xref: /qemu/target/i386/hvf/hvf.c (revision 15606965400b8f3038d6e85cfe5956d5a6ac33a1)
1 /* Copyright 2008 IBM Corporation
2  *           2008 Red Hat, Inc.
3  * Copyright 2011 Intel Corporation
4  * Copyright 2016 Veertu, Inc.
5  * Copyright 2017 The Android Open Source Project
6  *
7  * QEMU Hypervisor.framework support
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of version 2 of the GNU General Public
11  * License as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, see <http://www.gnu.org/licenses/>.
20  *
21  * This file contain code under public domain from the hvdos project:
22  * https://github.com/mist64/hvdos
23  *
24  * Parts Copyright (c) 2011 NetApp, Inc.
25  * All rights reserved.
26  *
27  * Redistribution and use in source and binary forms, with or without
28  * modification, are permitted provided that the following conditions
29  * are met:
30  * 1. Redistributions of source code must retain the above copyright
31  *    notice, this list of conditions and the following disclaimer.
32  * 2. Redistributions in binary form must reproduce the above copyright
33  *    notice, this list of conditions and the following disclaimer in the
34  *    documentation and/or other materials provided with the distribution.
35  *
36  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
37  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
40  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46  * SUCH DAMAGE.
47  */
48 
49 #include "qemu/osdep.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "qapi/error.h"
53 #include "migration/blocker.h"
54 
55 #include "system/hvf.h"
56 #include "system/hvf_int.h"
57 #include "system/runstate.h"
58 #include "system/cpus.h"
59 #include "hvf-i386.h"
60 #include "vmcs.h"
61 #include "vmx.h"
62 #include "x86.h"
63 #include "x86_descr.h"
64 #include "x86_flags.h"
65 #include "x86_mmu.h"
66 #include "x86_decode.h"
67 #include "x86_emu.h"
68 #include "x86_task.h"
69 #include "x86hvf.h"
70 
71 #include <Hypervisor/hv.h>
72 #include <Hypervisor/hv_vmx.h>
73 #include <sys/sysctl.h>
74 
75 #include "hw/i386/apic_internal.h"
76 #include "qemu/main-loop.h"
77 #include "qemu/accel.h"
78 #include "target/i386/cpu.h"
79 
80 static Error *invtsc_mig_blocker;
81 
82 void vmx_update_tpr(CPUState *cpu)
83 {
84     /* TODO: need integrate APIC handling */
85     X86CPU *x86_cpu = X86_CPU(cpu);
86     int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
87     int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
88 
89     wreg(cpu->accel->fd, HV_X86_TPR, tpr);
90     if (irr == -1) {
91         wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
92     } else {
93         wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
94               irr >> 4);
95     }
96 }
97 
98 static void update_apic_tpr(CPUState *cpu)
99 {
100     X86CPU *x86_cpu = X86_CPU(cpu);
101     int tpr = rreg(cpu->accel->fd, HV_X86_TPR) >> 4;
102     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
103 }
104 
105 #define VECTORING_INFO_VECTOR_MASK     0xff
106 
107 void hvf_handle_io(CPUState *env, uint16_t port, void *buffer,
108                   int direction, int size, int count)
109 {
110     int i;
111     uint8_t *ptr = buffer;
112 
113     for (i = 0; i < count; i++) {
114         address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
115                          ptr, size,
116                          direction);
117         ptr += size;
118     }
119 }
120 
121 static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
122 {
123     int read, write;
124 
125     /* EPT fault on an instruction fetch doesn't make sense here */
126     if (ept_qual & EPT_VIOLATION_INST_FETCH) {
127         return false;
128     }
129 
130     /* EPT fault must be a read fault or a write fault */
131     read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
132     write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
133     if ((read | write) == 0) {
134         return false;
135     }
136 
137     if (write && slot) {
138         if (slot->flags & HVF_SLOT_LOG) {
139             uint64_t dirty_page_start = gpa & ~(TARGET_PAGE_SIZE - 1u);
140             memory_region_set_dirty(slot->region, gpa - slot->start, 1);
141             hv_vm_protect(dirty_page_start, TARGET_PAGE_SIZE,
142                           HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
143         }
144     }
145 
146     /*
147      * The EPT violation must have been caused by accessing a
148      * guest-physical address that is a translation of a guest-linear
149      * address.
150      */
151     if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
152         (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
153         return false;
154     }
155 
156     if (!slot) {
157         return true;
158     }
159     if (!memory_region_is_ram(slot->region) &&
160         !(read && memory_region_is_romd(slot->region))) {
161         return true;
162     }
163     return false;
164 }
165 
166 void hvf_arch_vcpu_destroy(CPUState *cpu)
167 {
168     X86CPU *x86_cpu = X86_CPU(cpu);
169     CPUX86State *env = &x86_cpu->env;
170 
171     g_free(env->hvf_mmio_buf);
172 }
173 
174 static void init_tsc_freq(CPUX86State *env)
175 {
176     size_t length;
177     uint64_t tsc_freq;
178 
179     if (env->tsc_khz != 0) {
180         return;
181     }
182 
183     length = sizeof(uint64_t);
184     if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
185         return;
186     }
187     env->tsc_khz = tsc_freq / 1000;  /* Hz to KHz */
188 }
189 
190 static void init_apic_bus_freq(CPUX86State *env)
191 {
192     size_t length;
193     uint64_t bus_freq;
194 
195     if (env->apic_bus_freq != 0) {
196         return;
197     }
198 
199     length = sizeof(uint64_t);
200     if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
201         return;
202     }
203     env->apic_bus_freq = bus_freq;
204 }
205 
206 static inline bool tsc_is_known(CPUX86State *env)
207 {
208     return env->tsc_khz != 0;
209 }
210 
211 static inline bool apic_bus_freq_is_known(CPUX86State *env)
212 {
213     return env->apic_bus_freq != 0;
214 }
215 
216 void hvf_kick_vcpu_thread(CPUState *cpu)
217 {
218     cpus_kick_thread(cpu);
219     hv_vcpu_interrupt(&cpu->accel->fd, 1);
220 }
221 
222 int hvf_arch_init(void)
223 {
224     return 0;
225 }
226 
227 hv_return_t hvf_arch_vm_create(MachineState *ms, uint32_t pa_range)
228 {
229     return hv_vm_create(HV_VM_DEFAULT);
230 }
231 
232 int hvf_arch_init_vcpu(CPUState *cpu)
233 {
234     X86CPU *x86cpu = X86_CPU(cpu);
235     CPUX86State *env = &x86cpu->env;
236     Error *local_err = NULL;
237     int r;
238     uint64_t reqCap;
239 
240     init_emu();
241     init_decoder();
242 
243     if (hvf_state->hvf_caps == NULL) {
244         hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
245     }
246     env->hvf_mmio_buf = g_new(char, 4096);
247 
248     if (x86cpu->vmware_cpuid_freq) {
249         init_tsc_freq(env);
250         init_apic_bus_freq(env);
251 
252         if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
253             error_report("vmware-cpuid-freq: feature couldn't be enabled");
254         }
255     }
256 
257     if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
258         invtsc_mig_blocker == NULL) {
259         error_setg(&invtsc_mig_blocker,
260                    "State blocked by non-migratable CPU device (invtsc flag)");
261         r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
262         if (r < 0) {
263             error_report_err(local_err);
264             return r;
265         }
266     }
267 
268 
269     if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
270         &hvf_state->hvf_caps->vmx_cap_pinbased)) {
271         abort();
272     }
273     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
274         &hvf_state->hvf_caps->vmx_cap_procbased)) {
275         abort();
276     }
277     if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
278         &hvf_state->hvf_caps->vmx_cap_procbased2)) {
279         abort();
280     }
281     if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
282         &hvf_state->hvf_caps->vmx_cap_entry)) {
283         abort();
284     }
285 
286     /* set VMCS control fields */
287     wvmcs(cpu->accel->fd, VMCS_PIN_BASED_CTLS,
288           cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
289                    VMCS_PIN_BASED_CTLS_EXTINT |
290                    VMCS_PIN_BASED_CTLS_NMI |
291                    VMCS_PIN_BASED_CTLS_VNMI));
292     wvmcs(cpu->accel->fd, VMCS_PRI_PROC_BASED_CTLS,
293           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
294                    VMCS_PRI_PROC_BASED_CTLS_HLT |
295                    VMCS_PRI_PROC_BASED_CTLS_MWAIT |
296                    VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
297                    VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
298           VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
299 
300     reqCap = VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES;
301 
302     /* Is RDTSCP support in CPUID?  If so, enable it in the VMCS. */
303     if (hvf_get_supported_cpuid(0x80000001, 0, R_EDX) & CPUID_EXT2_RDTSCP) {
304         reqCap |= VMCS_PRI_PROC_BASED2_CTLS_RDTSCP;
305     }
306 
307     wvmcs(cpu->accel->fd, VMCS_SEC_PROC_BASED_CTLS,
308           cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2, reqCap));
309 
310     wvmcs(cpu->accel->fd, VMCS_ENTRY_CTLS,
311           cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry, 0));
312     wvmcs(cpu->accel->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
313 
314     wvmcs(cpu->accel->fd, VMCS_TPR_THRESHOLD, 0);
315 
316     x86cpu = X86_CPU(cpu);
317     x86cpu->env.xsave_buf_len = 4096;
318     x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
319 
320     /*
321      * The allocated storage must be large enough for all of the
322      * possible XSAVE state components.
323      */
324     assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
325 
326     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_STAR, 1);
327     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_LSTAR, 1);
328     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_CSTAR, 1);
329     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FMASK, 1);
330     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_FSBASE, 1);
331     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_GSBASE, 1);
332     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_KERNELGSBASE, 1);
333     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_TSC_AUX, 1);
334     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_TSC, 1);
335     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_CS, 1);
336     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_EIP, 1);
337     hv_vcpu_enable_native_msr(cpu->accel->fd, MSR_IA32_SYSENTER_ESP, 1);
338 
339     return 0;
340 }
341 
342 static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
343 {
344     X86CPU *x86_cpu = X86_CPU(cpu);
345     CPUX86State *env = &x86_cpu->env;
346 
347     env->exception_nr = -1;
348     env->exception_pending = 0;
349     env->exception_injected = 0;
350     env->interrupt_injected = -1;
351     env->nmi_injected = false;
352     env->ins_len = 0;
353     env->has_error_code = false;
354     if (idtvec_info & VMCS_IDT_VEC_VALID) {
355         switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
356         case VMCS_IDT_VEC_HWINTR:
357         case VMCS_IDT_VEC_SWINTR:
358             env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
359             break;
360         case VMCS_IDT_VEC_NMI:
361             env->nmi_injected = true;
362             break;
363         case VMCS_IDT_VEC_HWEXCEPTION:
364         case VMCS_IDT_VEC_SWEXCEPTION:
365             env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
366             env->exception_injected = 1;
367             break;
368         case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
369         default:
370             abort();
371         }
372         if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
373             (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
374             env->ins_len = ins_len;
375         }
376         if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
377             env->has_error_code = true;
378             env->error_code = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_ERROR);
379         }
380     }
381     if ((rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
382         VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
383         env->hflags2 |= HF2_NMI_MASK;
384     } else {
385         env->hflags2 &= ~HF2_NMI_MASK;
386     }
387     if (rvmcs(cpu->accel->fd, VMCS_GUEST_INTERRUPTIBILITY) &
388          (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
389          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
390         env->hflags |= HF_INHIBIT_IRQ_MASK;
391     } else {
392         env->hflags &= ~HF_INHIBIT_IRQ_MASK;
393     }
394 }
395 
396 static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
397                               uint32_t *eax, uint32_t *ebx,
398                               uint32_t *ecx, uint32_t *edx)
399 {
400     /*
401      * A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
402      * leafs 0x40000001-0x4000000F are filled with zeros
403      * Provides vmware-cpuid-freq support to hvf
404      *
405      * Note: leaf 0x40000000 not exposes HVF,
406      * leaving hypervisor signature empty
407      */
408 
409     if (index < 0x40000000 || index > 0x40000010 ||
410         !tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
411 
412         cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
413         return;
414     }
415 
416     switch (index) {
417     case 0x40000000:
418         *eax = 0x40000010;    /* Max available cpuid leaf */
419         *ebx = 0;             /* Leave signature empty */
420         *ecx = 0;
421         *edx = 0;
422         break;
423     case 0x40000010:
424         *eax = env->tsc_khz;
425         *ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
426         *ecx = 0;
427         *edx = 0;
428         break;
429     default:
430         *eax = 0;
431         *ebx = 0;
432         *ecx = 0;
433         *edx = 0;
434         break;
435     }
436 }
437 
438 void hvf_load_regs(CPUState *cs)
439 {
440     X86CPU *cpu = X86_CPU(cs);
441     CPUX86State *env = &cpu->env;
442 
443     int i = 0;
444     RRX(env, R_EAX) = rreg(cs->accel->fd, HV_X86_RAX);
445     RRX(env, R_EBX) = rreg(cs->accel->fd, HV_X86_RBX);
446     RRX(env, R_ECX) = rreg(cs->accel->fd, HV_X86_RCX);
447     RRX(env, R_EDX) = rreg(cs->accel->fd, HV_X86_RDX);
448     RRX(env, R_ESI) = rreg(cs->accel->fd, HV_X86_RSI);
449     RRX(env, R_EDI) = rreg(cs->accel->fd, HV_X86_RDI);
450     RRX(env, R_ESP) = rreg(cs->accel->fd, HV_X86_RSP);
451     RRX(env, R_EBP) = rreg(cs->accel->fd, HV_X86_RBP);
452     for (i = 8; i < 16; i++) {
453         RRX(env, i) = rreg(cs->accel->fd, HV_X86_RAX + i);
454     }
455 
456     env->eflags = rreg(cs->accel->fd, HV_X86_RFLAGS);
457     rflags_to_lflags(env);
458     env->eip = rreg(cs->accel->fd, HV_X86_RIP);
459 }
460 
461 void hvf_store_regs(CPUState *cs)
462 {
463     X86CPU *cpu = X86_CPU(cs);
464     CPUX86State *env = &cpu->env;
465 
466     int i = 0;
467     wreg(cs->accel->fd, HV_X86_RAX, RAX(env));
468     wreg(cs->accel->fd, HV_X86_RBX, RBX(env));
469     wreg(cs->accel->fd, HV_X86_RCX, RCX(env));
470     wreg(cs->accel->fd, HV_X86_RDX, RDX(env));
471     wreg(cs->accel->fd, HV_X86_RSI, RSI(env));
472     wreg(cs->accel->fd, HV_X86_RDI, RDI(env));
473     wreg(cs->accel->fd, HV_X86_RBP, RBP(env));
474     wreg(cs->accel->fd, HV_X86_RSP, RSP(env));
475     for (i = 8; i < 16; i++) {
476         wreg(cs->accel->fd, HV_X86_RAX + i, RRX(env, i));
477     }
478 
479     lflags_to_rflags(env);
480     wreg(cs->accel->fd, HV_X86_RFLAGS, env->eflags);
481     macvm_set_rip(cs, env->eip);
482 }
483 
484 void hvf_simulate_rdmsr(CPUX86State *env)
485 {
486     X86CPU *cpu = env_archcpu(env);
487     CPUState *cs = env_cpu(env);
488     uint32_t msr = ECX(env);
489     uint64_t val = 0;
490 
491     switch (msr) {
492     case MSR_IA32_TSC:
493         val = rdtscp() + rvmcs(cs->accel->fd, VMCS_TSC_OFFSET);
494         break;
495     case MSR_IA32_APICBASE:
496         val = cpu_get_apic_base(cpu->apic_state);
497         break;
498     case MSR_APIC_START ... MSR_APIC_END: {
499         int ret;
500         int index = (uint32_t)env->regs[R_ECX] - MSR_APIC_START;
501 
502         ret = apic_msr_read(index, &val);
503         if (ret < 0) {
504             x86_emul_raise_exception(env, EXCP0D_GPF, 0);
505         }
506 
507         break;
508     }
509     case MSR_IA32_UCODE_REV:
510         val = cpu->ucode_rev;
511         break;
512     case MSR_EFER:
513         val = rvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER);
514         break;
515     case MSR_FSBASE:
516         val = rvmcs(cs->accel->fd, VMCS_GUEST_FS_BASE);
517         break;
518     case MSR_GSBASE:
519         val = rvmcs(cs->accel->fd, VMCS_GUEST_GS_BASE);
520         break;
521     case MSR_KERNELGSBASE:
522         val = rvmcs(cs->accel->fd, VMCS_HOST_FS_BASE);
523         break;
524     case MSR_STAR:
525         abort();
526         break;
527     case MSR_LSTAR:
528         abort();
529         break;
530     case MSR_CSTAR:
531         abort();
532         break;
533     case MSR_IA32_MISC_ENABLE:
534         val = env->msr_ia32_misc_enable;
535         break;
536     case MSR_MTRRphysBase(0):
537     case MSR_MTRRphysBase(1):
538     case MSR_MTRRphysBase(2):
539     case MSR_MTRRphysBase(3):
540     case MSR_MTRRphysBase(4):
541     case MSR_MTRRphysBase(5):
542     case MSR_MTRRphysBase(6):
543     case MSR_MTRRphysBase(7):
544         val = env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base;
545         break;
546     case MSR_MTRRphysMask(0):
547     case MSR_MTRRphysMask(1):
548     case MSR_MTRRphysMask(2):
549     case MSR_MTRRphysMask(3):
550     case MSR_MTRRphysMask(4):
551     case MSR_MTRRphysMask(5):
552     case MSR_MTRRphysMask(6):
553     case MSR_MTRRphysMask(7):
554         val = env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask;
555         break;
556     case MSR_MTRRfix64K_00000:
557         val = env->mtrr_fixed[0];
558         break;
559     case MSR_MTRRfix16K_80000:
560     case MSR_MTRRfix16K_A0000:
561         val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1];
562         break;
563     case MSR_MTRRfix4K_C0000:
564     case MSR_MTRRfix4K_C8000:
565     case MSR_MTRRfix4K_D0000:
566     case MSR_MTRRfix4K_D8000:
567     case MSR_MTRRfix4K_E0000:
568     case MSR_MTRRfix4K_E8000:
569     case MSR_MTRRfix4K_F0000:
570     case MSR_MTRRfix4K_F8000:
571         val = env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3];
572         break;
573     case MSR_MTRRdefType:
574         val = env->mtrr_deftype;
575         break;
576     case MSR_CORE_THREAD_COUNT:
577         val = cpu_x86_get_msr_core_thread_count(cpu);
578         break;
579     default:
580         /* fprintf(stderr, "%s: unknown msr 0x%x\n", __func__, msr); */
581         val = 0;
582         break;
583     }
584 
585     RAX(env) = (uint32_t)val;
586     RDX(env) = (uint32_t)(val >> 32);
587 }
588 
589 void hvf_simulate_wrmsr(CPUX86State *env)
590 {
591     X86CPU *cpu = env_archcpu(env);
592     CPUState *cs = env_cpu(env);
593     uint32_t msr = ECX(env);
594     uint64_t data = ((uint64_t)EDX(env) << 32) | EAX(env);
595 
596     switch (msr) {
597     case MSR_IA32_TSC:
598         break;
599     case MSR_IA32_APICBASE: {
600         int r;
601 
602         r = cpu_set_apic_base(cpu->apic_state, data);
603         if (r < 0) {
604             x86_emul_raise_exception(env, EXCP0D_GPF, 0);
605         }
606 
607         break;
608     }
609     case MSR_APIC_START ... MSR_APIC_END: {
610         int ret;
611         int index = (uint32_t)env->regs[R_ECX] - MSR_APIC_START;
612 
613         ret = apic_msr_write(index, data);
614         if (ret < 0) {
615             x86_emul_raise_exception(env, EXCP0D_GPF, 0);
616         }
617 
618         break;
619     }
620     case MSR_FSBASE:
621         wvmcs(cs->accel->fd, VMCS_GUEST_FS_BASE, data);
622         break;
623     case MSR_GSBASE:
624         wvmcs(cs->accel->fd, VMCS_GUEST_GS_BASE, data);
625         break;
626     case MSR_KERNELGSBASE:
627         wvmcs(cs->accel->fd, VMCS_HOST_FS_BASE, data);
628         break;
629     case MSR_STAR:
630         abort();
631         break;
632     case MSR_LSTAR:
633         abort();
634         break;
635     case MSR_CSTAR:
636         abort();
637         break;
638     case MSR_EFER:
639         /*printf("new efer %llx\n", EFER(cs));*/
640         wvmcs(cs->accel->fd, VMCS_GUEST_IA32_EFER, data);
641         if (data & MSR_EFER_NXE) {
642             hv_vcpu_invalidate_tlb(cs->accel->fd);
643         }
644         break;
645     case MSR_MTRRphysBase(0):
646     case MSR_MTRRphysBase(1):
647     case MSR_MTRRphysBase(2):
648     case MSR_MTRRphysBase(3):
649     case MSR_MTRRphysBase(4):
650     case MSR_MTRRphysBase(5):
651     case MSR_MTRRphysBase(6):
652     case MSR_MTRRphysBase(7):
653         env->mtrr_var[(ECX(env) - MSR_MTRRphysBase(0)) / 2].base = data;
654         break;
655     case MSR_MTRRphysMask(0):
656     case MSR_MTRRphysMask(1):
657     case MSR_MTRRphysMask(2):
658     case MSR_MTRRphysMask(3):
659     case MSR_MTRRphysMask(4):
660     case MSR_MTRRphysMask(5):
661     case MSR_MTRRphysMask(6):
662     case MSR_MTRRphysMask(7):
663         env->mtrr_var[(ECX(env) - MSR_MTRRphysMask(0)) / 2].mask = data;
664         break;
665     case MSR_MTRRfix64K_00000:
666         env->mtrr_fixed[ECX(env) - MSR_MTRRfix64K_00000] = data;
667         break;
668     case MSR_MTRRfix16K_80000:
669     case MSR_MTRRfix16K_A0000:
670         env->mtrr_fixed[ECX(env) - MSR_MTRRfix16K_80000 + 1] = data;
671         break;
672     case MSR_MTRRfix4K_C0000:
673     case MSR_MTRRfix4K_C8000:
674     case MSR_MTRRfix4K_D0000:
675     case MSR_MTRRfix4K_D8000:
676     case MSR_MTRRfix4K_E0000:
677     case MSR_MTRRfix4K_E8000:
678     case MSR_MTRRfix4K_F0000:
679     case MSR_MTRRfix4K_F8000:
680         env->mtrr_fixed[ECX(env) - MSR_MTRRfix4K_C0000 + 3] = data;
681         break;
682     case MSR_MTRRdefType:
683         env->mtrr_deftype = data;
684         break;
685     default:
686         break;
687     }
688 
689     /* Related to support known hypervisor interface */
690     /* if (g_hypervisor_iface)
691          g_hypervisor_iface->wrmsr_handler(cs, msr, data);
692 
693     printf("write msr %llx\n", RCX(cs));*/
694 }
695 
696 int hvf_vcpu_exec(CPUState *cpu)
697 {
698     X86CPU *x86_cpu = X86_CPU(cpu);
699     CPUX86State *env = &x86_cpu->env;
700     int ret = 0;
701     uint64_t rip = 0;
702 
703     if (hvf_process_events(cpu)) {
704         return EXCP_HLT;
705     }
706 
707     do {
708         if (cpu->accel->dirty) {
709             hvf_put_registers(cpu);
710             cpu->accel->dirty = false;
711         }
712 
713         if (hvf_inject_interrupts(cpu)) {
714             return EXCP_INTERRUPT;
715         }
716         vmx_update_tpr(cpu);
717 
718         bql_unlock();
719         if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
720             bql_lock();
721             return EXCP_HLT;
722         }
723 
724         hv_return_t r = hv_vcpu_run_until(cpu->accel->fd, HV_DEADLINE_FOREVER);
725         assert_hvf_ok(r);
726 
727         /* handle VMEXIT */
728         uint64_t exit_reason = rvmcs(cpu->accel->fd, VMCS_EXIT_REASON);
729         uint64_t exit_qual = rvmcs(cpu->accel->fd, VMCS_EXIT_QUALIFICATION);
730         uint32_t ins_len = (uint32_t)rvmcs(cpu->accel->fd,
731                                            VMCS_EXIT_INSTRUCTION_LENGTH);
732 
733         uint64_t idtvec_info = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
734 
735         hvf_store_events(cpu, ins_len, idtvec_info);
736         rip = rreg(cpu->accel->fd, HV_X86_RIP);
737         env->eflags = rreg(cpu->accel->fd, HV_X86_RFLAGS);
738 
739         bql_lock();
740 
741         update_apic_tpr(cpu);
742         current_cpu = cpu;
743 
744         ret = 0;
745         switch (exit_reason) {
746         case EXIT_REASON_HLT: {
747             macvm_set_rip(cpu, rip + ins_len);
748             if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
749                 (env->eflags & IF_MASK))
750                 && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
751                 !(idtvec_info & VMCS_IDT_VEC_VALID)) {
752                 cpu->halted = 1;
753                 ret = EXCP_HLT;
754                 break;
755             }
756             ret = EXCP_INTERRUPT;
757             break;
758         }
759         case EXIT_REASON_MWAIT: {
760             ret = EXCP_INTERRUPT;
761             break;
762         }
763         /* Need to check if MMIO or unmapped fault */
764         case EXIT_REASON_EPT_FAULT:
765         {
766             hvf_slot *slot;
767             uint64_t gpa = rvmcs(cpu->accel->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
768 
769             if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
770                 ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
771                 vmx_set_nmi_blocking(cpu);
772             }
773 
774             slot = hvf_find_overlap_slot(gpa, 1);
775             /* mmio */
776             if (ept_emulation_fault(slot, gpa, exit_qual)) {
777                 struct x86_decode decode;
778 
779                 hvf_load_regs(cpu);
780                 decode_instruction(env, &decode);
781                 exec_instruction(env, &decode);
782                 hvf_store_regs(cpu);
783                 break;
784             }
785             break;
786         }
787         case EXIT_REASON_INOUT:
788         {
789             uint32_t in = (exit_qual & 8) != 0;
790             uint32_t size =  (exit_qual & 7) + 1;
791             uint32_t string =  (exit_qual & 16) != 0;
792             uint32_t port =  exit_qual >> 16;
793             /*uint32_t rep = (exit_qual & 0x20) != 0;*/
794 
795             if (!string && in) {
796                 uint64_t val = 0;
797                 hvf_load_regs(cpu);
798                 hvf_handle_io(env_cpu(env), port, &val, 0, size, 1);
799                 if (size == 1) {
800                     AL(env) = val;
801                 } else if (size == 2) {
802                     AX(env) = val;
803                 } else if (size == 4) {
804                     RAX(env) = (uint32_t)val;
805                 } else {
806                     RAX(env) = (uint64_t)val;
807                 }
808                 env->eip += ins_len;
809                 hvf_store_regs(cpu);
810                 break;
811             } else if (!string && !in) {
812                 RAX(env) = rreg(cpu->accel->fd, HV_X86_RAX);
813                 hvf_handle_io(env_cpu(env), port, &RAX(env), 1, size, 1);
814                 macvm_set_rip(cpu, rip + ins_len);
815                 break;
816             }
817             struct x86_decode decode;
818 
819             hvf_load_regs(cpu);
820             decode_instruction(env, &decode);
821             assert(ins_len == decode.len);
822             exec_instruction(env, &decode);
823             hvf_store_regs(cpu);
824 
825             break;
826         }
827         case EXIT_REASON_CPUID: {
828             uint32_t rax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
829             uint32_t rbx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RBX);
830             uint32_t rcx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
831             uint32_t rdx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
832 
833             if (rax == 1) {
834                 /* CPUID1.ecx.OSXSAVE needs to know CR4 */
835                 env->cr[4] = rvmcs(cpu->accel->fd, VMCS_GUEST_CR4);
836             }
837             hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
838 
839             wreg(cpu->accel->fd, HV_X86_RAX, rax);
840             wreg(cpu->accel->fd, HV_X86_RBX, rbx);
841             wreg(cpu->accel->fd, HV_X86_RCX, rcx);
842             wreg(cpu->accel->fd, HV_X86_RDX, rdx);
843 
844             macvm_set_rip(cpu, rip + ins_len);
845             break;
846         }
847         case EXIT_REASON_XSETBV: {
848             uint32_t eax = (uint32_t)rreg(cpu->accel->fd, HV_X86_RAX);
849             uint32_t ecx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RCX);
850             uint32_t edx = (uint32_t)rreg(cpu->accel->fd, HV_X86_RDX);
851 
852             if (ecx) {
853                 macvm_set_rip(cpu, rip + ins_len);
854                 break;
855             }
856             env->xcr0 = ((uint64_t)edx << 32) | eax;
857             wreg(cpu->accel->fd, HV_X86_XCR0, env->xcr0 | 1);
858             macvm_set_rip(cpu, rip + ins_len);
859             break;
860         }
861         case EXIT_REASON_INTR_WINDOW:
862             vmx_clear_int_window_exiting(cpu);
863             ret = EXCP_INTERRUPT;
864             break;
865         case EXIT_REASON_NMI_WINDOW:
866             vmx_clear_nmi_window_exiting(cpu);
867             ret = EXCP_INTERRUPT;
868             break;
869         case EXIT_REASON_EXT_INTR:
870             /* force exit and allow io handling */
871             ret = EXCP_INTERRUPT;
872             break;
873         case EXIT_REASON_RDMSR:
874         case EXIT_REASON_WRMSR:
875         {
876             hvf_load_regs(cpu);
877             if (exit_reason == EXIT_REASON_RDMSR) {
878                 hvf_simulate_rdmsr(env);
879             } else {
880                 hvf_simulate_wrmsr(env);
881             }
882             env->eip += ins_len;
883             hvf_store_regs(cpu);
884             break;
885         }
886         case EXIT_REASON_CR_ACCESS: {
887             int cr;
888             int reg;
889 
890             hvf_load_regs(cpu);
891             cr = exit_qual & 15;
892             reg = (exit_qual >> 8) & 15;
893 
894             switch (cr) {
895             case 0x0: {
896                 macvm_set_cr0(cpu->accel->fd, RRX(env, reg));
897                 break;
898             }
899             case 4: {
900                 macvm_set_cr4(cpu->accel->fd, RRX(env, reg));
901                 break;
902             }
903             case 8: {
904                 if (exit_qual & 0x10) {
905                     RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
906                 } else {
907                     int tpr = RRX(env, reg);
908                     cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
909                     ret = EXCP_INTERRUPT;
910                 }
911                 break;
912             }
913             default:
914                 error_report("Unrecognized CR %d", cr);
915                 abort();
916             }
917             env->eip += ins_len;
918             hvf_store_regs(cpu);
919             break;
920         }
921         case EXIT_REASON_APIC_ACCESS: { /* TODO */
922             struct x86_decode decode;
923 
924             hvf_load_regs(cpu);
925             decode_instruction(env, &decode);
926             exec_instruction(env, &decode);
927             hvf_store_regs(cpu);
928             break;
929         }
930         case EXIT_REASON_TPR: {
931             ret = 1;
932             break;
933         }
934         case EXIT_REASON_TASK_SWITCH: {
935             uint64_t vinfo = rvmcs(cpu->accel->fd, VMCS_IDT_VECTORING_INFO);
936             x86_segment_selector sel = {.sel = exit_qual & 0xffff};
937             vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
938              vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
939              & VMCS_INTR_T_MASK);
940             break;
941         }
942         case EXIT_REASON_TRIPLE_FAULT: {
943             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
944             ret = EXCP_INTERRUPT;
945             break;
946         }
947         case EXIT_REASON_RDPMC:
948             wreg(cpu->accel->fd, HV_X86_RAX, 0);
949             wreg(cpu->accel->fd, HV_X86_RDX, 0);
950             macvm_set_rip(cpu, rip + ins_len);
951             break;
952         case VMX_REASON_VMCALL:
953             env->exception_nr = EXCP0D_GPF;
954             env->exception_injected = 1;
955             env->has_error_code = true;
956             env->error_code = 0;
957             break;
958         default:
959             error_report("%llx: unhandled exit %llx", rip, exit_reason);
960         }
961     } while (ret == 0);
962 
963     return ret;
964 }
965 
966 int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
967 {
968     return -ENOSYS;
969 }
970 
971 int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
972 {
973     return -ENOSYS;
974 }
975 
976 int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
977 {
978     return -ENOSYS;
979 }
980 
981 int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
982 {
983     return -ENOSYS;
984 }
985 
986 void hvf_arch_remove_all_hw_breakpoints(void)
987 {
988 }
989 
990 void hvf_arch_update_guest_debug(CPUState *cpu)
991 {
992 }
993 
994 bool hvf_arch_supports_guest_debug(void)
995 {
996     return false;
997 }
998