xref: /qemu/target/i386/helper.c (revision 513823e7521a09ed7ad1e32e6454bac3b2cbf52d)
1 /*
2  *  i386 helpers (without register variable usage)
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/translation-block.h"
25 #include "system/runstate.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "system/hw_accel.h"
28 #include "monitor/monitor.h"
29 #include "kvm/kvm_i386.h"
30 #endif
31 #include "qemu/log.h"
32 #ifdef CONFIG_TCG
33 #include "tcg/insn-start-words.h"
34 #endif
35 
36 void cpu_sync_avx_hflag(CPUX86State *env)
37 {
38     if ((env->cr[4] & CR4_OSXSAVE_MASK)
39         && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK))
40             == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) {
41         env->hflags |= HF_AVX_EN_MASK;
42     } else{
43         env->hflags &= ~HF_AVX_EN_MASK;
44     }
45 }
46 
47 void cpu_sync_bndcs_hflags(CPUX86State *env)
48 {
49     uint32_t hflags = env->hflags;
50     uint32_t hflags2 = env->hflags2;
51     uint32_t bndcsr;
52 
53     if ((hflags & HF_CPL_MASK) == 3) {
54         bndcsr = env->bndcs_regs.cfgu;
55     } else {
56         bndcsr = env->msr_bndcfgs;
57     }
58 
59     if ((env->cr[4] & CR4_OSXSAVE_MASK)
60         && (env->xcr0 & XSTATE_BNDCSR_MASK)
61         && (bndcsr & BNDCFG_ENABLE)) {
62         hflags |= HF_MPX_EN_MASK;
63     } else {
64         hflags &= ~HF_MPX_EN_MASK;
65     }
66 
67     if (bndcsr & BNDCFG_BNDPRESERVE) {
68         hflags2 |= HF2_MPX_PR_MASK;
69     } else {
70         hflags2 &= ~HF2_MPX_PR_MASK;
71     }
72 
73     env->hflags = hflags;
74     env->hflags2 = hflags2;
75 }
76 
77 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
78 {
79     int cpuver = env->cpuid_version;
80 
81     if (family == NULL || model == NULL) {
82         return;
83     }
84 
85     *family = (cpuver >> 8) & 0x0f;
86     *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
87 }
88 
89 /* Broadcast MCA signal for processor version 06H_EH and above */
90 int cpu_x86_support_mca_broadcast(CPUX86State *env)
91 {
92     int family = 0;
93     int model = 0;
94 
95     if (IS_AMD_CPU(env)) {
96         return 0;
97     }
98 
99     cpu_x86_version(env, &family, &model);
100     if ((family == 6 && model >= 14) || family > 6) {
101         return 1;
102     }
103 
104     return 0;
105 }
106 
107 /***********************************************************/
108 /* x86 mmu */
109 /* XXX: add PGE support */
110 
111 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
112 {
113     CPUX86State *env = &cpu->env;
114 
115     a20_state = (a20_state != 0);
116     if (a20_state != ((env->a20_mask >> 20) & 1)) {
117         CPUState *cs = CPU(cpu);
118 
119         qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
120         /* if the cpu is currently executing code, we must unlink it and
121            all the potentially executing TB */
122         cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
123 
124         /* when a20 is changed, all the MMU mappings are invalid, so
125            we must flush everything */
126         tlb_flush(cs);
127         env->a20_mask = ~(1 << 20) | (a20_state << 20);
128     }
129 }
130 
131 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
132 {
133     X86CPU *cpu = env_archcpu(env);
134     int pe_state;
135 
136     qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
137     if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
138         (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
139         tlb_flush(CPU(cpu));
140     }
141 
142 #ifdef TARGET_X86_64
143     if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
144         (env->efer & MSR_EFER_LME)) {
145         /* enter in long mode */
146         /* XXX: generate an exception */
147         if (!(env->cr[4] & CR4_PAE_MASK))
148             return;
149         env->efer |= MSR_EFER_LMA;
150         env->hflags |= HF_LMA_MASK;
151     } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
152                (env->efer & MSR_EFER_LMA)) {
153         /* exit long mode */
154         env->efer &= ~MSR_EFER_LMA;
155         env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
156         env->eip &= 0xffffffff;
157     }
158 #endif
159     env->cr[0] = new_cr0 | CR0_ET_MASK;
160 
161     /* update PE flag in hidden flags */
162     pe_state = (env->cr[0] & CR0_PE_MASK);
163     env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
164     /* ensure that ADDSEG is always set in real mode */
165     env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
166     /* update FPU flags */
167     env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
168         ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
169 }
170 
171 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
172    the PDPT */
173 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
174 {
175     env->cr[3] = new_cr3;
176     if (env->cr[0] & CR0_PG_MASK) {
177         qemu_log_mask(CPU_LOG_MMU,
178                         "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
179         tlb_flush(env_cpu(env));
180     }
181 }
182 
183 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
184 {
185     uint32_t hflags;
186 
187 #if defined(DEBUG_MMU)
188     printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
189 #endif
190     if ((new_cr4 ^ env->cr[4]) &
191         (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
192          CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
193         tlb_flush(env_cpu(env));
194     }
195 
196     /* Clear bits we're going to recompute.  */
197     hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);
198 
199     /* SSE handling */
200     if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
201         new_cr4 &= ~CR4_OSFXSR_MASK;
202     }
203     if (new_cr4 & CR4_OSFXSR_MASK) {
204         hflags |= HF_OSFXSR_MASK;
205     }
206 
207     if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
208         new_cr4 &= ~CR4_SMAP_MASK;
209     }
210     if (new_cr4 & CR4_SMAP_MASK) {
211         hflags |= HF_SMAP_MASK;
212     }
213     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
214         new_cr4 &= ~CR4_UMIP_MASK;
215     }
216     if (new_cr4 & CR4_UMIP_MASK) {
217         hflags |= HF_UMIP_MASK;
218     }
219 
220     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
221         new_cr4 &= ~CR4_PKE_MASK;
222     }
223     if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
224         new_cr4 &= ~CR4_PKS_MASK;
225     }
226 
227     if (!(env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_LAM)) {
228         new_cr4 &= ~CR4_LAM_SUP_MASK;
229     }
230 
231     env->cr[4] = new_cr4;
232     env->hflags = hflags;
233 
234     cpu_sync_bndcs_hflags(env);
235     cpu_sync_avx_hflag(env);
236 }
237 
238 #if !defined(CONFIG_USER_ONLY)
239 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
240                                          MemTxAttrs *attrs)
241 {
242     X86CPU *cpu = X86_CPU(cs);
243     CPUX86State *env = &cpu->env;
244     target_ulong pde_addr, pte_addr;
245     uint64_t pte;
246     int32_t a20_mask;
247     uint32_t page_offset;
248     int page_size;
249 
250     *attrs = cpu_get_mem_attrs(env);
251 
252     a20_mask = x86_get_a20_mask(env);
253     if (!(env->cr[0] & CR0_PG_MASK)) {
254         pte = addr & a20_mask;
255         page_size = 4096;
256     } else if (env->cr[4] & CR4_PAE_MASK) {
257         target_ulong pdpe_addr;
258         uint64_t pde, pdpe;
259 
260 #ifdef TARGET_X86_64
261         if (env->hflags & HF_LMA_MASK) {
262             bool la57 = env->cr[4] & CR4_LA57_MASK;
263             uint64_t pml5e_addr, pml5e;
264             uint64_t pml4e_addr, pml4e;
265             int32_t sext;
266 
267             /* test virtual address sign extension */
268             sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
269             if (sext != 0 && sext != -1) {
270                 return -1;
271             }
272 
273             if (la57) {
274                 pml5e_addr = ((env->cr[3] & ~0xfff) +
275                         (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
276                 pml5e = x86_ldq_phys(cs, pml5e_addr);
277                 if (!(pml5e & PG_PRESENT_MASK)) {
278                     return -1;
279                 }
280             } else {
281                 pml5e = env->cr[3];
282             }
283 
284             pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
285                     (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
286             pml4e = x86_ldq_phys(cs, pml4e_addr);
287             if (!(pml4e & PG_PRESENT_MASK)) {
288                 return -1;
289             }
290             pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
291                          (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
292             pdpe = x86_ldq_phys(cs, pdpe_addr);
293             if (!(pdpe & PG_PRESENT_MASK)) {
294                 return -1;
295             }
296             if (pdpe & PG_PSE_MASK) {
297                 page_size = 1024 * 1024 * 1024;
298                 pte = pdpe;
299                 goto out;
300             }
301 
302         } else
303 #endif
304         {
305             pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
306                 a20_mask;
307             pdpe = x86_ldq_phys(cs, pdpe_addr);
308             if (!(pdpe & PG_PRESENT_MASK))
309                 return -1;
310         }
311 
312         pde_addr = ((pdpe & PG_ADDRESS_MASK) +
313                     (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
314         pde = x86_ldq_phys(cs, pde_addr);
315         if (!(pde & PG_PRESENT_MASK)) {
316             return -1;
317         }
318         if (pde & PG_PSE_MASK) {
319             /* 2 MB page */
320             page_size = 2048 * 1024;
321             pte = pde;
322         } else {
323             /* 4 KB page */
324             pte_addr = ((pde & PG_ADDRESS_MASK) +
325                         (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
326             page_size = 4096;
327             pte = x86_ldq_phys(cs, pte_addr);
328         }
329         if (!(pte & PG_PRESENT_MASK)) {
330             return -1;
331         }
332     } else {
333         uint32_t pde;
334 
335         /* page directory entry */
336         pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
337         pde = x86_ldl_phys(cs, pde_addr);
338         if (!(pde & PG_PRESENT_MASK))
339             return -1;
340         if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
341             pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
342             page_size = 4096 * 1024;
343         } else {
344             /* page directory entry */
345             pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
346             pte = x86_ldl_phys(cs, pte_addr);
347             if (!(pte & PG_PRESENT_MASK)) {
348                 return -1;
349             }
350             page_size = 4096;
351         }
352         pte = pte & a20_mask;
353     }
354 
355 #ifdef TARGET_X86_64
356 out:
357 #endif
358     pte &= PG_ADDRESS_MASK & ~(page_size - 1);
359     page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
360     return pte | page_offset;
361 }
362 
363 typedef struct MCEInjectionParams {
364     Monitor *mon;
365     int bank;
366     uint64_t status;
367     uint64_t mcg_status;
368     uint64_t addr;
369     uint64_t misc;
370     int flags;
371 } MCEInjectionParams;
372 
373 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
374                                       bool recursive)
375 {
376     MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
377 
378     qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
379                                    &mff);
380 }
381 
382 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
383 {
384     MCEInjectionParams *params = data.host_ptr;
385     X86CPU *cpu = X86_CPU(cs);
386     CPUX86State *cenv = &cpu->env;
387     uint64_t *banks = cenv->mce_banks + 4 * params->bank;
388     g_autofree char *msg = NULL;
389     bool need_reset = false;
390     bool recursive;
391     bool ar = !!(params->status & MCI_STATUS_AR);
392 
393     cpu_synchronize_state(cs);
394     recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
395 
396     /*
397      * If there is an MCE exception being processed, ignore this SRAO MCE
398      * unless unconditional injection was requested.
399      */
400     if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
401         emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
402         return;
403     }
404 
405     if (params->status & MCI_STATUS_UC) {
406         /*
407          * if MSR_MCG_CTL is not all 1s, the uncorrected error
408          * reporting is disabled
409          */
410         if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
411             monitor_printf(params->mon,
412                            "CPU %d: Uncorrected error reporting disabled\n",
413                            cs->cpu_index);
414             return;
415         }
416 
417         /*
418          * if MSR_MCi_CTL is not all 1s, the uncorrected error
419          * reporting is disabled for the bank
420          */
421         if (banks[0] != ~(uint64_t)0) {
422             monitor_printf(params->mon,
423                            "CPU %d: Uncorrected error reporting disabled for"
424                            " bank %d\n",
425                            cs->cpu_index, params->bank);
426             return;
427         }
428 
429         if (!(cenv->cr[4] & CR4_MCE_MASK)) {
430             need_reset = true;
431             msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
432                                   "raising triple fault", cs->cpu_index);
433         } else if (recursive) {
434             need_reset = true;
435             msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
436                                   "raising triple fault", cs->cpu_index);
437         }
438 
439         if (need_reset) {
440             emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
441                                       recursive);
442             monitor_printf(params->mon, "%s", msg);
443             qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
444             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
445             return;
446         }
447 
448         if (banks[1] & MCI_STATUS_VAL) {
449             params->status |= MCI_STATUS_OVER;
450         }
451         banks[2] = params->addr;
452         banks[3] = params->misc;
453         cenv->mcg_status = params->mcg_status;
454         banks[1] = params->status;
455         cpu_interrupt(cs, CPU_INTERRUPT_MCE);
456     } else if (!(banks[1] & MCI_STATUS_VAL)
457                || !(banks[1] & MCI_STATUS_UC)) {
458         if (banks[1] & MCI_STATUS_VAL) {
459             params->status |= MCI_STATUS_OVER;
460         }
461         banks[2] = params->addr;
462         banks[3] = params->misc;
463         banks[1] = params->status;
464     } else {
465         banks[1] |= MCI_STATUS_OVER;
466     }
467 
468     emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
469 }
470 
471 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
472                         uint64_t status, uint64_t mcg_status, uint64_t addr,
473                         uint64_t misc, int flags)
474 {
475     CPUState *cs = CPU(cpu);
476     CPUX86State *cenv = &cpu->env;
477     MCEInjectionParams params = {
478         .mon = mon,
479         .bank = bank,
480         .status = status,
481         .mcg_status = mcg_status,
482         .addr = addr,
483         .misc = misc,
484         .flags = flags,
485     };
486     unsigned bank_num = cenv->mcg_cap & 0xff;
487 
488     if (!cenv->mcg_cap) {
489         monitor_printf(mon, "MCE injection not supported\n");
490         return;
491     }
492     if (bank >= bank_num) {
493         monitor_printf(mon, "Invalid MCE bank number\n");
494         return;
495     }
496     if (!(status & MCI_STATUS_VAL)) {
497         monitor_printf(mon, "Invalid MCE status code\n");
498         return;
499     }
500     if ((flags & MCE_INJECT_BROADCAST)
501         && !cpu_x86_support_mca_broadcast(cenv)) {
502         monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
503         return;
504     }
505 
506     run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
507     if (flags & MCE_INJECT_BROADCAST) {
508         CPUState *other_cs;
509 
510         params.bank = 1;
511         params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
512         params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
513         params.addr = 0;
514         params.misc = 0;
515         CPU_FOREACH(other_cs) {
516             if (other_cs == cs) {
517                 continue;
518             }
519             run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
520         }
521     }
522 }
523 
524 static inline target_ulong get_memio_eip(CPUX86State *env)
525 {
526 #ifdef CONFIG_TCG
527     uint64_t data[TARGET_INSN_START_WORDS];
528     CPUState *cs = env_cpu(env);
529 
530     if (!cpu_unwind_state_data(cs, cs->mem_io_pc, data)) {
531         return env->eip;
532     }
533 
534     /* Per x86_restore_state_to_opc. */
535     if (tcg_cflags_has(cs, CF_PCREL)) {
536         return (env->eip & TARGET_PAGE_MASK) | data[0];
537     } else {
538         return data[0] - env->segs[R_CS].base;
539     }
540 #else
541     qemu_build_not_reached();
542 #endif
543 }
544 
545 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
546 {
547     X86CPU *cpu = env_archcpu(env);
548     CPUState *cs = env_cpu(env);
549 
550     if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
551         env->tpr_access_type = access;
552 
553         cpu_interrupt(cs, CPU_INTERRUPT_TPR);
554     } else if (tcg_enabled()) {
555         target_ulong eip = get_memio_eip(env);
556 
557         apic_handle_tpr_access_report(cpu->apic_state, eip, access);
558     }
559 }
560 #endif /* !CONFIG_USER_ONLY */
561 
562 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
563                             target_ulong *base, unsigned int *limit,
564                             unsigned int *flags)
565 {
566     CPUState *cs = env_cpu(env);
567     SegmentCache *dt;
568     target_ulong ptr;
569     uint32_t e1, e2;
570     int index;
571 
572     if (selector & 0x4)
573         dt = &env->ldt;
574     else
575         dt = &env->gdt;
576     index = selector & ~7;
577     ptr = dt->base + index;
578     if ((index + 7) > dt->limit
579         || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
580         || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
581         return 0;
582 
583     *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
584     *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
585     if (e2 & DESC_G_MASK)
586         *limit = (*limit << 12) | 0xfff;
587     *flags = e2;
588 
589     return 1;
590 }
591 
592 void do_cpu_init(X86CPU *cpu)
593 {
594 #if !defined(CONFIG_USER_ONLY)
595     CPUState *cs = CPU(cpu);
596     CPUX86State *env = &cpu->env;
597     CPUX86State *save = g_new(CPUX86State, 1);
598     int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
599 
600     *save = *env;
601 
602     cpu_reset(cs);
603     cs->interrupt_request = sipi;
604     memcpy(&env->start_init_save, &save->start_init_save,
605            offsetof(CPUX86State, end_init_save) -
606            offsetof(CPUX86State, start_init_save));
607     g_free(save);
608 
609     if (kvm_enabled()) {
610         kvm_arch_do_init_vcpu(cpu);
611     }
612     apic_init_reset(cpu->apic_state);
613 #endif /* CONFIG_USER_ONLY */
614 }
615 
616 #ifndef CONFIG_USER_ONLY
617 
618 void do_cpu_sipi(X86CPU *cpu)
619 {
620     apic_sipi(cpu->apic_state);
621 }
622 
623 void cpu_load_efer(CPUX86State *env, uint64_t val)
624 {
625     env->efer = val;
626     env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
627     if (env->efer & MSR_EFER_LMA) {
628         env->hflags |= HF_LMA_MASK;
629     }
630     if (env->efer & MSR_EFER_SVME) {
631         env->hflags |= HF_SVME_MASK;
632     }
633 }
634 
635 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
636 {
637     X86CPU *cpu = X86_CPU(cs);
638     CPUX86State *env = &cpu->env;
639     MemTxAttrs attrs = cpu_get_mem_attrs(env);
640     AddressSpace *as = cpu_addressspace(cs, attrs);
641 
642     return address_space_ldub(as, addr, attrs, NULL);
643 }
644 
645 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
646 {
647     X86CPU *cpu = X86_CPU(cs);
648     CPUX86State *env = &cpu->env;
649     MemTxAttrs attrs = cpu_get_mem_attrs(env);
650     AddressSpace *as = cpu_addressspace(cs, attrs);
651 
652     return address_space_lduw(as, addr, attrs, NULL);
653 }
654 
655 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
656 {
657     X86CPU *cpu = X86_CPU(cs);
658     CPUX86State *env = &cpu->env;
659     MemTxAttrs attrs = cpu_get_mem_attrs(env);
660     AddressSpace *as = cpu_addressspace(cs, attrs);
661 
662     return address_space_ldl(as, addr, attrs, NULL);
663 }
664 
665 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
666 {
667     X86CPU *cpu = X86_CPU(cs);
668     CPUX86State *env = &cpu->env;
669     MemTxAttrs attrs = cpu_get_mem_attrs(env);
670     AddressSpace *as = cpu_addressspace(cs, attrs);
671 
672     return address_space_ldq(as, addr, attrs, NULL);
673 }
674 
675 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
676 {
677     X86CPU *cpu = X86_CPU(cs);
678     CPUX86State *env = &cpu->env;
679     MemTxAttrs attrs = cpu_get_mem_attrs(env);
680     AddressSpace *as = cpu_addressspace(cs, attrs);
681 
682     address_space_stb(as, addr, val, attrs, NULL);
683 }
684 
685 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
686 {
687     X86CPU *cpu = X86_CPU(cs);
688     CPUX86State *env = &cpu->env;
689     MemTxAttrs attrs = cpu_get_mem_attrs(env);
690     AddressSpace *as = cpu_addressspace(cs, attrs);
691 
692     address_space_stl_notdirty(as, addr, val, attrs, NULL);
693 }
694 
695 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
696 {
697     X86CPU *cpu = X86_CPU(cs);
698     CPUX86State *env = &cpu->env;
699     MemTxAttrs attrs = cpu_get_mem_attrs(env);
700     AddressSpace *as = cpu_addressspace(cs, attrs);
701 
702     address_space_stw(as, addr, val, attrs, NULL);
703 }
704 
705 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
706 {
707     X86CPU *cpu = X86_CPU(cs);
708     CPUX86State *env = &cpu->env;
709     MemTxAttrs attrs = cpu_get_mem_attrs(env);
710     AddressSpace *as = cpu_addressspace(cs, attrs);
711 
712     address_space_stl(as, addr, val, attrs, NULL);
713 }
714 
715 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
716 {
717     X86CPU *cpu = X86_CPU(cs);
718     CPUX86State *env = &cpu->env;
719     MemTxAttrs attrs = cpu_get_mem_attrs(env);
720     AddressSpace *as = cpu_addressspace(cs, attrs);
721 
722     address_space_stq(as, addr, val, attrs, NULL);
723 }
724 #endif
725