xref: /qemu/target/i386/hvf/hvf.c (revision 3e2c6727cb6b6311ee129c24b561bb87495f1a25)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  *
24  * Parts Copyright (c) 2011 NetApp, Inc.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without
28  * modification, are permitted provided that the following conditions
29  * are met:
30  * 1. Redistributions of source code must retain the above copyright
31  *    notice, this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright
33  *    notice, this list of conditions and the following disclaimer in the
34  *    documentation and/or other materials provided with the distribution.
35  *
36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  */
48 
49 #include "qemu/osdep.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "qapi/error.h"
53 #include "migration/blocker.h"
54 
55 #include "sysemu/hvf.h"
56 #include "sysemu/hvf_int.h"
57 #include "sysemu/runstate.h"
58 #include "sysemu/cpus.h"
59 #include "hvf-i386.h"
60 #include "vmcs.h"
61 #include "vmx.h"
62 #include "x86.h"
63 #include "x86_descr.h"
64 #include "x86_mmu.h"
65 #include "x86_decode.h"
66 #include "x86_emu.h"
67 #include "x86_task.h"
68 #include "x86hvf.h"
69 
70 #include <Hypervisor/hv.h>
71 #include <Hypervisor/hv_vmx.h>
72 #include <sys/sysctl.h>
73 
74 #include "hw/i386/apic_internal.h"
75 #include "qemu/main-loop.h"
76 #include "qemu/accel.h"
77 #include "target/i386/cpu.h"
78 
79 static Error *invtsc_mig_blocker;
80 
81 void vmx_update_tpr(CPUState *cpu)
82 {
83     /* TODO: need integrate APIC handling */
84     X86CPU *x86_cpu = X86_CPU(cpu);
85     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
86     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
87 
88     wreg(cpu->accel->fd, HV_X86_TPR, tpr);
89     if (irr == -1) {
90         wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
91     } else {
92         wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
93               irr >> 4);
94     }
95 }
96 
97 static void update_apic_tpr(CPUState *cpu)
98 {
99     X86CPU *x86_cpu = X86_CPU(cpu);
100     int tpr = rreg(cpu->accel->fd, HV_X86_TPR) >> 4;
101     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
102 }
103 
104 #define VECTORING_INFO_VECTOR_MASK     0xff
105 
106 void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
107                   int direction, int size, int count)
108 {
109     int i;
110     uint8_t *ptr = buffer;
111 
112     for (i = 0; i < count; i++) {
113         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
114                          ptr, size,
115                          direction);
116         ptr += size;
117     }
118 }
119 
120 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
121 {
122     int read, write;
123 
124     /* EPT fault on an instruction fetch doesn't make sense here */
125     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
126         return false;
127     }
128 
129     /* EPT fault must be a read fault or a write fault */
130     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
131     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
132     if ((read | write) == 0) {
133         return false;
134     }
135 
136     if (write && slot) {
137         if (slot->flags & HVF_SLOT_LOG) {
138             uint64_t dirty_page_start = gpa & ~(TARGET_PAGE_SIZE - 1u);
139             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
140             hv_vm_protect(dirty_page_start, TARGET_PAGE_SIZE,
141                           HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
142         }
143     }
144 
145     /*
146      * The EPT violation must have been caused by accessing a
147      * guest-physical address that is a translation of a guest-linear
148      * address.
149      */
150     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
151         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
152         return false;
153     }
154 
155     if (!slot) {
156         return true;
157     }
158     if (!memory_region_is_ram(slot->region) &&
159         !(read && memory_region_is_romd(slot->region))) {
160         return true;
161     }
162     return false;
163 }
164 
165 void hvf_arch_vcpu_destroy(CPUState *cpu)
166 {
167     X86CPU *x86_cpu = X86_CPU(cpu);
168     CPUX86State *env = &x86_cpu->env;
169 
170     g_free(env->hvf_mmio_buf);
171 }
172 
173 static void init_tsc_freq(CPUX86State *env)
174 {
175     size_t length;
176     uint64_t tsc_freq;
177 
178     if (env->tsc_khz != 0) {
179         return;
180     }
181 
182     length = sizeof(uint64_t);
183     if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
184         return;
185     }
186     env->tsc_khz = tsc_freq / 1000;  /* Hz to KHz */
187 }
188 
189 static void init_apic_bus_freq(CPUX86State *env)
190 {
191     size_t length;
192     uint64_t bus_freq;
193 
194     if (env->apic_bus_freq != 0) {
195         return;
196     }
197 
198     length = sizeof(uint64_t);
199     if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
200         return;
201     }
202     env->apic_bus_freq = bus_freq;
203 }
204 
205 static inline bool tsc_is_known(CPUX86State *env)
206 {
207     return env->tsc_khz != 0;
208 }
209 
210 static inline bool apic_bus_freq_is_known(CPUX86State *env)
211 {
212     return env->apic_bus_freq != 0;
213 }
214 
215 void hvf_kick_vcpu_thread(CPUState *cpu)
216 {
217     cpus_kick_thread(cpu);
218 }
219 
220 int hvf_arch_init(void)
221 {
222     return 0;
223 }
224 
225 int hvf_arch_init_vcpu(CPUState *cpu)
226 {
227     X86CPU *x86cpu = X86_CPU(cpu);
228     CPUX86State *env = &x86cpu->env;
229     Error *local_err = NULL;
230     int r;
231     uint64_t reqCap;
232 
233     init_emu();
234     init_decoder();
235 
236     hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
237     env->hvf_mmio_buf = g_new(char, 4096);
238 
239     if (x86cpu->vmware_cpuid_freq) {
240         init_tsc_freq(env);
241         init_apic_bus_freq(env);
242 
243         if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
244             error_report("vmware-cpuid-freq: feature couldn't be enabled");
245         }
246     }
247 
248     if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
249         invtsc_mig_blocker == NULL) {
250         error_setg(&invtsc_mig_blocker,
251                    "State blocked by non-migratable CPU device (invtsc flag)");
252         r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
253         if (r < 0) {
254             error_report_err(local_err);
255             return r;
256         }
257     }
258 
259 
260     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
261         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
262         abort();
263     }
264     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
265         &hvf_state->hvf_caps->vmx_cap_procbased)) {
266         abort();
267     }
268     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
269         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
270         abort();
271     }
272     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
273         &hvf_state->hvf_caps->vmx_cap_entry)) {
274         abort();
275     }
276 
277     /* set VMCS control fields */
278     wvmcs(cpu->accel->fd, VMCS_PIN_BASED_CTLS,
279           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
280                    VMCS_PIN_BASED_CTLS_EXTINT |
281                    VMCS_PIN_BASED_CTLS_NMI |
282                    VMCS_PIN_BASED_CTLS_VNMI));
283     wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS,
284           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
285                    VMCS_PRI_PROC_BASED_CTLS_HLT |
286                    VMCS_PRI_PROC_BASED_CTLS_MWAIT |
287                    VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
288                    VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
289           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
290 
291     reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES;
292 
293     /* Is RDTSCP support in CPUID?  If so, enable it in the VMCS. */
294     if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
295         reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
296     }
297 
298     wvmcs(cpu->accel->fd, VMCS_SEC_PROC_BASED_CTLS,
299           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));
300 
301     wvmcs(cpu->accel->fd, VMCS_ENTRY_CTLS,
302           cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 0));
303     wvmcs(cpu->accel->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
304 
305     wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
306 
307     x86cpu = X86_CPU(cpu);
308     x86cpu->env.xsave_buf_len = 4096;
309     x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
310 
311     /*
312      * The allocated storage must be large enough for all of the
313      * possible XSAVE state components.
314      */
315     assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
316 
317     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_STAR, 1);
318     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_LSTAR, 1);
319     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_CSTAR, 1);
320     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FMASK, 1);
321     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FSBASE, 1);
322     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_GSBASE, 1);
323     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_KERNELGSBASE, 1);
324     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_TSC_AUX, 1);
325     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_TSC, 1);
326     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_CS, 1);
327     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_EIP, 1);
328     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_ESP, 1);
329 
330     return 0;
331 }
332 
333 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
334 {
335     X86CPU *x86_cpu = X86_CPU(cpu);
336     CPUX86State *env = &x86_cpu->env;
337 
338     env->exception_nr = -1;
339     env->exception_pending = 0;
340     env->exception_injected = 0;
341     env->interrupt_injected = -1;
342     env->nmi_injected = false;
343     env->ins_len = 0;
344     env->has_error_code = false;
345     if (idtvec_info & VMCS_IDT_VEC_VALID) {
346         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
347         case VMCS_IDT_VEC_HWINTR:
348         case VMCS_IDT_VEC_SWINTR:
349             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
350             break;
351         case VMCS_IDT_VEC_NMI:
352             env->nmi_injected = true;
353             break;
354         case VMCS_IDT_VEC_HWEXCEPTION:
355         case VMCS_IDT_VEC_SWEXCEPTION:
356             env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
357             env->exception_injected = 1;
358             break;
359         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
360         default:
361             abort();
362         }
363         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
364             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
365             env->ins_len = ins_len;
366         }
367         if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
368             env->has_error_code = true;
369             env->error_code = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_ERROR);
370         }
371     }
372     if ((rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
373         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
374         env->hflags2 |= HF2_NMI_MASK;
375     } else {
376         env->hflags2 &= ~HF2_NMI_MASK;
377     }
378     if (rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
379          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
380          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
381         env->hflags |= HF_INHIBIT_IRQ_MASK;
382     } else {
383         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
384     }
385 }
386 
387 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
388                               uint32_t *eax, uint32_t *ebx,
389                               uint32_t *ecx, uint32_t *edx)
390 {
391     /*
392      * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
393      * leafs 0x40000001-0x4000000F are filled with zeros
394      * Provides vmware-cpuid-freq support to hvf
395      *
396      * Note: leaf 0x40000000 not exposes HVF,
397      * leaving hypervisor signature empty
398      */
399 
400     if (index < 0x40000000 || index > 0x40000010 ||
401         !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
402 
403         cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
404         return;
405     }
406 
407     switch (index) {
408     case 0x40000000:
409         *eax = 0x40000010;    /* Max available cpuid leaf */
410         *ebx = 0;             /* Leave signature empty */
411         *ecx = 0;
412         *edx = 0;
413         break;
414     case 0x40000010:
415         *eax = env->tsc_khz;
416         *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
417         *ecx = 0;
418         *edx = 0;
419         break;
420     default:
421         *eax = 0;
422         *ebx = 0;
423         *ecx = 0;
424         *edx = 0;
425         break;
426     }
427 }
428 
429 int hvf_vcpu_exec(CPUState *cpu)
430 {
431     X86CPU *x86_cpu = X86_CPU(cpu);
432     CPUX86State *env = &x86_cpu->env;
433     int ret = 0;
434     uint64_t rip = 0;
435 
436     if (hvf_process_events(cpu)) {
437         return EXCP_HLT;
438     }
439 
440     do {
441         if (cpu->accel->dirty) {
442             hvf_put_registers(cpu);
443             cpu->accel->dirty = false;
444         }
445 
446         if (hvf_inject_interrupts(cpu)) {
447             return EXCP_INTERRUPT;
448         }
449         vmx_update_tpr(cpu);
450 
451         bql_unlock();
452         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
453             bql_lock();
454             return EXCP_HLT;
455         }
456 
457         hv_return_t r  = hv_vcpu_run(cpu->accel->fd);
458         assert_hvf_ok(r);
459 
460         /* handle VMEXIT */
461         uint64_t exit_reason = rvmcs(cpu->accel->fd, VMCS_EXIT_REASON);
462         uint64_t exit_qual = rvmcs(cpu->accel->fd, VMCS_EXIT_QUALIFICATION);
463         uint32_t ins_len = (uint32_t)rvmcs(cpu->accel->fd,
464                                            VMCS_EXIT_INSTRUCTION_LENGTH);
465 
466         uint64_t idtvec_info = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
467 
468         hvf_store_events(cpu, ins_len, idtvec_info);
469         rip = rreg(cpu->accel->fd, HV_X86_RIP);
470         env->eflags = rreg(cpu->accel->fd, HV_X86_RFLAGS);
471 
472         bql_lock();
473 
474         update_apic_tpr(cpu);
475         current_cpu = cpu;
476 
477         ret = 0;
478         switch (exit_reason) {
479         case EXIT_REASON_HLT: {
480             macvm_set_rip(cpu, rip + ins_len);
481             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
482                 (env->eflags & IF_MASK))
483                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
484                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
485                 cpu->halted = 1;
486                 ret = EXCP_HLT;
487                 break;
488             }
489             ret = EXCP_INTERRUPT;
490             break;
491         }
492         case EXIT_REASON_MWAIT: {
493             ret = EXCP_INTERRUPT;
494             break;
495         }
496         /* Need to check if MMIO or unmapped fault */
497         case EXIT_REASON_EPT_FAULT:
498         {
499             hvf_slot *slot;
500             uint64_t gpa = rvmcs(cpu->accel->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
501 
502             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
503                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
504                 vmx_set_nmi_blocking(cpu);
505             }
506 
507             slot = hvf_find_overlap_slot(gpa, 1);
508             /* mmio */
509             if (ept_emulation_fault(slot, gpa, exit_qual)) {
510                 struct x86_decode decode;
511 
512                 load_regs(cpu);
513                 decode_instruction(env, &decode);
514                 exec_instruction(env, &decode);
515                 store_regs(cpu);
516                 break;
517             }
518             break;
519         }
520         case EXIT_REASON_INOUT:
521         {
522             uint32_t in = (exit_qual & 8) != 0;
523             uint32_t size =  (exit_qual & 7) + 1;
524             uint32_t string =  (exit_qual & 16) != 0;
525             uint32_t port =  exit_qual >> 16;
526             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
527 
528             if (!string && in) {
529                 uint64_t val = 0;
530                 load_regs(cpu);
531                 hvf_handle_io(env, port, &val, 0, size, 1);
532                 if (size == 1) {
533                     AL(env) = val;
534                 } else if (size == 2) {
535                     AX(env) = val;
536                 } else if (size == 4) {
537                     RAX(env) = (uint32_t)val;
538                 } else {
539                     RAX(env) = (uint64_t)val;
540                 }
541                 env->eip += ins_len;
542                 store_regs(cpu);
543                 break;
544             } else if (!string && !in) {
545                 RAX(env) = rreg(cpu->accel->fd, HV_X86_RAX);
546                 hvf_handle_io(env, port, &RAX(env), 1, size, 1);
547                 macvm_set_rip(cpu, rip + ins_len);
548                 break;
549             }
550             struct x86_decode decode;
551 
552             load_regs(cpu);
553             decode_instruction(env, &decode);
554             assert(ins_len == decode.len);
555             exec_instruction(env, &decode);
556             store_regs(cpu);
557 
558             break;
559         }
560         case EXIT_REASON_CPUID: {
561             uint32_t rax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
562             uint32_t rbx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RBX);
563             uint32_t rcx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
564             uint32_t rdx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
565 
566             if (rax == 1) {
567                 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
568                 env->cr[4] = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
569             }
570             hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
571 
572             wreg(cpu->accel->fd, HV_X86_RAX, rax);
573             wreg(cpu->accel->fd, HV_X86_RBX, rbx);
574             wreg(cpu->accel->fd, HV_X86_RCX, rcx);
575             wreg(cpu->accel->fd, HV_X86_RDX, rdx);
576 
577             macvm_set_rip(cpu, rip + ins_len);
578             break;
579         }
580         case EXIT_REASON_XSETBV: {
581             X86CPU *x86_cpu = X86_CPU(cpu);
582             CPUX86State *env = &x86_cpu->env;
583             uint32_t eax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
584             uint32_t ecx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
585             uint32_t edx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
586 
587             if (ecx) {
588                 macvm_set_rip(cpu, rip + ins_len);
589                 break;
590             }
591             env->xcr0 = ((uint64_t)edx << 32) | eax;
592             wreg(cpu->accel->fd, HV_X86_XCR0, env->xcr0 | 1);
593             macvm_set_rip(cpu, rip + ins_len);
594             break;
595         }
596         case EXIT_REASON_INTR_WINDOW:
597             vmx_clear_int_window_exiting(cpu);
598             ret = EXCP_INTERRUPT;
599             break;
600         case EXIT_REASON_NMI_WINDOW:
601             vmx_clear_nmi_window_exiting(cpu);
602             ret = EXCP_INTERRUPT;
603             break;
604         case EXIT_REASON_EXT_INTR:
605             /* force exit and allow io handling */
606             ret = EXCP_INTERRUPT;
607             break;
608         case EXIT_REASON_RDMSR:
609         case EXIT_REASON_WRMSR:
610         {
611             load_regs(cpu);
612             if (exit_reason == EXIT_REASON_RDMSR) {
613                 simulate_rdmsr(env);
614             } else {
615                 simulate_wrmsr(env);
616             }
617             env->eip += ins_len;
618             store_regs(cpu);
619             break;
620         }
621         case EXIT_REASON_CR_ACCESS: {
622             int cr;
623             int reg;
624 
625             load_regs(cpu);
626             cr = exit_qual & 15;
627             reg = (exit_qual >> 8) & 15;
628 
629             switch (cr) {
630             case 0x0: {
631                 macvm_set_cr0(cpu->accel->fd, RRX(env, reg));
632                 break;
633             }
634             case 4: {
635                 macvm_set_cr4(cpu->accel->fd, RRX(env, reg));
636                 break;
637             }
638             case 8: {
639                 X86CPU *x86_cpu = X86_CPU(cpu);
640                 if (exit_qual & 0x10) {
641                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
642                 } else {
643                     int tpr = RRX(env, reg);
644                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
645                     ret = EXCP_INTERRUPT;
646                 }
647                 break;
648             }
649             default:
650                 error_report("Unrecognized CR %d", cr);
651                 abort();
652             }
653             env->eip += ins_len;
654             store_regs(cpu);
655             break;
656         }
657         case EXIT_REASON_APIC_ACCESS: { /* TODO */
658             struct x86_decode decode;
659 
660             load_regs(cpu);
661             decode_instruction(env, &decode);
662             exec_instruction(env, &decode);
663             store_regs(cpu);
664             break;
665         }
666         case EXIT_REASON_TPR: {
667             ret = 1;
668             break;
669         }
670         case EXIT_REASON_TASK_SWITCH: {
671             uint64_t vinfo = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
672             x68_segment_selector sel = {.sel = exit_qual & 0xffff};
673             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
674              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
675              & VMCS_INTR_T_MASK);
676             break;
677         }
678         case EXIT_REASON_TRIPLE_FAULT: {
679             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
680             ret = EXCP_INTERRUPT;
681             break;
682         }
683         case EXIT_REASON_RDPMC:
684             wreg(cpu->accel->fd, HV_X86_RAX, 0);
685             wreg(cpu->accel->fd, HV_X86_RDX, 0);
686             macvm_set_rip(cpu, rip + ins_len);
687             break;
688         case VMX_REASON_VMCALL:
689             env->exception_nr = EXCP0D_GPF;
690             env->exception_injected = 1;
691             env->has_error_code = true;
692             env->error_code = 0;
693             break;
694         default:
695             error_report("%llx: unhandled exit %llx", rip, exit_reason);
696         }
697     } while (ret == 0);
698 
699     return ret;
700 }
701 
702 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
703 {
704     return -ENOSYS;
705 }
706 
707 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
708 {
709     return -ENOSYS;
710 }
711 
712 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
713 {
714     return -ENOSYS;
715 }
716 
717 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
718 {
719     return -ENOSYS;
720 }
721 
722 void hvf_arch_remove_all_hw_breakpoints(void)
723 {
724 }
725 
726 void hvf_arch_update_guest_debug(CPUState *cpu)
727 {
728 }
729 
730 bool hvf_arch_supports_guest_debug(void)
731 {
732     return false;
733 }
734