xref: /qemu/target/avr/helper.c (revision cecaad540155927f2faf1b6897c72cc59074cb45)
1 /*
2  * QEMU AVR CPU helpers
3  *
4  * Copyright (c) 2016-2020 Michael Rolnik
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see
18  * <http://www.gnu.org/licenses/lgpl-2.1.html>
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/log.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "exec/exec-all.h"
26 #include "exec/address-spaces.h"
27 #include "exec/helper-proto.h"
28 
29 bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
30 {
31     AVRCPU *cpu = AVR_CPU(cs);
32     CPUAVRState *env = &cpu->env;
33 
34     if (interrupt_request & CPU_INTERRUPT_RESET) {
35         if (cpu_interrupts_enabled(env)) {
36             cs->exception_index = EXCP_RESET;
37             avr_cpu_do_interrupt(cs);
38 
39             cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
40             return true;
41         }
42     }
43     if (interrupt_request & CPU_INTERRUPT_HARD) {
44         if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
45             int index = ctz32(env->intsrc);
46             cs->exception_index = EXCP_INT(index);
47             avr_cpu_do_interrupt(cs);
48 
49             env->intsrc &= env->intsrc - 1; /* clear the interrupt */
50             if (!env->intsrc) {
51                 cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
52             }
53             return true;
54         }
55     }
56     return false;
57 }
58 
59 void avr_cpu_do_interrupt(CPUState *cs)
60 {
61     AVRCPU *cpu = AVR_CPU(cs);
62     CPUAVRState *env = &cpu->env;
63 
64     uint32_t ret = env->pc_w;
65     int vector = 0;
66     int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
67     int base = 0;
68 
69     if (cs->exception_index == EXCP_RESET) {
70         vector = 0;
71     } else if (env->intsrc != 0) {
72         vector = ctz32(env->intsrc) + 1;
73     }
74 
75     if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
76         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
77         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
78         cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
79     } else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
80         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
81         cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
82     } else {
83         cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
84     }
85 
86     env->pc_w = base + vector * size;
87     env->sregI = 0; /* clear Global Interrupt Flag */
88 
89     cs->exception_index = -1;
90 }
91 
92 hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
93 {
94     return addr; /* I assume 1:1 address correspondence */
95 }
96 
97 bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
98                       MMUAccessType access_type, int mmu_idx,
99                       bool probe, uintptr_t retaddr)
100 {
101     int prot, page_size = TARGET_PAGE_SIZE;
102     uint32_t paddr;
103 
104     address &= TARGET_PAGE_MASK;
105 
106     if (mmu_idx == MMU_CODE_IDX) {
107         /* Access to code in flash. */
108         paddr = OFFSET_CODE + address;
109         prot = PAGE_READ | PAGE_EXEC;
110         if (paddr >= OFFSET_DATA) {
111             /*
112              * This should not be possible via any architectural operations.
113              * There is certainly not an exception that we can deliver.
114              * Accept probing that might come from generic code.
115              */
116             if (probe) {
117                 return false;
118             }
119             error_report("execution left flash memory");
120             abort();
121         }
122     } else {
123         /* Access to memory. */
124         paddr = OFFSET_DATA + address;
125         prot = PAGE_READ | PAGE_WRITE;
126         if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
127             /*
128              * Access to CPU registers, exit and rebuilt this TB to use
129              * full access in case it touches specially handled registers
130              * like SREG or SP.  For probing, set page_size = 1, in order
131              * to force tlb_fill to be called for the next access.
132              */
133             if (probe) {
134                 page_size = 1;
135             } else {
136                 AVRCPU *cpu = AVR_CPU(cs);
137                 CPUAVRState *env = &cpu->env;
138                 env->fullacc = 1;
139                 cpu_loop_exit_restore(cs, retaddr);
140             }
141         }
142     }
143 
144     tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
145     return true;
146 }
147 
148 /*
149  *  helpers
150  */
151 
152 void helper_sleep(CPUAVRState *env)
153 {
154     CPUState *cs = env_cpu(env);
155 
156     cs->exception_index = EXCP_HLT;
157     cpu_loop_exit(cs);
158 }
159 
160 void helper_unsupported(CPUAVRState *env)
161 {
162     CPUState *cs = env_cpu(env);
163 
164     /*
165      *  I count not find what happens on the real platform, so
166      *  it's EXCP_DEBUG for meanwhile
167      */
168     cs->exception_index = EXCP_DEBUG;
169     if (qemu_loglevel_mask(LOG_UNIMP)) {
170         qemu_log("UNSUPPORTED\n");
171         cpu_dump_state(cs, stderr, 0);
172     }
173     cpu_loop_exit(cs);
174 }
175 
176 void helper_debug(CPUAVRState *env)
177 {
178     CPUState *cs = env_cpu(env);
179 
180     cs->exception_index = EXCP_DEBUG;
181     cpu_loop_exit(cs);
182 }
183 
184 void helper_break(CPUAVRState *env)
185 {
186     CPUState *cs = env_cpu(env);
187 
188     cs->exception_index = EXCP_DEBUG;
189     cpu_loop_exit(cs);
190 }
191 
192 void helper_wdr(CPUAVRState *env)
193 {
194     qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
195 }
196 
197 /*
198  * This function implements IN instruction
199  *
200  * It does the following
201  * a.  if an IO register belongs to CPU, its value is read and returned
202  * b.  otherwise io address is translated to mem address and physical memory
203  *     is read.
204  * c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
205  *
206  */
207 target_ulong helper_inb(CPUAVRState *env, uint32_t port)
208 {
209     target_ulong data = 0;
210 
211     switch (port) {
212     case 0x38: /* RAMPD */
213         data = 0xff & (env->rampD >> 16);
214         break;
215     case 0x39: /* RAMPX */
216         data = 0xff & (env->rampX >> 16);
217         break;
218     case 0x3a: /* RAMPY */
219         data = 0xff & (env->rampY >> 16);
220         break;
221     case 0x3b: /* RAMPZ */
222         data = 0xff & (env->rampZ >> 16);
223         break;
224     case 0x3c: /* EIND */
225         data = 0xff & (env->eind >> 16);
226         break;
227     case 0x3d: /* SPL */
228         data = env->sp & 0x00ff;
229         break;
230     case 0x3e: /* SPH */
231         data = env->sp >> 8;
232         break;
233     case 0x3f: /* SREG */
234         data = cpu_get_sreg(env);
235         break;
236     default:
237         /* not a special register, pass to normal memory access */
238         data = address_space_ldub(&address_space_memory,
239                                   OFFSET_IO_REGISTERS + port,
240                                   MEMTXATTRS_UNSPECIFIED, NULL);
241     }
242 
243     return data;
244 }
245 
246 /*
247  *  This function implements OUT instruction
248  *
249  *  It does the following
250  *  a.  if an IO register belongs to CPU, its value is written into the register
251  *  b.  otherwise io address is translated to mem address and physical memory
252  *      is written.
253  *  c.  it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
254  *
255  */
256 void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
257 {
258     data &= 0x000000ff;
259 
260     switch (port) {
261     case 0x38: /* RAMPD */
262         if (avr_feature(env, AVR_FEATURE_RAMPD)) {
263             env->rampD = (data & 0xff) << 16;
264         }
265         break;
266     case 0x39: /* RAMPX */
267         if (avr_feature(env, AVR_FEATURE_RAMPX)) {
268             env->rampX = (data & 0xff) << 16;
269         }
270         break;
271     case 0x3a: /* RAMPY */
272         if (avr_feature(env, AVR_FEATURE_RAMPY)) {
273             env->rampY = (data & 0xff) << 16;
274         }
275         break;
276     case 0x3b: /* RAMPZ */
277         if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
278             env->rampZ = (data & 0xff) << 16;
279         }
280         break;
281     case 0x3c: /* EIDN */
282         env->eind = (data & 0xff) << 16;
283         break;
284     case 0x3d: /* SPL */
285         env->sp = (env->sp & 0xff00) | (data);
286         break;
287     case 0x3e: /* SPH */
288         if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
289             env->sp = (env->sp & 0x00ff) | (data << 8);
290         }
291         break;
292     case 0x3f: /* SREG */
293         cpu_set_sreg(env, data);
294         break;
295     default:
296         /* not a special register, pass to normal memory access */
297         address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
298                           data, MEMTXATTRS_UNSPECIFIED, NULL);
299     }
300 }
301 
302 /*
303  *  this function implements LD instruction when there is a possibility to read
304  *  from a CPU register
305  */
306 target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
307 {
308     uint8_t data;
309 
310     env->fullacc = false;
311 
312     if (addr < NUMBER_OF_CPU_REGISTERS) {
313         /* CPU registers */
314         data = env->r[addr];
315     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
316         /* IO registers */
317         data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
318     } else {
319         /* memory */
320         data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
321                                   MEMTXATTRS_UNSPECIFIED, NULL);
322     }
323     return data;
324 }
325 
326 /*
327  *  this function implements ST instruction when there is a possibility to write
328  *  into a CPU register
329  */
330 void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
331 {
332     env->fullacc = false;
333 
334     /* Following logic assumes this: */
335     assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
336     assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
337                                   NUMBER_OF_CPU_REGISTERS);
338 
339     if (addr < NUMBER_OF_CPU_REGISTERS) {
340         /* CPU registers */
341         env->r[addr] = data;
342     } else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
343         /* IO registers */
344         helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
345     } else {
346         /* memory */
347         address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
348                           MEMTXATTRS_UNSPECIFIED, NULL);
349     }
350 }
351