
5636         return EXCP_HLT;
5637     }
5638 
5639     return 0;
5640 }
5641 
5642 static int kvm_handle_tpr_access(X86CPU *cpu)
5643 {
5644     CPUState *cs = CPU(cpu);
5645     struct kvm_run *run = cs->kvm_run;
5646 
5647     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5648                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
5649                                                            : TPR_ACCESS_READ);
5650     return 1;
5651 }
5652 
5653 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5654 {
5655     static const uint8_t int3 = 0xcc;
5656 
5657     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5658         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5659         return -EINVAL;
5660     }
5661     return 0;
5662 }
5663 
5664 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5665 {
5666     uint8_t int3;
5667 
5668     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5669         return -EINVAL;
5670     }
5671     if (int3 != 0xcc) {
5672         return 0;
5673     }
5674     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5675         return -EINVAL;
5676     }
5677     return 0;
5678 }
5679 
5680 static struct {
5681     target_ulong addr;
5682     int len;
5683     int type;
5684 } hw_breakpoint[4];
5685 
5686 static int nb_hw_breakpoint;
5687 
5688 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5689 {
5690     int n;
5691 
5692     for (n = 0; n < nb_hw_breakpoint; n++) {
5693         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5694             (hw_breakpoint[n].len == len || len == -1)) {
5695             return n;
5696         }
5697     }
5698     return -1;
5699 }
5700 
5701 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5702 {
5703     switch (type) {
5704     case GDB_BREAKPOINT_HW:
5705         len = 1;
5706         break;
5707     case GDB_WATCHPOINT_WRITE:
5708     case GDB_WATCHPOINT_ACCESS:
5709         switch (len) {
5710         case 1:
5711             break;
5712         case 2:
5713         case 4:
5714         case 8:
5715             if (addr & (len - 1)) {
5716                 return -EINVAL;
5717             }
5718             break;
5719         default:
5720             return -EINVAL;
5721         }
5722         break;
5723     default:
5724         return -ENOSYS;
5725     }
5726 
5727     if (nb_hw_breakpoint == 4) {
5728         return -ENOBUFS;
5729     }
5730     if (find_hw_breakpoint(addr, len, type) >= 0) {
5731         return -EEXIST;
5732     }
5733     hw_breakpoint[nb_hw_breakpoint].addr = addr;
5734     hw_breakpoint[nb_hw_breakpoint].len = len;
5735     hw_breakpoint[nb_hw_breakpoint].type = type;
5736     nb_hw_breakpoint++;
5737 
5738     return 0;
5739 }
5740 
5741 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5742 {
5743     int n;
5744 
5745     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5746     if (n < 0) {
5747         return -ENOENT;
5748     }
5749     nb_hw_breakpoint--;
5750     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5751 
5752     return 0;
5753 }
5754 
5755 void kvm_arch_remove_all_hw_breakpoints(void)
5756 {
5757     nb_hw_breakpoint = 0;
5758 }
5759 
5760 static CPUWatchpoint hw_watchpoint;
5761 
5762 static int kvm_handle_debug(X86CPU *cpu,
5763                             struct kvm_debug_exit_arch *arch_info)
5764 {
5765     CPUState *cs = CPU(cpu);
5766     CPUX86State *env = &cpu->env;
5767     int ret = 0;
5768     int n;
5769 
5770     if (arch_info->exception == EXCP01_DB) {
5771         if (arch_info->dr6 & DR6_BS) {
5772             if (cs->singlestep_enabled) {
5773                 ret = EXCP_DEBUG;
5774             }
5775         } else {
5776             for (n = 0; n < 4; n++) {
5777                 if (arch_info->dr6 & (1 << n)) {
5778                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5779                     case 0x0:
5780                         ret = EXCP_DEBUG;
5781                         break;
5782                     case 0x1:
5783                         ret = EXCP_DEBUG;
5784                         cs->watchpoint_hit = &hw_watchpoint;
5785                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5786                         hw_watchpoint.flags = BP_MEM_WRITE;
5787                         break;
5788                     case 0x3:
5789                         ret = EXCP_DEBUG;
5790                         cs->watchpoint_hit = &hw_watchpoint;
5791                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5792                         hw_watchpoint.flags = BP_MEM_ACCESS;
5793                         break;
5794                     }
5795                 }
5796             }
5797         }
5798     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5799         ret = EXCP_DEBUG;
5800     }
5801     if (ret == 0) {
5802         cpu_synchronize_state(cs);
5803         assert(env->exception_nr == -1);
5804 
5805         /* pass to guest */
5806         kvm_queue_exception(env, arch_info->exception,
5807                             arch_info->exception == EXCP01_DB,
5808                             arch_info->dr6);
5809         env->has_error_code = 0;
5810     }
5811 
5812     return ret;
5813 }
5814 
5815 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5816 {
5817     const uint8_t type_code[] = {
5818         [GDB_BREAKPOINT_HW] = 0x0,
5819         [GDB_WATCHPOINT_WRITE] = 0x1,
5820         [GDB_WATCHPOINT_ACCESS] = 0x3
5821     };
5822     const uint8_t len_code[] = {
5823         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5824     };
5825     int n;
5826 
5827     if (kvm_sw_breakpoints_active(cpu)) {
5828         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5829     }
5830     if (nb_hw_breakpoint > 0) {
5831         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5832         dbg->arch.debugreg[7] = 0x0600;
5833         for (n = 0; n < nb_hw_breakpoint; n++) {
5834             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5835             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5836                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5837                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5838         }
5839     }
5840 }
5841 
5842 static int kvm_install_msr_filters(KVMState *s)
5843 {
5844     uint64_t zero = 0;
5845     struct kvm_msr_filter filter = {
5846         .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5847     };
5848     int i, j = 0;
5849 
5850     QEMU_BUILD_BUG_ON(ARRAY_SIZE(msr_handlers) != ARRAY_SIZE(filter.ranges));
5851     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5852         KVMMSRHandlers *handler = &msr_handlers[i];
5853         if (handler->msr) {
5854             struct kvm_msr_filter_range *range = &filter.ranges[j++];
5855 
5856             *range = (struct kvm_msr_filter_range) {
5857                 .flags = 0,
5858                 .nmsrs = 1,
5859                 .base = handler->msr,
5860                 .bitmap = (__u8 *)&zero,
5861             };
5862 
5863             if (handler->rdmsr) {
5864                 range->flags |= KVM_MSR_FILTER_READ;
5865             }
5866 
5867             if (handler->wrmsr) {
5868                 range->flags |= KVM_MSR_FILTER_WRITE;
5869             }
5870         }
5871     }
5872 
5873     return kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5874 }
5875 
5876 static int kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5877                           QEMUWRMSRHandler *wrmsr)
5878 {
5879     int i, ret;
5880 
5881     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5882         if (!msr_handlers[i].msr) {
5883             msr_handlers[i] = (KVMMSRHandlers) {
5884                 .msr = msr,
5885                 .rdmsr = rdmsr,
5886                 .wrmsr = wrmsr,
5887             };
5888 
5889             ret = kvm_install_msr_filters(s);
5890             if (ret) {
5891                 msr_handlers[i] = (KVMMSRHandlers) { };
5892                 return ret;
5893             }
5894 
5895             return 0;
5896         }
5897     }
5898 
5899     return -EINVAL;
5900 }
5901 
5902 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5903 {
5904     int i;
5905     bool r;
5906 
5907     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5908         KVMMSRHandlers *handler = &msr_handlers[i];
5909         if (run->msr.index == handler->msr) {
5910             if (handler->rdmsr) {
5911                 r = handler->rdmsr(cpu, handler->msr,
5912                                    (uint64_t *)&run->msr.data);
5913                 run->msr.error = r ? 0 : 1;
5914                 return 0;
5915             }
5916         }
5917     }
5918 
5919     g_assert_not_reached();
5920 }
5921 
5922 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5923 {
5924     int i;
5925     bool r;
5926 
5927     for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5928         KVMMSRHandlers *handler = &msr_handlers[i];
5929         if (run->msr.index == handler->msr) {
5930             if (handler->wrmsr) {
5931                 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5932                 run->msr.error = r ? 0 : 1;
5933                 return 0;
5934             }
5935         }
5936     }
5937 
5938     g_assert_not_reached();
5939 }
5940 
5941 static bool has_sgx_provisioning;
5942 
5943 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5944 {
5945     int fd, ret;
5946 
5947     if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5948         return false;
5949     }
5950 
5951     fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5952     if (fd < 0) {
5953         return false;
5954     }
5955 
5956     ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5957     if (ret) {
5958         error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5959         exit(1);
5960     }
5961     close(fd);
5962     return true;
5963 }
5964 
5965 bool kvm_enable_sgx_provisioning(KVMState *s)
5966 {
5967     return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5968 }
5969 
5970 static bool host_supports_vmx(void)
5971 {
5972     uint32_t ecx, unused;
5973 
5974     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5975     return ecx & CPUID_EXT_VMX;
5976 }
5977 
5978 /*
5979  * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
5980  * to service guest-initiated memory attribute update requests so that
5981  * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
5982  * backed by the private memory pool provided by guest_memfd, and as such
5983  * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
5984  *
5985  * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
5986  * migration, are not implemented here currently.
5987  *
5988  * For the guest_memfd use-case, these exits will generally be synthesized
5989  * by KVM based on platform-specific hypercalls, like GHCB requests in the
5990  * case of SEV-SNP, and not issued directly within the guest though the
5991  * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
5992  * not actually advertised to guests via the KVM CPUID feature bit, as
5993  * opposed to SEV live migration where it would be. Since it is unlikely the
5994  * SEV live migration use-case would be useful for guest-memfd backed guests,
5995  * because private/shared page tracking is already provided through other
5996  * means, these 2 use-cases should be treated as being mutually-exclusive.
5997  */
5998 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run)
5999 {
6000     uint64_t gpa, size, attributes;
6001 
6002     if (!machine_require_guest_memfd(current_machine))
6003         return -EINVAL;
6004 
6005     gpa = run->hypercall.args[0];
6006     size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
6007     attributes = run->hypercall.args[2];
6008 
6009     trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
6010 
6011     return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
6012 }
6013 
6014 static int kvm_handle_hypercall(struct kvm_run *run)
6015 {
6016     if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
6017         return kvm_handle_hc_map_gpa_range(run);
6018 
6019     return -EINVAL;
6020 }
6021 
6022 #define VMX_INVALID_GUEST_STATE 0x80000021
6023 
6024 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
6025 {
6026     X86CPU *cpu = X86_CPU(cs);
6027     uint64_t code;
6028     int ret;
6029     bool ctx_invalid;
6030     KVMState *state;
6031 
6032     switch (run->exit_reason) {
6033     case KVM_EXIT_HLT:
6034         DPRINTF("handle_hlt\n");
6035         bql_lock();
6036         ret = kvm_handle_halt(cpu);
6037         bql_unlock();
6038         break;
6039     case KVM_EXIT_SET_TPR:
6040         ret = 0;
6041         break;
6042     case KVM_EXIT_TPR_ACCESS:
6043         bql_lock();
6044         ret = kvm_handle_tpr_access(cpu);
6045         bql_unlock();
6046         break;
6047     case KVM_EXIT_FAIL_ENTRY:
6048         code = run->fail_entry.hardware_entry_failure_reason;
6049         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6050                 code);
6051         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6052             fprintf(stderr,
6053                     "\nIf you're running a guest on an Intel machine without "
6054                         "unrestricted mode\n"
6055                     "support, the failure can be most likely due to the guest "
6056                         "entering an invalid\n"
6057                     "state for Intel VT. For example, the guest maybe running "
6058                         "in big real mode\n"
6059                     "which is not supported on less recent Intel processors."
6060                         "\n\n");
6061         }
6062         ret = -1;
6063         break;
6064     case KVM_EXIT_EXCEPTION:
6065         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6066                 run->ex.exception, run->ex.error_code);
6067         ret = -1;
6068         break;
6069     case KVM_EXIT_DEBUG:
6070         DPRINTF("kvm_exit_debug\n");
6071         bql_lock();
6072         ret = kvm_handle_debug(cpu, &run->debug.arch);
6073         bql_unlock();
6074         break;
6075     case KVM_EXIT_HYPERV:
6076         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6077         break;
6078     case KVM_EXIT_IOAPIC_EOI:
6079         ioapic_eoi_broadcast(run->eoi.vector);
6080         ret = 0;
6081         break;
6082     case KVM_EXIT_X86_BUS_LOCK:
6083         /* already handled in kvm_arch_post_run */
6084         ret = 0;
6085         break;
6086     case KVM_EXIT_NOTIFY:
6087         ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6088         state = KVM_STATE(current_accel());
6089         if (ctx_invalid ||
6090             state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6091             warn_report("KVM internal error: Encountered a notify exit "
6092                         "with invalid context in guest.");
6093             ret = -1;
6094         } else {
6095             warn_report_once("KVM: Encountered a notify exit with valid "
6096                              "context in guest. "
6097                              "The guest could be misbehaving.");
6098             ret = 0;
6099         }
6100         break;
6101     case KVM_EXIT_X86_RDMSR:
6102         /* We only enable MSR filtering, any other exit is bogus */
6103         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6104         ret = kvm_handle_rdmsr(cpu, run);
6105         break;
6106     case KVM_EXIT_X86_WRMSR:
6107         /* We only enable MSR filtering, any other exit is bogus */
6108         assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6109         ret = kvm_handle_wrmsr(cpu, run);
6110         break;
6111 #ifdef CONFIG_XEN_EMU
6112     case KVM_EXIT_XEN:
6113         ret = kvm_xen_handle_exit(cpu, &run->xen);
6114         break;
6115 #endif
6116     case KVM_EXIT_HYPERCALL:
6117         ret = kvm_handle_hypercall(run);
6118         break;
6119     default:
6120         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6121         ret = -1;
6122         break;
6123     }
6124 
6125     return ret;
6126 }
6127 
6128 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6129 {
6130     X86CPU *cpu = X86_CPU(cs);
6131     CPUX86State *env = &cpu->env;
6132 
6133     kvm_cpu_synchronize_state(cs);
6134     return !(env->cr[0] & CR0_PE_MASK) ||
6135            ((env->segs[R_CS].selector  & 3) != 3);
6136 }
6137 
6138 void kvm_arch_init_irq_routing(KVMState *s)
6139 {
6140     /* We know at this point that we're using the in-kernel
6141      * irqchip, so we can use irqfds, and on x86 we know
6142      * we can use msi via irqfd and GSI routing.
6143      */
6144     kvm_msi_via_irqfd_allowed = true;
6145     kvm_gsi_routing_allowed = true;
6146 
6147     if (kvm_irqchip_is_split()) {
6148         KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6149         int i;
6150 
6151         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6152            MSI routes for signaling interrupts to the local apics. */
6153         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6154             if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6155                 error_report("Could not enable split IRQ mode.");
6156                 exit(1);
6157             }
6158         }
6159         kvm_irqchip_commit_route_changes(&c);
6160     }
6161 }
6162 
6163 int kvm_arch_irqchip_create(KVMState *s)
6164 {
6165     int ret;
6166     if (kvm_kernel_irqchip_split()) {
6167         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6168         if (ret) {
6169             error_report("Could not enable split irqchip mode: %s",
6170                          strerror(-ret));
6171             exit(1);
6172         } else {
6173             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6174             kvm_split_irqchip = true;
6175             return 1;
6176         }
6177     } else {
6178         return 0;
6179     }
6180 }
6181 
6182 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6183 {
6184     CPUX86State *env;
6185     uint64_t ext_id;
6186 
6187     if (!first_cpu) {
6188         return address;
6189     }
6190     env = &X86_CPU(first_cpu)->env;
6191     if (!(env->features[FEAT_KVM] & CPUID_KVM_MSI_EXT_DEST_ID)) {
6192         return address;
6193     }
6194 
6195     /*
6196      * If the remappable format bit is set, or the upper bits are
6197      * already set in address_hi, or the low extended bits aren't
6198      * there anyway, do nothing.
6199      */
6200     ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6201     if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6202         return address;
6203     }
6204 
6205     address &= ~ext_id;
6206     address |= ext_id << 35;
6207     return address;
6208 }
6209 
6210 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6211                              uint64_t address, uint32_t data, PCIDevice *dev)
6212 {
6213     X86IOMMUState *iommu = x86_iommu_get_default();
6214 
6215     if (iommu) {
6216         X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6217 
6218         if (class->int_remap) {
6219             int ret;
6220             MSIMessage src, dst;
6221 
6222             src.address = route->u.msi.address_hi;
6223             src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6224             src.address |= route->u.msi.address_lo;
6225             src.data = route->u.msi.data;
6226 
6227             ret = class->int_remap(iommu, &src, &dst, dev ?     \
6228                                    pci_requester_id(dev) :      \
6229                                    X86_IOMMU_SID_INVALID);
6230             if (ret) {
6231                 trace_kvm_x86_fixup_msi_error(route->gsi);
6232                 return 1;
6233             }
6234 
6235             /*
6236              * Handled untranslated compatibility format interrupt with
6237              * extended destination ID in the low bits 11-5. */
6238             dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6239 
6240             route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6241             route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6242             route->u.msi.data = dst.data;
6243             return 0;
6244         }
6245     }
6246 
6247 #ifdef CONFIG_XEN_EMU
6248     if (xen_mode == XEN_EMULATE) {
6249         int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6250 
6251         /*
6252          * If it was a PIRQ and successfully routed (handled == 0) or it was
6253          * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6254          */
6255         if (handled <= 0) {
6256             return handled;
6257         }
6258     }
6259 #endif
6260 
6261     address = kvm_swizzle_msi_ext_dest_id(address);
6262     route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6263     route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6264     return 0;
6265 }
6266 
6267 typedef struct MSIRouteEntry MSIRouteEntry;
6268 
6269 struct MSIRouteEntry {
6270     PCIDevice *dev;             /* Device pointer */
6271     int vector;                 /* MSI/MSIX vector index */
6272     int virq;                   /* Virtual IRQ index */
6273     QLIST_ENTRY(MSIRouteEntry) list;
6274 };
6275 
6276 /* List of used GSI routes */
6277 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6278     QLIST_HEAD_INITIALIZER(msi_route_list);
6279 
6280 void kvm_update_msi_routes_all(void *private, bool global,
6281                                uint32_t index, uint32_t mask)
6282 {
6283     int cnt = 0, vector;
6284     MSIRouteEntry *entry;
6285     MSIMessage msg;
6286     PCIDevice *dev;
6287 
6288     /* TODO: explicit route update */
6289     QLIST_FOREACH(entry, &msi_route_list, list) {
6290         cnt++;
6291         vector = entry->vector;
6292         dev = entry->dev;
6293         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6294             msg = msix_get_message(dev, vector);
6295         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6296             msg = msi_get_message(dev, vector);
6297         } else {
6298             /*
6299              * Either MSI/MSIX is disabled for the device, or the
6300              * specific message was masked out.  Skip this one.
6301              */
6302             continue;
6303         }
6304         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6305     }
6306     kvm_irqchip_commit_routes(kvm_state);
6307     trace_kvm_x86_update_msi_routes(cnt);
6308 }
6309 
6310 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6311                                 int vector, PCIDevice *dev)
6312 {
6313     static bool notify_list_inited = false;
6314     MSIRouteEntry *entry;
6315 
6316     if (!dev) {
6317         /* These are (possibly) IOAPIC routes only used for split
6318          * kernel irqchip mode, while what we are housekeeping are
6319          * PCI devices only. */
6320         return 0;
6321     }
6322 
6323     entry = g_new0(MSIRouteEntry, 1);
6324     entry->dev = dev;
6325     entry->vector = vector;
6326     entry->virq = route->gsi;
6327     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6328 
6329     trace_kvm_x86_add_msi_route(route->gsi);
6330 
6331     if (!notify_list_inited) {
6332         /* For the first time we do add route, add ourselves into
6333          * IOMMU's IEC notify list if needed. */
6334         X86IOMMUState *iommu = x86_iommu_get_default();
6335         if (iommu) {
6336             x86_iommu_iec_register_notifier(iommu,
6337                                             kvm_update_msi_routes_all,
6338                                             NULL);
6339         }
6340         notify_list_inited = true;
6341     }
6342     return 0;
6343 }
6344 
6345 int kvm_arch_release_virq_post(int virq)
6346 {
6347     MSIRouteEntry *entry, *next;
6348     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6349         if (entry->virq == virq) {
6350             trace_kvm_x86_remove_msi_route(virq);
6351             QLIST_REMOVE(entry, list);
6352             g_free(entry);
6353             break;
6354         }
6355     }
6356     return 0;
6357 }
6358 
6359 int kvm_arch_msi_data_to_gsi(uint32_t data)
6360 {
6361     abort();
6362 }
6363 
6364 bool kvm_has_waitpkg(void)
6365 {
6366     return has_msr_umwait;
6367 }
6368 
6369 #define ARCH_REQ_XCOMP_GUEST_PERM       0x1025
6370 
6371 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6372 {
6373     KVMState *s = kvm_state;
6374     uint64_t supported;
6375 
6376     mask &= XSTATE_DYNAMIC_MASK;
6377     if (!mask) {
6378         return;
6379     }
6380     /*
6381      * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6382      * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6383      * about them already because they are not supported features.
6384      */
6385     supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6386     supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6387     mask &= supported;
6388 
6389     while (mask) {
6390         int bit = ctz64(mask);
6391         int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6392         if (rc) {
6393             /*
6394              * Older kernel version (<5.17) do not support
6395              * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6396              * any dynamic feature from kvm_arch_get_supported_cpuid.
6397              */
6398             warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6399                         "for feature bit %d", bit);
6400         }
6401         mask &= ~BIT_ULL(bit);
6402     }
6403 }
6404 
6405 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6406 {
6407     KVMState *s = KVM_STATE(obj);
6408     return s->notify_vmexit;
6409 }
6410 
6411 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6412 {
6413     KVMState *s = KVM_STATE(obj);
6414 
6415     if (s->fd != -1) {
6416         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6417         return;
6418     }
6419 
6420     s->notify_vmexit = value;
6421 }
6422 
6423 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6424                                        const char *name, void *opaque,
6425                                        Error **errp)
6426 {
6427     KVMState *s = KVM_STATE(obj);
6428     uint32_t value = s->notify_window;
6429 
6430     visit_type_uint32(v, name, &value, errp);
6431 }
6432 
6433 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6434                                        const char *name, void *opaque,
6435                                        Error **errp)
6436 {
6437     KVMState *s = KVM_STATE(obj);
6438     uint32_t value;
6439 
6440     if (s->fd != -1) {
6441         error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6442         return;
6443     }
6444 
6445     if (!visit_type_uint32(v, name, &value, errp)) {
6446         return;
6447     }
6448 
6449     s->notify_window = value;
6450 }
6451 
6452 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6453                                      const char *name, void *opaque,
6454                                      Error **errp)
6455 {
6456     KVMState *s = KVM_STATE(obj);
6457     uint32_t value = s->xen_version;
6458 
6459     visit_type_uint32(v, name, &value, errp);
6460 }
6461 
6462 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6463                                      const char *name, void *opaque,
6464                                      Error **errp)
6465 {
6466     KVMState *s = KVM_STATE(obj);
6467     Error *error = NULL;
6468     uint32_t value;
6469 
6470     visit_type_uint32(v, name, &value, &error);
6471     if (error) {
6472         error_propagate(errp, error);
6473         return;
6474     }
6475 
6476     s->xen_version = value;
6477     if (value && xen_mode == XEN_DISABLED) {
6478         xen_mode = XEN_EMULATE;
6479     }
6480 }
6481 
6482 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6483                                                const char *name, void *opaque,
6484                                                Error **errp)
6485 {
6486     KVMState *s = KVM_STATE(obj);
6487     uint16_t value = s->xen_gnttab_max_frames;
6488 
6489     visit_type_uint16(v, name, &value, errp);
6490 }
6491 
6492 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6493                                                const char *name, void *opaque,
6494                                                Error **errp)
6495 {
6496     KVMState *s = KVM_STATE(obj);
6497     Error *error = NULL;
6498     uint16_t value;
6499 
6500     visit_type_uint16(v, name, &value, &error);
6501     if (error) {
6502         error_propagate(errp, error);
6503         return;
6504     }
6505 
6506     s->xen_gnttab_max_frames = value;
6507 }
6508 
6509 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6510                                              const char *name, void *opaque,
6511                                              Error **errp)
6512 {
6513     KVMState *s = KVM_STATE(obj);
6514     uint16_t value = s->xen_evtchn_max_pirq;
6515 
6516     visit_type_uint16(v, name, &value, errp);
6517 }
6518 
6519 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6520                                              const char *name, void *opaque,
6521                                              Error **errp)
6522 {
6523     KVMState *s = KVM_STATE(obj);
6524     Error *error = NULL;
6525     uint16_t value;
6526 
6527     visit_type_uint16(v, name, &value, &error);
6528     if (error) {
6529         error_propagate(errp, error);
6530         return;
6531     }
6532 
6533     s->xen_evtchn_max_pirq = value;
6534 }
6535 
6536 void kvm_arch_accel_class_init(ObjectClass *oc)
6537 {
6538     object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6539                                    &NotifyVmexitOption_lookup,
6540                                    kvm_arch_get_notify_vmexit,
6541                                    kvm_arch_set_notify_vmexit);
6542     object_class_property_set_description(oc, "notify-vmexit",
6543                                           "Enable notify VM exit");
6544 
6545     object_class_property_add(oc, "notify-window", "uint32",
6546                               kvm_arch_get_notify_window,
6547                               kvm_arch_set_notify_window,
6548                               NULL, NULL);
6549     object_class_property_set_description(oc, "notify-window",
6550                                           "Clock cycles without an event window "
6551                                           "after which a notification VM exit occurs");
6552 
6553     object_class_property_add(oc, "xen-version", "uint32",
6554                               kvm_arch_get_xen_version,
6555                               kvm_arch_set_xen_version,
6556                               NULL, NULL);
6557     object_class_property_set_description(oc, "xen-version",
6558                                           "Xen version to be emulated "
6559                                           "(in XENVER_version form "
6560                                           "e.g. 0x4000a for 4.10)");
6561 
6562     object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6563                               kvm_arch_get_xen_gnttab_max_frames,
6564                               kvm_arch_set_xen_gnttab_max_frames,
6565                               NULL, NULL);
6566     object_class_property_set_description(oc, "xen-gnttab-max-frames",
6567                                           "Maximum number of grant table frames");
6568 
6569     object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6570                               kvm_arch_get_xen_evtchn_max_pirq,
6571                               kvm_arch_set_xen_evtchn_max_pirq,
6572                               NULL, NULL);
6573     object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6574                                           "Maximum number of Xen PIRQs");
6575 }
6576 
6577 void kvm_set_max_apic_id(uint32_t max_apic_id)
6578 {
6579     kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);
6580 }
6581